- Details
Congratulations, Ben!
Thesis Titled: Coherent control of a 40Ca+ ground state qubit
- Details
The observation of trapped ions' motion is a cutting-edge method for stringent tests of quantum mechanics and precision measurements of the rest energies of fundamental particles. We have developed a new method based on fluorescence detection to measure this motion. We reveal all the oscillations' frequencies of a trapped ion chain simultaneously by only using the Doppler cooling radiation and the help of a mirror that reflects the ions' fluorescence back on the ions.
- Details
So far, quantum computers have been one-of-a-kind devices that fill entire laboratories. Now, physicists at the University of Innsbruck have built a prototype of an ion trap quantum computer that can be used in industry. It fits into two 19-inch server racks like those found in data centers throughout the world.
- Details
A quantum version of the internet, built of interacting quantum light and matter, would enable powerful new capabilities for science and technology. A key requirement for the quantum internet is the ability to efficiently collect photons that are emitted by and entangled with quantum matter. In our paper (link) published in PRX Quantum, we report on a significant increase in the efficiency of entangled photon collection from a leading example of quantum matter: a single trapped atomic ion. The achieved performance opens up new near-term methods for engineering and studying many-particle quantum states.
- Details
Welcome Claire! Claire Edmunds completed her Ph.D. at the University of Sydney in Australia working on characterising and reducing errors in trapped ion quantum devices. Claire has received an ESQ fellowship from the Austrian Academy of Sciences to work here at the University of Innsbruck, where she will integrate these techniques into the Linear Trap quantum simulation and information experiments.
- Details
Congratulations, Christine!
Thesis Title: A quantum simulator with long strings of trapped ions
- Details
We welcome Yannick to the Barium experiment! He studied physics at Erlangen and worked during his Master's thesis on a Quantum Communication platform based on coherent CV-QKD. Here in Innsbruck, his Ph.D. project will focus on fundamental Quantum Optics to study the interaction between a trapped ion and the single photons emitted by the ion in the presence of a hemispherical mirror.
- Details
Simon joined the group for his Master project where he will work on phase-modulated entangling gates for the AQTION setup. These promise to make entangling gates more robust to errors associated to fluctuating laser frequency and amplitude.
- Details
Armin joined the group for his Master project where he will set up a new 729nm laser system.