• Home
    • About
    • Pictures
    • Contact
  • People
  • News
  • Research
    • 2D Crystals
    • Barium
    • CryoTrap
    • Distributed Q. Systems
    • QCosmo
    • Quantum Information
    • Quantum Simulation
    • QUDITS
  • Collaborations
  • Publications
    • Preprints
    • Journal articles
    • Proceedings, book chapters
    • Ph.D. theses
    • Master's and Diploma theses
    • General Articles
  • Open Positions
  • Teaching
    • Bachelor & Master theses
    • Laser goggle calculator
  • Links
    • Ion Trapping Worldwide
Quantum Optics and Spectroscopy Quantum Optics and Spectroscopy

AG Quantum Optics
and Spectroscopy

  • Home
    • About
    • Pictures
    • Contact
  • People
  • News
  • Research
    • 2D Crystals
    • Barium
    • CryoTrap
    • Distributed Q. Systems
    • QCosmo
    • Quantum Information
    • Quantum Simulation
    • QUDITS
  • Collaborations
  • Publications
    • Preprints
    • Journal articles
    • Proceedings, book chapters
    • Ph.D. theses
    • Master's and Diploma theses
    • General Articles
  • Open Positions
  • Teaching
    • Bachelor & Master theses
    • Laser goggle calculator
  • Links
    • Ion Trapping Worldwide
Quantum Optics and Spectroscopy Quantum Optics and Spectroscopy
  • Home
    • About
    • Pictures
    • Contact
  • People
  • News
  • Research
    • 2D Crystals
    • Barium
    • CryoTrap
    • Distributed Q. Systems
    • QCosmo
    • Quantum Information
    • Quantum Simulation
    • QUDITS
  • Collaborations
  • Publications
    • Preprints
    • Journal articles
    • Proceedings, book chapters
    • Ph.D. theses
    • Master's and Diploma theses
    • General Articles
  • Open Positions
  • Teaching
    • Bachelor & Master theses
    • Laser goggle calculator
  • Links
    • Ion Trapping Worldwide

AG Quantum Optics
and Spectroscopy

Into the quantum internet at the speed of light

Details
Published: 04 February 2013

Into the quantum internet at the speed of light

Transfer ion photon2smaller
Image: Harald Ritsch/IQOQI

Thanks to the strange laws of quantum mechanics, quantum computers would be able to carry out certain computational tasks much faster than conventional computers. Among the most promising technologies for the construction of a quantum computer are systems of single atoms, confined in so-called ion traps and manipulated with lasers. In the laboratory, these systems have already been used to test key building blocks of a future quantum computer. "Currently, we can carry out successful quantum computations with atoms," explain Andreas Stute and Bernardo Casabone, both PhD students at the University of Innsbruck's Institute for Experimental Physics. "But we are still missing viable interfaces with which quantum information can be transferred over optical channels from one computer to another." What makes the construction of these interfaces especially challenging is that the laws of quantum mechanics don't allow quantum information to be simply copied. Instead, a future quantum internet – that is, a network of quantum computers linked by optical channels – would have to transfer quantum information onto individual particles of light, known as photons. These photons would then be transported over an optical-fiber link to a distant computing site. Now, for the first time, quantum information has been directly transferred from an atom in an ion trap onto a single photon. The work is reported in the current issue of Nature Photonics by a research team led by Tracy Northup and Rainer Blatt.

Quantum networkers

The University of Innsbruck physicists first trap a single calcium ion in an ion trap and position it between two highly reflective mirrors. "We use a laser to write the desired quantum information onto the electronic states of the atom," explains Stute. "The atom is then excited with a second laser, and as a result, it emits a photon. At this moment, we write the atom's quantum information onto the polarization state of the photon, thus mapping it onto the light particle." The photon is stored between the mirrors until it eventually flies out through one mirror, which is less reflective than the other. "The two mirrors steer the photon in a specific direction, effectively guiding it into an optical fiber," says Casabone. The quantum information stored in the photon could thus be conveyed over the optical fiber to a distant quantum computer, where the same technique could be applied in reverse to write it back onto an atom.

Support for this research was provided by the Austrian Science Funds and by the European Union.

Links:

  • Quantum-state transfer from an ion to a photon. A. Stute, B. Casabone, B. Brandstätter, K. Friebe, T. E. Northup, R. Blatt. Advance Online Publication, Nature Photonics 2013.

Contact us

Quantum Optics and Spectroscopy
Institut für Experimentalphysik
Universität Innsbruck
Technikerstrasse 25/4
A-6020 Innsbruck, Austria
More information

Latest news

  • Welcome Tim Duka
  • New type of quan­tum com­puter stud­ies the dance of ele­men­tary par­ti­cles
  • Welcome Miriam Kautzky
  • Welcome Raphael Poloczek
  • Dominik Kiesenhofer receives his PhD
  • Welcome Lorenzo Calandra Buonaura
  • Welcome Andrea Turci
  • Lukas Gerster receives his PhD
© Quantum Optics and Spectroscopy 2025, Powered by Astroid. Design by Astroid Framework