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UMR 7588, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France

2 Institute for Experimental Physics, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria

Received 12 April 2006
Published online 7 July 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We have recently constructed a many-body theory for composite excitons, in which the possible
carrier exchanges between N excitons can be treated exactly through a set of dimensionless “Pauli scat-
terings” between two excitons. Many-body effects with free excitons turn out to be rather simple because
these excitons are the exact one-pair eigenstates of the semiconductor Hamiltonian, in the absence of lo-
calized traps. They consequently form a complete orthogonal basis for one-pair states. As essentially all
quantum particles known as bosons are composite bosons, it is highly desirable to extend this free exciton
many-body theory to other kinds of “cobosons” — a contraction for composite bosons — the physically
relevant ones being possibly not the exact one-pair eigenstates of the system Hamiltonian. The purpose
of this paper is to derive the “Pauli scatterings” and the “interaction scatterings” of these cobosons in
terms of their wave functions and the interactions which exist between the fermions from which they are
constructed. It is also explained how to calculate many-body effects in such a very general composite boson
system.

PACS. 71.35.-y Excitons and related phenomena – 05.30.Ch Quantum ensemble theory – 05.30.Jp Boson
systems

A few years ago, we have tackled the difficult problem of
many-body effects between composite bosons through the
study of interacting excitons in semiconductors [1–3]. Ex-
citons actually constitute a very nice “toy model” to study
the consequences of the boson composite nature, since the
semiconductor Hamiltonian is extremely simple — just
electrons and holes with kinetic energy and Coulomb inter-
action — the full spectrum of bound and unbound exciton
eigenstates being analytically known in terms of hyperge-
ometric functions, in 3D and 2D. When we started these
studies, we had in mind to better understand the bosoniza-
tion procedures [4] and to properly determine their limit
of validity, through full-proof ab initio calculations. To
our major surprise — and contentment — we have found
that, whatever the effective Hamiltonians for bosonized
excitons [5] are, they miss a set of processes which actu-
ally produce the dominant terms in various problems of
physical interest, such as the semiconductor optical non-
linearities.

The many-body theory we have constructed, which
only uses the semiconductor Hamiltonian written in terms
of free electrons and free holes, makes appearing two fully
independent scatterings [1–3]: one is associated to direct
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Coulomb processes between two excitons, the “in” and
“out” excitons being made with the same electron-hole
pairs. The second scattering is completely novel. It di-
rectly comes from the undistinguishability of the fermionic
components of the excitons, and describes the carrier ex-
changes which can take place between two excitons, in
the absence of any Coulomb process. While the direct
Coulomb scatterings ξ are energy-like quantities, these
novel “Pauli scatterings” λ are dimensionless, so that they
are, by construction, missed in any model Hamiltonian for
interacting excitons, whatever the effective scatterings of
these Hamiltonians are — a very strong statement, indeed!

Using dimensional arguments only, it is possible to
show [6–8] that the semiconductor optical nonlinearities
are entirely controlled by these Pauli scatterings at large
detuning, so that there is no hope to correctly describe
these nonlinearities through effective Hamiltonians for
bosonized excitons.

We could hope a better correctness in physical effects
controlled by energy-like scatterings, such as the scatter-
ing rates of two excitons. Unfortunately, this is not true:
we have shown [9] that, in order to recover the correct
value of these quantities, the effective scatterings between
excitons that must be introduced in the exciton Hamilto-
nian, make this Hamiltonian non hermitian — although
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not exactly the same as the usual exciton Hamiltonian — a
major physical failure hard to accept. Moreover, the links
between the lifetime and the sum of scattering rates for
elementary and composite bosons differ by a factor of 2, so
that there is no way to find effective scatterings between
bosonized excitons giving the lifetime and the scattering
rates correctly.

All this led us to conclude that, in order to correctly
describe many-body effects with excitons, it is not possible
to “cook” the Coulomb interactions between electrons and
holes with carrier exchanges, once and for all, in a set of
“Coulomb scatterings dressed by exchange” as done in all
model Hamiltonians describing interacting excitons.

Since essentially all quantum particles known as
bosons are composite particles, similar problems are ex-
pected to appear in their many-body effects. This is why
it is highly desirable to extend this new many-body theory
for excitons to any type of composite bosons, i.e., to for-
mally write their Pauli and interaction scatterings without
using any particular form for these composite bosons nor
for the system Hamiltonian.

The present paper is organized as follows.
In the first section, we settle the notations and define

the composite bosons we study in this work, through their
expansion in terms of free fermions α and free fermions β.
In order to possibly describe any system of fermion pairs
in terms of cobosons, it is necessary to consider that these
cobosons form a complete set for one-fermion-pair states.
However, this does not impose the one-coboson states to
be orthogonal: We already had to deal with nonorthogonal
cobosons in one of our recent works on electron teleporta-
tion between quantum dots induced by unabsorbed laser
pulses [10], one of the composite bosons of physical inter-
est being a pair of non interacting trapped electrons.

In Section 2, we determine the Pauli scatterings due
to fermion exchanges between these composite bosons. As
physically reasonable, they only depend on the composite
bosons of interest, through their wave functions, but not
on the system Hamiltonian. We, in particular, show how
our results on the scalar products of exciton-states can
be readily extended to arbitrary composite bosons, even
if the one-coboson states are not orthogonal.

In Section 3, we show how we can formally write the
energy-like interaction scatterings for any type of compos-
ite bosons — not necessarily the eigenstates of the sys-
tem Hamiltonian — in terms of the potentials between
fermions α and β appearing in this Hamiltonian.

In a last section, we explain how to derive many-body
effects between these composite bosons, following a path
similar to the one we have used for excitons.

As our works on exciton many-body effects have quite
clearly pointed out the many weaknesses of the bosoniza-
tion procedures, while the many-body theory we have con-
structed, now allows to treat the fermion exchanges be-
tween composite particles exactly, it can be of interest to
introduce a new name for these composite quantum parti-
cles, the “coboson” — a contraction of “composite boson”
— since they now have their specific many-body theory as
well as their specific “Shiva diagrams”, more elaborated

than the Feynman diagrams for elementary bosons, due to
the various fermion exchanges which take place between
composite quantum particles.

1 The most general composite bosons

Let us consider a quantum particle made of one fermion
α and one fermion β. It is convenient to introduce two or-
thogonal basis for these fermions, these basis being a priori
arbitrary,

|kα〉 = a†
kα

|v〉
|kβ〉 = b†kβ

|v〉. (1)

The anticommutators of their creation operators are such
that {ak′ , a†

k}+ = δk′,k = {bk′ , b†k}+.
The states |kα,kβ〉 = a†

kα
b†kβ

|v〉 form a complete set
for one fermion pair (α, β), so that the closure relation for
one-pair states reads

I =
∑

kα,kβ

|kα,kβ〉 〈kβ ,kα|. (2)

This closure relation allows to write any state |i〉 made of
one (α, β) pair as

|i〉 =
∑

kα,kβ

|kα,kβ〉 〈kβ ,kα|i〉. (3)

By writing this one-pair state |i〉 as B†
i |v〉, we readily de-

duce that the creation operator B†
i reads in terms of cre-

ation operators for free fermions α and β, as

B†
i =

∑

kα,kβ

a†
kα

b†kβ
〈kβ ,kα|i〉. (4)

Being made of a pair of fermion operators, B†
i is a com-

posite boson creation operator, whatever 〈kβ ,kα|i〉 is.
In order to possibly describe any system of (α, β) pairs

entirely in terms of cobosons, it is necessary for these co-
bosons to form a complete set for one-pair states. If the
coboson states |i〉 are normalized and orthogonal, as for
the |i〉’s being Hamiltonian eigenstates, their closure rela-
tion simply reads

I =
∑

i

|i〉 〈i|. (5)

This allows to write the creation operator for a free
fermion pair in terms of coboson creation operators as

a†
kα

b†kβ
=

∑

i

B†
i 〈i|kα,kβ〉. (6)

If the physically relevant cobosons form a complete set,
but if this set is not orthogonal — as the pairs of trapped
electrons we have studied in reference [10], — their closure
relation is not as simple as equation (5). It now reads

I =
∑

i,j

|i〉 zij 〈j|, (7)
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where the prefactors zij are such that

∑

m

zim 〈m|j〉 = δij . (8)

The above equation just says that the matrix made of the
zij ’s and the matrix made of the 〈i|j〉’s are inverse ma-
trices. For nonorthogonal cobosons, the link between free
pair and coboson creation operators now reads, instead of
equation (6),

a†
kα

b†kβ
=

∑

i,j

B†
i zij 〈j|kα,kβ〉. (9)

2 Coboson scattering due to fermion
exchange

The “interactions” between two composite bosons which
only come from the fact that these cobosons can exchange
their fermions, do not depend on the forces acting on these
fermions. Consequently, to determine these “Pauli scatter-
ings”, it is not necessary to specify the system Hamilto-
nian at hand.

2.1 “Deviation-from-boson operator”

By using equation (4) for the coboson creation operators,
we readily get from equation (2),

[Bm, B†
i ] = 〈m|i〉 − Dmi, (10)

where Dmi is the “deviation-from-boson operator”. This
operator, which is such that Dmi|v〉 = 0, as obtained by
multiplying the above equation by |v〉 on the right, in fact
appears as D

(α)
mi + D

(β)
mi . In the D

(α)
mi part, given by

D
(α)
mi =

∑

k′
β ,kβ

b†kβ
bk′

β

∑

kα

〈m|kα,k′
β〉 〈kβ ,kα|i〉, (11)

the cobosons m and i are made with the same fermion α,
while in D

(β)
mi , given by

D
(β)
mi =

∑

k′
α,kα

a†
kα

ak′
α

∑

kβ

〈m|k′
α,kβ〉 〈kβ ,kα|i〉, (12)

the cobosons m and i are made with the same fermion β.

2.2 “Pauli scatterings” for cobosons

To go further and deduce the “Pauli scatterings” between
cobosons, it is necessary to consider that these cobosons
form a complete basis for one-pair states, in order to pos-
sibly write a pair of free fermions (α, β) in terms of co-
bosons, using equations (6) or (9).

2.2.1 Orthogonal cobosons

Let us start with orthogonal cobosons related to free pairs
through equation (6). The “Pauli scatterings” λ

(
n j
m i

)
,

due to fermion exchanges between composite particles, are
defined through

[
Dmi, B

†
j

]
=

∑

n

[
λ

(
n j
m i

)
+ λ

(
m j
n i

)]
B†

n. (13)

To calculate λ, we use equations (4, 11) to get

[
D

(α)
mi , B†

j

]
=

∑

k′
β ,kβ ,kα

∑

pα,pβ

〈m|kα,k′
β〉

× 〈kβ ,kα|i〉 〈pβ ,pα|j〉 δk′
β

,pβ
a†
pα

b†kβ
. (14)

We then express a†b† in terms of B† according to equa-
tion (6). This leads to

[
D

(α)
mi , B†

j

]
=

∑

n

λ
(

n j
m i

)
B†

n, (15)

where λ
(

n j
m i

)
is given by

λ
(

n j
m i

)
=
∑

k′
α,kα,k′

β ,kβ

〈m|kα,k′
β〉 〈n|k′

α,kβ〉 〈kβ ,kα|i〉 〈k′
β ,k′

α|j〉.

(16)

The second term on the RHS of equation (13) is obtained
in the same way, by calculating

[
D

(β)
mi , B†

j

]
.

The Pauli scattering λ
(

n j
m i

)
is shown in Figure 1a.

As for composite excitons, it corresponds to a fermion
exchange between the “in” cobosons (i, j) such that the
coboson m ends by having the same fermion α as the
coboson i. (By convention, the cobosons of the lowest line
of the Pauli scattering λ

(
n j
m i

)
, here m and i, are made

with the same fermion α).
We can rewrite this Pauli scattering in r space by using

〈kβ ,kα|i〉 =
∫

drα drβ 〈kβ |rβ〉 〈kα|rα〉 〈rβ , rα|i〉, (17)

and by performing the summation over the various k’s
through closure relations. We find that λ

(
n j
m i

)
reads in

terms of the wave functions of the (m, n) and (i, j) co-
bosons, as

λ
(

n j
m i

)
=

∫
drα1 drα2 drβ1 drβ2 φ∗

m(rα1 , rβ2)

× φ∗
n(rα2 , rβ1)φi(rα1 , rβ1)φj(rα2 , rβ2), (18)

where φi(rα, rβ) = 〈rβ , rα|i〉 is the wave function of the
coboson i (see Fig. 2a).
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Fig. 1. (a): Diagram, in the free fermion basis (kα,kβ), for
the “Pauli scattering” λ

(
n j
m i

)
given in equation (16), in which

the “in” composite bosons i and j exchange their fermions
β, represented by a dashed line, the “out” coboson m being
made with the same fermion α as the coboson i. (b): Dia-
gram, in the free fermion basis, of the part ξ1

(
n j
m i

)
, given in

equation (49), of the interaction scattering, due to interactions
between the fermions α of the “in” cobosons (i, j), the “out”
cobosons (m,n) being made with the same pairs as the “in” co-
bosons. (c): Same ξ1

(
n j
m i

)
, due to (α, α) interactions, as shown

in (b), but now in real space.

2.2.2 Nonorthogonal cobosons

If the cobosons form a nonorthogonal basis for one-pair
states, the link between the creation operators for free
fermion pairs and cobosons given in equation (6) has to
be replaced by the link given in equation (9). From it, we
now get

[
Dmi, B

†
j

]
=

∑

n

B†
n

∑

p

znp

[
λ

(
p j
m i

)
+ λ

(
m j
p i

)]
, (19)

where λ
(

p j
m i

)
is the same Pauli scattering as the one de-

fined in equations (16) or (18).

2.3 Scalar product of coboson states

Equation (19) for cobosons forming a nonorthogonal basis
is definitely not as simple as equation (13). This, however,

Fig. 2. (a): Diagram for the “Pauli scattering” λ
(

n j
m i

)
, shown

in Figure 1a, but now in real space. (b): Diagram, in real
space, for the “interaction scattering” ξ

(
n j
m i

)
, defined in equa-

tion (51), in which the “in” cobosons interact through the inter-
actions of the fermions from which they are constructed, the
“in” and “out” cobosons being made with the same fermion
pairs (α1, β1) and (α2, β2). (c): Diagram, in real space, for
ξin

(
n j
m i

)
, defined in equation (54), which is a mixed exchange-

interaction scattering, the interactions taking place before the
fermion exchange, i.e., between the “in” cobosons (i, j).

has no major consequence on the scalar product of N -
coboson states. Indeed, if we consider the scalar product
of two coboson states, we find, using equation (10),

〈v|BmBnB†
i B

†
j |v〉 = 〈n|i〉 〈m|j〉

+ 〈n|j〉 〈m|i〉 − 〈v|BmDniB
†
j |v〉, (20)

the last term of the above equation reading, due to equa-
tion (19),

〈v|BmDniB
†
j |v〉 =

∑

p,q

〈m|p〉 zpq

[
λ

(
q j
n i

)
+ λ

(
n j
q i

)]
.

(21)
So that, due to equation (8), the scalar product of two-
coboson states reduces to

〈v|BmBnB†
i B

†
j |v〉 = 〈n|i〉 〈m|j〉 + 〈n|j〉 〈m|i〉

− λ
(

n j
m i

)
− λ

(
m j
n i

)
. (22)

The exchange part of this scalar product is just the one
for orthogonal cobosons — or for excitons [1] —, the only
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difference coming from the näıve part, i.e., the part which
remains when cobosons are replaced by elementary parti-
cles, the scalar product 〈m|i〉 being just replaced by δm,i

if the cobosons are orthogonal.
It is possible to show that this nicely simple result

can be extended to more complicated scalar products of
coboson states.

3 Coboson scatterings due to interactions
between fermions

The cobosons interact through fermion exchanges as de-
scribed in the preceding section. They also interact, in
a more standard way, through the forces which exist be-
tween the fermions from which they are constructed. It
is of importance to note that this second coboson in-
teraction, which can appear as rather näıve, is in fact
very subtle due to the fermion undistinguishability. In-
deed, with fermions (α1, α2, β1, β2), two kinds of co-
bosons can be made, (α1, β1) and (α2, β2), or (α1, β2)
and (α2, β1). Due to this, the interactions between co-
bosons resulting from forces between fermions α and β,
must be taken as v(α1, β2) + v(α2, β1) in the first case,
but v(α1, β1) + v(α2, β2) in the second case. Since there
is no way to know with which pairs of fermions the co-
bosons are made, there is no way to unambiguously write
the interactions between cobosons associated to the forces
between fermions α and β.

It is however clear that, even if the interactions be-
tween cobosons due to forces between fermions α and β
cannot be properly defined, these forces must play a role
in the many-body physics of these cobosons. The clean
way to make them appearing is actually non standard. It
again relies on a set of commutators.

3.1 System Hamiltonian for fermions α and β

The general form for a system Hamiltonian made of
fermions α and β reads in first quantization as

H = Hα + Hβ + Vαα + Vββ + Vαβ . (23)

Hα and Hβ are one-body operators for fermions α and
fermions β:

Hα =
∑

n

hα(rαn). Hβ =
∑

n

hβ(rβn). (24)

The three other terms of the Hamiltonian (23) are two-
body operators which correspond to interactions between
cobosons α, between cobosons β and between cobosons α
and β:

Vαα =
1
2

∑

n�=n′
vαα(rαn, rαn′) (25)

Vαβ =
∑

n,n′
vαβ(rαn, rβn′). (26)

In terms of the creation operators for the free fermion
states introduced in Section 1 (which, in general, are not
the exact eigenstates of hα and hβ), the non-interacting
part of the system Hamiltonian reads

Hα =
∑

kα,k′
α

〈k′
α|hα|kα〉 a†

k′
α
akα (27)

Hβ =
∑

kβ ,k′
β

〈k′
β |hβ|kβ〉 b†k′

β
bkβ

, (28)

where the prefactors are given by

〈k′
α|hα|kα〉 =

∫
dr 〈k′

α|r〉hα(r) 〈r|kα〉. (29)

and similarly for 〈k′
β |hβ |kβ〉. In the same way, the two-

body interacting parts of the Hamiltonian H read in sec-
ond quantization, on this basis, as

Vαα =
1
2

∑

k′
α,kα,q′

α,qα

vαα

(
q′

α qα

k′
α kα

)
a†
k′

α
a†
q′

α
aqαakα (30)

Vαβ =
∑

k′
α,kα,k′

β,kβ

vαβ

(
k′

β kβ

k′
α kα

)
a†
k′

α
b†k′

β
bkβ

akα , (31)

where the prefactors are given by

vαα

(
q′

α qα

k′
α kα

)
=

∫
drα dr′α 〈k′

α|rα〉 〈q′
α|r′α〉 vαα(rα, r′α)

×〈r′α|qα〉 〈rα|kα〉
= vαα

(
k′

α kα

q′
α qα

)
, (32)

and similarly for the other prefactors.

3.2 Orthogonal cobosons

3.2.1 “Creation potential”

Let us first consider cobosons forming an orthogonal set,
these cobosons being not necessarily the exact one-pair
eigenstates of the system Hamiltonian. Due to the closure
relation (5) for orthogonal states, H acting on |i〉 then
reads

H |i〉 =
∑

m

|m〉 〈m|H |i〉, (33)

with 〈m|H |i〉 = Ei δm,i if the cobosons are eigenstates of
the system Hamiltonian, i. e., if (H − Ei)|i〉 = 0. Equa-
tion (33) leads to define the “creation potential” V †

i for
the coboson i as

[H, B†
i ] =

∑

m

〈m|H |i〉B†
m + V †

i , (34)

in order for the creation potential to be such that

V †
i |v〉 = 0. (35)

This insures V †
i to indeed describe the interactions of the

coboson i with the rest of the system. Let us now calculate
this V †

i explicitly.
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(i) It is possible to split the commutator of B†
i , given in

equation (4), with the part of the Hamiltonian acting
on fermion pairs, into three terms:

[
Hα + Hβ + Vαβ , B†

i

]
= A†

1 + A†
2 + A†

3, (36)

with A†
1 in a†b†, A†

2 in a†b†b†b and A†
3 in a†b†a†a. The

first term A†
1 precisely reads

A†
1 =

∑

k′
α,pβ

a†
k′

α
b†pβ

∑

pα

〈k′
α|hα|pα〉 〈pβ ,pα|i〉

+
∑

k′
β ,pα

a†
pα

b†k′
β

∑

pβ

〈k′
β |hβ|pβ〉 〈pβ ,pα|i〉

+
∑

k′
α,k′

β

a†
k′

α
b†k′

β

∑

pα,pβ

vαβ

(
k′

β pβ

k′
α pα

)
〈pβ ,pα|i〉.

(37)

By noting that Hα does not act on fermion β, while
the prefactor of the last term is nothing but

vαβ

(
k′

β pβ

k′
α pα

)
= 〈k′

β ,k′
α|Vαβ |pα,pβ〉,

it is easy to see that A†
1 can be rewritten in a compact

form as

A†
1 =

∑

k′
α,k′

β

a†
k′

α
b†k′

β

∑

pα,pβ

× 〈k′
β ,k′

α|Hα + Hβ + Vαβ |pα,pβ〉 〈pβ ,pα|i〉.
(38)

If we now use equation (6) to write a†b† in terms of
cobosons, we end, due to equation (2), with

A†
1 =

∑

m

〈m|H |i〉B†
m, (39)

which is just the first term of equation (34).
The second term on the RHS of equation (36), A†

2,
appears as

A†
2 =
∑

k′
α,pβ

a†
k′

α
b†pβ

∑

k′
β ,kβ

b†k′
β
bkβ

∑

pα

vαβ

(
k′

β kβ

k′
α pα

)
〈pβ ,pα|i〉.

(40)

We rewrite the first a†b† in terms of coboson operators
according to equation (6), to make A†

2 reading as

A†
2 =

∑

m

B†
m

∑

k′
β ,kβ

b†k′
β
bkβ

Xαβ(k′
β ,kβ ; m, i)

Xαβ(k′
β ,kβ ; m, i) =
∑

k′
α,pα,pβ

〈m|k′
α,pβ〉 vαβ

(
k′

β kβ

k′
α pα

)
〈pβ ,pα|i〉. (41)

In the same way, A†
3 is found to be

A†
3 =

∑

m

B†
m

∑

k′
α,kα

a†
k′

α
akα Yαβ(k′

α,kα; m, i)

Yαβ(k′
α,kα; m, i) =

∑

k′
β ,pα,pβ

〈m|pα,k′
β〉 vαβ

(
k′

β pβ

k′
α kα

)
〈pβ ,pα|i〉. (42)

(ii) If we now turn to the interactions between fermions α,
the same procedure leads to

[
Vαα, B†

i

]
=

∑

m

B†
m

∑

k′
α,kα

a†
k′

α
akα Yαα(k′

α,kα; m, i)

Yαα(k′
α,kα; m, i) =
∑

q′
α,pα,pβ

〈m|q′
α,pβ〉 vαα

(
k′

α kα

q′
α pα

)
〈pβ ,pα|i〉, (43)

while the interactions between fermions β give
[
Vββ , B†

i

]
=

∑

m

B†
m

∑

k′
β,kβ

b†k′
β
bkβ

Xββ(k′
β ,kβ ; m, i)

Xββ(k′
β ,kβ ; m, i) =

∑

q′
β ,pα,pβ

〈m|pα,q′
β〉 vββ

(
k′

β kβ

q′
β pβ

)
〈pβ ,pα|i〉 (44)

(iii) By collecting the results of equations (36, 39, 41–44),
the creation potential V †

i , defined in equation (34),
finally reads

V †
i =

∑

m

B†
m Wmi,

where the operator Wmi is defined by

Wmi =
∑

k′
α,kα

a†
k′

α
akα [Yαα(k′

α,kα; m, i)

+Yαβ(k′
α,kα; m, i)]

+
∑

k′
β,kβ

b†k′
β
bkβ

[
Xββ(k′

β ,kβ ; m, i) + Xαβ(k′
β ,kβ ; m, i)

]
.

(45)

Since Wmi|v〉 = 0, it is thus easy to check that the con-
dition (35) for a creation potential, is indeed fulfilled
by this V †

i .

3.2.2 “Interaction scatterings”

The “direct interaction scatterings” between cobosons
i and j physically come from the interactions between
fermions (α, α), between fermions (β, β) and also from
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the interactions between fermions (α, β), with the part be-
tween the fermions (α, β) making the coboson i excluded.
These interaction scatterings are formally defined through

[
V †

i , B†
j

]
=

∑

mn

ξ
(

n j
m i

)
B†

mB†
n, (46)

so that these scatterings are such that
[
Wmi, B

†
j

]
=

∑

n

ξ
(

n j
m i

)
B†

n. (47)

To calculate ξ, let us consider the first term of equa-
tion (45), in Yαα. Using equations (4, 6), the commutator
of this first term with B†

j reads

[W (1)
mi , B†

j ] =
∑

k′
α,kα

∑

p′
α,p′

β

Yαα(k′
α,kα; m, i)

×〈p′
β,p′

α|j〉 [a†
k′

α
akα , a†

p′
α
b†p′

β
]

=
∑

k′
α,p′

α,p′
β

Yαα(k′
α,p′

α; m, i) 〈p′
β ,p′

α|j〉

×
∑

n

B†
n 〈n|k′

α,p′
β〉. (48)

By inserting Yαα given in equation (43) into the above
equation, we find that the first term of ξ

(
n j
m i

)
reads

ξ1

(
n j
m i

)
=

∑

k′
α,q′

α,p′
α,p′

β ,pα,pβ

×〈m|q′
α,pβ〉 〈n|k′

α,p′
β〉 vαα

(
k′

α p′
α

q′
α pα

)
〈pβ ,pα|i〉 〈p′

β,p′
α|j〉.
(49)

This ξ1

(
n j
m i

)
is shown in Figure 1b. It corresponds to an

interaction between the fermions α of the “in” cobosons
(i, j), the “out” cobosons (m, n) being made with the same
fermion pair as the “in” cobosons. We can rewrite this ξ1

in real space, by using equations (17) and (32) and by
performing the summation over the various k’s through
closure relations. This leads to

ξ1

(
n j
m i

)
=

∫
drα1drα2drβ1drβ2φ

∗
m(rα1, rβ1)φ∗

n(rα2, rβ2)

× vαα(rα1, rα2)φi(rα1, rβ1)φj(rα2, rβ2), (50)

which is shown in Figure 1c.
By calculating the contributions of the three other

terms of equation (45) in the same way, we end with a
direct interaction scattering which has a form very simi-
lar to the one for excitons [1], namely

ξ
(

n j
m i

)
=

∫
drα1 drα2 drβ1 drβ2 φ∗

m(rα1, rβ1)

× φ∗
n(rα2, rβ2)φi(rα1, rβ1)φj(rα2, rβ2)

× [vαα(rα1, rα2) + vββ(rβ1, rβ2) + vαβ(rα1, rβ2)
+vαβ(rα2, rβ1)] . (51)

This direct scattering is represented in Figure 2b: in it, no
fermion exchange takes place between the “in” cobosons
(i, j).

3.2.3 Matrix elements of the system Hamiltonian
in the 2-coboson subspace

Using the commutators given in equations (34, 46), the
Hamiltonian in the two-coboson subspace appears as

〈v|BmBn H B†
i B

†
j |v〉 =

∑

q

〈v|BmBnB†
i B

†
q |v〉 〈q|H |j〉 + (i ↔ j)

+
∑

pq

ξ
(

q j
p i

)
〈v|BmBnB†

pB
†
q |v〉. (52)

So that, using equation (22) for the scalar product of or-
thogonal cobosons, we end with

〈v|BmBn H B†
i B

†
j |v〉 =

[
δm,i 〈n|H |j〉 + δn,i 〈m|H |j〉

−
∑

q

(λ (n q
m i) + λ (m q

n i )) 〈q|H |j〉

+ ξ
(

n j
m i

)
− ξin

(
n j
m i

)]
+ [i ↔ j], (53)

where ξin is the exchange interaction scattering shown in
Figure 2c. It is precisely given by

ξin
(

n j
m i

)
=

∑

pq

λ
(

n q
m p

)
ξ
(

q j
p i

)

=
∫

drα1 drβ1 drα2 drβ2 〈m|rα1, rβ2〉 〈n|rα2, rβ1〉
×〈rβ1, rα1|i〉 〈rβ2, rα2|j〉
× [vαα(rα1, rα2) + vββ(rβ1, rβ2)
+vαβ(rα1, rβ2) + vαβ(rα2, rβ1)] . (54)

In the case of coboson eigenstates of the system Hamilto-
nian, 〈n|H |j〉 = Ej δn,j , we readily recover the result for
composite excitons [1].

3.3 Nonorthogonal cobosons

If the coboson states form a complete set for one-fermion-
pair states, but if these states are not orthogonal, we ex-
pect the preceding results to be far more complicated. It
turns out that, as for the scalar product of cobosons, given
in equation (22), the only difference with the results for
orthogonal cobosons comes from the näıve part.

3.3.1 Creation potential and interaction scattering

Let us briefly go through the same path as the one we
used in the preceding subsection, the closure relation for
cobosons being now given by equation (7).

The definition of the creation potential for the coboson
i, given in equation (34) for orthogonal cobosons, now
reads

[
H, B†

i

]
=

∑

m

B†
m

∑

q

zmq 〈q|H |i〉 + V †
i , (55)



188 The European Physical Journal B

in order to still have V †
i |v〉 = 0. From the precise calcu-

lation of V †
i , we can then show, by using equation (9) to

write a†b† in terms of cobosons, that

V †
i =

∑

mq

B†
m zmq Wqi (56)

[
V †

i , B†
j

]
=

∑

mn

B†
mB†

n

∑

pq

zmp znq ξ
(

q j
p i

)
, (57)

where Wqi is defined in equation (45) and ξ is the direct
interaction scattering defined in equation (51).

3.3.2 Matrix elements of the system Hamiltonian
in the 2-coboson subspace

Using equations (55, 57), we readily find

〈v|BmBnHB†
i B

†
j |v〉 = 〈v|BmBnB†

i HB†
j |v〉 + (i ↔ j)

+
∑

pqtu

〈v|BmBnB†
pB

†
q |v〉 zptzqu ξ

(
u j
t i

)
. (58)

The closure relation (7) allows to write the first term of
the above equation as

〈v|BmBnB†
i HB†

j |v〉 =
∑

pq

〈v|BmBnB†
i B

†
p|v〉 zpq 〈q|H |j〉,

(59)
so that, using the scalar product of coboson states given
in equation (22), this first term reads

〈v|BmBnB†
i HB†

j |v〉 = 〈n|i〉 〈m|H |j〉 + 〈m|i〉 〈n|H |j〉
−

∑

pq

[λ (n p
m i) + λ (m p

n i )] zpq 〈q|H |j〉. (60)

If we now turn to the last term of equation (58), we find,
from the same equation (22),
∑

pqtu

〈v|BmBnB†
pB

†
q |v〉 zptzqu ξ

(
u j
t i

)
=

∑

pqtu

〈m|p〉 〈n|q〉 zpt zqu ξ
(

u j
t i

)

−
∑

pqtu

λ
(
n q
m p

)
zpt zqu ξ

(
u j
t i

)
+ (m ↔ n). (61)

The first term readily gives ξ
(

n j
m i

)
, due to equation (8).

By using the expressions of λ and ξ in r space given in
equations (18, 51), the second term appears as
∑

pqtu

λ
(
n q
m p

)
zpt zqu ξ

(
u j
t i

)
=

∑

pqtu

zpt zqu

∫
{dr} d{r′} 〈m|r′α1, r

′
β2
〉 〈n|r′α2, r

′
β1〉 〈r′β1r

′
α1|p〉

× 〈r′β2, r
′
α2|q〉 〈t|rα1, rβ1〉 〈u|rα2, rβ2〉

× [
vαα(rα1, rα2) + vββ(rβ1, rβ2)

+ vαβ(rα1, rβ2) + vαβ(rα2, rβ1)
] 〈rβ1, rα1|i〉 〈rβ2, rα2|j〉.

(62)

The summations over (p, t) and (q, u) being performed
through equation (7), we readily find that the sum (62)
reduces to the exchange interaction scattering ξin

(
n j
m i

)

given in equation (54).
The above results thus show that the matrix elements

of the system Hamiltonian in an arbitrary two-coboson
subspace are given by

〈v|BmBnHB†
i B

†
j |v〉 =

{[
〈n|i〉 〈m|H |j〉 −

∑

pq

λ (n p
m i) zpq 〈q|H |j〉

]
+ [i ↔ j]

+ξ
(

n j
m i

)
− ξin

(
n j
m i

)}
+ {m ↔ n}. (63)

This result, which reduces to equation (53) when the co-
boson states are orthogonal, again shows that the part
coming from interactions between cobosons is formally the
same whatever is the complete set of states these cobosons
form.

4 Many-body effects with arbitrary cobosons

The standard way to derive many-body effects be-
tween elementary quantum particles for which the system
Hamiltonian splits as H = H0 + V , goes through the iter-
ation of

1
a − H

=
1

a − H0
+

1
a − H

V
1

a − H0
. (64)

We have shown [2] that, in the case of composite exci-
tons which are eigenstates of the semiconductor Hamil-
tonian, the equivalent of H = H0 + V , deduced from
[H, B†

i ] = EiB
†
i + V †

i , is HB†
i = (H + Ei)B

†
i + V †

i , so
that the equivalent of equation (64) reads

1
a − H

B†
i = B†

i

1
a − H − Ei

+
1

a − H
V †

i

1
a − H − Ei

.

(65)
In the most general case considered in this work, the cre-
ation potential of the coboson i is defined through

[H, B†
i ] =

∑

m

B†
m

∑

q

zmq 〈q|H |i〉 + V †
i

= Hii B†
i + v†i + V †

i , (66)

where we have set

Hmi =
∑

q

zmq 〈q|H |i〉 and v†i =
∑

m �=i

B†
m Hmi.

v†i is such that v†i |v〉 �= 0, while [v†i , B
†
j ] = 0. The equiva-

lent of equation (65) then reads

1
a − H

B†
i = B†

i

1
a − H − Hii

+
1

a − H
(v†i + V †

i )
1

a − H − Hii
. (67)
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Using equation (67) which is not far more complicated
than equation (65), we can follow the same procedure as
the one used for excitons, to deduce the part of the many-
body effects between arbitrary cobosons coming from in-
teractions between the elementary fermions making these
composite bosons. Their correlations read in terms of ma-
trix elements between N -coboson states which look like

〈v|BmN · · ·Bm1

1
a − H

B†
i1
· · ·B†

iN
|v〉.

To calculate them, we first push 1/(a − H) to the right
according to equation (67) and we eliminate the various
“creation potentials” through equations (6) or (57). This
makes appearing a lot of interaction scatterings ξ. We end
with scalar products of N -coboson states, which do not
contain the system Hamiltonian anymore. These scalar
products are then calculated, as for excitons, in terms
of Pauli scatterings between two cobosons, using equa-
tion (10) and equations (13) or (19) — as done to get
equation (22) for just N = 2 cobosons. When N is large,
these scalar products are better represented by Shiva di-
agrams for fermion exchanges between P excitons, with
2 ≤ P ≤ N , as explained more in details in a forthcoming
publication [11].

5 Conclusion

The present work shows how the concepts we have re-
cently introduced to exactly treat the fermion exchanges
which take place in the many-body physics of excitons, can
be extended to any pair of fermions. The exact descrip-
tion of composite boson many-body effects relies on two
sets of scatterings: the “Pauli scatterings” for fermion ex-
changes without interaction and the “interaction scatter-
ings” for interaction without fermion exchange. To derive
these scatterings, it is not necessary for the fermion pairs
to be the exact eigenstates of the system Hamiltonian, nor
to form an orthogonal set for one-pair states.

The present extension of the free exciton many-body
theory to any kind of composite bosons is highly desirable
for various problems in which the physically relevant com-
posite bosons are not the system eigenstates: for example,
all problems involving photons which are predominantly
coupled to free excitons, while traps are present in the
semiconductor sample, so that these free excitons are not
the system eigenstates.

This many-body theory extended to any kind of co-
bosons is also going to be useful in the physics of “cold
gases”, since the composite nature of the atoms must play
an important role in their many-body effects. It is com-
monly believed that atoms differ from excitons due to the
very large mass difference which exists between fermions α
and β. Excitons have a center-of-mass delocalized over the
whole sample — or at least over their coherence length. On
the opposite, atoms are commonly seen as highly localized
objects. This is due to the very large atomic mass, the mo-
mentum dispersion of the associated wave packet, allowed
by a finite temperature, increasing with the center-of-mass
mass. As the reason for this localization disappears when
the temperature decreases, ultracold atoms end by being
delocalized over the whole sample. Due to this delocaliza-
tion, they never are far away, so that fermion exchanges
can take place between them. Just as in the case of ex-
citons, the effects induced by fermion exchanges between
atoms are as large as the ones due to interactions between
the fermions making these atoms: Both effects scale as the
atom density multiplied by the atom volume, provided
that this product stays small compared to one, for the
atoms to stay bound.
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