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Laser-cooled trapped ions provide a relatively unperturbed system for the creation of en-

tangled states and their manipulation for quantum information processing experiments. Al-

though a general purpose quantum computer remains a distant goal, recent experiments

show that a few entangled trapped ions can already be used to advantage in metrology. We

describe the basic ingredients that have been used for entanglement and indicate some of

the steps needed to scale to larger numbers. If successful, extensions of the demonstrated

entangling operations might enable simulations that are intractable on a classical computer.

Introduction

Coherent quantum superposition states of individual particles have been investigated and used for

decades in applications such as photon interferometers and Ramsey spectroscopy1. However, en-

tangled states and particularly entangled states that have been ”engineered” or created for specific

tasks, have become available routinely only in the last two decades2. Early experiments performed
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with pairs of entangled photons3, 4 were important because they provided tests of nonlocality in

quantum mechanics5. In the 1980s, quantum systems were considered by Feynman and Deutsch

as a possible way to perform certain efficient computations or quantum simulations6, 7. This idea

was largely considered a curiosity until the 1990’s when Peter Shor devised an algorithm8 that

could factor large numbers very efficiently with a quantum computer. This marked the begin-

ning of widespread interest in quantum information processing (QIP) and stimulated a number of

proposals for the implementation of a quantum computer9–17. Among these, trapped ions9 have

proven to be one of the most successful avenues for the deterministic creation of entangled states,

and for their manipulation, characterization, and use in measurement. There are currently about

25 laboratories worldwide that study various aspects of QIP with trapped ions. Ions provide a rel-

atively “clean” system, because they can be confined for long durations with small environmental

perturbations and can be coherently manipulated with laser beams. While this requires a num-

ber of technical ingredients, trapped ions thus provide an accessible testing ground for concepts

that can also be applied to other systems, such as those employing quantum dots, nuclear spins,

superconducting Josephson junctions, photons, neutral trapped atoms, etc.

Quantum information processing with atoms and photons was reviewed in Nature by C.

Monroe in 2002.18 Here, we highlight recent advances in the creation and manipulation of ion

entangled states, with an emphasis on applications to realizing quantum gates for QIP and their

use in improved metrology.
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Trapped and laser-cooled ions

To study entanglement, it is desirable to have a system of particles that can be individually ma-

nipulated, their internal states entangled, and coherences maintained for long durations, while

suppressing the detrimental effects of unwanted couplings to the environment. This can be real-

ized by confining and laser cooling a group of atomic ions in a particular arrangement of electric

and/or magnetic fields19, 20. With such “traps” atomic ions can be stored nearly indefinitely and

localized in space to a few nanometers. Coherence times of ten minutes have been observed for

superpositions of two hyperfine states21, 22.

In the present context, we typically trap a few ions using a combination of static and sinu-

soidially oscillating electric potentials applied between the electrodes of a linear quadrupole, called

a Paul trap, as shown in Fig. 1. When laser cooled, the ions arrange into a linear “string”, where the

spacings are determined by a balance between the horizontal (axial) confining fields and mutual

Coulomb repulsion. Scattered fluorescence can be imaged with a camera as shown in the inset of

Fig. 1. The use of tightly focused laser beams allows us to address and manipulate individual ions.

For simplicity, we focus our attention on two specific internal levels |g〉 and |e〉 of each ion. This

”qubit” structure is “dressed” by the oscillator states |n〉 of frequency ωm of a particular mode (see

Fig. 1). We denote the internal states as “spin” states, in analogy with the two states of a spin-1/2

particle, and we’ll first assume that the energy between internal states corresponds to an optical

frequency ωeg. This atomic transition can be driven by laser radiation at frequency ωeg, which

couples states |g, n〉 ↔ |e, n〉. Spin and motional degrees of freedom can be coupled by tuning the
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laser to “sideband” frequencies ωeg ± ωm, which drives transitions |g, n〉 ↔ |e, n+ ∆n〉23–27, with

∆n = ±1. In this case, state evolution can be described as a rotation R∆n(θ, φ) of the state vector

on the Bloch sphere 27, 28 defined here as

R∆n(θ, φ)|g, n〉 −→ cos
θ

2
|g, n〉+ ieiφ sin

θ

2
|e, n+ ∆n〉

R∆n(θ, φ)|e, n+ ∆n〉 −→ ie−iφ sin
θ

2
|g, n〉+ cos

θ

2
|e, n+ ∆n〉, (1)

where θ depends on the strength and the duration of the applied laser pulse and φ is the laser beam

phase at the ion’s position. For ∆n = ±1 entanglement is generated between the spin and motional

degrees of freedom. Higher-order couplings (|∆n| > 1) are suppressed for laser-cooled ions whose

spatial extent is much smaller than the laser wavelength, the so-called Lamb-Dicke regime. In this

regime, “sideband” laser cooling works by tuning the laser to induce absorption on the lower

sideband (∆n = −1) followed by spontaneous emission decay, which occurs predominantly at

the ∆n = 0 “carrier” transition frequency. With repeated absorption/emission cycles, the ions are

optically pumped to the spin/motion ground state |g, n = 0〉.29 If the spin energy levels correspond

to microwave or lower frequencies (as with hyperfine states), the same processes can be realized

by replacing single-photon optical transitions with two-photon stimulated-Raman transitions and

spontaneous emission with spontaneous Raman scattering.24–27

Resonance fluorescence from an auxiliary state that is strongly coupled (by a monitoring ex-

citation) to one of the qubit levels and decays back only to that same level, allows us to achieve

state detection with efficiencies greater than 99 %. This is usually called quantum non-demolition

(QND) detection because once the ion is projected into a particular spin state by the excita-
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tion/emission cycle, the cycle can be repeated many times and we don’t need to detect every emit-

ted photon to achieve good overall detection efficiency. If the qubit is projected to or ”shelved”

in the state that is not coupled to the fluorescing transition we observe no photons, which can be

distinguished from the fluorescing state.30

Spin-Entangled States

In 1995, Ignacio Cirac and Peter Zoller proposed how to use a trapped-ion system to implement

a quantum computer9. For universal quantum computation and the generation of arbitrary en-

tangled qubit states, two basic gate operations are required: (i) individual qubit rotations as de-

scribed by Eq. (1), and (ii) a two-qubit entangling operation that enables the realization of the

quantum counterpart to a classical logical XOR operation, the so-called controlled-NOT (CNOT)

gate operation31. The CNOT gate flips the state of a target qubit depending on the state of a control

qubit and importantly, when applied to superposition states, it generates entanglement. By the use

of individual qubit rotations applied to two trapped ions, the CNOT operation is realized by map-

ping the state of the control qubit to the common ion motion and using transitions on the target

ion which are available if and only if the motion is excited, for details see Fig. 2. As indicated

in the lower part of Fig. 2 the CNOT operation in step (2) is achieved with a sequence of car-

rier (R0(θ, φ)) and red sideband pulses (R−1(θ, φ)). The central part of this sequence is a “phase

gate” that applies a phase shift eiπ = −1 to the |g, 1〉 component of the wave function. This is

implemented with a coherent R−1(2π, φ) pulse applied between the |g, 1〉 state and an auxiliary

state |aux, 0〉. Since the applied radiation cannot excite states |g, 0〉, |e, 0〉 or |e, 1〉, they are un-
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affected. This operation is sandwiched between rotations that transfer phase into state changes as

in Ramsey spectroscopy. With a single ion Monroe et al. realized the CNOT-operation between

motion and 9Be+ spin qubits32; Schmidt-Kaler et al.33, 34 and later Riebe et al.35 realized the com-

plete CNOT between two individually addressed 40Ca+. Entangling gates have also been realized

by irradiating the ions simultaneously (see Fig. 3). Although they can be implemented in a single

step, they still involve transitory entanglement with a motional mode, which effectively couples

the spin qubits. Ions have also been entangled in a probabilistic way by the coincident detection of

scattered photons, for details see Fig. 4.

By sequentially combining single and multi-qubit operations, various entangled states of

ions have been created deterministically or “on demand”. In a first experiment, the NIST group

created36 the state ψe(φ) = 3
5
|ge〉 − eiφ 4

5
|eg〉 where φ was a controllable phase factor and |ge〉 is

short for the combined state |g〉1⊗|e〉2 for ions 1 and 2. More generally, using entangling operations

and single qubit rotations with adjustable phases, all Bell states |Ψ±〉 = 1√
2
(|ge〉 ± |eg〉), |Φ±〉 =

1√
2
(|gg〉±|ee〉 and arbitrary superpositions can be generated37, 38. The quality or fidelity of quantum

states is usually characterized by the degree with which they agree with the desired state, which is

expressed as

F = 〈ψideal|ρexp|ψideal〉, (2)

where ρexp is the density matrix, which characterizes both pure and non-pure states. In current

experiments, fidelities F > 0.95 are achieved.

In some cases complete knowledge of the density matrix is not required. For example, the
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fidelity of a state relative to |Φ+〉 can be derived from just three matrix elements, F = 1
2
(ρgg,gg +

ρee,ee) + 2Reρee,gg, where ρee,gg ≡ 〈ee|ρexp|gg〉, etc. The matrix elements ρgg,gg and ρee,ee are

obtained from the measured populations of the respective states. We can obtain ρee,gg by applying

a rotation R0(π/2, φ) to both ions and measuring the parity P ≡ (|gg〉〈gg|+ |ee〉〈ee| − |ge〉〈ge| −

|eg〉〈eg|) of the resulting state as a function of φ. The only component of the parity that oscillates

sinusoidally with frequency 2φ is proportional to ρee,gg, which allows its extraction.39

As shown by Eq. (2), the fidelity can be obtained by a measurement of the full density matrix.

For this, the quantum state in question must be prepared many times, and with appropriate single

qubit rotations prior to qubit measurements we obtain all expectation values of the density matrix.

Such a procedure is known as “quantum state tomography”38. When this procedure is applied to

Bell states, the density matrix is completely characterized, as shown in Fig. 5. From the density

matrices all measures can subsequently be calculated. The expectation value of the operator40, 41

A = σ
(1)
x ⊗ σ

(2)
x−z + σ

(1)
x ⊗ σ

(2)
x+z + σ

(1)
z ⊗ σ

(2)
x−z − σ

(1)
z ⊗ σ

(2)
x+z, where σx±z = (σx ± σy)/

√
2.

For local realistic theories, measurements of |〈A〉| are predicted to be less than 2, and values of

2 < |〈A〉| < 2
√

2 are expected for states that can be described only by quantum theory. With

trapped ions, the measured Bell signal was found to be |〈A〉| = 2.25(3) at NIST37 in 2001, |〈A〉| =

2.52(6) at Innsbruck38 and |〈A〉| = 2.20(3) at Michigan42 in 2004, clearly corroborating quantum

theory. Moreover, each time an experiment was run, a result was recorded. This closed the so-

called detection loophole, which provided a way to violate Bell’s inequalities within local realistic

theories.
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The operations outlined above can be generalized to entangle more than two particles. Among

such states, the so-called cat states, named after Schrödinger’s cat43, are of particular interest. Cat

states are usually defined as superpositions of two particular maximally different states, such as

ψcat = α|ggg . . . g〉+ β|eee . . . e〉 (3)

and they play a distinguished role in quantum information science. For three qubits, they are also

called GHZ states after Greenberger, Horne, and Zeilinger, who showed that they could provide a

particularly clear contradiction with local realistic theories44. They are a fundamental resource in

fault-tolerant quantum computing, for error correction45, 46 and for quantum communication, where

they can enable protocols such as open-destination teleportation47 and secret sharing48. Because

of their sensitivity to the interferometric phase φ, they can also enable improved signal-to-noise

ratios in interferometry49.

With trapped ions, cat states with |α| = |β| have been generated by use of two different ap-

proaches. At NIST, global entangling operations were used to demonstrate four-ion entanglement

in Ref. 39and a GHZ state with F = 0.89.50 More recently, the NIST group produced cat states of up

to 6 ions via a global entangling operation.51 Using individually addressed ions and a CNOT-gate

operation, the Innsbruck group52 produced GHZ states in an algorithmic way, and analyzed the

states again via tomographic measurements. In a similar way, yet with another pulse sequence, the

Innsbruck group also produced the so-called W states

|ψW 〉 =
1√
N

(|g · · · gge〉+ |g · · · geg〉+ · · ·+ |eg · · · g〉) (4)

that belong to a different class of entangled states. Such classes are distinguished since states of dif-
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ferent classes cannot be transformed into each other by local operations and classical communication53.

Nevertheless, both cat and W states can violate Bell-type inequalities54. As opposed to cat states,

W-states are remarkably robust against various decoherence processes; even loss of qubits does

not destroy entanglement completely. The Innsbruck group engineered an 8-qubit W-state55 using

individual ion addressing. Both, the NIST and Innsbruck groups proved multi-partite entanglement

using an “entanglement witness”, an operator constructed so that its expectation value must exceed

(or be less than) a certain value to verify N -particle entanglement.51, 55

Demonstrating QIP algorithms

Algorithms are lists of instructions for completing a task. As in classical computation, quantum

algorithms can sometimes be viewed as subroutines in a larger computation. A QIP algorithm

will generally involve single- and multi-qubit gates, measurements, and measurement-dependent

operations. The result of such a sequence of operations could be either a deterministically prepared

quantum state such as a Bell, GHZ, or W state, a conditioned state such as an error-corrected state,

or the outcome of a computation that is subsequently inferred from a measurement of the quantum

register and is then available as classical information.

Quantum information processing allows one to perform tests using superpositions while clas-

sically this ability is absent. A simple example showing the gain in efficiency with a quantum

algorithm was proposed in the Deutsch-Jozsa algorithm.56 It was was first demonstrated on two

qubits in NMR,57 and more recently with a trapped ion58 whose motional and spin qubit served as
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the two qubits.

As a second example algorithm, we consider teleportation of one qubit’s state to another,

an important protocol for the transfer of quantum information (see Ref.59 and Box 2 in Ref.18).

Here, Alice wants to send a (in general unknown) qubit state to Bob. To do this, first a Bell pair

is generated, and one qubit each from the pair is given to sender Alice and receiver Bob. When

the unknown state is ready to be teleported, it is entangled with Alice’s qubit of the Bell pair. A

subsequent measurement of both qubits by Alice yields two bits of classical information that she

sends to Bob. With this information, Bob knows which of four possible rotations to apply to his

qubit to obtain Alice’s original unknown state.

Deterministic quantum teleportation has been demonstrated by the NIST60 and Innsbruck61

teams. The Innsbruck team used individual laser-beam addressing of three qubits; thus the state

was teleported from one other end of the ion string, a distance of about 10 µm. The NIST team

used a multi-zone linear trap array. By applying control potentials to electrode segments, the ions

could be separated and moved in and out of one zone in which the laser beams were present. Here,

the state was teleported across a few hundred micrometers.

Teleportation is an important building block for quantum information processing, and can

reduce the resource requirements.62 Furthermore, it is the basic procedure for quantum communi-

cation protocols, such as for implementing quantum repeaters. Other algorithms, such as entan-

glement purification63 and error correction64, the quantum Fourier transform65 and deterministic

entanglement swapping,66 have also been demonstrated with ion qubits.
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While these experiments demonstrate the basic features of quantum algorithms, concatena-

tion of processes and repeated computations will require improved operation fidelities. In par-

ticular, full and repetitive implementation of quantum error correction, which could keep a qubit

superposition “alive” while subjected to decoherence, remains one of the biggest challenges in

quantum information processing.

Applications

Shor’s period-finding algorithm for factoring large numbers8 generated the wave of interest for

potential applications of QIP in the mid 1990’s. Another noteworthy potential application is the

implementation of unstructured searches67. However, to be of practical use, these applications

require substantial resources in terms of the number of qubits and number of operations, well

beyond the capabilities of current or near-term implementations. In spite of this, some elements of

QIP and entanglement with small numbers of qubits have already found applications in metrology;

physicists also anticipate that useful quantum simulations can be performed on a relatively small

number of qubits, perhaps up to 100, in the coming decade.

One application of entanglement in metrology is for interferometry. Here, we discuss appli-

cations of entanglement to Ramsey atomic spectroscopy68, but this has a direct analog in electron,

atom, and photon (Mach-Zehnder) interferometers. Ramsey spectroscopy on the |g〉 → |e〉 transi-

tion proceeds as follows. The atom is first prepared in state ψinitial = |g〉. Radiation at frequency

ω near ωeg is applied in a fast pulse to produce the state R0(π/2,−π/2)|g〉 = 1√
2
(|g〉 + |e〉). The

11



atom is now allowed to evolve for a duration T so that the atom’s upper state accumulates a phase

φR = (ω − ωge)T relative to the lower state (where we view the problem in a frame that rotates at

frequency ω). Finally, we again apply a rotation R0(π/2,−π/2) that leaves the atom in the state

(up to a global phase factor)

|ψfinal〉 = sin(φR/2)|g〉+ i cos(φR/2)|e〉. (5)

Therefore, the probability of finding the atom in the state |e〉 is Pe = 1
2
(1 + cos[(ω − ωge)T ]).

For an ensemble of N atoms, the detected signal will be NPe. In precision spectroscopy, we are

interested in detecting changes in ω − ωge or φR, as observed through changes in Pe. Therefore,

we can define the N -ion signal as S = d(NPe)/dφR = −N/2 sin(φR). The fundamental noise in

the signal is given by “projection noise”, the fluctuations in the number of atoms, from experiment

to experiment, measured to be in the state |e〉69. The variance of this noise is given by σN =

NPe(1− Pe), so the magnitude of the signal-to-noise ratio is equal to S/
√
σN =

√
N , essentially

the shot noise corresponding to the number of atoms.

Now suppose we can replace the firstR0(π/2,−π/2) pulse with an entangling π/2 pulse50, 51,

which creates the cat state

|g〉1|g〉2 · · · |g〉N → 1√
2

[
|g〉1|g〉2 · · · |g〉N + |e〉1|e〉2 · · · |e〉N

]
≡ 1√

2

[
|eN〉+ |gN〉

]
. (6)

After a delay T , the |eN〉 state accumulates a phase NφR relative to the |gN〉 state. A final entan-

gling π/2 pulse leaves the atoms in a superposition state sin(NφR/2)|gN〉 + i cos(NφR/2)|eN〉;

therefore the probability of detecting the atoms in the |eN〉 state is PNe = 1
2
(1+cos[N(ω−ωge)T ]).
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It is as if we have performed spectroscopy on a single “super-atom” whose resonant frequency is

N times higher than that of a single atom and has a phase sensitivity (to the Nth harmonic) of

the applied radiation that is N times higher. This gain in interferometric sensitivity must however

be offset by the fact that we are measuring only an effective two-state system, composed of the

states |eN〉 and |gN〉. Nevertheless, when compared to the case of N unentangled atoms, after a

statistically significant number of repeated measurements, we gain a factor of
√
N in sensitivity

by using entangling π/2 pulses49–51. Of course, because of technical noise in the experiments, this

full theoretical improvement is not realized,; however, a gain over the case of unentangled atoms

has been realized for up to six entangled ions51, 70, 71.

The above arguments assumed that noise was due only to state projection. In experiments, if

correlated qubit phase decoherence is present, the gain may be lost due to the faster decoherence

of the cat states72, or lost due to noise in the oscillator that produces the radiation27, 73. If these

sources of noise can be suppressed, entangled states should be able to improve the signal-to-noise

ratio in future spectroscopy experiments.

Another application of QIP techniques is enhanced detection fidelity.74 This can be useful if

the qubit does not have a cycling transition or if the QND aspect of shelving detection is not well

satisfied. In one simple implementation, assume we have two qubits, labelled q and d, stored in the

same trap. The goal is to detect the state of information-qubit q, using detection-qubit d. Prior to

measurement, q will generally be in a superposition state α|g〉q +β|e〉q. Using the swap operations

of the Cirac–Zoller gate, we first transfer this superposition onto the qubit composed of the |0〉 and
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|1〉 states of a selected motional mode, then map this superposition onto qubit d. We then measure

d, thereby effectively measuring qubit q. We can carry out this protocol without disturbing the

initial probabilities |α|2 and |β|2 for q, even if the mapping steps above are imperfect. Therefore

it is a QND measurement and can be repeated to increase detection efficiency. This scheme was

demonstrated in an experiment 75 where qubit q was based on an optical transition in 27Al+ and

qubit d was based on a hyperfine transition in 9Be+. In that experiment, a single round of detection

had a fidelity of only 0.85; however by repeating the measurement, and using real-time Bayesian

analysis, the detection fidelity was improved to 0.9994. Note that this same strategy can also be

used to prepare an eigenstate of q with high fidelity. In addition to this demonstration, the protocol

is now used routinely in a high-accuracy optical clock based on single 27Al+ ions76. The technique

has also been extended so that a single detection qubit measures states of multiple ions75, similar

to the measurement of photon Fock states with multiple probe atoms77.

Finally, entanglement can be used in metrology to create states that allow measurement of

certain parameters while suppressing sensitivity to others. In Ref.78 this strategy was used to make

a precise measurement of the quadrupole moment of the 40Ca+ ion by performing spectroscopy

on an entangled state of two ions that depended on the quadrupole moment but was insensitive to

magnetic field fluctuations.
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Future

More and Better To create many-ion entangled states, it appears that two main issues must be

dealt with: improving gate fidelity, and overcoming the additional problems associated with large

numbers of ions. The gate fidelity required to reach fault-tolerant operation, which will allow

large-scale computation and entanglement, depends on many factors. A reasonable guideline is

to assume that the error probability during a single gate should be on the order of 10−4 or less.

An important benchmark is two-qubit gate fidelity. The current record is an error of somewhat

less than 10−2, which can be inferred from the fidelity of Bell state generation79. Generally, it ap-

pears that gate fidelities are compromised by limited classical control, such as laser beam intensity

fluctuations at the positions of the ions, and quantum limits such as decoherence caused by sponta-

neous emission.80 These are daunting technical problems, but with sufficient care and engineering

expertise, it appears that they can eventually be suppressed.

The multi-qubit operations discussed above rely on being able to spectrally isolate a single

mode of the ions’ motion. Since there are 3N modes of motion for N trapped ions, as N becomes

large, the mode spectrum becomes so dense that the gate speeds must be significantly reduced to

avoid off-resonance coupling to other modes. Proposals exist for circumventing this problem81, 82

but for the near term, and using gates that have been demonstrated, one way to solve it involves dis-

tributing the ions in an array of multiple trap zones27, 83–85 as indicated schematically in Fig. ??. In

this architecture, multi-qubit gates could be performed on a relatively small number of ions in mul-

tiple processing zones. Entanglement could be distributed between zones by moving ions27, 84, 85,
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or by optical means83, 86–89. For quantum communication over large distances, optical distribution

seems to be the only practical choice; for local entanglement experiments, moving ions is also an

option.

Example traps that could be used for scaling are shown in Fig. ??. Ions can be moved be-

tween zones by applying appropriate control potentials to the different electrode segments60, 90–92.

In Ref.90, individual ions were moved∼ 1 mm in∼ 50 µs without loss of coherence; heating of the

ion’s motion (in its local well) was less than one quantum. Multiple ions in a single zone can be

separated60, 90 by inserting an electric potential wedge between the ions. In the NIST teleportation

experiment60, two ions could be separated from a third in a duration of ∼ 200 µs with negligible

heating of their logic “stretch” mode and heating of their center-of-mass mode of the ions by about

1 quantum. This meant that an additional entangling gate operation on the separated ions could be

implemented with reasonable fidelity. For algorithms of long duration, the ions will eventually heat

from transport and noisy background electric fields. To counteract this, we can employ additional

cooled ions whose function is to sympathetically cool the qubits (cf. Fig.??). These “refrigera-

tor” ions could be identical to the qubit ions93, a different isotope94, or a different species95. They

could also double for use in detection and state preparation, as described above. For all multi-

qubit gates implemented so far, speeds are proportional to ion mode frequencies, which scale as

1/d2
qe, where dqe is the distance of the ion to the nearest electrode. This puts a premium on small

trap size. Many groups have pushed in this direction, but all observe significant heating of the

ions, which compromises gate fidelity. The heating is anomalously large compared to the expected

thermal noise heating from resistance in or coupled to the trap electrodes.27, 96–102 It scales approx-
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imately as 1/d4
qe

99, 100, consistent with independently fluctuating potentials on electrode patches

whose extent is small compared to dqe
96. The source of the heating is still to be understood, but

recent experiments97, 101 indicate that it is thermally activated and can be significantly suppressed

by operating at low temperature.

Large trap arrays will require a robust means of fabrication and independent control of a very

large number of electrodes. Microelectromechanical systems (MEMS)fabrication techniques can

be employed for monolithic construction102, 103. Trap structures can be further simplified by placing

all electrodes in a plane103, 104. To mitigate the problem of controlling many electrodes, it may be

possible to incorporate ”on-board” electronics in close proximity to individual trap zones105. Laser

beams must also be multiplexed since it will be essential to perform parallel operations in complex

algorithms. Although re-cycling of beams can be employed105, 106, in general overall laser power

requirements will increase. If gates are implemented by use of stimulated-Raman transitions, high

laser beam intensity is also needed to suppress spontaneous emission decoherence to fault-tolerant

levels80. Detection must also be multiplexed. This might be solved by coupling to fibers, on-board

detectors, or other forms of miniature integrated optics.

Future Applications In the early 1980’s Richard Feynman suggested that one quantum system

could perhaps be used to simulate another6. This could be accomplished efficiently with a quantum

computer because of its universality, but before this goal is reached, it may be possible to take

advantage of the fact that current logic gates are implemented by Hamiltonians that can be used to

simulate interactions in other systems. A very simple example is mentioned above in the discussion
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of spectroscopy with cat states; these experiments simulate the action of electron, photon or atom

Mach-Zehnder interferometers that incorporate nonlinear, entangling beam splitters71. A more

interesting prospect is that the gate Hamiltonians might be applied in a strategic way to simulate

specific many-body Hamiltonians. To see the basic idea, we note that the two-ion phase gate

discussed in Fig. 5 can be written in the form RZ1RZ2e
−iξσz1σz2 , where RZj is a rotation about the

z axis. Therefore, up to an overall rotation on the qubits, the gate implements the Hamiltonian

H = ~κσz1σz2, a spin-spin interaction between the two addressed spins. By extending these

couplings to many ion qubits in an ensemble, Ising-type spin Hamiltonians could, for example,

be implemented. The interactions could be applied in a stepwise fashion between ion pairs but

might also be implemented simultaneously, thereby increasing efficiency.107–109 Although still very

challenging compared to current experimental capabilities, even with a relatively small number of

ions, interesting phenomena such as quantum phase transitions may be observable, stimulating

several experimental groups to pursue this avenue.

Summary and Conclusions

We have outlined some basic techniques that enable deterministic entanglement of a few trapped

ions. Many groups are currently trying to extend these capabilities to a large number of ions.

Although a large-scale entangling machine or a universal quantum computer are still a distant

goal, some of the simple elements of QIP can be used to enhance metrology, as in spectroscopy.

We have also briefly indicated how a relatively small number of ion qubits might provide useful

quantum simulations.
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As we progress towards to a large-scale device, it might be possible to shed some light on

more fundamental issues of decoherence and why states having the attributes of Schrödinger’s cat

aren’t observed. If we can continue scaling to large size, this issue becomes more pressing. For

example, suppose that in the future N -qubit cat states in the form of Eq. 6 can be made. We can

rewrite this state as ψ = 1√
2
[|g〉j

⊗N
i6=j |g〉i + |e〉j

⊗N
i6=j |e〉i], thereby (arbitrarily) singling out the

jth qubit. For large N , this wavefunction indeed has the attributes of a Schrödinger’s cat in the

sense that the states of a single two-level quantum system (the jth qubit) are correlated with states

that have macroscopically distinct states of polarization. If we are successful, then we’ve in fact

shown the existence of what are essentially Schrödinger’s cats. Of course such states become more

sensitive to the effects of phase decoherence72, but this appears to be a technical, not fundamental,

problem. Therefore, if it becomes impossible to make such states or build a large-scale quantum

computer for non-technical reasons, this failure may indicate some new physics!
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(a)

(b)

harmonic traptwo-level-atom

coupled system

Figure 1: Left: Linear ion trap with individually addressed 40Ca+ ions. In the inset photograph,

the spacing of the two center ions is ∼ 8 µm. Such an electrode arrangement provides a three-

dimensional nearly harmonic well characterized for a single ion by three frequencies26 ωx, ωy and

ωz, where x, y, z denote the confining potential axes, with z pointing along the trap axis and x, y

in the transverse directions. Due to the Coulomb coupling between multiple ions, the motion is

best described in terms of normal modes; a string of ions can therefore be viewed as a pseudo-

molecule. Generally, the normal-mode frequencies are different, and we can access a particular

mode by spectral selection. Right: (a) Two-level atom coupled to a harmonic trap. (b) Joint level

system exhibiting multiple resonance frequencies.
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Figure 2: CNOT-gate operation with two trapped ions: Consider two ions in the same trap initially

prepared in their motional ground state. In step (1) a red-sideband pulse R−1(θ, ϕ) applied to the

first ion (control qubit) maps the excited state amplitude of this ion to the first excited state of a

selected motional mode as indicated in the upper part (SWAP operation). In step (2) a CNOT-

gate operation is implemented between the motion qubit and the spin state of (target qubit) ion

2. Finally, in step (3) the first step is reversed, thereby restoring the initial spin state of ion 1 and

returning the motion to its ground state. The lower part shows the actual pulse sequence of the

CNOT-operation, for details see text.
35



F F

F
-2F

z

lase
r b

eam 1 laser beam 2
trap
axis

Figure 3: Two-qubit phase gate. The gate relies on the fact that when a selected mode of the

ions’ motion is displaced in phase space about a closed path, the ions’ wave function picks up

a phase proportional to the enclosed area. If this displacement depends on the ions’ qubit states,

entanglement is generated.110–113 We can implement this state-dependent displacement with optical

dipole forces resulting from laser-beam intensity gradients, as depicted above. In this example, an

intensity standing wave is created with two laser beams, and the horizontal spacing of the ions is

made to be an integral number of wavelengths of the intensity pattern. The pattern sweeps across

the ions at the difference frequency of the beams, chosen to be near the stretch-mode frequency.

If |g〉 and |e〉 feel different dipole forces, then only the |g〉|e〉 and |e〉|g〉 components of the ions’

wave function are displaced in (stretch-mode) phase space. By making the trajectories closed and

choosing the size of the displacements appropriately, the wave function is unchanged except for an

eiπ/2 phase shift on the |g〉|e〉 and |e〉|g〉 states, the desired phase gate. Such gate operations have

been implemented with trapped 9Be+ ions 113, and in a similar way with 111Cd+ ions114 and 40Ca+

ions.79, 115
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50:50
beam splitter

Ion 1 Ion 2

A B Upon coincidence detection:

simultaneous 
excitation pulses

Figure 4: Projective Entanglement: In this example (following Ref. 89), we assume that the qubits

of two ions (blue spheres) are encoded in hyperfine levels of their electronic ground states. These

qubits are first prepared in superposition states 1√
2
(|g〉+ |e〉). When excited with laser pulses short

enough that both qubit levels undergo (single-photon) scattering, the frequencies (denoted red and

blue) of the emitted photons along a particular direction are correlated with the qubit states, as

indicated for entangled states ψ1 and ψ2. If these photons are made to interfere on a beam splitter

and detected, in the instances where photons are simultaneously detected at A and B, the ions are

projected into the Bell state ψfinal even though the atoms have not directly interacted. For many

such experiments, photons do not reach the detectors; however, when photons are coincidently

detected, this “heralds” the formation of the entangled state ψfinal, which can then be saved and

used later. One potential use is for entanglement-assisted communication between the locations 1

and 2.
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Figure 5: Real and imaginary parts of the density matrices obtained for Bell states prepared de-

terministically with two trapped Ca+ ions. The states were analyzed by use of quantum state

tomography which is a measurement technique that gives access to all the information that is nec-

essary to describe any quantum state by means of its density matrix. From the results, the density

matrix of the state in question can be reconstructed116. To see the idea, note that the density matrix

for a single qubit can be represented by ρ = 1
2
(I +

∑
i〈σi〉σi) (with Pauli matrices σi, i = x, y, z

and the identity I). Measurements project a qubit onto its energy eigenstates, which is equivalent to

measuring 〈σz〉. In order to determine 〈σx,y〉, an additional rotation of the Bloch sphere is applied

prior to the measurement. The tomography procedure can be extended to N qubits, which requires

measuring on the order of 4N expectation values. Experimentally, due to statistical errors, the

measured expectation values can result in an unphysical density matrix exhibiting negative eigen-

values. This is avoided by fitting the measured expectation values by use of a maximum likelihood

method and finding the most likely density matrix describing the state38.
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Figure 6: Multi zone trap arrays. (a) The trap zones are shown schematically as rectangles. Ions

can be separated and moved to specific zones with control potentials applied between the segments.

Because ions will heat from transport and noisy ambient electric fields, refrigerator ions are used

to cool the ions prior to gate operations. (b) Examples of trap electrode configurations. Upper left:

two-layer, linear six-zone trap in which entangled ions could be separated and used for algorithm

demonstrations including teleportation60 (width of narrow slot = 200 µm). Upper right: three-

layer, 2-D multi-zone trap which can be used to switch ion positions117(slot width = 200 µm).

Lower left: single zone trap where all electrodes lie in a plane; this can considerably simplify

fabrication104. Lower right: linear, multi-zone, planar trap fabricated on silicon (width of open

slot for loading ions ' 95µm), which can enable electronics to be fabricated on board [R. Slusher,

private communication].
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