Ion's motion observed via fluorescence light detection

The observation of trapped ions' motion is a cutting-edge method for stringent tests of quantum mechanics and precision measurements of the rest energies of fundamental particles. We have developed a new method based on fluorescence detection to measure this motion. We reveal all the oscillations' frequencies of a trapped ion chain simultaneously by only using the Doppler cooling radiation and the help of a mirror that reflects the ions' fluorescence back on the ions.


Compact quantum com­puters for server centers

So far, quantum computers have been one-of-a-kind devices that fill entire laboratories. Now, physicists at the University of Innsbruck have built a prototype of an ion trap quantum computer that can be used in industry. It fits into two 19-inch server racks like those found in data centers throughout the world.


Interface between Trapped-Ion Qubits and Traveling Photons

A quantum version of the internet, built of interacting quantum light and matter, would enable powerful new capabilities for science and technology. A key requirement for the quantum internet is the ability to efficiently collect photons that are emitted by and entangled with quantum matter. In our paper (link) published in PRX Quantum, we report on a significant increase in the efficiency of entangled photon collection from a leading example of quantum matter: a single trapped atomic ion. The achieved performance opens up new near-term methods for engineering and studying many-particle quantum states.


Welcome Claire Edmunds

Welcome Claire! Claire Edmunds completed her Ph.D. at the University of Sydney in Australia working on characterising and reducing errors in trapped ion quantum devices. Claire has received an ESQ fellowship from the Austrian Academy of Sciences to work here at the University of Innsbruck, where she will integrate these techniques into the Linear Trap quantum simulation and information experiments.


Christine Maier receives her PhD

Congratulations, Christine!

Thesis Title: A quantum simulator with long strings of trapped ions

 

 

 

 

 


Welcome Yannick Weiser

We welcome Yannick to the Barium experiment! He studied physics at Erlangen and worked during his Master's thesis on a Quantum Communication platform based on coherent CV-QKD. Here in Innsbruck, his Ph.D. project will focus on fundamental Quantum Optics to study the interaction between a trapped ion and the single photons emitted by the ion in the presence of a hemispherical mirror.


Welcome Simon Garbin

Simon joined the group for his Master project where he will work on phase-modulated entangling gates for the AQTION setup. These promise to make entangling gates more robust to errors associated to fluctuating laser frequency and amplitude.


Welcome Armin Winkler

Armin joined the group for his Master project where he will set up a new 729nm laser system.