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Abstract

Quantum mechanics promises to have a great impact on computation. Motivated by
the long-term vision of a universal quantum computer that speeds up certain calcula-
tions, the field of quantum information processing has been growing steadily over the
last decades. Although a variety of quantum systems consisting of a few qubits have
been used to implement initial algorithms successfully, decoherence makes it difficult
to scale up these systems. A powerful technique, however, could surpass any size
limitation: the connection of individual quantum processors in a network.

In a quantum network, “flying” qubits coherently transfer information between the
stationary nodes of the network that store and process quantum information. Ideal
candidates for the physical implementation of nodes are single atoms that exhibit long
storage times; optical photons, which travel at the speed of light, are ideal information
carriers. For coherent information transfer between atom and photon, a quantum
interface has to couple the atom to a particular optical mode.

This thesis reports on the implementation of a quantum interface by coupling a
single trapped 40Ca+ ion to the mode of a high-finesse optical resonator. Single intra-
cavity photons are generated in a vacuum-stimulated Raman process between two
atomic states driven by a laser and the cavity vacuum field. In this Raman process, all
Zeeman substates of the atom are spectroscopically resolved by tuning the frequency
of the laser; via addressing specific atomic states, the polarization of the generated
cavity photon is controlled, defining the photonic qubit. The electronic state of the
ion is initialized, coherently manipulated, and read out via driving the quadrupole
transition.

With these techniques in hand, we have demonstrated two protocols for quantum
communication. The first protocol, ion-photon entanglement, is regarded as a key
resource of distributed quantum information processing. In our realization, we control
both phase and amplitude of the entangled ion-photon state, resulting in a state
fidelity of (97.4 ± 0.2)%. The second protocol, ion-photon state mapping, realizes
a faithful transfer of the qubit state from the stationary to the flying qubit with a
maximum process fidelity of (92± 2)%. The bichromatic driving scheme that we have
developed enables time-independence of the quantum states in both protocols, making
this scheme applicable to a variety of physical systems incorporating non-degenerate
qubit states.

In the future, the ion-photon interface that we have demonstrated will enable the
coupling of distant ions; furthermore, it may allow for the optical coupling of an ion
to other quantum systems, such as quantum dots or superconducting qubits. Such a
hybrid quantum system could combine the advantages of the individual systems.





Zusammenfassung

Die Gesetze der Quantenmechanik versprechen, die Computertechnologie zu revo-
lutionieren. Motiviert von der Vision eines universellen Quantencomputers ist das
Forschungsfeld der Quanteninformationsverarbeitung in den letzten Jahrzehnten kon-
tinuierlich gewachsen. Obwohl erste Algorithmen erfolgreich in kleinen Quantensyste-
men mit einigen Quantenbits (Qubits) implementiert wurden, stellt die Skalierbarkeit
dieser Systeme eine große Herausforderung dar. Hier könnte eine bewährte Tech-
nik klassischer Computer helfen: Die Verbindung individueller Quantenprozessoren in
einem Netzwerk.

In einem solchen Quantennetzwerk übermitteln
”
fliegende” Qubits kohärent Infor-

mation zwischen stationären Knotenpunkten des Netzwerkes, welche die Quanteninfor-
mation speichern und verarbeiten. Ideal für die technische Realisierung der Knoten-
punkte sind einzelne Atome, da sie lange Kohärenzzeiten besitzen. Als

”
fliegende”

Qubits eignen sich optische Photonen, die in einer Glasfaser übertragen werden können.
Für den reversiblen Informationstransfer zwischen Atom und Photon wird eine Quan-
tenschnittstelle benötigt, welche das Atom gezielt an eine optische Mode koppelt.

Die vorliegende Arbeit beschreibt die Realisierung einer solchen Schnittstelle, in
der ein einzelnes 40Ca+ -Ion an die Mode eines optischen Resonators hoher Güte
gekoppelt wird. Einzelne Photonen werden über einen Ramanprozess zwischen zwei
atomaren Zuständen erzeugt. Dieser Ramanprozess wird vom Vakuumfeld des Res-
onators und von einem Laser getrieben. Über die Frequenz des Lasers werden alle Zee-
manzustände des Atoms spektroskopisch aufgelöst und die Polarisation des erzeugten
Photons kontrolliert. Die Polarisation des Photons definiert das

”
fliegende” Qubit,

und der elektronische Zustand des Atoms definiert das stationäre Qubit, welches über
einen Quadrupolübergang initialisiert, manipuliert und ausgelesen wird.

Diese Techniken wurden anschließend angewendet, um zwei Protokolle für die
Quantenkommunikation zu realisieren. Im ersten Protokoll wurde Atom-Photon-
Verschränkung erzeugt, die eine universelle Ressource für die Quantenkommunikation
darstellt. In unserer Realisierung werden Phase und Amplitude des verschränkten
Atom-Photon-Zustandes mit einer Zustands-Fidelity von (97.4 ± 0.2)% kontrolliert.
Im zweiten Protokoll wurde ein beliebiger Quantenzustand des Atoms kohärent auf
das Photon übertragen. Hierbei beträgt die maximale Prozess-Fidelity (92 ± 2)%.
Das von uns entwickelte Anregungsschema mittels zweier phasenkohärenter optischer
Felder stellt die Zeitunabhängigkeit der Quantenzustände in beiden Protokollen sicher.
Dieses Schema ist daher auf beliebige physikalische Systeme mit nichtentarteten Qub-
itzuständen anwendbar.

In Zukunft wird die hier realisierte Quantenschnittstelle die Kopplung entfern-
ter Ionen sowie die Kopplung eines Ions an andere Quantensysteme wie Quanten-
punkte oder supraleitende Qubits ermöglichen. Ein solches hybrides Quantensystem
ermöglicht, die Vorteile der individuellen Systeme zu vereinen.



Quand tu veux construire un bateau,
ne commence pas par rassembler du bois,

couper des planches et distribuer du travail,
mais réveille au sein des hommes
le désir de la mer grande et belle.

Wenn du ein Schiff bauen willst, dann trommle nicht Menschen zusammen
um Holz zu beschaffen, Aufgaben zu vergeben und die Arbeit einzuteilen,

sondern lehre die Menschen die Sehnsucht nach dem weiten, endlosen Meer.

Antoine de Saint-Exupéry, Citadelle
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1 Introduction

Quantum mechanics represents one of the greatest advances in physics in the twen-
tieth century. Not only does it explain fundamental phenomena in atomic physics,
chemistry, material sciences, and many more areas of modern science, but also it has
mediated the engineering of materials such as semiconductors, which resulted in the
technical revolution of classical computation.

In the last decades, it was discovered that certain principles of quantum mechanics
promise to have a great impact on computation. While classical qubits are in state 0
or one, quantum bits (qubits) can be in a superposition state. As the large state space
of quantum systems makes them difficult to simulate, Benioff and Feynman proposed
in the early 1980s to use one quantum system to simulate another [1, 2]. At that time,
however, such ideas were considered pure thought experiments. This changed with
the development of algorithms that exploit superposition and interference principles
of quantum mechanics to turn (exponentially) hard mathematical problems on a clas-
sical digital computer into easy (polynomial) ones on a quantum computer. The most
prominent examples of this quantum speedup are Shor’s algorithm for prime factoriza-
tion [3] and Grover’s search algorithm [4]. Moreover, Bennet and Brassard developed a
first quantum cryptography protocol [5]: a quantum key distribution enabling intrinsic
secure communication based on the laws of quantum physics.

Given these opportunities, many technologies have since been investigated with
the goal of implementing a quantum computer [6, 7]. A variety of quantum systems
consisting of a few qubits have been demonstrated to be capable of quantum operations
and have been used to successfully implement first algorithms. Among these systems
are photons, nuclear spins, quantum dots, superconducting qubits, neutral atoms, and
trapped ions [6, 7]. What started as a thought experiment 30 years ago has become
the field of quantum information science.

However, both decoherence in real-world quantum systems and the inaccuracy
of an inherent analogue system mean that it will be difficult to scale up quantum
systems [8]. Major developments that allow for the realization of large-scale quantum
computers despite these obstacles are error-correction protocols [9, 10] and methods
for fault-tolerant quantum computation [8]. These protocols have been successfully
implemented [11–13] and would in principle allow for a scaling-up of error-afflicted
systems, but they require a significant overhead in the number of physical qubits. In
addition, at any stage in the development of quantum computers, the state space and
the computational power of any individual quantum processor will be limited.

In order to surpass this limited size and to overcome the error-correction overhead,
a powerful technique of classical computation can be introduced: the connection of
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1 Introduction

individual processors in a network. Processors now share resources and information,
and computation can be distributed among the network’s individual units. In the
quantum version of a computational network [14–16], the nodes of the network have
to be capable of generating, storing, and processing quantum information, and the
connecting channels have to coherently transfer the analogue quantum information
between the individual nodes. The concepts of quantum networks and quantum com-
munication not only appear promising for the distribution of computational tasks, but
are also combined into new applications such as blind quantum computing [17]. In this
scheme, the formulation of a certain task and its computation on a remote quantum
server are hidden from each other, possibly enabling the secure use of initial quantum
servers running at specialized facilities.

The technological prerequisites for quantum computation are often referred to as
the five DiVincenzo criteria [18]. Two additional DiVincenzo criteria stipulate the
requirements for quantum communication: a coherent interface between stationary
and flying qubits as well as transmission of flying qubits between remote locations
[18]. For the physical implementation of flying qubits, photons in the optical domain
have proven to be ideal information carriers; they are transmitted at the speed of light
through optical fibers or the atmosphere with little disturbance [19]. The flying qubit
itself can be encoded in different degrees of freedom, such as polarization, wavelength
or photon arrival time. The nodes of a quantum network can be realized by matter
qubits that exhibit long storage times. In contrast to solid-state devices such as
quantum dots and superconducting qubits, atoms are indistinguishable by nature. As
a consequence, their properties can be exactly reproduced at any node of the network.
Two well-studied approaches in the context of quantum networks are single atoms
[14, 20–22] and atomic ensembles [23, 24]. Here, we focus on single, trapped atoms.
For coherent information transfer between atom (stationary qubit) and photon (flying
qubit), a quantum interface has to couple the atom to a particular optical mode, as
implemented by two different approaches.

The probabilistic approach selects photons over a limited solid angle [21, 25]. Only
a small fraction of photons, typically on the percent level, are therefore collected.
In contrast, by placing the atom inside a low-loss cavity, its coupling to the cavity
mode is enhanced. The atom is said to be strongly coupled to the cavity mode if this
atom-cavity coupling strength is much larger than both the atom’s and the cavity’s
coupling to the other optical vacuum modes. As photons can be generated with near-
unit efficiency in such cavity systems [26, 27], this approach is called the deterministic
approach [14, 15]. The strongest coupling is achieved with small-mode-volume cavities,
where the mode volume is inversely proportional to cavity length. For ions, achieving
a strong ion-field coupling is quite challenging due to the difficulty of integrating
mirrors within an ion-trap apparatus. In contrast, cavities of just tens of µm in
length are possible in experiments with neutral atoms [28]. It is thus in the context
of neutral atoms that the greatest progress toward a cavity-based interface has been
demonstrated [22, 29, 30].

2



Depending on the network topology and the interface approach, different quantum
communication protocols can be employed. In this thesis, we focus on two protocols: a
first one that generates distant entanglement and a second one that directly transfers
a quantum state between two distant nodes. The next paragraphs first describe these
protocols and their realizations by other research groups worldwide and then motivate
the approach of this thesis.

The first protocol generates entanglement between distant matter qubits, a re-
source for quantum communication. It can be realized in both the deterministic and
the probabilistic interface approach and makes use of entanglement between the state
of a single photon and the state of an atomic or solid-state quantum memory, as has
been demonstrated in recent experiments with trapped ions [25, 31], neutral atoms
[21, 22, 32], atomic ensembles [33, 34], and nitrogen-vacancy spins [35]. By interfer-
ence of two photons that are entangled with their respective emitters, probabilistic
entanglement between the distant emitters can be achieved, as recently demonstrated
with single ions [36], atomic ensembles [37], and single neutral atoms [22, 38]. Once
entanglement between distant matter qubits is accomplished, it can be used for differ-
ent communication protocols, e.g., state transfer between remote qubits via quantum
teleportation [31].

The success probability of this first protocol, using the probabilistic approach, is
typically on the order of 10−7− 10−9 [36, 38]. This small efficiency, however, does not
affect the fidelity of the process since the detection of photons heralds a successful event
and realizes an inherent error detection [15]. For long distances between the stationary
qubits, however, the optical channel will introduce further losses due to scattering and
absorption that scale exponentially with its length. In the classical world, such losses
are mitigated by the use of repeaters that periodically amplify the signal. Although
quantum states can not be amplified or copied [39], a quantum repeater can be realized
via a more complex protocol, invented by Briegel et. al. [40]. Here, additional qubits
at intermediate nodes are used for entanglement swapping and purification steps,
enabling long-distance quantum communication with only polynomial overhead in
time and the number of qubits [40].

In the second protocol, a quantum state is directly transferred between two nodes.
The original proposal [41] makes use of the deterministic approach: the state is trans-
ferred from a first atom onto a cavity photon, which carries it over an optical channel
to a second atom-cavity system. This second protocol has recently been realized with
single, neutral atoms [22], employing the polarization of a single photon as a flying
qubit. Due to scattering and absorption in optical elements, however, the success
probability of the protocol is below one. Although in principle the efficiency to gen-
erate and receive photons in atom-cavity interfaces can approach unity, optical losses
during the transfer will always result in an overall probabilistic transfer protocol. Nev-
ertheless, high fidelities can be reached by a complementary version of inherent error
detection: if photons are generated and received in a Raman transition, detection of a
particular atomic state heralds the absorption of a photon. Once a heralding technique

3
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can be applied, this second protocol could be realized as well using the probabilistic
approach, although with lower efficiency. It may also be possible to implement another
quantum repeater scheme based on this second protocol.

Deterministic or not, the cavity approach has proven to enable much higher efficien-
cies than the approach of collecting photons over a limited solid angle. Additionally, a
herald allows for the realization of probabilistic protocols by the cavity approach. The
cavity approach thus combines versatility with a high efficiency. In addition, for all
protocols that rely on the initialization or the read-out of the atomic state, the success
probability of the protocol increases with the efficiency of atomic state initialization
and read-out. Here, trapped ions have the advantage of deterministic methods for
coherent state manipulation and readout [42, 43]. Although these methods have also
been demonstrated for neutral atoms [44, 45], they have not yet been combined with
the cavity interface.

Integrating a single trapped ion with a high-finesse cavity would thus combine
two efficient techniques and realize the natural archetype of a quantum interface.
Additionally, trapped ions offer long storage times, precise positioning with respect
to the cavity mode and a localization to about 10 nm via ground-state cooling in
three dimensions [42]. Due to the difficulty of combining an ion-trap with a small-
mode-volume cavity, however, ion-trap cavities to date have only been constructed
on the cm scale [46–51], without reaching strong coupling between a single atom
and a single photon. Special techniques have thus to be developed for the successful
implementation of such a quantum interface.

In this dissertation, the potential of an ion-cavity system to improve both efficiency
and fidelity of quantum network protocols is explored. The main results are the
implementation of ion-photon entanglement and state mapping which are published
in [52–54].

This dissertation is structured as follows: chapter 2 reviews the concepts of quan-
tum information and cavity-quantum electrodynamics. It introduces the cavity-driven
Raman transition for realizing the quantum interface. In chapter 3, states and tran-
sitions in 40Ca+ for an ion-photon interface are discussed, and a theoretical model is
introduced. Chapter 4 describes the experimental apparatus consisting of ion trap,
cavity, and laser systems. Additionally, the polarization detection of the photonic
qubit is explained. After an introduction of the level scheme of 40Ca+ , chapter 5
explains the experimental tools for initialization, coherent manipulation, and state
detection of the atomic qubit, focusing on recently improved techniques. In chapter 6,
control over the relative ion-cavity position in all three spatial dimensions is demon-
strated. As a result, the ion-cavity coupling is maximized. Chapter 7 discusses the
choice of states and transitions in 40Ca+ and an optimal experimental geometry for an
ion-photon interface. Via Raman spectroscopy, specific qubit states are addressed and
single cavity photons with the desired polarization are generated. As a first quantum
interface protocol, entanglement between a single ion and a single photon is demon-

4



strated in chapter 8 with a fidelity of (97.4 ± 0.2)%. A bichromatic driving scheme
enables both tunability and time-independence of this ion-photon entanglement. A
second protocol is implemented in chapter 9: the mapping of the quantum state of a
single ion onto a single photon within the cavity with a maximum process fidelity of
(92± 2)%. The mapping process is time-independent, allowing us to characterize the
interplay between efficiency and process fidelity. Finally, chapter 10 summarizes the
results presented and provides an outlook to future experiments.
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2 Coupling an atomic qubit to a photon qubit

An ion-photon interface requires the interaction between two well-defined qubits, one
atomic and one photonic. After a short introduction to the theoretical notation of
a qubit’s quantum state and its visualization on the Bloch or Poincaré sphere, this
chapter defines the atomic and photonic qubits employed in this work and introduces
the concept of quantum-state measurement.

In the second part of this chapter, we introduce the Jaynes-Cummings model that
describes the interaction of a cavity with a two-level system. Although the funda-
mental phenomena of the atom-cavity interaction can be analyzed in this model, the
experiments described in this thesis employ a Raman transition, and the atom is more
appropriately described as a three-level system. We thus extend the theoretical model
to a third atomic level and a coherent external drive field. Via adiabatic elimination
of one level, this model can be reduced to an effective two-level system that qualita-
tively reveals most of the experimental phenomena observed. Finally, we discuss the
coherence of the Raman process, an important figure of merit that determines fidelity
and efficiency of the ion-photon interface.

2.1 Quantum bits

Every bit, the smallest unit of information in a classical computer, has two logical
values, 0 and 1, and is therefore physically implemented by devices that possess two
states. In contrast to a classical qubit, a quantum bit (qubit) can be in any superpo-
sition of the two states |0〉 and |1〉:

α |0〉+ β |1〉. (2.1)

Physical implementations of qubits are, e.g., a two-level atom, the polarization of a
spin-1/2 particle, or the polarization of a single photon.

In the ideal case, a qubit is isolated from its environment and can mathematically
be described as a closed system. It is then characterized by a pure state, i.e., a state
vector |ψ〉 of the two-dimensional Hilbert space H2, spanned by the basis vectors

|0〉 ≡
(

1
0

)
and |1〉 ≡

(
0
1

)
. For the normalization of every state vector, the complex

amplitudes α, β ∈ C must fulfill |α|2 + |β|2 = 1. One can then express the pure state
|ψ〉 in terms of the two real parameters ϑ, ϕ:

|ψ〉 = cosϑ |0〉+ eiϕ sinϑ |1〉. (2.2)

7



2 Coupling an atomic qubit to a photon qubit

In reality, however, every physical qubit couples to its environment and therefore
suffers from decoherence. To describe a system realistically, the mathematical formal-
ism of the density matrix is used. Rather than describing the state of a single quantum
system, the density matrix describes an ensemble of quantum states. It thus takes into
account the fact that in quantum mechanics, one always has to measure an ensemble
of identically prepared particles in order to assign a ‘state’ to the ensemble. In general,
an ensemble of quantum states consists of a statistical mixture of pure states |ψi〉,
each with probability pi. Such a mixed ensemble is described by the density matrix

ρ =
∑
i=1

pi |ψi〉〈ψi| (2.3)

with pi real, positive and normalized such that
∑

i=1 pi = 1. The density matrix is
Hermitian and normalized: ρ† = ρ, tr[ρ] = 1. In the case of a classical mixture of two
states, e.g., where half of the representatives of the ensemble are in state |0〉 and the
other half in state |1〉, the density matrix ρ = |0〉〈0| + |1〉〈1| represents a completely
mixed ensemble (for convenience, the term ‘ensemble’ is often replaced by ‘state’). On
the contrary, if all representatives of the ensemble are in the same quantum state, e.g.
|0〉, the density matrix ρ = |0〉〈0| represents a pure ensemble. In order to measure
the degree to which an ensemble is mixed, the purity tr[ρ2] is used. In the case of a
pure ensemble, the purity yields 1; for a completely mixed state, it is 1/2. (In general,
the purity of a completely mixed state is 1/d, where d is the dimension of the Hilbert
space.)

In order to describe the state of two qubits, the state vectors of both qubits are
combined via the tensor product |ψ(1)

i 〉⊗ |ψ
(2)
i 〉, and the Hilbert spaceHtot of two qubits

is the tensor product of the Hilbert spaces of the two subsystems Htot = H(1)
2 ⊗H

(2)
2 .

Physical implementation of the atomic and photonic qubit

The experiments presented in this thesis employ two different qubits: the electronic
state of a single ion and the polarization state of a single photon. For the ion, different
electronic states can be used to implement a physical qubit (sec. 3.1.2). For the ion-
photon entanglement experiment of chapter 8, for example, the states |D〉 → |0〉 and
|D′〉 → |1〉 define the atomic qubit.

The photonic qubit is defined via the polarization states of a single photon through-
out this thesis: |H〉 → |0〉 and |V 〉 → |1〉, where H and V represent a horizontally
and vertically polarized photon, respectively. The orthogonal polarization states that
correspond to the axes of the Poincaré sphere can be written as linear combinations
of H and V and are listed in table 2.1.

2.1.1 Bloch-and Poincaré sphere representation

A convenient and intuitive illustration of the state of a qubit is given by the Bloch-
or Poincaré sphere. Due to normalization and hermiticity, the density matrix ρ of a

8



2.1 Quantum bits

polarization name polarization state qubit state
horizontal (linear) |H〉 |0〉
vertical (linear) |V 〉 |1〉
diagonal (linear) |D〉 = 1√

2
( |H〉+ |V 〉) |+〉x = 1√

2
( |0〉+ |1〉)

anti-diagonal (linear) |A〉 = 1√
2
( |H〉 − |V 〉) |−〉x = 1√

2
( |0〉 − |1〉)

right circular |R〉 = 1√
2
( |H〉+ i |V 〉) |+〉y = 1√

2
( |0〉+ i |1〉)

left circular |L〉 = 1√
2
( |H〉 − i |V 〉) |−〉y = 1√

2
( |0〉 − i |1〉)

Table 2.1: Photon polarization states that are used for state tomography and their corre-
sponding qubit states.

single qubit can be decomposed in the Pauli-operator basis [55]

ρ =
1

2
(1l + ~r ~σ) (2.4)

with the Bloch (or polarization) vector ~r, the unit vectors êi, and ~σ = σxêx+σyêy+σz êz,
where the Pauli-spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.5)

As a consequence, a distinct Bloch vector ~r can be assigned to each state ρ via the
expectation value of ~σ: ~r = tr[ρ~σ] = 〈~σ〉. As ~r ∈ R3, it can be characterized by its
Cartesian coordinates (rx, ry, rz) or its polar coordinates (r = |~r|, ϑ, ϕ). For a pure
state |ψ〉, r = |~r| = 1, and the tip of the Bloch vector ~r lies on the surface of the
three-dimensional unit sphere which for this purpose is called the Bloch (or Poincaré)
sphere, shown in fig. 2.1. For a mixed state, r ≤ 1, and the the Bloch vector lies
within the sphere.

In addition to illustrating a certain quantum state, the Bloch and Poincaré sphere
can also be employed to illustrate the measurements necessary for state tomography.

2.1.2 Quantum state measurement for tomography

In order to evaluate the ion-photon entanglement and state mapping experiments pre-
sented in chapter 8 and chapter 9, the resulting quantum states of ion and photon
have to be characterized. Such characterization is realized via tomographic measure-
ments in which the expectation value of certain observables is measured for a number
of identically prepared quantum systems. In general, a measurement of observable A
projects a quantum state into an eigenstate of A. The expectation value of A is given
by

〈A〉 = tr[Aρ]. (2.6)
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2 Coupling an atomic qubit to a photon qubit

(a) (b)

QWP

HWP

Figure 2.1: (a) Bloch sphere and (b) Poincaré sphere. While the Bloch sphere is typically
oriented such that the states |0〉z and |1〉z lie on the north and south pole, the Poincaré
sphere is typically oriented such that linear polarizations lie in the equator, and the north
and south poles of the sphere represent circular polarizations. The Bloch vector (red) is
characterized via two real parameters ϑ and ϕ. Rotation axes on the Poincaré sphere caused
by half- and quarter-waveplates at angle θ with respect to the optical axis are indicated by
the green dashed and orange dotted line, respectively.

A measurement of σz, e.g., for the pure state of eq. (2.2), projects the state into |0〉
(the north pole of the Bloch sphere) with probability cos2(ϑ) and into |1〉 (the south
pole) with probability sin2(ϑ). From the probabilities obtained, however, one can only
assign the angle ϑ, i.e., an intersecting plane of the Bloch sphere with a plane parallel
to the x- and y-axes. In order to assign a Bloch vector, i.e., the second parameter
ϕ, the state also has to be projected along two different directions, e.g., x and y,
corresponding to measurements of σx and σy.

While the measurement of σz is implemented for the ion via the fluorescence detec-
tion method (explained in sec. 5.4) and for the photon via a polarizing beamsplitter
(PBS), the two additional observables σx and σy are measured via the application of
rotations on the qubit before the projective measurement. These rotations are de-
scribed by unitary operations Û that can be interpreted as acting either on the state
ρ→ ÛρÛ † (Schrödinger picture) or on the operator A → Û †AÛ (Heisenberg picture).
The expectation value is equal in both cases: tr[A ÛρÛ †] = tr[Û †AÛ ρ]. In the second
interpretation, the Bloch sphere is rotated with respect to the vector. As the mea-
surement direction remains the north-south axis, the measured observable, in general,
now has components of σx and σy.

The physical implementation of such rotations is realized in a different way for
the ion and the photon. For the ion, unitary rotations are realized via laser pulses
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2.1 Quantum bits

with certain length and phase. As shown in [56], a laser pulse resonant with the
qubit transition with Rabi frequency Ω, pulse duration t and phase φ causes a unitary
operation Û(t) on the state (or the observable) with

Û(t, φ) =

(
cos(Ωt) −ie−φ sin(Ωt)

−ieφ sin(Ωt) cos(Ωt).

)
(2.7)

As shown in [55], every unitary operation Û on the Hilbert space H2 of a qubit can
be interpreted as a rotation of the qubit’s Bloch vector. For the unitary operation of
eq. (2.7), the rotation axis, given by cos(φ)êx + sin(φ)êy, is restricted to the equator
of the Bloch sphere. The rotation angle is determined by Ωt. For φ = 0, for example,
the Bloch vector is rotated along the x-axis of the Bloch sphere, while φ = π/2 results
in a rotation along the y-axis. For a rotation angle of Ωt = π/2 (a so-called π-pulse),
north and south pole are exchanged. If we choose Ωt = π/4 (a so-called π/2-pulse),
the rotation angle is 90◦, and north and south pole are rotated to the equator. In
order to measure σx and σy, we thus apply rotations on the ion with φ = 0,Ωt = π/4
and φ = π/2,Ωt = π/4, respectively.

The polarization state of a single photon is measured with optical detectors at
both output ports of a PBS that projects the polarization to |H〉 or |V 〉. In order
to measure in a different basis, unitary rotations are realized via birefringent opti-
cal crystals, known as waveplates, that are mounted in front of the PBS (sec. 4.10).
Common waveplates are half- and quarter-waveplates (HWP and QWP, respectively).
Their names correspond to the maximum phase retardation that is imposed on the
polarization along the ordinary or extraordinary axis of the crystal at a specific wave-
length. The unitary rotations ÛHWP and ÛQWP that are caused by the two waveplates
are given in [57] as:

ÛHWP(θ) = eiπ/2
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
(2.8)

ÛQWP(θ) =
1√
2

(
1 + i cos(2θ) i sin(2θ)

sin(2θ) 1− i cos(2θ)

)
, (2.9)

where θ corresponds to the physical angle of the waveplate with respect to the optical
axis and not the angle of rotation in the Poincaré sphere. The half-waveplate causes
a rotation of the polarization vector on the Poincaré sphere by the fixed angle of 180◦

around an axis in the equatorial plane of the Poincaré sphere. For any angle of the
HWP, linear polarizations thus stay linear, while right- and left circular polarizations
are exchanged. The rotation axis is defined by the optical axis of the waveplate. For
θ = 22.5◦, the rotation axis is identified to be the green dashed line in fig. 2.1(b).
For this setting of the HWP, |H〉 ↔ |D〉 and |V 〉 ↔ |A〉 are exchanged. As a
consequence, a measurement along the axis of |D〉, |A〉 is realized.

The quarter-waveplate causes a rotation of the polarization vector by the fixed
angle of 90◦ around an axis determined in the same way as for the half-waveplate.
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2 Coupling an atomic qubit to a photon qubit

A QWP can thus be used to rotate states to or from the equator. For θ = 45◦, the
rotation axis is the axis of |D〉, |A〉 as indicated by the orange dotted line in fig. 2.1(b).
As a consequence, the circular polarizations are rotated |R〉 → |V 〉 and |L〉 → |H〉.
This setting of the QWP thus allows for a measurement along the axis of |R〉, |L〉.

In summary, we have defined the atomic and photonic qubits and described how
measurements along different directions of the Bloch or Poincaré sphere can be realized
via laser pulses or waveplate angles. In the remainder of the chapter, we introduce
the theoretical model of the atom-cavity interaction.

2.2 Two-level system coupled to a cavity

A simple model for the interaction of an atom with a light field is given by the Jaynes-
Cummings formalism [58]. This model treats the atom as an idealized two-level system
that interacts with single photons of a quantized mode of the electromagnetic field,
described by the excitations of a quantum harmonic oscillator (fig. 2.2(a)). This model
describes a realistic situation if the coupling between atom and resonator is large
compared to their couplings to the environment. Additionally, the normal modes of
the resonator are assumed to be well separated in frequency and only one of them
populated with photons. For an atom at rest, the Jaynes-Cummings Hamiltonian is
given by

H = (~ω0/2)σz + ~ωc(â† + a) + ~g(σ+ + σ−)(â+ â†). (2.10)

Here, ~ω0 is the energy splitting between the ground state |g〉 and excited state |e〉
of the atom, and σ+ = |e〉〈g| and σ− = |g〉〈e| are the atomic raising and lowering
operators, respectively. The operators â+ and â are the creation and annihilation op-
erators of the electromagnetic field mode of the resonator with a single photon energy
of ~ωc. In the dipole approximation, the maximum atom-cavity coupling strength g
for an atom that is well-localized within the resonator standing wave is given by the
scalar product of the atomic dipole moment ~µeg and the electric field vector of the

resonator ~Ec
~g = −~µeg · ~Ec. (2.11)

Out of the four coupling terms in eq. (2.10), the term σ+â† corresponds to a photon
being generated in the resonator and the atom changing to the excited state, while the
term σ−â corresponds to one photon being absorbed and the atom changing to the
ground state. These two terms that rotate at fast frequency ω0 + ωc, do not conserve
energy and can only be allowed on times scales in accordance with the uncertainty
principle. Typically, we are interested in the dynamics that take place over many
optical cycles [59]. If the optical frequencies ω0 and ωc are much larger than the
coupling constant g, the fast rotating terms at frequency ω0 + ωc average out in the
Heisenberg equations of motion. The Jaynes-Cummings Hamiltonian in this rotating
wave approximation thus considers only the energy conserving terms σ†â and σâ†,
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2.2 Two-level system coupled to a cavity

rotating at slow frequency |ω0 − ωc|:

H =
~ω0

2
σz + ~ωc(â† + â) + ~g(σ+â+ σ−â†). (2.12)

The Jaynes-Cummings Hamiltonian can be diagonalized in the basis of the dressed
states [60, 61] that contain the number of photons in the resonator mode. In the
experiments described in this thesis, we consider interactions of the ion with the cavity
involving a single excitation. We therefore restrict the system to the states |g, 0〉, |g, 1〉
and |e, 0〉. The nontrivial eigenstates of this subspace are

|1,+〉 = cosϑ |g, 1〉 − sinϑ |e, 0〉
|1,−〉 = sinϑ |g, 1〉+ cosϑ |e, 0〉, (2.13)

where the mixing angle ϑ is given by

tan 2ϑ =
2g

ωc − ω0

. (2.14)

If the resonator is resonant with the atom, i.e., ωc = ω0, the states |g, 1〉 and |e, 0〉 are
degenerate. The coupling then mixes these states, resulting in the so-called vacuum-
Rabi splitting [61] (fig. 2.2(b)). In this case, the eigenstates are |1,±〉 = 1√

2
( |g, 1〉 ±

|e, 0〉), and the energy splitting is 2g. If the system starts in one of the states |g, 1〉
or |e, 0〉 at time t = 0, it undergoes oscillations between these two states over time,
corresponding to a periodic exchange of energy between the atom and the resonator.

2.2.1 Dissipation

So far, our model includes only the coupling between the atom and the mode of the
resonator. In reality, however, both atom and cavity also couple to a reservoir of
vacuum modes of the environment. Such coupling results in dissipative processes such
as spontaneous emission of the atom and photon loss of the cavity. These dissipative
processes are included in a master equation that is derived in the literature [62, 63]
by treating the system as an open quantum system. If the interactions between the
system and the reservoir are weak (Born approximation) and without memory, i.e.,
correlations between the system and the reservoir are short-lived compared to the
timescale of system dynamics (Markov approximation), the master equation describing
the time evolution of the system’s density matrix ρ is given by [64]

dρ

dt
=
−i
~

[H, ρ] + Ldiss(ρ) (2.15)

with [H, ρ] = Hρ − ρH. The Liouville super-operator Ldiss can be written in the
Lindblad form via collapse operators Ck [64], which take into account the coupling
between the system and the reservoir:

Ldiss(ρ) =
1

2

∑
k

(
2CkρC

†
k − ρC

†
kCk − C

†
kCkρ

)
. (2.16)
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2 Coupling an atomic qubit to a photon qubit

(a) (b)

Figure 2.2: (a) Atom-cavity coupling. The atom is represented by a two-level system
consisting of the ground state |g〉 and excited state |e〉 with energy splitting ~ω0. The atom
couples with coupling strength g to the electromagnetic field of a single resonator mode
which is represented by a harmonic oscillator at frequency ωc. The composite system’s
Hilbert space is the tensor product of the individual spaces of atom and resonator. (b)
Schematic energy level diagram of the combined atom-cavity system containing one or zero
excitations. For resonant coupling, i.e., ωc = ωa, the coupling g mixes the degenerate states
|g, 1〉 and |e, 0〉 equally. The new eigenstates are split in energy by 2g.

In the master equation, the spontaneous emission of the atom can be introduced by
the collapse operator Catom =

√
2γσ, where 2γ is the spontaneous emission rate of

the atom. Its action on the subspace of the atom corresponds to both decay of the
excited-state population and decay of coherences between the excited and ground state.
Cavity-photon loss is introduced into the master equation by the collapse operator
Ccavity =

√
2κâ, where 2κ is the rate of photon decay of the resonator.

The system dynamics of the model including dissipation are determined by the
parameters g, γ, κ and the atom-cavity detuning δ = ωa − ωc. Three regimes are
described in [65]. For g � γ, κ, |δ|, the so-called strong-coupling regime, the system
dynamics are dominated by the lossless oscillations of eq. (2.13). For g � γ, κ, |δ|,
the weak-coupling regime, the system dynamics are dominated by dissipation, and the
coupling g no longer sets the relevant timescale. In this weak coupling regime, the
system dynamics are dominated by photon loss from the cavity if κ� γ, g (bad cavity
limit) or by spontaneous emission of the atom if γ � κ, g (bad atom limit).

In our experimental apparatus, we reach an intermediate coupling regime with
g ≈ γ � κ on a dipole transition. Due to the level structure of the ion, the excited
state |e〉, however, has an additional decay channel. Taking into account both decay
channels, our system is placed in the bad-atom limit of the weak coupling regime as
γ � g � κ. Instead of resonantly exciting the ion, we therefore apply a different
technique in the experiment: a Raman transition involving three atomic levels in a
Λ-type configuration. Of the two dipole transitions between the three levels, one is
driven by the cavity and the other by a laser, as will be described in the next section.
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2.3 Three-level system: vacuum-stimulated Raman transitions

2.3 Three-level system: vacuum-stimulated Raman transitions

Raman transitions constitute an important concept of atomic physics and optics that
enables the coherent generation of single photons in the resonator, even in the absence
of the strong coupling regime. In order to model the cavity-driven Raman transitions
described in this thesis, at least a third atomic level has to be added to the system.
We therefore first extend the model of sec. 2.2 to a three-level system in a Λ-type
configuration. We then show that this three-level system can be simplified to an
effective two-level system that manifests a tunable coupling and thus describes the
experimental situation more appropriately than the previous two-level approach.

To describe the ion-photon entanglement and state mapping measurements, the
three-level model will be further extended to a four-level system driven by a bichro-
matic field for the description of ion-photon entanglement in sec. 8.6 and to a five-level
system driven by a bichromatic field for the description of ion-photon state mapping
in sec. 9.5.

2.3.1 Three-level system coupled to a cavity

We consider a three-level atom in a Λ-configuration, consisting of two ground states
|S〉 and |D〉 and one excited state |P 〉, as sketched in fig. 2.3(a). A drive laser with
Rabi frequency Ωl and angular frequency ωl drives the S − P transition, while the
atom interacts with the resonator on the P −D transition with coupling strength g.
The Hamiltonian of the system contains three contributions

H = H0 +Hl +Hc (2.17)

with

H0 = ESσ̂SS + EDσ̂DD + EP σ̂PP + ~ωcâ†â (bare Hamiltonian) (2.18)

Hl =
~Ωl

2
(σ̂SP e

iωlt + σ̂PSe
−iωlt) (atom-laser interaction) (2.19)

Hc = ~g(â†σ̂DP + σ̂PDâ) (atom-cavity interaction). (2.20)

The bare Hamiltonian H0 with σ̂SS = |S〉〈S| (σ̂PP , σ̂DD similarly) contains the energy
of the bare atomic levels S, P,D given by ES, EP , ED and the energy of cavity photons
~ωc. In the atom-laser interaction Hl, the laser field is approximated by a coherent
state with large amplitude, which remains unperturbed by the absorption or emission
of single photons by the atom [66]. Ωl is the Rabi frequency of the laser field, and
the atomic raising and lowering operators are now defined as σ̂SP = |S〉〈P | , σ̂†SP =
σ̂PS = |P 〉〈S| and σ̂DP = |D〉〈P | , σ̂†DP = σ̂PD = |P 〉〈D| . The Jaynes-Cummings-
type interaction of the cavity with the atomic P −D transition in Hc is analogous to
the two-level interaction of sec. 2.2.
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(a) (b)

Figure 2.3: (a) Three-level system in a Λ-type configuration. A laser with Rabi frequency
Ωl couples the states |S〉 and |P 〉 with detuning ∆l, while the cavity couples |P 〉 and |D〉
with vacuum-Rabi frequency 2g and detuning ∆c. |P 〉 spontaneously decays to |S〉 and |D〉
at rates 2γSP and 2γDP , respectively. Cavity decay is denoted by κ. (b) Effective two-level
system. The Raman process couples |S, 0〉 to |D, 1〉 (where 0 and 1 denote the number of
photons in the cavity) at the effective Raman-Rabi frequency Ωeff . Spontaneous emission of
the atom γeff leads to dephasing and decay to the uncoupled state |D, 0〉.

2.3.2 Raman interaction picture

We can remove the time dependence of the atom-laser interaction term 2.19 in H by
performing a unitary transformation Û (interaction picture). If Û maps a state |ψ〉
of the system to the new state |ψ′〉 = Û |ψ〉, the Hamiltonian transforms into H =

ÛHÛ †− i~Û dÛ†

dt
. For the Hamiltonian of eq. (2.17), a suitable unitary transformation

is given by
Û = ei σ̂SS ωl t. (2.21)

Additionally, we can set the energy reference of the atom to the P level, i.e., subtract
EP from the energy of all states. In the new basis, the Hamiltonian is now given by

H0 = ~∆lσ̂SS + (ED − EP )σ̂DD + ~ωcâ†â (2.22)

Hl =
~Ωl

2
(σ̂SP + σ̂PS) (2.23)

Hc = ~g(â†σ̂DP + σ̂PDâ), (2.24)

where ∆l = (ES − EP )/~ − ωl is the detuning between the laser and the S − P
transition.

2.3.3 Effective two-level system

If the detuning of the drive laser ∆l from the S − P transition matches the detuning
of the cavity ∆c = ωc − (EP − ED)/~ from the P − D transition, population is
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2.3 Three-level system: vacuum-stimulated Raman transitions

directly transferred between the S and D states. This Raman resonance dominates
the system dynamics if the excitation of the P state is suppressed, i.e., if the detunings
∆c,∆l � Ωl, g, γP (with γP = γDP + γSP including the decay of P to both S and D).
Under these conditions, the excited P state can be adiabatically eliminated [67–70] by
performing a second unitary transformation. This calculation is carried out in [65].
Here, we summarize the result for a model that includes one drive laser. By applying
the transformation Û = eŜ [68, 69] with

Ŝ =
Ωl

2∆l

(σ̂SP − σ̂PS) +
g

∆c

(â†σ̂DP + σ̂PDâ), (2.25)

expanding the transformed Hamiltonian H′ = ÛHÛ † in a power series in 1/∆l and
1/∆c, and keeping only the first order terms, one obtains [65]: H′ = H′0 +H′Raman +
H′AC-Stark shift with

H′0 = H0 = ∆lσ̂SS + (ED − EP )σ̂DD + ~ωcâ†â (2.26)

H′Raman =
~ gΩl

4

(
1

∆l

+
1

∆c

)
(â†σ̂SD + σ̂DS â) (2.27)

H′AC-Stark shift =
~Ω2

l

2∆l

(σ̂SS − σ̂PP ) +
~g2

∆c

(
â†â(σ̂DD − σ̂PP )− σ̂PP

)
. (2.28)

While H0 remains unchanged by this transformation, the interaction term now ex-
hibits a Raman coupling H′Raman between the S and D states. This coherent coupling
describes the population transfer from |S, 0〉 to |D, 1〉 (where 0 and 1 denote the
number of photons in the cavity) during which one photon from the laser is absorbed
and one photon is emitted into the resonator (fig. 2.3b). At Raman resonance, the
detuning of the drive laser equals the detuning of the resonator ∆l = ∆c = ∆, and
the Rabi frequency of the Raman coupling simplifies to Ωeff = ~gΩl

2∆
. The energy shift

of the S and P levels due to the fields of the drive laser and the cavity, described by
H′AC-Stark shift, will be important for the consideration of the state-mapping scheme in
chapter 9.

2.3.4 Comparison to Raman transitions driven by two lasers

One important result of the previous section is the effective Raman-Rabi frequency at
Raman resonance

Ωeff =
gΩl

2∆
. (2.29)

In our model for a three-level system, dissipation has so far been neglected. In our
experiment, the dominant dissipation channel is decay from the P state, which is off-
resonantly excited by the drive laser. The rate γeff of such spontaneous decay can be
approximated [65] in the limit ∆� Ωl, γP by

γeff ≈
(

Ωl

2∆

)2

γP . (2.30)
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2 Coupling an atomic qubit to a photon qubit

In order to estimate how much this off-resonant scattering influences the coherence of
the Raman transfer, we calculate the ratio of the coherent Raman coupling rate to the
off-resonant scattering rate. Using the parameters of our experimental apparatus, we
typically reach Ωeff/γeff = 1 − 5 for drive-laser Rabi frequencies of 20− 100 MHz. In
contrast, for a direct excitation of the P state, the ratio would be g/γP = 0.1. The
Raman process thus increases this ratio by more than one order of magnitude.

Compared to a Raman process driven by two lasers, however, the cavity-driven
Raman process is limited to a maximum detuning. For a comparison, we first consider
the case in which both S−P and P−D transitions are driven by a laser, with which the
reader might be more familiar. Here, the atom-cavity coupling g is replaced with the
Rabi frequency of the second laser Ωl2 (for convenience, we now define Ωl1 = Ωl) that
is tuned to Raman resonance ∆l1 = ∆l2 = ∆. The effective Raman-Rabi frequency is
now Ωeff = Ωl1Ωl2

2∆
and the ratio of effective coupling to scattering can be approximated

by

Ωeff

γeff

=
2∆Ωl2

γPΩl1

≈ 2∆

γ
(two-laser Raman transition) (2.31)

if the Rabi frequencies of the two lasers Ωl1 ≈ Ωl2 are approximately equal. By increas-
ing the detuning ∆ of both lasers from the excited state, one can therefore decrease
the effect of off-resonant scattering. The Raman-Rabi frequency can be maintained
at a constant value via simultaneously increasing the Rabi frequencies Ωl1 and Ωl2 of
the lasers.

For the cavity-driven Raman transition, the situation is different. The ratio of
coherent to incoherent coupling is

Ωeff

γeff

=
g∆

γPΩl

=
g2

γΩeff

(cavity-laser Raman transition), (2.32)

where we have rewritten the ratio as a function of Ωeff itself. From eq. (2.32), it
is apparent that off-resonant scattering is attenuated by increasing the detuning or
decreasing the Rabi frequency Ωl of the drive laser. As only the Rabi frequency Ωl

can be increased but not the atom-cavity coupling g, the Raman-Rabi frequency Ωeff

decreases at the same time. In a realistic experimental environment, the coherence of
the Raman process will at some stage be limited by the atomic coherence time or dark
counts of the photon detectors.

In conclusion, the Raman transfer allows us to move from a weakly coupled regime
into a regime where the coherent rate Ωeff is larger than the decoherent rates γeff , κ.
However, while the theoretical description of a three-level system serves well to inves-
tigate the fundamental properties of the Raman transfer, it has to be further extended
to describe the complex dynamics of the real atom. In the next chapter, we therefore
introduce a more realistic model.
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3 States and transitions in 40Ca+ for an ion-photon
interface

While the previous chapter modeled the atom-cavity interaction in the simplest pos-
sible way, i.e., via an idealized two- or three-level system, this chapter introduces the
level scheme of a trapped 40Ca+ ion that serves as the atomic qubit in our experiment.
After an introduction to the various transitions employed for laser cooling, state ma-
nipulation and detection, we discuss a range of atomic states that can constitute an
atomic qubit and the possible transitions for coupling to an optical resonator. Af-
ter choosing appropriate states and transitions for qubit and cavity, we construct a
realistic theoretical model based on the master equation formalism that serves to de-
scribe our experimental findings. This model contains all eighteen atomic levels, two
orthogonally polarized cavity modes, external laser fields and dissipation channels.

3.1 Trapped calcium ions as quantum bits

Ion traps combine long storage times with an excellent isolation of the ions from the
environment. Single-charged alkaline earth ions offer relatively simple electronic level
structures in which laser cooling can be realized by driving one strong dipole transition
with additional repumping on a weaker dipole transition. For the realization of a qubit,
two states have to be identified that have long lifetimes and long coherence times
compared to any gate operation time [18] such that spontaneous decay and coupling
to the environment can be neglected on the timescale of an experiment. In alkaline
earth ions, (a range of) pairs of states have been proven to fulfill this requirement: the
ground state and a long-lived metastable state [42], two electronic spin states of the
ground state [71, 72], or two hyperfine ground states of an atomic species possessing
nuclear spin [73, 74].

In this work, we use a single 40Ca+ ion. A simplified level scheme of 40Ca+ consisting
of the lowest five angular momentum state manifolds is sketched in fig. 3.1. In this
thesis, we will use the abbreviated notation |LJ ,mJ〉 in order to specify the Zeeman
substate with magnetic quantum number mJ of the state manifold 2S+1LJ with orbital
angular momentum L, spin S, and total angular momentum quantum number J .

For efficient Doppler cooling, we drive the dipole transition between the S1/2 ground
state and the P1/2 excited-state with a linewidth of ΓP1/2−S1/2

= (2π)× 20.7 MHz via
a laser at 397 nm. As the excited P1/2 state also decays with a branching ratio of 1/12
to the metastable D3/2 state, we additionally apply a repumping beam at 866 nm that
drives any D3/2 state population back to the P1/2 state. The second metastable D5/2
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Figure 3.1: Simplified level scheme of 40Ca+ with state lifetimes and transition wavelengths
in air taken from [76–78]. The lowest three angular-momentum state manifolds, ground-state
manifold S1/2, excited-state manifolds P1/2 and P3/2, and metastable manifolds D3/2 and
D5/2, split into the Zeeman sub-levels indicated. Doppler cooling and state detection via
the fluorescence method are provided on the S1/2 ↔ P1/2 dipole transition at 397 nm with
additional repumping on the P1/2↔D3/2 transition at 866 nm. The S1/2↔D5/2 quadrupole
transition at 729 nm is driven for coherent manipulation of the atomic qubit. In order to
re-initialize the qubit in the S1/2 ground state, we repump any population of the D5/2 qubit
state to the P3/2 state via a laser at 854 nm. The cavity is tuned into resonance with
the transition at 854 nm. We drive the 393 nm transition in order to generate photons in
the cavity via a S1/2 ↔ P3/2 ↔ D5/2 Raman process. For comparison with the ion-cavity
coupling g and the cavity decay κ, the width of each transition is given as a half-width
γ = Γ/2, calculated from the branching ratios of [78, 79].

state, however, remains uncoupled from this cooling cycle and therefore represents an
ideal qubit in combination with the ground S1/2 state. The S1/2 ↔ D5/2 quadrupole
transition at 729 nm is driven with a narrow-linewidth laser to control the qubit’s
state, while we apply the 397 nm and 866 nm cooling lasers as during the cooling
cycle to discriminate between the two qubit states [75]. If the ion is initially in the
S1/2 state, it will exhibit fluorescence that is detected by a PMT or a CCD camera. If
the ion initially is in the D5/2 state, however, it will remain uncoupled from the lasers
at 397 nm and 866 nm and no fluorescence will be measured.
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3.2 Transitions for generating single photons

3.1.1 Zeeman structure

In order to lift the degeneracy of the energy levels, a small magnetic field of magnitude
B is applied. As indicated in fig. 3.1, each manifold with total angular-momentum
quantum number J is split into 2J + 1 Zeeman substates mJ with energy shift

∆EJ,mJ = ~mJ gJ µB B, (3.1)

where µB = 9.3 · 10−24 J/T ≈ 1.4 MHz/G is the Bohr magneton and gJ is the Landé
factor of level 2S+1LJ . The Landé factor is calculated via gJ = 3/2 + [S(S + 1) −
L(L + 1)]/[2J(J + 1)], corresponding to gS1/2

= 2, gP1/2
= 2/3, gP3/2

= 4/3, gD3/2
=

4/5, gD5/2
= 6/5.

In the experimental apparatus, the magnitude of the magnetic field is chosen such
that states of the S1/2 and the D5/2 manifolds are well resolved in frequency. As a
result, substates of the S1/2 ↔ D5/2 quadrupole transition at 729 nm and the cavity-
driven Raman transition between S1/2↔ P3/2↔ D5/2 can be addressed in a frequency-
selective manner. The frequency splitting of these transitions is given by

∆νS1/2,mJ↔D5/2,m
′
J

= −µBB(gD5/2
mJ − gS1/2

m′J). (3.2)

In our setup, we apply a magnetic field between 3 and 5 G, resulting in frequency
splittings of a few MHz.

3.1.2 Qubits for an ion-photon interface

If we employ the S1/2-D5/2 quadrupole transition for coherent manipulation of the
atomic state, a qubit can be encoded in any pair of Zeeman substates of the S1/2 and
D5/2 manifolds. Typically, the states |S1/2,±1

2
〉 and |S1/2,±1

2
〉 are used to define an

optical qubit as these pairs are the least sensitive to magnetic field noise. However, for
the ion-photon quantum interface protocols realized in this thesis, a spin qubit, defined
by two Zeeman substates of the same state manifold, constitutes a more convenient
choice. Optical and spin qubits can be converted into each other via coherent pulses
at 729 nm.

For the ion-photon entanglement described in chapter 8, the atomic qubit consists
of the |D5/2,−5

2
〉 and |D5/2,−3

2
〉 states. A single π-pulse transfers this spin qubit to

an optical qubit for state detection. For state mapping (chapter 9), the atomic qubit
is defined by the spin qubit consisting of the |S1/2,+

1
2
〉 and |S1/2,−1

2
〉 states.

3.2 Transitions for generating single photons

Coupling one of the atomic transitions to the mode of an optical resonator is advan-
tageous both for the efficient generation of single photons and for a reversible state-
mapping process between atom and photon [41]. Given the level structure of 40Ca+ ,
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3 States and transitions in 40Ca+ for an ion-photon interface

a resonator could be coupled either to one of the dipole transitions, S ↔ P or P ↔
D, or to the quadrupole-allowed transitions, S ↔ D. The strongest absolute coupling
would be achieved by using the S ↔ P transitions, at 397 or 393 nm, due to matrix
elements (Einstein coefficients) and the vacuum mode density, which is proportional to
the square of the frequency. Technically, however, engineering highly reflective mirror
coatings at ultraviolet wavelengths is challenging. On one of the S ↔ D transitions, a
resonator has been coupled to a single ion with a rate g = 2π×134 Hz, three orders of
magnitude larger than the atomic decay rate γSD = 2π×0.07 Hz [47]. Nevertheless, for
quantum processes on these timescales, the coherence of the ion-cavity coupling would
be obscured by technical imperfections such as magnetic field fluctuations and laser in-
stability, as discussed in sec. 5.7. In contrast, two of the P ↔ D transitions offer both
a strong transition strength (γPD ∼ 1 MHz) and a wavelength (λ = 866 nm, 854 nm)
at which ultra-low-loss mirror coatings are possible. These transitions thus emerge
as the most attractive for an atom-photon interface. In contrast to Refs. [46, 48],
by using the D5/2 rather than the D3/2 manifold, we can take advantage of the tools
for initialization, coherent manipulation and state detection of the atom described in
chapter 5.

3.3 Model: Eighteen-level system coupled to two cavity modes

For simplicity, the atom has been treated up to this point as an idealized two- or
three-level system in order to study the fundamental concept of the atom-cavity inter-
action. In this section, we introduce a more realistic theoretical model that describes
the experimental results achieved with a single 40Ca+ ion coupled to two polarization
modes of the cavity. Our theoretical model is based on the master equation formalism
and allows for a numerical simulation of the system dynamics.

A simpler, realistic model has been derived for an eight-level system in [65]. For
a simulation of the measurements presented in this thesis, the current model includes
an eighteen-level system coupled to two orthogonally polarized cavity modes. The
simulations, originally written by Carlos Russo, have been rewritten as part of this
thesis work, with assistance of Tracy Northup, and now include a bichromatic drive
field at the S1/2 ↔ P3/2 transition and the two cavity modes coupling to the P3/2 ↔
D5/2 transition.

In this section, we describe the individual terms of the system’s Hamiltonian after
a short introduction to the atom-light interaction in the dipole approximation.

3.3.1 Electric dipole interaction

The first term in the Taylor expansion of the interaction between an atom and the
electromagnetic field corresponds to the electric dipole interaction [80]:

Hint = −~d · ~E, (3.3)
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3.3 Model: Eighteen-level system coupled to two cavity modes

with ~d = e~r the atomic dipole moment. As the electron coordinates ~r have odd parity,
the transition matrix element 〈ψb| −e~r · ~E |ψa〉 is non-zero if the wave-functions |ψa〉 of
the initial state and |ψb〉 of the final state have opposite parity. As this holds true for
all transitions involved in the S1/2 ↔ P3/2 ↔ D5/2 Raman process, these transitions
are described by the electric dipole approximation.

Writing the dipole operator in spherical coordinates ~d =
∑

q=0,±1 dqêq with ê0 =

êz, ê±1 = 1√
2
(êx± iêy), the transition matrix element between initial state |Ja,ma〉 and

final state |Jb,mb〉 can be written as a product of the reduced matrix element and a
Clebsch-Gordon coefficient [81]:

〈Jb,mb| dq |Ja,ma〉 = µA,B · 〈Ja, 1;ma, q|Jb,mb〉. (3.4)

The reduced dipole moment µA,B is independent of the geometry, i.e., the quantum
numbers ma,mb. It is related to the lifetime τA,B of the transition between manifolds
A and B via [80]

1

τA,B
= 2γA,B =

8π2

3ε0~λ3
|µA,B|2. (3.5)

The Clebsch-Gordon coefficients 〈Ja, 1;ma, q|Jb,mb〉 describe the geometric compo-
nent of the transition amplitudes between individual Zeeman substates. They can be
interpreted as the coupling of the state |Ja, 1;ma, q〉 with a photon with angular mo-
mentum 1 and polarization q = 0,±1 (linear and circular polarizations) to the state
|Jb,mb〉. The Clebsch-Gordon coefficients are given by [81]

〈Ja, 1;ma, q|Jb,mb〉 = (−1)2(Ja+mb)

·

√
2(2Ja)! (Jb −mb)! (Jb +mb)!

(2Jb)! (Ja −ma)! (Ja +ma)! (ma −mb + 1)! (mb −ma + 1)!

(3.6)

and are indicated in fig. 3.2 for the S1/2 ↔ P3/2 and P3/2 ↔ D5/2 transitions available
for cavity-driven Raman transitions.

3.3.2 Hamiltonian

For clarity, the total Hamiltonian describing the ion-cavity system is divided into
three parts: the bare-ion Hamiltonian H0, the ion-laser interaction Hion−laser, and the
ion-cavity interaction Hion−cavity:

H = H0 +Hion−laser +Hion−cavity (3.7)

Hamiltonian for the bare ion and bare cavity

The bare-ion, bare-cavity Hamiltonian can be decomposed into a number of terms,
one for each atomic manifold LJ and both cavity modes c = a, b:

H0 = H0,S1/2
+H0,P3/2

+H0,P1/2
+H0,D5/2

+H0,D3/2
+H0,a +H0,b. (3.8a)
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3 States and transitions in 40Ca+ for an ion-photon interface

Figure 3.2: Clebsch-Gordan coefficients for the S1/2 ↔ P3/2 and P3/2 ↔ D5/2 transitions.

Square-root signs are omitted for clarity. The coefficient for the |P3/2,−3
2〉 to |D5/2,−3

2〉,
e.g., is −

√
4/15. Dotted lines indicate negative coefficients.

The transformation to the interaction picture rotates each subspace at the laser fre-
quency of the corresponding dipole transition as in eq. (2.21). In the interaction
picture, the energy of the atomic states is then given by the laser detunings ∆l,LJ and
the Zeeman shift:

H0,LJ =
+J∑

mJ=−J

~(∆l,LJ +mJgJµBB) σ̂
L′J ,m

′
J

LJ ,mJ
(3.8b)

H0,c =
b∑

c=a

~(∆c −∆li)(â
†â+ b̂†b̂) (3.8c)

where σ̂
L′J ,m

′
J

LJ ,mJ
is the projector corresponding to the transition from |LJ ,mJ〉 to |L′J ,m′J〉.

Of great importance for the entanglement and state-mapping experiments is the fact
that the two cavity modes differ in polarization but are degenerate in energy. Their
common detuning from the P3/2 ↔ D5/2 transition is denoted by ∆c = ∆a = ∆b.

Ion-laser interaction Hamiltonian

The Hamiltonian for the ion-laser interaction can be decomposed into three parts:

Hion−laser = Hion−laser,SP +H(1)
ion−laser,DP +H(2)

ion−laser,DP , (3.9a)

where the repump transition P1/2 ↔ D3/2 is labelled (1), and P3/2 ↔ D5/2 is labelled
(2). The laser fields can be treated in the semi-classical approximation where the
field operator is replaced with its expectation value, as the absorption or emission
of single photons by the atom does not change the state of the laser field [66]. Ad-

ditionally neglecting motion of the ion, i.e., setting ~k · ~r = 0 for δr � λ, the laser
field can be approximated as ~Ω0~ε cos(ωt) with Rabi frequency Ω0 = µA,BE0/~ and
polarization ~ε. In the interaction picture, both ion-laser interactions of the repump
lasers Ω

(1)
rep at the P3/2 ↔ D5/2 and transitions Ω

(2)
rep at the P1/2 ↔ D3/2 transitions

are time-independent as the subspace of the manifolds D5/2 and D3/2 are transformed
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3.3 Model: Eighteen-level system coupled to two cavity modes

Figure 3.3: Eighteen-level system as implemented in the theoretical model of 40Ca+ . In-
dicated are the most important couplings and decay channels.

individually by the unitary transformations ei |D5/2〉〈D5/2|ω
(1)
rept and ei |D3/2〉〈D3/2|ω

(2)
rept, re-

spectively. For the bichromatic drive field in Hion−laser,SP , which is applied for the
ion-photon entanglement and state mapping, the situation is different. Here, both
fields address the same transition at different laser frequencies ω

(1,2)
drv . We choose the

transformation ei |S1/2〉〈S1/2|ω
(1)
drvt, which results in a time-dependent coupling term of

the second field. The three components of eq. (3.9a) then read:

Hion−laser,SP =
~(Ω

(1)
drv + Ω

(2)
drve

i(ω
(2)
drv−ω

(1)
drv)t)

2

1
2∑

mS=− 1
2

3
2∑

mP=− 3
2

[
~εdrv · ~d

P3/2,mP
S1/2,mS

σ̂S,mSP,mP
+ h.c.

]
(3.9b)

H(1)
ion−laser,DP =

~Ω
(1)
rep

2

5
2∑

md=− 5
2

3
2∑

mP=− 3
2

[
~ε (1)

rep · ~d
P3/2,mP
D5/2,mD

σ̂
D5/2,mD
P3/2,mP

+ h.c.
]

(3.9c)

H(1)
ion−laser,DP =

~Ω
(2)
rep

2

3
2∑

md=− 3
2

1
2∑

mP=− 1
2

[
~ε (2)

rep · ~d
P1/2,mP
D3/2,mD

σ̂
D3/2,mD
P1/2,mP

+ h.c.
]
. (3.9d)

Here, the atomic dipole vectors are written in spherical coordinates:

~d
L′J ,m

′
J

LJ ,mJ
= 〈J, 1;mJ , q|J ′,m′J〉 ·


~ε− for m′J = mJ − 1

~ε0 for m′J = mJ

~ε+ for m′J = mJ + 1.

(3.10)

Fig. 3.3 illustrates the individual terms of the coupled eighteen-level system.
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3 States and transitions in 40Ca+ for an ion-photon interface

Ion-cavity interaction Hamiltonian

The standing wave field inside the Fabry-Perot resonator with polarization ~ε can be
written as

~̂Ecavity(~k, ~r) =

√
~ω

2ε0V
~ε cos(~k · ~r)

(
âe−iωct + â†eiωct

)
. (3.11)

For a resonator of length L and waist w0, the mode volume is given by V = Lw2
0π/4.

In the dipole approximation, the coupling constant g
(A,B)
0 between ion and resonator

field on the transition A,B then is

g
(A,B)
0 =

µA,B
~

√
2~ω

ε0Lw2
0π

=

√
3cγA,Bλ2

Lw2
0π

2
. (3.12)

As the cavity supports two orthogonal polarization modes, the ion-cavity interaction
Hamiltonian contains the coupling of both degenerate modes with annihilation oper-
ators â and b̂:

Hion−cavity = ~g(D5/2,P3/2)

0

5
2∑

mD=− 5
2

3
2∑

mP=− 3
2

[
(â~εa + b̂~εb) · ~d P3/2,mP

D5/2,mD
σ̂
D5/2,mD
P3/2,mP

+ h.c.
]
,

(3.13)
where we again neglect the motion of the ion and assign the maximum coupling
strength to both modes.

3.3.3 Dissipation

In addition to the Hermitian terms, dissipation is added to the system via collapse
operators as introduced in sec. 2.2.1 for the two-level system. For the eighteen-level
system with two cavity modes, three dissipation channels are relevant in the exper-
iment: spontaneous emission of the atom, photon loss of the cavity field and laser
phase noise. For the spontaneous emission of the atom, only the decay of the P3/2 and
P1/2 states are taken into account as the timescale of experiments is short compared to
the lifetime of the D5/2 and D3/2 states. The collapse operators of all three dissipation
channels are written out in [65].

3.3.4 Numerical simulation

Numerical simulations of the system are implemented with the quantum optics toolbox
by Sze Tan [82], a collection of Matlab routines that simplifies the formulation of a
master equation and its numerical integration. In the context of the measurements
presented in this thesis, two different kinds of simulations are realized:

� For simulation of the Raman spectra described in chapter 7, the steady state
of the system is calculated by solving the equation ρ̇ = 0. In this case, the
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3.3 Model: Eighteen-level system coupled to two cavity modes

system is driven by a monochromatic laser on the S1/2 ↔ P3/2 transition and
two repump lasers on the P3/2 ↔ D5/2 and P1/2 ↔ D3/2 transitions. From the
resulting steady-state density matrix, we calculate the rate of photons at both
polarizations that leave the cavity. Repeating this procedure for a range of laser
detunings, we are able to reproduce the most prominent features of the Raman
spectra.

� For simulation of the ion-photon state mapping measurements described in chap-
ter 9, the time evolution of the system’s density matrix ρ is calculated via nu-
merical integration of the master equation. In this case, the system is driven by
a bichromatic field on the S1/2 ↔ P3/2 transition. For four different atomic in-
put states, the polarization of cavity photons is calculated as a function of time,
revealing the coherence of the mapping process. In this way, both the expected
temporal single-photon shapes and the expected process fidelity are simulated.
Moreover, the simulations help us to understand an unexpected interference ef-
fect of the bichromatic field, discussed in chapter 9. A significant part of the
state-mapping simulations have been carried out by Birgit Brandstätter and will
be further discussed in her thesis [83].
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4 Experimental setup

Coupling a single atom to the mode of a high-finesse optical resonator offers a range of
prospects to survey the features of quantum mechanics and benefit from them. First,
fundamental effects of cavity-quantum electrodynamics can be explored. This was
the subject of first studies carried out after the construction of the vacuum chamber
containing ion-trap and high-finesse cavity by Carlos Russo [65]: by controlling fields
driving the single ion, the statistical properties of the cavity field are tuned. In this
way, the system can be steered to behave like a single-ion laser in a threshold-less
quantum regime or in a classical regime featuring a laser threshold, as demonstrated
in [84]. In subsequent studies, described in Helena Barros’ thesis [85], we realized a
single-photon source with our ion-cavity system, featuring high efficiency and high
two-photon suppression [27].

With the tool for single photon generation at hand, another kind of studies become
possible: the realization of quantum information protocols that employ the coherent
ion-cavity interaction in order to distribute information in a quantum network. In
such a quantum network, remote, stationary ions are linked by optical channels. The
cavity now acts as a coherent interface between stationary and flying qubits via emit-
ting and receiving single photons and transferring the information between atom and
photon. The goal of this dissertation was to realize such an ion-photon interface by
demonstrating fundamental protocols for ion-photon entanglement and state mapping.
For this purpose, a laser at a wavelength of 729 nm was integrated into the existing
experimental apparatus for coherent manipulation of the ion. The optical setup of the
laser beams driving the Raman transition for the generation of single photons with
controlled polarization was modified to generate a bichromatic field.

After a review of the design of the ion trap and the high-finesse cavity, this chapter
focuses on those laser systems and the transfer lock of the cavity frequency. Addi-
tionally, it explains the geometry of the main laser beams with respect to the trap
and the magnetic field axis and introduces the part of the apparatus that enables the
readout of the atomic and photonic qubit. Finally, we consider some aspects of the
vacuum-chamber design that should be considered for the construction of any new
apparatus.

4.1 Overview

In the design of many cavity-QED experiments, a goal of high priority is to minimize
the mode volume of the cavity in order to maximize the coupling between the atom
and the cavity mode (eq. (3.12)). In the microwave domain, strong coupling has
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4 Experimental setup

been realized with macroscopic cavities on the length scale of tens of millimeters to
centimeters [86, 87]. In the optical domain, mirror distances of just tens of micrometers
to ∼ 100 µm enable strong coupling of single photons to single neutral atoms [28, 88].

For an ion-trap experiment in the optical domain, the combination of the trap
with a high-finesse optical resonator appears as challenging as it is promising. Not
only should the mirrors of the resonator be placed outside of the trap volume in order
to avoid any change of the trapping potential, but also charges induced by laser light
on the dielectric mirror surfaces result in patch potentials, disturbing the effective
trapping potential [89]. On the one hand, the development of small traps therefore
seems of great importance for this venture in order to achieve a small cavity mode
volume. On the other hand, large traps offer deep trapping potentials and a large
ion-electrode separation. Large traps thus feature long trapping times, low heating
rates and minimal disturbance of the trapping potential due to patch potentials of
the trap electrodes and the dielectric mirrors [90]. Furthermore, the location of both
mirrors has to be controlled on the picometer scale in the direction of the cavity axis
in order to stabilize the cavity’s resonance frequency, and on the micrometer scale in
the orthogonal directions to position the atom in an antinode of the cavity’s standing
wave (chapter 6). Typically, such high-precision adjustment of the mirrors is realized
via piezoelectrics (piezos), controlled with high voltages. Care must then be taken in
order to shield the ion from the electric fields originating from the piezos.

Due to the numerous technical challenges, only a few research groups have suc-
cessfully realized integrated ion-trap cavity-QED systems to date [46, 47, 49–51]. Our
experimental setup was built with the aim of employing the ion-cavity coupling in a
Raman process. Here, the effective coupling strength can be made large compared
to incoherent processes, such as atomic decay, by increasing the Raman detuning
(sec. 2.3). With this strategy, a coupling strength one order of magnitude lower than
the atomic decay rate can still result in a moderate effective coupling. This coupling
has proven to be strong enough for the realization of fundamental quantum network
protocols (chapter 8 and 9), while keeping the technological requirements feasible in
a realistic laboratory setting. We use a slightly modified version of the standard
Innsbruck linear Paul trap [91] optimized for optical access to the two cavity mirrors,
which surround the cavity at a separation of about 2 cm (fig. 4.1). Trap and cavity are
mounted in a vacuum chamber supporting ultra-high vacuum conditions at a pressure
of 5 − 9 · 10−11 mbar. Seven viewports offer optical access from outside the chamber
both to address the ion with laser beams and to collect photons from the ion and the
cavity (fig 4.1). The next two sections summarize the working principle of the Paul
trap and the characterization of the optical resonator.
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Figure 4.1: Photograph of the inside of the vacuum chamber, taken by Carlos Russo during
the assembly process, with main laser beams indicated. The trap is mounted rigidly from
the top of the chamber, while the cavity is mounted on translation stages from below. Two
CF200 viewports (not shown) offer optical access to the ion from the front and back, two
CF63 viewports (right/left) offer access to the cavity, and three CF63 viewports offer access
to the ion from the side. One flange (lower left) is connected to a pump assembly consisting
of an ion getter pump, a titanium sublimation pump, and an ultra-high vacuum gauge.

4.2 Linear Paul trap

The development of traps for charged particles started with the extension of linear
quadrupole mass filters to three dimensions [92]. While Penning traps store charged
particles in static electric and magnetic fields, Paul traps make use of an oscillat-
ing electric quadrupole field. A radial potential is generated by applying of electric
radiofrequency (RF) fields to hyberpolically shaped electrodes [92]. Additional elec-
trodes along the symmetry axis of the trap generate a static electric field in order to
confine the particle in the third dimension.

The equation of motion of a single ion in a Paul trap can be transformed to a
Mathieu equation with stable solutions [42]. The trajectory consists of secular motion
at a frequency ωsec � ωdrive and a fast, small oscillation at the trap drive frequency
ωdrive, called micromotion (sec. 5.8).

The design of our trap (fig. 4.2) is discussed in [65, 91]. The radial potential is
generated by four blades, of which two opposing blades are grounded and the other two
are connected to a helical resonator with a quality factor of about 200. An RF signal of
23.4 MHz is generated by a signal generator (Marconi) and is amplified to 5 W at 50 Ω
load, resulting in radial trap frequencies for a single 40Ca+ ion of ωradial/(2π) = 3 MHz.
Two tip electrodes at a separation of 4 mm are used to axially confine the ion. With a
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Figure 4.2: Photographs of the trap-cavity assembly and the cavity mount taken by Carlos
Russo during the assembly process. Trap radiofrequency electrodes (A), tip electrodes (B),
and wires for micromotion compensation (C) are mounted to white ceramic holders. Cavity
mirrors (D) are glued to stainless-steel holders (E) glued on piezo stacks (G) that allow for
adjustment of the mirror position along the cavity axis. Collimation lenses (F) are fixed
to the same mount as the mirrors. Translation stages driven by slip-stick piezos (H) allow
for adjustment of the entire cavity mount with respect to the trap in the two horizontal
directions. The mount is fixed to a table (K) that can be tilted by means of a feedthrough.

DC voltage of about 900 V applied to the the tip electrodes, the axial trap frequency
is measured to be ωaxial = 1.1 MHz. Two pairs of rigid wires serve as micromotion
compensation electrodes. The voltages applied to the tip and micromotion electrodes
are generated by a stable high-voltage source1 (∆V/V ∼ 10−5).

In order to load a single 40Ca+ ion into the trap, a calcium oven is heated by a
current of 4.5 A. The beam of neutral calcium emitted from the oven is collimated by
the cavity holder and ionized in the trapping volume by two laser beams [65].

4.3 Optical cavity

At the heart of our experimental setup lies the high-finesse optical resonator. For
the realization of a coherent light-matter interface, the goal of many cavity-QED
experiments is to obtain a coupling strength between the stationary qubit and the

1ISEG EH08020x 405 SHVK1

32



4.3 Optical cavity

vacuum mode of the resonator as high as possible (sec. 2.3). In the case of symmetric
Fabry-Perot cavities, i.e., where both mirrors have the same radius of curvature, the
mode volume V0 of the fundamental TEM00 with waist w0 is given by

V0 = Lw2
0π/4, (4.1)

where L is the mirror separation. A small mode volume can be achieved by a short
cavity, a small mode waist, or both. For neutral atom experiments, the mode volume
is typically minimized in a near-planar configuration where the mirror separation is
chosen to be much smaller than the radius of curvature of the mirrors R [28]. For
a single ion in a linear Paul trap, the near-planar approach is impractical as the
mode waist would be too large at the mm-to-cm scale separation between the mirrors
required so that the mirrors are outside the trap blades. A confocal cavity geometry
provides the most stable optical mode with respect to any displacement of the mirrors
[93]. This configuration was chosen in the experimental design of ref. [94] with the
objective of coupling 500 ions to the TEM00 mode with waist w0 = 37 µm. Here,
the coupling strength of an individual ion is g0 = 2π × 0.5 MHz. A configuration in
between the confocal and the planar geometry with waist w0 = 24 µm has been chosen
in [95], resulting in a single-ion coupling strength of g0 = 2π × 0.92 MHz.

In our setup, a near-concentric optical-resonator configuration has been chosen as it
minimizes the mode waist at the ion’s position and therefore maximizes the coupling
strength. Furthermore, a long cavity minimizes the cavity decay rate κ, resulting
in maximum cooperativity [65]. Two mirrors with radius of curvature specified to
R = 10 mm are mounted around the trap with a separation of L = (19.96±0.02) mm.
Each cavity mirror is mounted on a shear-mode piezo stack. The fast stack is composed
of two PZT layers, the slow one of six PZT layers, glued together by hand. Each of
the layers can be driven by a maximum of ±250 V. For a voltage difference of 400 V,
the mirrors on the slow and fast piezo stack move by 1.6 and 0.5 µm, respectively
[65]. The length of the cavity is actively stabilized with respect to an ultra-stable
passive cavity by means of a transfer lock at 783 nm as described in sec. 4.4. The
entire cavity mount, containing both mirrors and mode-matching lenses, is positioned
via translation stages driven by slip-stick piezo elements (Omicron MS5) in the two
horizontal directions (fig. 4.2) with a precision of ∼100 nm per step. Additionally,
the angle of the cavity mount can be coarsely positioned by means of a vacuum feed
through and micropositioning screws.

At the wavelength λ = 854 nm, resonant with the P3/2 ↔ D5/2 transition that is
relevant for this dissertation, the finesse measurement yields a value of F = 77, 000±
1, 000. Due to asymmetric mirror transmissions T1 = 1.3 ± 0.3 ppm and T2 = 13 ±
1 ppm, the cavity field decays preferentially through one mirror of the resonator. For
the decay rate we obtain

κ =
2πc

4LF
= 2π × (48.8± 0.6) kHz. (4.2)
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All relevant parameters of the cavity are reported in Carlos Russo’s thesis [65].
Since [65], technical improvements such as better Doppler cooling (sec. 5.2) and

precise vertical positioning of the ion via adjusting the voltages of the trap tip elec-
trodes have led to an improved localization of the ion inside the mode structure of
the resonator (chapter 6). We have re-measured and re-interpreted the values of the
mirror radius of curvature R and the cavity length L given in [65]. In contrast to [65],
we determine the mirror distance L = (19.96± 0.02) mm from a measurement of the
cavity’s free spectral range. Although this results in a higher uncertainty of L, we are
now able to estimate the error on the manufacturer-specified value of R by a measure-
ment of the frequency splitting of the TEM00 and TEM01 modes, which depends on
both L and R [96]. We infer R = (10.02±0.01) mm, from which we calculate

w0 =

√
λ

2π
(L(2R− L))1/2 = (13.2± 0.8)µm (4.3)

and thus a maximum coupling rate of

g0 = 2π × (1.43± 0.01) MHz (4.4)

for the D5/2 ↔ P3/2 transition, while [65] states w0 = (13.2 ± 0.2) µm and g0 =
2π × (1.55± 0.02) MHz.

A fundamental property of the cavity is that it supports degenerate polarization
modes, which we parametrize with orthogonal linear polarizations H (horizontal) and
V (vertical). Any birefringence induced by stress of the mirror coatings is smaller than
the cavity linewidth, as demonstrated by the high fidelities of ion-photon entanglement
and state mapping (chapter 8 and 9).

The output coupling efficiency was calculated to be 16% at 854 nm in [65] due to
combined mirror losses of 68±2 ppm. However, from the photon generation efficiency
of the atom-photon entanglement process (sec. 8.4), in which we calibrate the output
path (sec. 4.10), we conclude that the output coupling rate is higher: 20%.

4.4 Laser systems

In an ion-trap experiment, the various laser systems are important experimental tools
that control the quantum state of the ion. Most laser systems in our laboratory are
shared between several experimental setups, which individually control the frequency
and intensity of their beams by acousto-optical modulators (AOMs). All lasers are
brought to the vacuum chamber via optical fibers. With the exception of the photo-
ionization lasers, all lasers are frequency-stabilized to high-finesse reference cavities.
The laser frequencies are measured by a wave-meter (High Finesse WS7). The optical
setup of the lasers at 397 nm, 866 nm and 854 nm for cooling and state detection, at
422 nm and 375 nm for photo-ionization, and at 785 nm for the transfer lock of the
trap cavity have been described in detail in [65, 85]. In this section, we focus on the
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Figure 4.3: Laser setup at 393 nm for driving Raman transitions. PD: photodiode, PI:
proportional-integral controller, AO: acousto-optic modulator, PBS: polarizing beamsplitter.
A Ti:sapph ring laser at 786 nm is stabilized to an external reference cavity using the Pound-
Drever Hall method. The laser frequency is tuned to match the cavity’s resonance via an
AOM (AO1). Feedback is applied to a tweeter mirror, a Brewster plate, and an intra-cavity
EOM [97]. Additionally, the angle of the thick etalon is stabilized via an external lock-in
amplifier. Light at 786 nm is frequency-doubled to 393 nm and frequency shifted via double
pass AOMs. In the resonant branch, the light is shifted by +160 MHz by AO2 (vertically
mounted) in double-pass configuration to match the resonance of the S1/2 ↔ P3/2 transition
(+1,+1 denotes the diffraction order in first and second passage through the AOM). In the
Raman branch, we use the −1,−1 order of AO3 (horizontally mounted, double pass) that
is shifted by -160 MHz in order to match the Raman transition. A third AOM (AO4) in
single-pass configuration is driven at two frequencies to generate the bichromatic field. A04
is switched off if the resonant beam is used. The beam is coupled to one of two fibers that
guide the light to two different ports at the experimental table.

setup of the laser at 393 nm that is used for generating a bichromatic Raman field
(sec. 8.3) and which was re-designed in 2011, and the setup of the laser at 729 nm
for state manipulation that was built in 2009. Additionally, we review the trap-cavity
lock highlighting recent improvements.
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Raman laser at 393 nm

In order to produce photons on the S1/2 ↔ P3/2 ↔ D5/2 transition, we drive the S1/2

↔ P3/2 transition at 393 nm with a laser while the P3/2↔ D5/2 transition is coupled to
the vacuum field of the cavity (chapter 7). Light at 393 nm is obtained by frequency-
doubling the light of a titanium-sapphire (Ti:sapph) ring laser (Coherent 899-21) at
786 nm. The Ti:sapph laser is pumped by a solid-state laser (Coherent Verdi V10).
For frequency doubling, we use a commercial system (Coherent MBD-200) consisting
of a frequency-doubling crystal inside an actively stabilized bow-tie cavity. For an
input power to the doubler of about 500 mW at 786 nm, we achieve an output power
of up to 80 mW at 393 nm. At the ion, we typically obtain 1-2 mW of 393 nm laser
light, more than sufficient for driving the Raman transition.

The linewidth of the Raman transition is limited by the cavity linewidth for Rabi
frequencies of the 393 nm laser below saturation (sec. 2.3). The linewidth of the
393 nm laser thus has to be smaller than 2κ ≈ 100 kHz in order to efficiently drive
the Raman process. The electronics of the Ti:sapph laser system were therefore mod-
ified by Helena Barros for stabilizing its frequency to an external high-finesse cavity
[85]. One branch of the laser traverses an electro-optical modulator (EOM) driven
at a frequency of 17 MHz in order to produce optical sidebands. The beam is then
coupled into a temperature-stabilized reference cavity. In order to generate a Pound-
Drever-Hall (PDH) error signal [98], we mix the cavity reflection signal detected on a
fast photodiode (125 MHz bandwidth) with the frequency that drives the EOM. This
external error signal is used as input for proportional-integral (PI) controllers that
close the feedback loop to a mirror which is mounted on a piezo (”tweeter”), an angle-
tunable glass plate (”Brewster plate”), and an intra-cavity EOM (fig. 4.3) following
the setup presented in [97]. For the tweeter mirror and the Brewster plate, the feed-
back signal is added to the internal error signal of the laser’s locking electronics. An
intra-cavity EOM was additionally installed into the ring laser for increasing the lock
bandwidth. In order to take advantage of the EOM’s tuning range and its bandwidth,
we divide its feedback signal into two branches that share a common ground. Each
signal is connected to one of the two electrodes of the EOM. In the fast branch, the
PDH error signal is filtered by an amplifier2 with a bandwidth of 10 MHz. In the slow
branch, the error signal is amplified to ±150 V. Additionally, we have modified the
lock of the thick etalon to provide stable frequency tuning over a range of ∼ 5 GHz. It
is now stabilized via an external lock-in amplifier providing a separate error signal to
an additional PI controller. With all feedback signals applied to the individual com-
ponents, we estimate from the deviations of the in-loop error signal that the linewidth
of the 393 nm laser is less than 30 kHz. At one third of the linewidth of the Raman
transition, the laser linewidth therefore does not limit the efficiency of the Raman
process.

After the frequency doubling stage, the ultraviolet laser light is split into two

2FEMTO HVA-10M-60-B
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4.4 Laser systems

branches (fig. 4.3), one providing a resonant beam and the other providing a beam
for driving the Raman transition (Raman beam). Both of these branches are tuned
in frequency by a double-pass AOM driven at 70 − 90 MHz. The use of different
diffraction orders allows for shifting the frequencies of the resonant and the Raman
beam with different sign. In the resonant branch, we use the first positive diffraction
order of both passages through the AOM (+1,+1 order) to generate a beam that
is in total shifted by +160 MHz and thus resonant with the S1/2 ↔ P3/2 transition.
This beam is only used for alignment of optical elements on the experimental table:
the fluorescence signal at 393 nm collected from the ion is maximized by aligning
the resonant beam onto the ion, yielding a signal-to-noise rate which is one order
of magnitude larger than the Raman beam. In the Raman branch, we use the first
negative diffraction order of both passages (−1,−1 order) of the AOM to obtain an
off-resonant beam that drives the Raman transition. This beam subsequently traverses
a second AOM which is arranged in single-pass configuration. We use the −1 order
of this AOM, obtaining a detuning of ∼ 400 MHz of the Raman beam from the S1/2

↔ P3/2 transition. In order to generate the phase-stable bichromatic Raman field, we
drive this AOM with two distinct frequencies simultaneously and couple both first-
order shifted beams into the same fiber. As both beams traverse the same optical
elements between the AOM and the fiber, namely, two lenses, interferometric stability
is not an issue. With this setup we can efficiently generate a bichromatic field with
frequency differences up to 13 MHz, as needed for the state mapping (sec. 9.2). For
frequency differences exceeding 13 MHz, the coupling efficiency to a single-mode fiber
decreases as the angular separation of the two beams rises above the aperture of the
fiber. The RF sources that drive the AOMs are described in sec. 4.11.

The bichromatic field is coupled into one of two polarization-maintaining fibers
that guide the light to two different ports on the experimental table (sec. 7.1). As the
AC-Stark shift of the Raman transition depends on the Rabi frequency of the drive
laser, intensity fluctuations of the drive beam lead to a reduced efficiency of the Raman
transfer for low Rabi frequencies. We have therefore introduced two stages of active
intensity stabilization of the 393 nm beam. The first one detects the intensity after the
frequency doubler and feeds back to the double-pass AOM to cancel the 20% intensity
noise of the commercial system. Furthermore, the 12 m long optical fiber connecting
the laser and the experimental table introduces slow polarization fluctuations, which
are converted into intensity fluctuations of up to 5% after a polarizing beamsplitter
(PBS). We therefore use a homebuilt sample-and-hold circuit that actively stabilizes
the intensity of laser pulses between subsequent executions of the experimental se-
quence to ≤ 1% via feedback to the single-pass AOM. The error signal is provided by
a fast photodiode3 (bandwidth 200 MHz) that detects the beam intensity after it has
traversed the vacuum chamber.

3Femto HCA-S-200M
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Quadrupole laser at 729 nm

In contrast to previous studies carried out with this experimental apparatus [84, 85],
we need to initialize, coherently manipulate, and detect the state of the atomic qubit
for the realization of quantum interface protocols. For this purpose, we introduced a
laser at 729 nm that drives the quadrupole S1/2 ↔ D5/2 transition. As described in
chapter 5, spectroscopy on this transition is also used to characterize trap frequencies,
magnetic field, heating rates and micromotion.

For coherent manipulation of the ion’s state via the narrow quadrupole transition,
the laser should be stabilized to high precision both in frequency and intensity. In
our laboratory, a Ti:sapph laser at 729 nm is frequency-stabilized to an ultra-stable
high-finesse cavity resulting in a laser linewidth of a few Hz, as described in Michael
Chwalla’s thesis [97]. As an ultra-stable laser requires an ultra-stable frequency refer-
ence, a reference cavity is build out of ultra-low expansion (ULE) material. In order to
shield the cavity from external perturbations, temperature and mechanical stability of
the entire mount are actively stabilized. In one of three experimental setups sharing
the light of this ultra-stable laser, the frequency of the cavity is measured over time
with respect to the resonance frequency of a trapped 40Ca+ ion using Ramsey spec-
troscopy [97]. The long-term frequency drift of the cavity on the order of a few Hz/s
is then compensated by an AOM that shifts the frequency of the laser with respect to
the reference cavity. By seeding a tapered semiconductor amplifier (Toptica TA100)
on the same optical table with ∼ 10 mW of the light from the Ti:sapph laser, we
obtain ∼ 400 mW at the output of the TA100 at an operating current of 1.5 A. In this
way, three experimental setups benefit from the effort of constructing an ultra-stable
laser at 729 nm.

After mode-cleaning the output of the TA100 via a single-mode optical fiber, we
divide the remaining 150 mW of 729 nm light between two experimental setups. In
our setup, the beam is guided to the experimental table via a polarization-maintaining
fiber after passing through two single-pass AOMs, which each shift the frequency by a
fixed value of 80 MHz. The AOMs are used for stabilizing the intensity after the fiber
and for canceling the frequency noise generated by acoustic vibrations of the fiber.
The latter is achieved by the approach of [99]: a beamsplitter before the AOM and a
photodiode at one beamsplitter port are used to realize an optical beat measurement
between the light in front of the AOM and the light that traverses both AOM and
fiber, is reflected at the fiber output facet, and travels back to the beamsplitter. The
beat signal at 160 MHz contains the phase noise induced by the fiber. This noise is
compensated by a phase-locked loop, described in detail in [97, 100].

On the experimental table, we use a double-pass AOM at 270 MHz in order to
tune the frequency of the 729 nm beam to the target quadrupole transition frequency.
Short fibers (1-2 m) guide the light to the vacuum chamber. As the optimum direction
of the beam for driving the target quadrupole transitions depends on the direction
of the magnetic field for a particular measurement (sec. 8.3 and sec. 9.2), we have
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installed optics for beam focusing and polarization control at three different ports
illuminating the ion from three non-collinear directions. All three ports are used for
the compensation of micromotion in three dimensions (sec. 5.8). For one of the ports,
a summer student, Peter Cristofolini, developed an objective capable of addressing one
of two neighboring ions. His supervision was part of this thesis work. After assembly
of the objective in a clean-room, Diana Habicher [101] characterized its beam profile
at the ion’s position (sec. 4.7).

4.5 Transfer lock

In order to drive one arm of a Raman transition with the vacuum field of the cavity,
the cavity’s frequency must satisfy a resonance condition with the other Raman arm
driven by the laser. The frequency of both laser and cavity must therefore be stable
within the linewidth of the Raman transition. For vanishing Rabi frequencies of the
drive laser, the linewidth of the Raman transition approaches the cavity linewidth
2κ. To efficiently drive the Raman transition, the resonance frequency of the cavity
must then be accurate to within 2κ. This requirement transfers to a length stability
of δl = λ/(2F ) ≈ 6 pm [65]. This small value highlights the technical challenge we
have to face for stabilizing the length of the cavity.

As an optical cavity which is mounted on an ULE spacer is a very precise frequency
reference, we use a transfer lock technique [65, 102] in which a diode laser is stabilized
to such a reference cavity. The length of the cavity around the ion trap (referred to
in the following as the trap cavity) in turn is stabilized to the laser. The wavelength
of this laser is chosen to be 785 nm, far from any relevant 40Ca+ transition to avoid
AC-Stark shifts of the atomic levels. The coating of the cavity mirrors was therefore
designed to enable a high finesse both at 854 nm and 785 nm.

In order to resonantly drive the Raman transition, the detuning of the cavity from
the P3/2 ↔ D5/2 transition has to match the detuning of the drive laser from the S1/2

↔ P3/2 transition (fig. 3.1). We therefore overlap a reference beam at 854 nm which
is 400 MHz detuned from the P3/2 ↔ D5/2 transition with the beam at 785 nm at a
dichroic mirror and couple both lasers to the trap cavity (fig. 4.4). While scanning
the length of the cavity via the fast piezo, we now tune the length of the trap cavity
via the slow piezo such that it becomes resonant with the 854 nm beam. While we are
able to tune across five free spectral ranges with the slow piezo, we typically choose
the mode for which we have to apply the smallest voltage in order to avoid excess
micromotion (sec. 5.8). We now tune the frequency of the 785 nm laser until we find
a mode that is resonant with the trap cavity and the reference cavity at the same
time (“double resonance”). For exact matching of the two frequencies, we adjust the
frequency of a double-pass AOM that shifts the frequency of the 785 nm light sent to
the trap cavity. To avoid AC-Stark shifts of any atomic state, we choose the TEM01

mode at 785 nm in the trap cavity because it has an intensity minimum along the
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Figure 4.4: Transfer lock of the trap cavity. The laser at 854 nm, about 400 MHz detuned
from the P3/2 ↔ D5/2 transition, is used as a frequency reference. The laser at 785 nm is
first tuned to a frequency which is resonant with the trap cavity and its reference cavity on
the laser table (not drawn) at the same time. The laser frequency is then stabilized to the
reference cavity. A Pound-Drewer Hall signal provides feedback to the trap-cavity piezos in
order to stabilize the cavity length with respect to the laser at 785 nm.

cavity axis where the ion is trapped. Once double resonance is achieved, the 854 nm
reference beam is no longer needed and is turned off.

Transfer-lock laser at 785 nm

Finding a double resonance would be an unproblematic procedure if one had a perfect
laser system available that can be tuned without mode hops. However, for a real
system, the effort of finding double resonance depends on how smoothly the 785 nm
laser can be tuned. Until 2010, we used a Toptica DL100 laser that jumped several
times to different modes during a scan over the free spectral range of the trap cavity. As
a consequence, double resonance could only be achieved by chance at a certain piezo
voltage and laser current. The laser was therefore exchanged for a Toptica DLpro
laser, which is tunable without mode hops for more than one free spectral range of
the trap cavity (8 GHz). This new laser system marks a very important technical
upgrade of our setup that can hardly be overestimated. In order to frequency stabilize
the transfer lock laser, we employ the PDH locking technique by generating optical
sidebands with an EOM. The diode laser is locked to the reference cavity via the piezo
controlled grating position and the diode injection current. A graphic illustration of
the optical setup of the transfer lock laser is given in [65], fig. 4.15 and [85], fig. 4.10.
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Ultra-stable reference cavity

The same cavity is used as a frequency reference both for the 786 nm laser (later
doubled to 393 nm) and the 785 nm laser. Drifts of the reference cavity thus shift
both the trap cavity frequency and the Raman laser frequency. To first order, these
shifts are equal and Raman resonance is then still fulfilled. The reference cavity was
originally designed for the laser system at 729 nm. Its design is described in detail in
[103]. The mirrors are glued rigidly to a 15 cm long ULE spacer, resulting in a free
spectral range of 1 GHz. The entire mount of the spacer with the mirrors is located in
a vacuum chamber at ∼ 10−8 mbar, which sits on a rubber board on the optical table.
The temperatures of the chamber and the surrounding insulating box are stabilized
in two separate stages. The finesse of the cavity at 785 nm has been measured to be
F = 2000, corresponding to a linewidth of 500 kHz [65].

Battery box

The lock of the trap cavity to the reference laser is accomplished via controlling the
voltage of the fast piezo (fig. 4.2 (G) and 4.4), corresponding to microscopic dis-
placements of the mirror � 1 nm. Simultaneously, we position the ion in the cavity
standing wave by controlling the voltage of the slow piezo within ±200 V, correspond-
ing to macroscopic displacements on the order of several hundreds of nanometers. In
order to change the position of the standing wave while the cavity is locked, the fast
piezo has to follow the macroscopic displacement of the slow piezo. Following the slow
piezo over a free spectral range requires tuning the voltage applied to the fast piezo by
about 100 V, more than the ±15 V output voltage of the PI controller. In the past,
the signals for both piezos were generated by high-voltage amplifiers. Although the
amplifiers were low-pass filtered, their stability used to limit the linewidth of the trap
cavity lock.

We therefore developed an electric circuit to combine the feedback signal with
high-voltage batteries4, explained in appendix A. For a common displacement of both
mirrors, as required for the scan of the cavity standing wave with respect to the ion,
we implemented a feed-forward: a fraction of the voltage applied to the fast piezo is
simultaneously applied to the slow piezo in order to displace both piezos by the same
amount.

By driving the piezos with batteries instead of high-voltage amplifiers, we were
able to slightly improve the cavity lock. However, the stability of the cavity remains
limited by acoustic vibrations excited by the acoustic noise of flow boxes and the air
conditioning system coupling to the vacuum chamber [85]. We previously thought that
acoustic vibrations of the trap-cavity mount compromised the cavity stability along
the cavity axis [65]. However, we have recently demonstrated that this is not the case,

4Energizer EVEREADY 493, 300V
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using a measurement in which the standing wave is translated around the ion position
(sec. 6.1).

As the piezo stacks are mounted at a distance of about one centimeter from the
trapping volume, care has to be taken that the electric fields originating at the piezo
stacks do not disturb the trapping potential. The stacks are therefore glued inside of
a stainless-steel mount [65]. Nevertheless, we have recently observed that a voltage
change at the piezo stacks by more than 10 V results in an increase of micromotion in
the direction orthogonal to both the cavity and trap axis, measured via spectroscopy
on the quadrupole transition (sec. 5.8). As excess micromotion reduces the coupling
strength of the ion to the cavity, we no longer position the standing wave with re-
spect to the ion via changing the voltage of both piezo stacks. Instead, we use the
piezo translation stage that moves the entire cavity mount. In this way, any excess
micromotion remains compensated.

4.6 Laser beam geometry

The propagation and polarization axes of laser beams with respect to the trap axes
in an ion-trap experiment are typically chosen in order to cool all motional modes
and manipulate the qubit on sidebands of target quadrupole transitions [104]. In our
experimental setup, moreover, we have to choose the magnetic field direction carefully
with respect to the cavity axis in order to define the polarization states of the photonic
qubit (sec. 7.1). The direction of the magnetic field in turn determines the necessary
beam polarizations.

In our setup, we choose the direction of the magnetic field to be orthogonal to the
cavity axis. The direction of each laser beam is assigned with respect to the trap,
cavity, and magnetic field axes depending on its purpose. The configuration of the
main laser beams is indicated in fig. 4.5.

The Raman drive laser at 393 nm can be sent to the ion along two paths. Beam A
propagates at an angle of ∼ 45◦ to both the cavity and trap axis. Its linear polarization
is oriented orthogonal to the magnetic field axis in order to drive σ+ and σ− transitions
simultaneously (sec. 7.1). Beam B propagates in the direction of the magnetic field
with circular polarization and thus can drive either σ+ or σ− transitions.

For Doppler cooling and state detection, two beams at 397 nm are directed to the
ion from different directions (fig 4.5). The reason for using two beams will be explained
in sec. 5.2. A third beam with σ+ polarization propagating along the magnetic field
direction is used for optical pumping.

Two repump beams at 854 nm and 866 nm are guided from the laser table to
the experimental table in the same optical fiber with orthogonal linear polarizations.
These two beams are sent to the ion along the direction of the magnetic field with
linear polarization, so that they drive both σ+ and σ− transitions. In this way, all
states of the D5/2 and D3/2 manifolds are repumped. Additionally, a probe beam at
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Figure 4.5: Geometry of main laser beams with respect to ion trap and cavity. Sketched
are tip and blade electrodes (grey), and micromotion compensation electrodes (yellow). The
cavity mirrors (blue) confine a standing wave (yellow); an arrow at one mirror indicates
the output channel. The orientation of the magnetic field is perpendicular to the cavity
axis. The Raman transition is driven by beam A (linearly polarized) or beam B (circularly
polarized), both at 393 nm. Two beams at 397 nm cool the ion. A third, σ+ polarized
397 nm beam (not shown) for optical pumping propagates along the magnetic field. From
the opposite direction, linearly polarized repump beams at 854 nm and 866 nm share the
same path. Three laser beams at 729 nm for coherent state manipulation are available from
different directions (not shown): one in the x− y plane and with an angle of about 22.5◦ to
the trap axis, one parallel to beam A, and one orthogonal to beam A in the x−z plane. The
photo-ionization beams at 422 nm and 375 nm (not shown) are collinear with the cooling
beam in the x− y plane.

854 nm or 866 nm can be sent through the trap cavity for cavity alignment purposes
but not used during experiments.

Three beams at 729 nm are sent to the ion. The first beam propagates orthogonal
to the cavity axis and with an angle of about 22.5◦ to the trap axis (in the x-y plane
in fig. 4.5). This angle is chosen in order to reduce the Lamb-Dicke parameter with
respect to the ion’s axial mode of motion. This first beam is used for state initialization
and read-out in the ion-photon entanglement measurements. The second and third
beam are sent to the ion under an angle of 45◦, to the trap and cavity axis. The
second beam is used for state initialization in the state-mapping measurements, where
the magnetic field direction is changed (sec. 9.2). The third beam is a tightly focused
beam that can address one of two ions, as explained in the next section.
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Photo-ionization beams at 422 nm and 375 nm are overlapped with the 397 nm
beam propagating in the plane orthogonal to the cavity axis.

4.7 Ion addressing

In future experiments, we envision coupling two ions to the same cavity mode, requir-
ing control over their individual coupling at any time. Such control could in principle
be achieved by shifting the ions within the standing wave of the cavity (sec. 6.1).
However, compared to switching high voltage signals on the µs-timescales within a
sequence of laser pulses, the shelving of individual ions to an uncoupled state offers a
more robust technique. Any addressing laser beam must be focused to a waist smaller
than the typical distance of the ions in order to avoid perturbation of the neighboring
ion. For a trap-tip voltage of 900 V, this distance is about 5 µm. As a second con-
straint, the beam should have a component along the trap axis in order to be able to
drive sidebands of the axial motion. Although optical access to the ion from outside
of the vacuum chamber seems ample in our setup, the best spots are already occupied
by the two objectives of PMT and CCD camera. No simple solution for an addressing
beam through either of the two large viewports at an angle of 45◦, could be found due
to significant spherical aberrations caused by the 1 cm thick glass. From the other
directions, only a viewport with diameter of a = 35 mm at a distance from the ion
of d ≈ 130 mm is available. The diffraction limit for these parameters yields an Airy
diameter of 1.22 dλ/a = 3.3 µm at 729 nm [105]. Opting for this viewport, we thus
had to build a diffraction-limited objective.

After determining all constraints, Peter Cristofolini designed the lenses and the
mechanical setup of the objective [106]. Optimization of the lens positions and radii
with the ray tracing software Zeemax results in an expected rms-spot radius of 4-
5 µm for a setup with three meniscus lenses correcting the spherical aberrations of
one collimation lens and the vacuum window. While the lenses were manufactured
by Lens Optics, the aluminum rings and the objective holder were built in our own
mechanical workshop. All parts were mounted in a clean room in order to avoid dust
particles settling in between the lenses.

The objective was mounted on a translation stage with motorized actuators and
characterized by Diana Habicher [101]. In order to measure the Gaussian intensity
profile of the beam after the objective, we translate a single ion through the beam
via adjustment of the tip electrode voltages. The first Airy minimum is located 7 µm
from the maximum of the Gaussian intensity profile. For addressing one of two ions,
the addressing error can be minimized by positioning the target ion at the slope of
the intensity profile and the second ion at the Airy minimum. In order to characterize
the addressing error, we drive one of the quadrupole transitions through the objective.
For the addressed ion, we measure a Rabi frequency which is 50 times higher than
for the neighboring ion. By applying a combination of laser pulses with the addressed
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and global beam that illuminates both ions, we are now able to control which of the
two ions couples to the cavity. This control enables the realization of schemes like
proposed in [107], in which two or more ions sequentially couple to the cavity to
produce a stream of photonic cluster states.

4.8 Magnetic field

A magnetic field is applied to the ion in order to lift the degeneracy between the
Zeeman substates of each manifold of 40Ca+ . This splitting avoids coherent population
trapping during cooling and detection periods. Moreover, it enables the addressing of
individual states via the laser frequencies. Additionally, a stationary magnetic field B
suppresses the influence of magnetic-field fluctuations ∆B perpendicular to B on the
atomic coherence time [30].

In our setup, a magnetic field of 3–5 G is applied via three pairs of coils in a
Helmholtz configuration. One pair of coils is mounted in the direction of the cavity
axis (z-axis in fig. 4.5) and conducts a current of 312 mA in order to compensate the
earth’s magnetic field. Two additional pairs of coils (along the x- and y-axis of fig. 4.5)
generate a magnetic field with direction orthogonal to the cavity axis and at an angle
of about 45◦ to the trap axis. The direction of the field was changed compared to
[65, 85] to obtain higher Raman transition strengths, as explained in detail in sec. 7.1.
For this purpose, a new coil was installed at the bottom of the chamber.

The absolute value of the field is chosen in order to separate carriers from motional
sidebands of neighboring transitions in the Raman spectrum (sec. 7.2) as well as in
the S1/2 ↔ D5/2 spectrum. For ion-photon entanglement, a field of 2.96 G is set by
currents of 606 mA in the coil pair in the x-direction and 274 mA in the y-direction
(fig. 4.5). For ion-photon state mapping, the optimum situation is realized at a field
of 4.50 G, with the direction of the field rotated by 90◦ around the cavity axis. Here
we used a current of 1055 mA in the coil pair in x-direction and a current of 351 mA
in the coil pair in y-direction.

The currents applied to the coils are actively stabilized to an accuracy of 10−5 by
a servo loop integrated in a home-built circuit. However, external magnetic field noise
at 50 Hz present in the lab at a peak-to-peak amplitude of 10–100 mG presents a much
larger source of magnetic-field fluctuations. The origin of this noise was identified to
be the main power line of the laboratory: we measured an amplitude of 20 mG of this
50 Hz component around the vacuum chamber with a flux-gate sensor and a battery-
driven oscilloscope. At the position of the ion, we measured a peak-peak amplitude
of 6 mG from the shift of a quadrupole transition as a function of the starting time of
the experiment in the phase of the AC-power cycle.

As this magnetic field instability limited the qubit’s coherence time (sec. 5.7) and
the efficiency of sideband cooling, we installed a commercial system (Spicer) that par-
tially compensates the 50 Hz noise component. This system consists of three flux-gate
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Figure 4.6: Detection of atomic fluorescence and cavity-photon polarization. Two objec-
tives at the front and back side of the chamber collect the ion’s fluorescence photons at
397 nm. At the back side, an image is produced on an EM-CCD camera. On the front side,
the light is detected by a PMT, used for atomic state detection. Asymmetric cavity mirror
transmissions define an output port of the trap cavity for photons at 854 nm produced in
the Raman process. The polarization detection setup consists of a half-, a quarter-waveplate
and a polarizing beamsplitter (PBS). After the PBS, photons are coupled to multi-mode
fibers and detected by two APDs. Two filters and irises before each fiber block light at
785 nm used for the cavity lock and ambient stray light. Two pairs of CCD cameras and
photodiodes (PD) monitor the cavity’s spatial modes and transmission of the 854 nm and
785 nm light.

sensors measuring the 50 Hz noise component outside of the vacuum chamber in three
dimensions. Feedback currents are provided to three cables mounted in a cube con-
figuration around the entire setup. This compensation system decreases the magnetic
field fluctuations at the position of the ion to 1.3 mG, increasing both coherence times
and sideband cooling efficiencies (sec. 5.6).
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4.9 Atomic fluorescence detection

The ion’s fluorescence at 397 nm and 393 nm is detected by a photomultiplier tube
(PMT) and an electron-multiplying charged-coupled device camera (EM-CCD). Only
the PMT signal is used for state detection of a single ion (sec. 5.4).

Two objectives collect fluorescence photons from the ion at two large viewports
at the front and back side of the vacuum chamber (fig. 4.6). On the front side, a
photographic Nikon objective with an aperture diameter of 50 mm and a working
distance of about 55 mm produces an image of the ion with a magnification of around
7. A slit aperture consisting of four adjustable blades blocks stray light caused by
scatter of the laser off the trap electrodes. Background light at all wavelengths is
attenuated by an interference filter5 after the aperture.

Assuming a uniform spatial distribution, the objective collects maximally 6.6% of
the scattered light from the ion. Taking into account the PMT quantum efficiency of
26.5%, the overall maximum detection efficiency is 1.8% at 397 nm [65].

On the back side of the chamber, we use a custom-made objective (Sill Optics) with
an aperture diameter of 38 mm at a working distance of 58 mm that images the ion
on the EMCCD camera6 with a magnification of about 23. Background light again is
attenuated by an interference filter7. We use the CCD camera for adjusting the cavity
position with respect to the ion, for measuring the cavity waist in which we translate
a single ion through the waist of the cavity mode (sec. 6.2), and for monitoring ion
number during loading.

4.10 Photon state detection

This thesis describes a quantum interface employing the ion’s electronic state as sta-
tionary qubit and the photon’s polarization degree of freedom as flying qubit. To
readout the flying qubit, we measure the photon’s polarization state via quantum state
tomography [108]. For this purpose, we use a half-waveplate, a quarter-waveplate and
a polarizing beamsplitter (PBS) at the cavity output.

In previous work on our experimental setup [65, 85], experiments did not rely on
a precise distinction of the cavity-photon polarization. The detection setup for cavity
photons then employed dichroic mirrors at 45◦, angles in order to separate the few
photons emitted by the ion at 854 or 866 nm from the many photons sent through the
cavity at 785 nm for its stabilization (sec. 4.5). We observe that these dichroic mirrors
exhibit birefringence and polarization-dependent losses of about 4% at 854 nm at an
angle of 45◦, equivalent to non-unitary (and thus unwanted) operations on the photonic
qubit. For the ion-photon entanglement and state mapping experiments, polarization

5Semrock FF01-377/50-25
6Andor iXon DV860AC-BV, pixel size 24µm × 24µm
7Semrock FF01-390/18-25
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has to be measured with high precision so as not to limit state and process fidelities.
We have therefore changed the cavity output path setup such that the waveplates and
the PBS are the first optical elements in the cavity output path (fig. 4.6), allowing
for precise polarization analysis. After the PBS, however, dichroic mirrors can be
placed without drawbacks in order to monitor the cavity spatial modes at 854 nm
and 785 nm on a CCD camera. Here, any losses in the dichroic mirror may at most
result in slightly different PBS output-path efficiencies. Asymmetric path efficiencies,
however, do not affect state fidelities as we compensate for this in the measurements
(sec. 8.4).

The basis of photon detection is set by the angles of the half- and quarter-waveplates,
mounted on motorized rotation stages8. The precision of polarization detection de-
pends on the alignment of the angles under which waveplates and PBS are mounted
with respect to the incoming beam. These angles are determined in the following
calibration measurement.

In order to define a linear polarization, we use a Glan-Thompson polarizer (GTP)
at the output of the cavity. We send an alignment beam at 854 nm through the trap
cavity and align the PBS with respect to this beam in a first step. In a second step,
we place the half-waveplate in front of the PBS and determine the rotation angles that
correspond to a certain measurement basis (table 8.1). For the half-waveplate at 0◦

and 45◦, the probe light is polarized along one of the axes of the PBS, and all light
is expected to be either transmitted or reflected by PBS. In this case, we obtain an
extinction of 2.7 · 10−4 in transmission and 2.2 · 10−3 in reflection from the PBS. At
angles of ±22.5◦, the probe light should have diagonal/anti-diagonal polarization, and
the ratio of transmission and reflection should be one. Here, the ratio of the two output
ports is measured to be 99.0%. In a third step, we introduce the quarter-waveplate
in front of the PBS and calibrate its angles. At an angle of 0◦, we again expect no
change to the polarization and measure an extinction of 3.2 · 10−3.

At this stage, the polarization analysis setup is calibrated with respect to the GTP.
In order to analyze the polarization of photons emitted in the cavity by the ion, we
drive a Raman transition that generates photons of known polarization (sec. 7.2) with
respect to the magnetic field that defines our quantization axis. We then adjust the
offset angle of the half-waveplate such that we detect photons only at one output of
the PBS. Now both waveplates and the PBS are calibrated with respect to the trap
cavity and the quantization axis.

At both output ports of the PBS, photons are coupled to multi-mode fibers and
detected by fiber-coupled avalanche photodiodes (APDs). In order to filter cavity
photons at 854 nm from the transfer-lock light at 785 nm and ambient stray light at
all wavelengths, we use a combination of a 30 nm narrow-bandpass interference filter9

8OWIS PS10-SM
9AHF Analysetechnik ET 850/30: center wavelength of 850 nm with a measured transmission of

98.3% at 854 nm.
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and a long-pass edge filter10 at both fiber inputs. The efficiency of the optical paths
from the PBS to the APDs is measured to be ηpath = (80± 5)%.

Until last year, we used two APD modules from Perkin-Elmer (SPCM-AQR-15),
exhibiting a dark count rate of about 30 Hz and a detection efficiency of ηAPD1 =
(46± 4)%. As the signal count rate for the ion-photon entanglement and state map-
ping experiments is about 40 Hz, dark counts of the detectors on the same order of
magnitude present a limitation to the fidelities of these schemes. For the ion-photon
entanglement experiment, we therefore exchanged one of the APDs with a new module
from Laser-Components (COUNT-20C-FC), featuring a measured dark count rate of
only 1.5 Hz and a detection efficiency of ηAPD2 = (34± 3)%. The temporal resolution
of the module is specified to 800 ps and its dead time to (62±2) ns. As the parameters
of this new module proved to be stable over time, we acquired a second module, which
currently has a dark count rate of 3 Hz. At a time delay of 50 ns after photon impact,
the APD module sends a 25 ns wide TTL signal of 3 V at 50 Ω load, recorded with a
time tag by dedicated hardware (Picoquant PicoHarp) with a temporal resolution of
4 ps.

The detection probability of cavity photons is composed of the probabilities to leave
the cavity (pout), to traverse all optical elements to the APD (ηpath), and to produce
a photoelectric detection event at the APD (ηAPD). We measure these components
individually via a probe laser beam at 854 nm. The optical path efficiency ηpath =
(80 ± 2)% is measured via coupling the probe beam to the cavity and measuring
the beam’s intensity directly after the cavity and after the multi-mode fibers with
the same photodiode. The detection efficiency ηAPD of both APDs is determined via
overlapping the probe beam with the cavity-output mode and measuring its intensity
with a calibrated power-meter. The beam is then attenuated by a stack of calibrated
neutral density filters reducing the intensity by 3 · 10−8. The resulting count rate of
the APDs in the 10 − 100 kHz range reveals their detection efficiencies ηAPD. The
probability to detect a photon that has left the cavity is given by

ηdet = ηpath ·
ηAPD1 + ηAPD2

2
= (32± 3)% (4.5)

if we neglect absorption in the vacuum window, the waveplates and the PBS. The
probability that a photon leaves the cavity through the output coupling mirror is
given by

pout =
T2

T1 + T2 + L
= T1 ·

F

2π
, (4.6)

where L are the combined losses due to scattering and absorption in the mirror
coatings. Inserting the values of [65] into eq. 4.6, the output coupling probability is
(16± 1)%. The probability pdet to detect a photon that the ion emits into the cavity,
given by pdet = pout · ηdet, is (5.1± 0.5)%. In our experiments, in which single photons

10Semrock Edge Basic 785 LP: 99.2% transmission at 854 nm, OD 6 at 610-790 nm
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are generated with near-unit efficiency (as confirmed by simulations), we measure a
detection probability of (6.1 ± 0.7)% . We therefore conclude that the value for pout

given in [65] is too small since it corresponds to a photon generation efficiency greater
than one (where we confirm in separate measurements that we generate at most one
photon at a time). From the measured detection probability of (6.1 ± 0.7)% , we
instead calculate a value of the output coupling probability of pout = (19± 3)%.

4.11 Radiofrequency generation and data acquisition

Coherent manipulation of the atomic qubit relies on the application of laser pulses
with well controlled amplitude, length and phase. As laser pulses are generated with
AOMs, control over all parameters of the laser pulses is obtained via the parameters of
the radio frequency (RF) applied to the AOMs. For the generation of phase-coherent
RF pulses with controlled phase and amplitude, a pulse sequencer was developed by
Paul Pham and Philipp Schindler [109, 110]. It uses a field-programmable gate array
(FPGA) to control direct digitial synthesizer (DDS) boards that each generate up to
16 different frequencies in the range of 0-300 MHz with resolution of 0.2 Hz. The DDS
allows for switching the phase of each pulse within one sequence, while the shape of
the pulse is controlled by a variable gain amplifier. In our experiment, all pulses at
393 nm and 729 nm are generated by a pulse sequencer containing two DDS boards.
To ensure phase coherence of these pulses, all DDS boards and additional RF sources
are referenced to a 10 MHz quartz oscillator connected to the global positioning system
(GPS).

Laser pulses at the other wavelengths, where no phase coherence is needed, are
controlled with high timing precision by the FPGA that switches 16 logic channels
(TTL) within the sequence. Two of these channels are used to trigger the PMT for
atomic state detection and the APDs for photon detection. The FPGA is connected to
a control PC via an ethernet connection and is programmed via a Python server. The
execution of an experimental sequence is triggered via one of 8 input channels of the
FPGA. This trigger signal and further analog signals controlling power and frequency
of the remaining lasers are generated by two National Instruments cards of the control
PC.

While the PMT signal is acquired on a counter card of the control PC, the signals
from the APDs are time tagged by the PicoHarp module connected to the control
PC via a universal serial bus. Additionally, a TTL trigger signal from the FPGA to
the PicoHarp module is time-tagged during the same sequence. In this way, the time
duration between the start of an experimental sequence and a single-photon event
can be calculated, allowing for time-resolved analysis of the single-photon data, as
explained in sec. 8.6.

Furthermore, the control computer is connected via a controller-area network bus to
the high-voltage source that controls the voltages of tip and micromotion compensation
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electrodes (sec. 4.2).

4.12 Technical considerations for a new setup

The design of the vacuum chamber containing ion trap and cavity has proven to be
successful in a number of measurements that have been carried out since its construc-
tion. In most aspects, the setup was well arranged and leaves a lot of scope for new
developments outside the vacuum chamber. Nevertheless, we have noted a few minor
design flaws that should be considered in the construction of any new experimental
apparatus.

As already mentioned in [65], the biggest limitation of the apparatus is the in-
stability of the oven. Its thermal contact with the cavity mount prevents loading of
ions when the cavity is adjusted to the best position with respect to the trap. In
order to load an ion, we thus have to displace the cavity to break the thermal contact.
This translation via the slip-stick piezo stages is not reproducible, so that we have to
realign the cavity position after each loading procedure. Moreover, the cavity mount
is heated during loading due to a residual thermal contact with the oven. After the
loading procedure, the cavity thus thermally drifts both in length and position with
respect to the ion while cooling and can only be realigned about one hour after load-
ing. Fortunately, the mean trapping time of an ion is around one day, leaving enough
time for measurements after loading and cavity alignment.

The time-intensive cavity-alignment procedure is described in [65]. In order to
simplify this procedure, one could measure the absolute displacement of the cavity
with a laser interferometer. Additionally, we could then calibrate the cavity translation
in the direction orthogonal both to trap and cavity axis. Such calibration would allow
for a measurement of the cavity waist in this direction, analogous to the measurement
in the trap axis direction presented in sec. 6.2. In an attempt with a commercial
interferometer (SIOS), however, it turned out that the metallic surfaces of the cavity
holder do not reflect enough light for the interferometer to work reliably. Small metallic
mirrors placed on the side of the cavity mount could enable this approach.

Although the slow piezo is mounted at a distance of about 1 cm from the ion,
a change of its voltage by more than 10 V results in a measurable increase of excess
micromotion. As we have experienced that excess micromotion can lead to reduced ion-
cavity coupling, we avoid changing the voltage of the slow piezo. Instead, we position
the cavity standing wave with respect to the ion via the slip-stick piezo translation
stage that displaces the entire cavity mount. Although the cavity frequency typically
stays in lock for small translations of the slip-stick piezo, this procedure only places the
ion at an antinode after a time-intensive optimization process of random displacement
steps. A more direct and precise positioning via the slow piezo is desirable, but would
require better shielding of the electric fields emerging from the slow and fast piezos.
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An ion-photon interface requires a number of experimental techniques to control the
atomic qubit. Besides laser cooling of the ion, these techniques include the initial-
ization, coherent manipulation and detection of the atomic qubit’s quantum state.
While first steps towards coherent control over the atomic qubit in our setup have
been described in the thesis of Helena Barros [85], these techniques have been further
improved over the past few years. Additionally, the magnetic field stability has been
enhanced such that the atomic coherence time is large compared to the time required
for the state transfer between atom and photon.

This chapter reports on these improved techniques that are fundamental for the
ion-photon entanglement and ion-photon state mapping. Here, we focus on specific
aspects in our setup, while a detailed review of the techniques for state control and
measurement of ions can be found in [42, 43, 104].

5.1 Experimental sequence

All experiments described in this thesis are performed via the repetition of a sequence
of laser pulses. Such a sequence consists of pulses for state initialization, the specific
experiment and state detection, as sketched in fig. 5.1. For example, the specific
experiment consists of a Raman pulse at 393 nm if the aim of the experiment is to
generate a photon in the cavity. For other purposes, such as spectroscopy on the S1/2

↔ D5/2 transition, a sequence 729 nm laser pulses takes the place of the 393 nm pulse.
In an experiment where we only read out the state of the ion, the whole sequence
(1-8 in fig. 5.1) is typically repeated 50-250 times. If we have to read out the state of
the photon, many more repetitions are necessary as only (6.1± 0.7)% of the photons
are detected (see sec. 8.4). The experimental details of all sequence steps such as
Doppler cooling, state initialization, coherent manipulation and state detection will
be discussed in the following sections.

5.2 Doppler cooling

Laser cooling of atoms and ions is a well established experimental tool in atomic physics
today [111–113]. A laser that is red-detuned with respect to an atom’s resonance
provides a cooling force acting on the atom because of the Doppler effect. At steady
state, this cooling process is counteracted by spontaneously emitted photons which
lead to diffusion, resulting in a cooling limit. At the optimal laser detuning of ∆ =
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Figure 5.1: Typical sequence of pulses for each realization of the experiment (time not to
scale). (1) Doppler cooling at 397 nm and 866 nm. The 854 nm laser repumps the D5/2

population of the previous run of the sequence. (2) Optical pumping with the 729 nm laser.
(3) Sideband cooling (optional). (4) Additional optical pumping (during sideband cooling,
population may be transferred to the wrong S1/2 state). (5) State initialization. A sequence

of 729 nm pulses typically prepares |S1/2,+
1
2〉, |S1/2,−1

2〉 or a superposition of both. (6)
The specific experiment (see text). (7) Coherent rotations with the 729 nm laser set the
measurement basis of the ion. (8) Fluorescence detection at 397 nm and 866 nm.

−Γ/2, this Doppler limit for a two-level atom is given by [104]

kBTmin =
~Γ

2
. (5.1)

In 40Ca+ , the linewidth of the S1/2 ↔ P1/2 transition of Γ = 20.7 MHz [76, 78] results
in a Doppler limit of Tmin = 0.8 mK, where the influence of the P1/2 ↔ D3/2 transition
to the cooling process has been neglected due to the low branching ratio of 7.5% [78].

To achieve a low Doppler limit in 40Ca+ , the Rabi frequency of the 397 nm beam
is set to half of the value at saturation [104]. It is red-detuned from resonance by half
the linewidth. A repump beam at 866 nm with σ+/σ−-polarization repumps all D3/2

states. The power of this repump beam is set below saturation in order to avoid power
broadening, which would increase the temperature of the Doppler limit. The repump
beam is blue-detuned by ∼ 1 MHz to avoid coherent population trapping [114].

In order to cool all three normal modes of the ion in the trap, the propagation axis
of the cooling beam has to have a non-vanishing projection along all normal modes.
Although the cooling beam installed in the early stage of our experimental setup was
intended to fulfill this requirement (see fig 4.5, cooling beam in the x-y plane), the
temperature of the ion along the direction of the cavity axis was found to be higher
(well above the Doppler limit) than the temperature orthogonal to the cavity axis
after Doppler cooling.
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5.2 Doppler cooling

As the cooling beam has very similar projections on all trap electrodes, this asym-
metry in cooling of the radial modes can only be explained by a rotation of the radial
modes with respect to the electrodes. We therefore investigate the Doppler cooling of
the radial modes and their direction by a detailed measurement of their mean phonon
number. For this measurement, we apply two cooling beams at 397 nm and two anal-
ysis beams at 729 nm in the x-y and x-z plane (fig. 4.5). A first measurement of Rabi
oscillations on one selected carrier calibrates the Rabi frequencies Ωi

0 of the two 729 nm
beams. We then measure the onset of excitation on the blue sidebands for each of the
four combinations of cooling and analysis beams. For short times, we approximate
the excited state population ρDD of [104] for Ω0t� 1

ρDD(t) =
∞∑
n=0

pn sin2(η
√
n+ 1Ω0t) ≈ (n̄+ 1)(ηΩ0t)

2, (5.2)

with pn the population of the harmonic oscillator state with phonon number n, Ω0 the
Rabi frequency of the carrier, and the Lamb-Dicke parameter η. From a quadratic fit
of the excitation in all four measurements, we extract the Lamb-Dicke parameters ηi
of the analysis beams and the mean phonon numbers n̄i of all three modes for each
cooling beam. From the Lamb-Dicke parameters, we extract a rotation angle of 20-25°
between the radial modes and the trap electrodes.

The small projection of the primary 397 nm beam on the radial mode along the
cavity axis explains the weak direct cooling efficiency of this mode. In principle, both
radial modes should be cooled equally if they exchange energy many times during the
cooling interval. Although the frequency splitting of the two radial modes in our trap
of 46 kHz (at an RF drive power of 5 W) is much larger than the inverse of the typical
Doppler cooling time of 500 µs, this process does not result in effective cooling of both
modes.

We have therefore installed a second beam at 397 nm (fig. 4.5, cooling beam in

the x-z plane) whose ~k-vector has a large projection along the second radial mode. As
the two cooling beams originate from the same laser and the same order of an AOM,
they have the same frequency and interfere at the position of the ion. Interferometric
stability between the two optical paths to the ion would thus be required for a stable
cooling rate. We circumvent this requirement by setting the polarization of the two
beams to be orthogonal in order to avoid interference. With this setting, all three
modes of motion are cooled near the Doppler limit.

The improved Doppler cooling represents a substantial advance for our experiment.
Not only did the imperfect cooling limit the fidelity of the coherent manipulation on
the S1/2 ↔ D5/2 transition in the past, but also does the temperature of the ion
determine its localization in the cavity’s standing wave and therefore the effective
coupling g between ion and the cavity mode. The improvement of this localization
gained with the new Doppler cooling setting will be described in detail in sec. 6.1.
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5.3 State initialization

After the Doppler cooling interval (sec. 5.2), all population is distributed across both
states of the S1/2 manifold. Optical pumping is then applied in order to transfer all
population into one of the S1/2 states. Two methods for optical pumping are used in
our setup.

In the first method, a σ+-polarized beam at 397 nm, propagating along the mag-
netic field axis, continuously transfers population from the |S1/2,−1

2
〉 to the |P1/2,+

1
2
〉

state, while a repump laser at 866 nm repumps all D3/2 states. As a consequence, all
population is collected in the |S1/2,+

1
2
〉 state, which is not coupled to any field. This

first method provides fast optical pumping with an efficiency greater than 99% in
50 µs. However, it relies on a beam along the magnetic field axis. This beam thus
has to be realigned every time the magnetic field axis is changed as for the measure-
ment of ion-photon state mapping described in chapter 9. Furthermore, the quality of
this polarization-selective method is limited by the degree of circular polarization at
397 nm one is able to obtain.

As an alternative approach that does not rely on a beam along the magnetic field
direction and is insensitive against polarization imperfections, we perform frequency-
selective optical pumping on the narrow quadrupole transition. In this second method,
we drive the transition from |S1/2,−1

2
〉 to |D5/2,+

3
2
〉 in order to pump out the

|S1/2,−1
2
〉 state. Subsequently, the P3/2 ↔ D5/2 transition is used to pump out the

|D5/2,+
3
2
〉 state to the P3/2 manifold, from which the population decays to both S1/2

states. Population again accumulates in the |S1/2,+
1
2
〉 state, which remains uncou-

pled. In this method, both fields can be applied either continuously or in a pulsed
manner, in which a pulse at 729 nm is followed by a pulse at 854 nm and 866 nm, a
sequence that is repeated several times. In the continuous scheme, the Rabi frequency
of the repump on the P3/2 ↔ D5/2 transition has to match the Rabi frequency of the
drive field on the quadrupole transition in order to efficiently depopulate the D5/2

state. In contrast, the pulsed scheme reaches a similar pumping rate but allows for
an independent repump intensity and is therefore more robust to intensity fluctua-
tions. With this second method, the efficiency of optical pumping exceeds 99% after
5 repetitions lasting in total 60 µs. In our setup, we typically use the pulsed scheme
of the frequency-resolved optical pumping on the quadrupole transition as it results
in an efficient and robust situation independent of the magnetic field direction. This
frequency-resolved method is only limited by off-resonant excitations and the pumping
time. Keeping the Rabi frequency sufficiently low and applying the optical pumping
for 1 ms, initialization fidelities exceeding 99.9% have been observed [72].

After optical pumping into either of the two S1/2 Zeeman states, additional pulses
on S1/2 ↔ D5/2 transitions may be applied in order to generate a superposition of the
two S1/2 states, e.g., for ion-photon state mapping (chapter 9).
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5.4 State detection

In contrast with single photons, single atoms can be detected with very high efficiencies
as they scatter many fluorescence photons. For neutral atoms, however, scattered
photons can induce heating on the order of the trap depth [44]. Reloading of atoms
then decreases the repetition rate of the experiment. State of the art fidelities for
nondestructive fluorescence methods of neutral atoms are 95% in an optical lattice
[44] and 98.6% in an optical tweezer [45], both with loss rates on the order of 1%.

Ions, in contrast, can be measured without losses due to the large trap depths. In
40Ca+ , the fluorescence technique enables discrimination between the S1/2 and D5/2

states with fidelities exceeding 99% [43]. During the detection interval, both lasers
at 397 nm and 866 nm illuminate the ion. The intensity of the 397 nm beam is set
at saturation while the detuning and intensity of the 866 nm beam are the same as
for Doppler cooling (sec. 5.2). If the ion is projected to the S1/2 state, fluorescence
photons at 397 nm are detected, while only background photons due to stray light
and dark counts are detected if it is projected to the D5/2 state. As all measurements
in this thesis are carried out with a single ion, state detection is implemented via the
PMT signal. Both fluorescence and dark counts follow a Poissonian photon count
distribution; we discriminate between the two cases by defining a detection threshold.
In fig. 5.2, the photon count distribution is shown for the results of the entanglement
data of chapter 8. Here, the qubit is initially comprised of a superposition of two D5/2

states, which is transferred to a superposition between S1/2 and D5/2 via a π pulse on
the S1/2 ↔ D5/2 transition as described in section 8.5.

The error rate of state readout depends on the overlap of the two count distributions
and the probability of decay from D5/2 to S1/2. For a given signal to noise ratio, this
overlap vanishes with increasing detection time. If the finite lifetime of the D5/2 state is
neglected, one could thus obtain an arbitrarily small detection error by simply increas-
ing the detection time. In such a simplified model, the error is estimated by integrating
the probabilities of detecting a number of counts below (above) the threshold although

the ion was bright (dark) respectively:
∫ nt

0

λbright
k!

e−λbrightdk +
∫∞
nt

λdark
k!
e−λdarkdk, where

λbright,dark is the mean number of counts of the Poissonian probability distributions and
nt is the detection threshold. In our setup, we typically obtain a mean fluorescence
rate of 50 kHz on the PMT, while the dark count rate remains below 1 kHz. At this
signal to noise ratio, with a detection time of 500 µs and the detection threshold at
6.5 counts, the detection error would yield a value on the order of 10−5. On this scale,
however, the D5/2 state’s finite lifetime of 1.168 s has to be taken into account. For
the detection time of 500 µs, we then estimate a detection error below 1 · 10−3. This
error is limited by events in which the initial D5/2 state decays to the S1/2 state during
the detection time of 500 µs. This error could be reduced by making use of the arrival
time information of the photons at the PMT [115]. For our purpose, however, the
photon-count histogram method is sufficient as the detection error of 1 · 10−3 falls be-
low other experimental imperfections of ion-photon entanglement and state-mapping
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Figure 5.2: Histogram of PMT counts containing ∼ 40, 000 events of one complete state
tomography for ion-photon entanglement measurement(chapter 8). Here, we chose a detec-
tion time of 500 µs and a detection threshold at 6 counts. The number of events in the first
two bins are 15,000 and 4,000 (the y-axis is truncated at 3,000).

and does not limit its fidelities.

5.5 Coherent manipulation of the atomic qubit

In order to demonstrate coherent transfer between one S1/2 state and one D5/2 state,
we drive Rabi oscillations between states |S1/2,+

1
2
〉 and |D5/2,+

5
2
〉. In fig. 5.3a,

Doppler cooling is applied before the excitation of the quadrupole transition, while in
fig. 5.3b, sideband cooling in all three dimensions is performed in addition to Doppler
cooling. As the Rabi frequency on the carrier depends on the phonon number n to
second order in the Lamb-Dicke parameter, a range of Rabi frequencies contributes to
the oscillations [104]:

ρDD(t) =
1

2

[
1−

∞∑
n=0

pn cos(Ω0(1− η2n)t)

]
. (5.3)

After Doppler cooling, states with a range of n values are occupied and the oscillations
are damped. In contrast, after sideband cooling of all three vibrational modes (n̄a =
0.04± 0.03, n̄r1 = 0.1± 0.1, n̄r2 = 1.0± 0.4), the oscillations have only one frequency
component.

By a Rabi-frequency calibration of the required S1/2 ↔ D5/2 transitions, the re-
spective times for π and π/2 rotations are determined. Any optical S −D qubit can
then be transferred to any S − S ′ or D −D′ spin qubit and vice-versa via π and π/2
pulses.

58



5.6 Sideband cooling

(a)

(b)

Pulse length (     )

Figure 5.3: Rabi oscillations on the S1/2 ↔ D5/2 quadrupole transition, driven at 729 nm.
We plot the excitation probability of the D5/2 state as a function of pulse length. (a) After
Doppler cooling, a range of phonon number states are occupied. Different frequencies result
in a damped oscillation. (b) Following axial and radial sideband cooling, only one frequency
component contributes to the oscillation.

5.6 Sideband cooling

After Doppler cooling, the mean phonon numbers of the axial and radial modes are
n̄axial = 9.4 and n̄radial = 3.5 at trap frequencies of ωaxial = (2π) 1.1 MHz and ωradial =
(2π) 3 MHz. In some experiments that use one common motional mode of the ion
string as a bus for the Cirac-Zoller entangling gate [116], operation near the ground
state of this mode is necessary. Although this requirement no longer holds for the
Mølmer-Sørensen entangling gate [117], operation near the ground state still improves
fidelities [118, 119]. In order to cool an ion’s motion to the ground state, sideband
cooling techniques are necessary [42].

In our setup, sideband cooling of a single ion is beneficial for several reasons. First
of all, sideband cooling maximizes the Raman coupling of an individual ion on a carrier
transition while reducing off-resonant scattering on sidebands, as will be described in
sec. 7.3. Furthermore, experiments involving entangling gates between two ions are
planned in the near future (chapter 10). For these experiments, operation near the
ground state of the axial common mode will be advantageous both for entanglement
and for cavity-driven Raman transitions. Sideband cooling could in principle also be
used to improve the coupling of the ion to the cavity mode by decreasing the spread
of the ion’s spatial wavefunction. However, the localization of the ion in the cavity’s
standing wave in our setup is limited by relative motion between the trap and cavity
mount instead of the motion of the ion in the trap, as demonstrated in chapter 6.
Finally, sideband cooling allows for a measurement of the heating rate of the ion trap,
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an important characterization of the experimental setup.
Initial experiments involving sideband cooling in our setup are described in Helena

Barros’s thesis [85], in which a spectrum of one carrier with neighboring sidebands
is shown in order to demonstrate the resolution and identification of all motional
sidebands. Since the experiments in [85], the following technical advances have signif-
icantly improved both the sideband-cooling rate and the temperature after cooling in
our setup: Doppler cooling as described in sec. 5.2, optical pumping with the 729 nm
laser (sec. 5.3), improved current stabilization for the static magnetic field (sec. 4.8),
and the installation of a commercial compensation system for AC magnetic field noise
(5.7). We take advantage of these technical advances to cool to the ground state,
investigate a pulsed scheme, and measure the heating rate of the trap.

For sideband cooling of 40Ca+ , a closed cooling cycle can be achieved by tuning
the 729 nm laser to the red sideband of the |S1/2,+

1
2
〉 to |D5/2,+

5
2
〉 transition. Due

to the long lifetime of the D5/2 state, a repump laser at 854 nm continuously transfers
population to the |P3/2,+

3
2
〉 state, from which it decays to the initial state |S1/2,+

1
2
〉,

closing the cooling cycle. As the P3/2 state also decays to the D3/2 state with a small
branching ratio of 0.7%, its population is repumped by the 866 nm laser to the P1/2

state. Due to this repumping via the P1/2 state, population can escape the cooling
cycle into the |S1/2,−1

2
〉 state. Therefore, sideband cooling is interleaved with short

optical pumping cycles, returning all population back to the cooling cycle.
The Rabi frequencies on the red and blue sideband are given by ΩredSB = Ωη

√
n and

ΩblueSB = Ωη
√
n+ 1 [42], where the Lamb-Dicke parameter η = ~k ·~ez

√
~

2mωz
describes

the ability of the field with wave-vector ~k to couple to the harmonic motion of a
particle with mass m along ~ez with frequency ωz . Assuming a thermal distribution,
the particle’s mean phonon number n̄ can be deduced by a measurement of excitation
probabilities predSB on the red and pblueSB on the blue sideband of any motional mode
[120]:

n̄ =
predSB

pblueSB − predSB

. (5.4)

Using this formula, we extract a mean phonon number of the axial mode of n̄ax =
0.022 ± 0.001 after 6 ms of sideband cooling. Cooling this close to the ground state
(n̄ � 1) is manifested by a vanishing red sideband as presented in [85] and by the
ability to drive coherent Rabi oscillations on the blue sideband with one dominant
Rabi frequency ΩblueSB = Ωη (fig. 5.4a).

Additionally, we investigate a pulsed sideband-cooling scheme in which the 729 nm
laser and the 854 nm laser drive π-pulses instead of being applied continuously as
described above. This pulsed scheme proves to be less sensitive to the Rabi frequency of
the 854 nm laser but nevertheless results in the same cooling rate and final temperature
as the continuous scheme. The pulsed scheme therefore presents itself as a robust
cooling scheme for an experiment in which the 854 nm Rabi frequency has to be set
for a different step in the sequence, e.g., the continuous drive of the Raman transition
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(a) (b)

Time (     )

Figure 5.4: (a) Rabi oscillations on the blue axial sideband after 6 ms of sideband cooling.
The dominant frequency is Ωη, while the coherence of these oscillations is limited by the
temperature of the radial modes, which are not sideband-cooled. (b) Heating rate mea-
surement of the axial mode at ωaxial = (2π) 1.1 MHz. After sideband cooling to a mean
phonon number of n̄axial = 0.022± 0.001, we vary the waiting time before a measurement of
the excitation on the red and blue sidebands which allows us to extract the mean phonon
number n̄ via eq. 5.4. Error bars represent one standard deviation based on projection noise
in the excitation measurement. The fit reveals a heating rate of 1.9(2) motional quanta per
second.

(sec. 7.2). Alternatively, using a continuous scheme, the 854 nm intensity must be
switched between different values within the experimental sequence.

Finally, we take advantage of sideband cooling to measure the heating rate of our
ion trap possessing an ion-electrode separation of 0.8 mm. For this purpose, we add
a variable waiting time between sideband cooling and an excitation measurement on
the sidebands and measure the mean phonon number for six different waiting times
(fig 5.4b). A linear fit reveals a heating rate of one motional quantum in 500 ms. This
value is very similar to the one observed in [56] for a similar trap architecture and
represents one of the lowest ion-trap heating rates measured [90].

5.7 Atomic coherence time: Ramsey spectroscopy

As an atom in a cavity can act as a quantum memory in a network, it is essential to
store information within it for extended times. We therefore investigate the coherence
time of the atomic qubit via Ramsey spectroscopy [121].

As described in sec. 2.1.2, the length of a laser pulse on the quadrupole transi-
tion determines the angle of rotation on the Bloch sphere of the qubit. The phase
of the pulse, on the other hand, determines the direction of the rotation axis, as
demonstrated by a sequence of two π/2 pulses with different phase on the transi-
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(a) (b)

Figure 5.5: Atomic coherence time. (a) Ramsey spectroscopy demonstrating the AC mag-
netic field noise compensation. Red curve (SD): bare laboratory environment, coherence time
τcoh = 80 µs. Green curve (SD comp): with active AC magnetic field noise compensation,
τcoh = 350 µs. Blue curve (SD comp + line tr.): in addition to active compensation, each
realization of the sequence is started at the same phase of the AC power cycle, τcoh = 1 ms.
All graphs represent measurements of an |S1/2,+

1
2〉 − |D5/2,+

3
2〉 superposition. Each data

point corresponds to a fitted Ramsey fringe as shown in the inset for a Ramsey time of 50 µs.
(b) Ramsey spectroscopy demonstrating the coherence time of different atomic qubits rel-
evant for this thesis. Note that the fringe amplitude is plotted between 0.67 an 1. Green
(yellow) curve: S − S′ spin qubit: |D5/2,−5

2〉, |D5/2,−3
2〉 with τcoh = 110 µs (D −D′ spin

qubit: |S1/2,+
1
2〉, |S1/2,−1

2〉 with τcoh = 300 µs) for ion-photon entanglement (state map-
ping) and magnetic field in the diagonal (anti-diagonal) direction (orientation: see fig. 4.5).
Red (blue) curve: S−D optical qubit |S1/2,+

1
2〉, |D5/2,+

3
2〉, magnetic field in the diagonal

(anti-diagonal) direction, both yielding a coherence time of τcoh = 450µs. All experiments
in this graph have been performed with active AC magnetic field noise compensation but
without a trigger synchronized to the AC power cycle. This setting represents the typical
measurement scenario in our setup. All curves of both plots are fitted with a Gaussian decay
(see text).

62



5.7 Atomic coherence time: Ramsey spectroscopy

tion |S1/2,+
1
2
〉 ↔ |D5/2,+

3
2
〉. While the first π/2 pulse with phase φ1 generates a

superposition 1√
2

(
|S1/2,+

1
2
〉+ eiφ1 |D5/2,+

3
2
〉
)
, the phase φ2 of the second π/2 pulse

determines the axis of the second rotation with respect to the first one. A detection
period at the end of the sequence discriminates between the states |S1/2,+

1
2
〉 and

|D5/2,+
3
2
〉. In the ideal case, a scan of the phase φ2 over a range 0 to 2π results in

a Ramsey fringe with amplitude of 1, i.e., sinusoidal excitation of |D5/2,+
3
2
〉 from 0

to 1. In the experiment, imperfections in optical pumping, intensity fluctuations, and
the residual temperature of the ion slightly reduce the fringe amplitude. In our setup,
a scan of the Ramsey phase φ2 of two π/2 pulses separated by 50 µs reveals a fringe
amplitude of 98.9± 0.4% (inset of fig. 5.5a).

During the time interval between the two pulses, the atom freely precesses at
the frequency of the energy splitting ω = ∆E/~ between the relevant states. As
this energy splitting depends linearly on the magnetic field, a change in the field
strength will cause a different precession frequency. Magnetic field fluctuations on
the time scale of the 100-250 repetitions of the sequence (over which we average for a
single data point) or faster will thus lead to a reduced fringe amplitude. The atomic
decoherence mechanisms thus depend on the correlation time τc of the magnetic field
fluctuations ∆B. Assuming the fluctuations to be a Gaussian process, the atomic
coherence decays exponentially if τc is much smaller than the duration of a single
realization of the sequence ts, i.e., in the so-called Markovian regime (τc/ts � 1) [122].
In the static regime, where τc/ts � 1, however, the time dependence of the atomic
coherence is described by a Gaussian decay.

We investigate the atomic coherence time and the time scale of magnetic field
fluctuations by varying the time between the two Ramsey pulses. For each value of
the precession time, a fringe is recorded and its amplitude fitted. In fig. 5.5a, the
resulting fringe amplitude is plotted as a function of the precession time for different
laboratory settings. For all curves, the initial decrease of the Ramsey contrast follows
a Gaussian rather than an exponential decay. In our setup, the magnetic field thus
fluctuates on a time scale of all 100-250 realizations of the sequence but stays rather
constant during a single realization. Following the model for the fidelity of a state in
the stationary regime [122], we fit the following function to the Ramsey amplitude A
in order to extract a coherence time τcoh for each curve of fig. 5.5:

A = A0 exp

(
− t2

2τ 2
coh

)
, (5.5)

where A0 is the amplitude at precession time t = 0. For the bare laboratory environ-
ment, this fit yields a coherence time of only 80 µs. With the active AC magnetic field
noise compensation described in sec. 4.8, the coherence time is improved to 350 µs. In
addition, if we start the pulse sequence of each repetition of the measurement at the
same phase of the AC power cycle, the coherence time reaches a value above 1 ms.
This improvement demonstrates that 50 Hz fluctuations of the magnetic field, quanti-
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fied by independent measurements with a fluxgate sensor (sec. 4.8), limit the atomic
coherence time.

A typical sequence of ion-photon entanglement or ion-photon state mapping lasts
1.5-2 ms. Performing these experiments synchronized to the AC power cycle would
reduce the experiment rate by one order of magnitude. As photon generation takes
place on the time scale of 10-40 µs, over which the atomic coherence time remains high,
it is not necessary to use this AC-power-cycle trigger in the ion-photon entanglement
and state mapping experiments.

After identifying the main source of atomic decoherence via Ramsey spectroscopy
on the S − D optical qubit between |S1/2,+

1
2
〉 and |D5/2,+

3
2
〉, we now quantify the

coherence time of the D −D′ spin qubit between |D5/2,−5
2
〉 and |D5/2,−3

2
〉 for ion-

photon entanglement and the S−S ′ spin qubit between |S1/2,+
1
2
〉 and |S1/2,−1

2
〉 for

ion-photon state mapping. We expect different coherence times of these qubits for
two reasons. First, the different Landé factors of gD5/2

= 6/5 and gS1/2
= 2 result

in different sensitivities to magnetic field fluctuations. Second, we apply different
magnetic fields for the two experiments, differing both in amplitude and direction. In
order to perform a Ramsey measurement on the spin qubits, we first prepare an equal
superposition via a π/2 pulse on the |S1/2,−1

2
〉 ↔ |D5/2,−3

2
〉 transition. Subsequently,

we transfer one state to a different subspace via a π pulse on a second S1/2 ↔ D5/2

transition. For the S−S ′ spin qubit, we choose the |S1/2,−1
2
〉 ↔ |D5/2,−3

2
〉 transition

for the π pulse, while we choose |S1/2,+
1
2
〉 ↔ |D5/2,−5

2
〉 transition for the D − D′

spin qubit. After a variable precession time, the same pulse sequence is applied in the
reverse order before state detection.

In fig. 5.5b, we plot the resulting Ramsey fringe amplitudes as a function of the
waiting time. For the D − D′ qubit, we measure a coherence time of 300 µs. The
initial contrast of 98.4 ± 0.5% stays constant within error bars for 40 µs, which is
the time necessary for photon generation and setting the measurement basis of the
atom (sec. 8.5). The S − S ′ qubit, most sensitive to magnetic field noise, exhibits a
coherence time of 110 µs. Here, the contrast starts at 98.3 ± 0.5% and decreases to
92.7 ± 0.7% within 30 µs, the maximum photon integration time for state mapping.
For both qubits, the contrast at zero precession time is limited by imperfect pulses due
to the residual temperature of the ion after Doppler cooling. With sideband cooling,
the initial contrast approaches unity.

According to the ratio of Landé factors of S1/2 and D5/2, we expect a coherence
time ratio of the two spin qubits of (6/5)/2 = 0.6. Instead, we measure a ratio of
∼ 1/3. A possible reason for this discrepancy could be the different direction of the
main magnetic field if the field fluctuations have a preferred direction. To investigate
this hypothesis, we additionally determine the coherence time of the optical qubit
for the two field orientations (fig. 5.5b). For the entanglement configuration, this
measurement was taken on the same day as the measurement of the spin qubit. For
the mapping configuration, the measurements were taken on different days. Although
the initial Ramsey contrast is slightly higher for the entanglement setting (caused by
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a different Lamb-Dicke parameter of the 729 nm beam (4.6)), we measure the same
coherence time of 450 µs for both settings. The different field orientations thus do not
result in different coherence times. Comparing the coherence times of the D−D′ and
the S − D qubit for the entanglement setting, measured at the same day, we obtain
a ratio of (304 ± 3)/(457 ± 9) = 0.67 ± 0.01, exactly matching the expected value of
(6/5 ·3/2−1/2 ·2)/(6/5) = 2/3. We thus conclude that the difference in the measured
coherence times indeed corresponds to the theoretically expected value and extract an
amplitude of the fluctuations of

√
∆B2 = 1/(τcohµB(gD ·mD − gS ·mS)) ≈ 1.6 mG.

From the coherence time of the S − S ′ qubit, measured on a day close to the state
mapping measurement of chapter 9, we conclude that the magnetic field noise differed
by a factor of 1.5 between the entanglement and the state mapping measurements.
This change is probably caused by devices in neighboring laboratories connected to
the same power line as observed with the magnetic-field fluxgate sensor (sec. 4.8).

Additional to magnetic field fluctuations, frequency noise of the laser can reduce
the fringe contrast as it leads to a fluctuation of the rotation axis of the second pulse.
In our experimental setup, however, the influence of laser frequency noise on the
atomic coherence time is negligible as the linewidth of the 729 nm laser is smaller
than 100 Hz, more than one order of magnitude below the corresponding frequency
noise of the magnetic field of µB

√
∆B2 ≈ 2 kHz.

In conclusion, the atomic coherence time in our apparatus is limited by 50 Hz field
noise present in the laboratory. The installation of a magnetic field noise cancellation
system has increased the atomic coherence time in our setup by a factor of 4, suf-
ficient to not limit the fidelity of the ion-photon entanglement and ion-photon state
mapping experiments. The coherence time could be further improved by triggering
each repetition of the sequence to the AC power cycle, but this would slow down the
overall rate of photon generation. In other work, long coherence times in 40Ca+ ions
have been achieved by installing a µ-metal shield around the vacuum setup [122], by
defining a qubit in the decoherence-free subspace of two entangled ions [71, 72, 123]
or by defining a field-insensitive hyperfine qubit in the 43Ca+ isotope [74].

5.8 Minimization of micromotion

Geometric imperfections of the Paul trap and stray charges on trap electrodes may
cause an ion position different from the node of the AC field, resulting in an oscillation
of the ion in the trap at the trap drive frequency. Such an oscillation is called mi-
cromotion and may cause first- and second- order Doppler shifts leading to decreased
cooling efficiencies, AC Stark shifts in atomic transitions and reduced trapping times
[124]. Micromotion can be compensated by applying static potentials to compensation
electrodes [91]. For the detection of micromotion, various methods are described in
[91, 104, 124].

In our setup, micromotion was minimized by several of these methods in previous

65



5 Atomic qubit

work [65, 85]. The most sensitive of these methods is frequency resolved sideband
spectroscopy on the narrow |S1/2,−1

2
〉 ↔ |D5/2,−5

2
〉 transition. Via a measurement

of the Rabi frequency of the first order micromotion sideband Ω1 with respect to the
Rabi frequency Ω0 of the carrier, one directly determines the modulation index β via
J1(β)/J0(β) = Ω1/Ω0 in the low intensity limit [124]. Although most sensitive, this
resolved sideband method requires three non-collinear beams for a compensation in
all three directions. In the past, only one beam was used, which was sufficient in
combination with the other methods for the experiments described in [65, 85]. At
that stage, no particular source of micromotion for fixed trap settings was identified.

Only recently, we found that a change of the cavity-mirror’s slow piezo voltage
by more than 10 V may lead to a change of the ion’s position in the trap and thus
a measurable increase of micromotion. For the experiments reported in this work,
we found that micromotion has to be minimized for controlling the position of the
ion with respect to the standing wave of the cavity (sec. 6.1). Furthermore, in the
case of uncompensated excess micromotion, micromotion sidebands appear in the
Raman spectrum, as described in sec. 7.3. Those sidebands might overlap with carrier
transitions and should be suppressed.

We have therefore installed three non-collinear beams at 729 nm (fig. 4.5) enabling
micromotion detection in all directions. We adjust the voltage applied to the com-
pensation electrodes in order to compensate micromotion in the radial plane. To
compensate micromotion in the direction of the trap axis, we change the difference
between the voltages applied to the two tip electrodes. Typical values of the compen-
sation electrodes are 170 V and 240 V, while the tip electrodes at Vtop = 934 V and
Vbottom = 866 V. We typically obtain a ratio of the Rabi frequencies of the first-order
micromotion sideband with respect to the carrier of Ω1/Ω0 = 1/100, corresponding
to a modulation index of β = 0.02. The corresponding amplitude of micromotion is
∆x = β(λ/2π) = 2.3 nm [104], much smaller than the wavelength of the standing wave
of the cavity field.

Unfortunately, every time an ion is loaded into the trap, the cavity has to be moved
due to a thermal contact between the oven and the cavity holder (sec. 4.12). We thus
have to realign the cavity position every time an ion is loaded. As the voltage of
the piezos may change during this procedure, compensation of micromotion may also
be necessary. If the ion position with minimal excess micromotion has changed, the
height of the cavity has to be adjusted via the feedthrough [65] such that the center
of the cavity mode overlaps with the ion position.

In summary, we have achieved Doppler and sideband cooling of all three motional
modes of a single 40Ca+ ion. We have demonstrated efficient initialization, coherent
manipulation and detection of the atomic quantum state. Additionally, we have in-
creased the atomic coherence time of the ion via active stabilization of the magnetic
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field. The achieved coherence time is now long enough to not limit the measurements
of ion-photon entanglement and state mapping. We have thus provided all neces-
sary tools for the control of the stationary, atomic qubit. In the next two chapters,
we discuss its coupling to the cavity, the second necessary element of an ion-photon
interface.
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6 Controlling the ion-cavity coupling

At the heart of our experiment lies the coupling of the ion to the cavity. In order to
maximize the coupling strength, it is not enough to build a resonator with small mode
volume. In addition, the ion’s position in the resonator mode has to be controlled to a
precision much better than the optical wavelength λ of the resonator mode. Although
the spread of a laser-cooled ion’s wavefunction is much smaller than λ due to the deep
trapping potential of the Paul trap, it remains a technical challenge to control the
relative position between ion and cavity mode on the same nanometer length scale.

A single ion has been used to probe the transverse-mode structure in a linear trap
[46] and the longitudinal standing wave in a ring trap [47]. In this chapter, we present
precise control over the ion-cavity position both in the direction of the standing wave
and in the transverse direction, taking advantage of various displacement methods of
the cavity and the ion in the linear Paul trap. These measurements were published in
[52].

6.1 Localization in the standing wave

The maximum ion-cavity coupling strength g0 given by the geometry of the cavity
mode was discussed in sec. 4.3. Experimentally, one observes a value of the coupling
strength gobs 6 g0 depending on the position of the ion with respect to the standing
wave of the resonator [47]. We are able to adjust this relative position in all three
dimensions by means of in-vacuum piezo stages and a feedthrough [48]. However, the
position may vary on fast time scales due to both the temperature of the ion in the trap
and center-of-mass vibrations of the cavity with respect to the trap. These relative
vibrations can occur because cavity and trap are mounted separately and rigidly to the
vacuum chamber [65]. In order to quantify the extent of relative motion, we perform
two measurements.

In the first measurement, we observe the localization of the ion in the standing
wave of the cavity by translating the cavity with respect to the ion. We tune the drive
laser and the frequency-stabilized cavity to satisfy the Raman resonance condition
for one of the transitions described in sec. 7.2, 400 MHz red-detuned from the P3/2

excited state. After 2 ms of Doppler cooling the single ion, we apply the drive and
repump laser simultaneously for 300 µs while detecting cavity photons at the APDs.
By scanning the voltage on one cavity mirror’s piezo stack while sending a Pound-
Drever-Hall feedback signal to the other stack, we shift the cavity along its axis while
keeping its length fixed. The range of this second piezo stack is approximately one
cavity standing wave. As the position of the ion moves from an antinode to a node of
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Figure 6.1: Translation of the cavity standing wave with respect to the ion. The ion-
cavity system is driven on Raman resonance with the cavity, 400 MHz red-detuned from the
transition at 393 nm; the number of 854 nm photons generated in the cavity depends on
the ion-cavity coupling, which varies from maximum to minimum across the standing wave.
The measurement sequence described in the text is recorded 250 times for each data point.

the cavity standing wave, the Raman coupling between the S and D states and thus
the number of photons in the cavity changes from maximum to minimum, as seen
in fig. 6.1. The visibility of this modulation, observed on the APDs, is (98 ± 2)%,
corresponding to a localization of (13± 7) nm [125].

In comparison to our previously measured visibility of 60% [48], this result shows
that we have been able to decrease the residual motion of the ion along the cavity
axis to the point where our minimum signal is just above background. In [48], we
incorrectly blamed an oscillation of the cavity mount with respect to the ion trap
for the previously limited visibility. Instead, the improvement was accomplished by
optimized Doppler cooling (sec. 5.2). We estimate the ion’s spatial extension after

Doppler cooling by
√
n̄x0 ≈ 17 nm [125], where x0 =

√
~

2mωradial
= 6.5 nm is the

spread of the ground state. As the measured localization of (13 ± 7) nm is on the
order of this Doppler-cooling limit, we conclude that any relative motion of the cavity
with respect to the trap in the direction of the standing wave is negligible.

6.2 Probing the radial structure of the cavity mode

In the second measurement, we translate the ion by changing the relative voltage of
the tip electrodes, which shifts the trap minimum along the trap axis of symmetry.
In this way, we can probe the radial structure of the TEM00 cavity mode, which we
expect to have waist w0 = (13.2 ± 0.8) µm (sec. 4.3. If relative motion orthogonal
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Figure 6.2: Translation of the ion along the trap axis of symmetry, which is nearly orthog-
onal to the cavity. The ion is driven with the cooling beam near resonance at 397 nm and is
repumped by a classical standing wave within the cavity at 866 nm. The Gaussian envelope
of the intensity at 866 nm, extracted from the resonance fluorescence, is determined by the
convolution of the cavity waist w0 and relative ion-cavity motion. The inset shows a full scan
for a fixed position of the cooling beam, while for the data in the central plot, the cooling
beam is re-centered on the ion at each data point. (The inset displays the count rate on the
CCD camera vs. the ion position in arbitrary units.)

to the cavity on the µm scale is present, we expect to measure a broadened waist,
representing the convolution of the motion and the mode structure.

We drive the cavity with the repump laser at 866 nm in order to generate a classical
standing wave field. The ion is then driven near resonance at 397 nm with the cooling
laser. Because the repump is below saturation, ion fluorescence is position-dependent
and can be used to extract the 866 nm intensity as a function of position. Both
fluorescence and position are measured on the CCD camera. The resulting position-
dependent intensity reveals a periodically modulated Gaussian mode (right inset in
fig. 6.2) instead of the simple Gaussian that one expects.

We can explain this modulation by assuming that the trap axis of symmetry is not
completely orthogonal to the cavity, due to imperfect alignment in assembly of the
experiment. Therefore, as the ion is translated along the trap axis, it also intersects
the standing wave of the cavity mode. From the number of fringes visible and the
wavelength of the standing wave field, we extract the deviation of this angle from
perpendicular to be 4◦. (We observe a similar structure when we tune the relative
ion-cavity position along the axis perpendicular to both cavity and trap, but we are
unable to calibrate the length scale in this direction.) We note that these deviations
do not affect the cavity-QED experiments described in this text, which are carried out
for a fixed ion position.
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6 Controlling the ion-cavity coupling

For the data shown in the right inset of fig. 6.2, the ion is continuously displaced by
60 µm along the trap axis. Although the periodic intensity modulation is visible, the
intensity of the cooling beam varies significantly along the path of the ion, resulting in
a nonuniform ion temperature. In a more accurate measurement, shown in the main
part of fig. 6.2, we align the cooling beam to the ion position for every data point,
recorded at maxima and minima of the modulated Gaussian field.

In order to extract any motion σx,y,z which broadens our measured waist, we model
the structure of the data in fig. 6.2 by assuming a Gaussian localization of the ion
wavepacket

|ψ(x, y, z)|2 =
1

(2π)3/2σxσyσz
e
−x2

2σ2x e
−y2
2σy2 e

−z2

2σ2z . (6.1)

We define a coordinate system in which the z-axis is oriented along the cavity axis
and the trap axis lies in the xz-plane (i.e., the trap axis is situated at an angle of 4◦

to the x-axis in this plane). The intensity of the cavity field is given by

I(x, y, z) = I0e
−2x2

w2
0 e

−2y2

w2
0 sin2

(
2π

λ
z

)
, (6.2)

where λ = 866 nm. We have approximated the waist of the TEM00 mode as w0,
since the range of travel in the z direction is much smaller than the Raleigh range
of 640 µm. The expected intensity profile Ieff seen by the ion is then given by the
convolution of |ψ(x, y, z)|2 with I(x, y, z). We solve for Ieff(x, y, z) analytically and
set y = 0, z = x tan 4◦ to parameterize I as a function of x, as in the measurement of
fig. 6.2:

I(x) ∝ e−2x2/(4σ2
x+w2

0)

(
1− cos

(
4πx tan 4◦

λ

)
e−8π2σ2

z/λ
2

)
. (6.3)

We fit this function to the data of fig. 6.2 and obtain values σx = 4.7 ± 2.2 µm
and σz = 48 ± 46 nm. The value for σz is consistent with the localization of the
previous measurement. Concerning σx, it is surprising that micron-scale motion is only
orthogonal to the cavity axis; we hypothesize that this motion is due to a vibration of
the cavity mount with respect to the trap along the axis of the cavity mount, coupled
into the chamber via the translational feedthrough.

The effect of σx on the ion-cavity coupling is given by

gobs =
1√

2πσx

∫ ∞
−∞

dx e
−x2

2σ2x g0e
−x2

w2
0 = (0.89± 0.06)g0. (6.4)

Thus, the observed coupling along the x axis is only slightly reduced from its
maximal value, and we have shown in the previous measurement that a reduction
along the z axis is negligible. Although we are not able to quantify the extent of
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motion along the y axis, the agreement of our data with simulations in which g = gobs

(sec. 7.2) suggests that it does not contribute significantly.
For experiments involving two ions, the observed modulation in the coupling along

the trap axis allows for precise control of the ions’ individual coupling to the mode
of the cavity. As the typical spacing between two ions is on the order of ∼ 5 µm, we
have the ability to place the ions at neighboring anti-nodes by adjusting the voltage of
the tip electrodes; in this case, both ions couple with similar, near-maximal strength.
Conversely, we can position one ion at a node and the other at an antinode, thus
coupling only one ion to the cavity.
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7 Cavity-assisted Raman spectroscopy

We have previously shown that with our ion-cavity system, single photons can be
generated both with high efficiency and high two-photon suppression [27]. For a
quantum interface, we now use the polarization of the photon to encode the flying
qubit. We therefore have to select two Raman transitions in which the polarization of
the generated photon is controlled by the atomic qubit state that is addressed.

In this chapter, we first identify suitable states and transitions in 40Ca+ for ion-
photon interface protocols. We then perform spectroscopy on all S1/2 ↔ P3/2 ↔
D5/2 Raman transitions and demonstrate that we can address specific qubit states
generating cavity photons with the desired polarization. These results were published
in [52].

7.1 Geometry of beams and magnetic field

Each of the manifolds involved in the S1/2 ↔ P3/2 ↔ D5/2 Raman transition offers a
rich Zeeman structure, which can be exploited for realizing quantum interface schemes.
For the purpose of encoding a photonic qubit in its polarization degree of freedom, one
can imagine a model in which two and only two cavity-assisted Raman transitions are
possible. That is, the two transition paths could either share an initial state but not a
final state, or they could connect different initial states to the same final state. In the
first case, we identify the two final states as an atomic qubit, whereas in the second
case, the initial states constitute the atomic qubit. If these two Raman transitions
produce photons with orthogonal polarizations, then each state of the atomic qubit
can be identified with one transition and thus one polarization state of the photon.

In this section, we focus on the case in which two transition paths begin in the
same state and identify a favorable experimental configuration. This case corresponds
to the generation of atom-photon entanglement, described in chapter 8. The inverse
case, which corresponds to a mapping of the atomic qubit to the photonic one, will be
discussed in chapter 9.

In 40Ca+ , starting in one of the S1/2 states, we apply a drive laser at 393 nm
on the S1/2 ↔ P3/2 transitions in order to turn on the Raman coupling. For every
possible polarization (σ+, π or σ−) of this laser, there exist three Raman transitions,
each coupling to a different state of the D5/2 manifold as shown in fig. 7.1. At zero
magnetic field, all Zeeman substates of one manifold are degenerate, and therefore all
Raman transitions overlap in frequency, resulting in an unfavorable situation: three
transitions are possible instead of two. The number of allowed Raman transitions thus
has to be reduced by one.
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7 Cavity-assisted Raman spectroscopy

One option to disable one of the three Raman transitions at zero magnetic field
is realized in neutral atom experiments [21, 126]. If the cavity axis is chosen as the
quantization axis, we see that the polarization of π photons lies along the cavity axis
and that therefore only circularly polarized photons are emitted into the cavity. For
the case of a drive laser with propagation orthogonal to the cavity axis and linear
polarization along the cavity axis, the initial state is coupled to only one of the P3/2

states. As a consequence, only two Raman transitions are driven, which generate σ+-
and σ−-polarized photons in the cavity, as in our model system.

Alternatively, one can apply a magnetic field B, which lifts the degeneracy between
Zeeman substates and splits Raman transitions as given by eq. 3.2. This splitting
enables individual addressing of all Raman transitions via the detuning of the drive
laser δdrv or the cavity δcav and the polarization of the drive laser. Since for an atom-
photon interface, it is advantageous to have the polarization and frequency degrees of
freedom of the photon uncorrelated, the individual transitions should be addressed by
the frequency and polarization of the drive laser only, while the cavity detuning remains
fixed. Thus, photons generated by all Raman transitions have the same frequency. In
this case, our model can be realized by driving two Raman transitions at two distinct
drive-laser frequencies simultaneously. For a proper definition of the photonic qubit,
two transitions have to be chosen so as to generate photons in orthogonal polarization
modes of the cavity.

As the individual addressing of the S1/2 ↔ D5/2 transitions required for atomic
qubit manipulation and detection relies on a nonzero magnetic field, we opt for the
second scenario, as it avoids a change of the magnetic field during the experiment.

Out of the nine S1/2 ↔ P3/2 ↔ D5/2 Raman transitions available from each S
state (fig. 7.1), we now select two according to the following considerations. (In the
discussion that follows, we assume that the Raman resonance condition is satisfied,
that is, that δdrv exactly balances the sum of δcav and all Zeeman and Stark shifts of
the initial and final states.) First, the coherence of photon generation in our system
is determined by the ratio of the effective Raman coupling strength Ωeff to the effec-
tive spontaneous emission rate of the atom γeff [27]. The effective Raman coupling
comprised of the S1/2 ↔ P3/2 transition i and the P3/2 ↔ D5/2 transition j has an
amplitude of

Ωeff
i,j ≈

αi Ωdrv βj 2 g0

2|δdrv|
, (7.1)

where Ωdrv is the drive-laser Rabi frequency, δdrv is the drive-laser detuning, and g0 is
the strength of the ion-cavity coupling to the P3/2↔D5/2 transition. The coefficient αi
is the product of the projection of the drive laser polarization onto the dipole moment
of transition i with the Clebsch-Gordon coefficient of this transition. Analogously,
βj is the product of the projection of the polarization plane of the cavity mode to
the atomic dipole moment of transition j with the Clebsch-Gordon coefficient of this
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Figure 7.1: S1/2↔ P3/2↔D5/2 Raman transition strengths. (Left) Simplified level scheme
showing all electronic states available for Raman transitions at nonzero magnetic field. We
consider three drive laser polarizations, (a) σ−, (b) π and (c) σ+. For each drive laser
polarization, three Raman transitions are possible from each S1/2 state. The polarization of
the photons emitted on these transitions are σ+, π and σ−. (Right) Schematic plot of the
relative strengths of the Raman transitions corresponding to these drive laser polarizations.
The filled (unfilled) bars represent the transitions that couple to the |S1/2,−1

2〉 ( |S1/2,+
1
2〉)

state. The Raman detuning is the detuning of the drive laser or the cavity at nonzero
magnetic field. Note: the relative transition strengths in the experiment also depend on the
projection of the emitted photons’ polarization onto the plane in which cavity photons are
polarized.
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transition. The effective spontaneous emission rate of the atom is given by

γeff ≈ γ

(
Ωdrv

2|δdrv|

)2

, (7.2)

which becomes independent of transition i, j when the detuning δdrv is much larger
than the Zeeman splittings ∆E given by Eq. 3.2. For a fixed ratio Ωdrv/|δdrv| and
g0 determined by the cavity geometry, in order to maximize the ratio Ωeff/γeff , one
should maximize the product αi · βj.

A second criterion for selection is that the two transitions should have similar
strengths, since then mapping of both components of an arbitrary atomic superposition
to the photonic one occurs at the same rate.

In order to meet both criteria, i.e., both high and similar coupling strengths, two
scenarios emerge as attractive. In the first scenario, the magnetic field is oriented
along the cavity axis. If we choose the magnetic field axis as the quantization axis,
the possible polarization states of photons in the cavity are then σ+ and σ−. If we
choose the initial state to be |S1/2,−1

2
〉, then the optimal transition pair is |S1/2,−1

2
〉

↔ |P3/2,−1
2
〉 ↔ |D5/2,−3

2
〉 and |S1/2,−1

2
〉 ↔ |P3/2,−1

2
〉 ↔ |D5/2,+

1
2
〉, with transition

strengths (αi ·βj , α′i ·β′j) = (0.52, 0.37). The corresponding transitions from |S1/2,+
1
2
〉

have identical transition strengths.
In the second scenario, the direction of the magnetic field is orthogonal to the cavity

axis. We again identify the magnetic field axis as the quantization axis; photons emit-
ted by the atom with circular polarization are now projected to horizontally-polarized
(H) cavity photons, while linearly-polarized π photons are projected to vertically-
polarized (V ) cavity photons, where this assignment defines H and V . Again, we
assume initial state |S1/2,−1

2
〉. The optimal transition pair is given by |S1/2,−1

2
〉 ↔

|P3/2,−3
2
〉 ↔ |D5/2,−5

2
〉 and |S1/2,−1

2
〉 ↔ |P3/2,−3

2
〉 ↔ |D5/2,−3

2
〉, with strengths

(αi · βj , α′i · β′j) = (0.58, 0.52), where the drive beam is circularly polarized. (The
corresponding transitions from |S1/2,+

1
2
〉 again have identical strengths.) As these

transition strengths are both larger and more similar than in the first scenario, this
pair is the most suitable for the generation of atom-photon entanglement.

In order to realize this geometry for atom-photon entanglement, the magnetic field
orientation was changed to be both orthogonal to the cavity axis and at an angle of
45◦ to the trap axis. With this magnetic field orientation, a new σ− polarized beam
(called beam B in the following) was installed with propagation direction along the
magnetic field axis (fig. 4.5). All measurements reported in earlier theses [65, 85]
on this experiment were carried out with a linearly polarized drive beam (beam A,
fig. 4.5). Its linear polarization can be rotated with a half-waveplate in order to drive
π transitions, simultaneous σ+ and σ− transitions, or a combination of all three.

We note that this choice of a magnetic field aligned orthogonally to the cavity
axis should be preferred in any setup in which state initialization is performed via
optical pumping with a circularly polarized beam at 397 nm. If the magnetic field
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were aligned along the cavity axis, it would be technically challenging to optimize the
polarization of a circularly polarized beam at 397 nm propagating through the cavity
mirrors and optical elements, such as waveplates and dichroic mirrors, optimized for
854 nm and 785 nm.

7.2 Raman spectra for different geometries

In order to locate specific cavity-mediated Raman transitions, we first probe the spec-
trum of Raman transitions between the S1/2 and D5/2 manifolds by scanning the
detuning of the drive laser δdrv; the cavity detuning δcav ≈ 2π × 400 MHz remains
fixed.

The experimental sequence is as follows: after Doppler cooling the ion for 2 ms,
we apply the drive laser simultaneously with the near-resonant 854 nm and 866 nm
repump lasers for 300 µs. During this interval, we record photons emitted from the
cavity at the APDs, where the waveplates in front of the PBS at the cavity output
have been set to measure photons in the (H,V ) basis. We repeat this sequence 250
times for each value of δdrv. The observed spectrum depends on the polarization of
the drive laser beam. The frequencies of the spectrum peaks are Stark-shifted by the
drive laser field. Rabi frequencies Ωdrv are thus calibrated by measuring the spectrum
frequency shift due to a known fractional change in the drive intensity.

Beam A drives the S1/2 ↔ P3/2 transition with σ+ and σ− polarization, resulting in
12 possible Raman transitions, indicated in the center of fig. 7.2. However, transitions
which share the same initial and final states but are driven via a different virtual state
of the P3/2 manifold are resonant at the same drive laser frequency. We therefore
expect ten peaks in the spectrum, all of which are identified in fig. 7.3. Moreover, for
each peak, we are able to resolve sidebands corresponding to the ion’s secular motion
at frequencies ωaxial and ωradial1,radial2. The Rabi frequency of the drive laser is given by
Ωdrv = 2π×88 MHz. This frequency corresponds to values Ωeff

i,j = 2π×αiβj×0.31 MHz
and Γeff = 2γeff = 2π × 0.25 MHz.

Beam B propagates along the magnetic field axis with σ− polarization, driving six
Raman transitions, indicated in the right part of fig. 7.2. Due to its polarization, beam
B depopulates the |S1/2,+

1
2
〉 state via optical pumping. Although the state can be

repopulated by the repumping beams, its steady-state population in simulations is on
the order of 5%. We thus expect three central peaks in the Raman spectrum, which
can be identified in fig. 7.3(b) (Ωdrv = 2π × 99 MHz, Ωeff

i,j = 2π × αiβj × 0.35 MHz,
Γeff = 2π× 0.32 MHz). The difference in maximum count rate between the spectra of
beams A and B is due primarily to optical pumping: the Raman transition and the
repump laser drive a nearly closed cycle, efficiently generating cavity photons. The
two strongest transitions driven by beam B are the ones selected in Section 7.1 as
optimal for atom-photon entanglement.

For both drive beams, the relative heights of the spectrum peaks correspond
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Figure 7.2: Driving schemes for the S1/2 ↔ P3/2 ↔ D5/2 Raman transitions. (Left)
Simplified level scheme of 40Ca+ with relevant ion-field couplings: Ωdrv,Ωrep1,Ωrep2 are the
Rabi frequencies of the drive and the two repump lasers, respectively, and δdrv, δrep1, δrep2 are
the detunings of these lasers from resonance. The Rabi frequency of the ion-cavity coupling
is 2g, where the cavity is detuned by δcav from the D5/2 ↔ P3/2 transition. (Center) Due to
its linear polarization orthogonal to the magnetic field, beam A drives σ+ and σ− transitions
(blue arrows). Photons emitted into the cavity have horizontal (red) or vertical polarization
(green). For the value of δdrv indicated here, only the transition illustrated with a solid
line is resonant. (Right) Beam B has σ− polarization and thus provides optical pumping,
suppressing three of the six possible Raman transitions (transparent lines).

roughly to the calculated transition strengths (see sec. 7.1). The full dynamics of
the 18-level system with two orthogonal cavity modes, driven by three lasers, are de-
scribed by master-equation simulations, also plotted in fig. 7.3 and fig. 7.3(b). For
example, one would expect the spectrum of fig. 7.3 to be symmetric, as corresponding
transitions from the two S1/2 states have equal strengths, but the asymmetry in height
from left to right is due to a detuning of the repump laser at 854 nm. The peak width
is primarily determined by the Rabi frequency Ωdrv; the background signal is entirely
due to dark counts of the APD. The frequency splitting between peaks is determined
by the magnetic field of 4.77 G, which we have selected in order to avoid overlap of
sidebands from neighboring transitions. The simulation amplitudes correspond to a
cavity output path efficiency of 8.0%, consistent with the measured path efficiencies
of (8.1± 1.5, 7.6± 1.5)%.
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Figure 7.3: Raman spectroscopy of the S1/2 ↔ P3/2 ↔ D5/2 transition. One arm of the
Raman transition is provided by the cavity; the other arm is provided by (a) drive beam
A with σ+/σ− polarization, or (b) drive beam B σ− polarization. APD count rates are
plotted as a function of the drive laser detuning; photons from the H (red) and V (green)
cavity modes are recorded on separate APDs. The quantum states of each transition are
noted above the individual peaks. A steady-state solution of the master equation, taking into
account both cavity modes and 18 levels of 40Ca+ , agrees well with the data. The master-
equation simulation does not include motion of the ion and thus does not reproduce the
sidebands that are visible at secular frequencies ωaxial and ωradial1,radial2. Note the different
scale of the APD count rate in (b). The two transitions in the middle and on the right of
(b) are the ones employed for ion-photon entanglement.
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7.3 Motional sidebands

Motional sidebands are driven by beams A and B due to the nonzero projection of
their ~k-vector to all three motional axes. The axial and radial Lamb-Dicke parameters
for both beams are given by ηa = 0.12 and ηr = 0.05. In fig. 7.4a, we plot the spectrum
of beam B in a narrow scan of δdrv across the |S1/2,−1

2
〉 ↔ |P3/2,−3

2
〉 ↔ |D5/2,−5

2
〉

transition. If the ion is sideband-cooled to the axial ground state before the drive
laser is applied, the axial red sideband is suppressed. As the blue sideband height is
proportional to

√
na + 1ηa, where na is the ion’s axial phonon number, the height of

the blue sideband also decreases by a factor of 1√
na+1

[42].
Moreover, we are able to drive micromotion sidebands at frequencies shifted by

ωtrap = 2π × 23.4 MHz from those of the primary spectrum. Typically, micromotion
is compensated in the experiment so as to suppress sidebands on the quadrupole
transition, which also results in suppression on the cavity Raman transition. For
comparison, however, the Raman spectrum of beam B is shown in fig. 7.4b also for
the case in which micromotion has not been properly compensated.

Evidence of motional sidebands is intriguing because of prospects for using the
motional states of the ion to construct a quantum interface [127]. However, since the
effective Raman coupling Ωeff depends on the Lamb-Dicke parameter η to first order,
but γeff depends on η to second order, the ratio Ωeff/γeff is reduced by η for motional
sidebands. Employing the motional sidebands for photon generation would thus imply
a weak effective Raman coupling.

In conclusion, we employ the frequency of the drive laser at the S1/2 ↔ P3/2 transition
to address individual S1/2 ↔ P3/2 ↔ D5/2 Raman transitions in which photons are
generated in the cavity resonant with the P3/2 ↔ D5/2 transition. We have imple-
mented a configuration of magnetic field orientation, driving beam polarization, and
cavity photon polarization suitable for ion-photon entanglement. This configuration
offers two Raman transitions with similar strength that address the two qubit states
and generate photons with orthogonal polarization. Driving these two transitions si-
multaneously allows for generating ion-photon entanglement which we demonstrate in
the next chapter.
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Figure 7.4: Motional sidebands resolved by Raman spectroscopy. We drive cavity-assisted
transitions using beam B and plot the APD count rate as a function of drive laser detuning.
(a) We drive the |S1/2,−1

2〉 ↔ |P3/2,−3
2〉 ↔ |D5/2,−5

2〉 transition (also the rightmost
transition of fig. 7.3(b)) and plot the count rate after Doppler cooling (red solid line) and axial
sideband cooling (blue dashed line) of the ion. The Rabi frequency is Ωdrv = 2π × 33 MHz.
Note the suppression of the red axial sideband and the reduction of the blue axial sideband
after sideband cooling. (b) Micromotion sidebands, offset from the primary spectrum by
the trap drive radio frequency of 23.4 MHz, are observable (red line) but can be suppressed
(blue line) by applying DC voltages to compensation electrodes. The different height of the
carrier is due to a different position in the standing wave. For this data, Ωdrv = 2π×92 MHz.
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8 Tunable ion-photon entanglement

We have now identified all Raman transitions between the S1/2, P3/2, D5/2 manifolds
and demonstrated the ability to generate single photons with controlled polarization
[52]. Together with the coherent initialization, manipulation and read out of the
electronic state of the ion, we have all the necessary tools in hand for the realization of
atom-photon interface protocols. One fundamental building block of such an interface
is the generation of atom-photon entanglement. This chapter provides a detailed
description of the generation and verification of atom-photon entanglement in our
setup via a bichromatic excitation. Furthermore, the tunable character of the ion-
photon interaction as well as the time-independence of the resulting entangled state
is demonstrated. These results were published in [53].

8.1 Motivation

Proposed quantum networks require both a quantum interface between light and mat-
ter and the coherent control of quantum states [14, 41]. A quantum interface can
be realized by entangling the state of a single photon with the state of an atomic
or solid-state quantum memory, as demonstrated in recent experiments with trapped
ions [25, 31], neutral atoms [21, 126], atomic ensembles [33, 34], and nitrogen-vacancy
spins [35]. The entangling interaction couples an initial quantum memory state to two
possible light-matter states, and the atomic level structure of the memory determines
the available coupling paths. In previous work, these paths’ transition parameters
determine the phase and amplitude of the final entangled state, unless the memory
is initially prepared in a superposition state [31], a step that requires coherent con-
trol. Here we report the fully tunable entanglement of a single 40Ca+ ion and the
polarization state of a single photon within an optical resonator. Our method, based
on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling
paths and adjust their relative phase and amplitude. The cavity setting enables intrin-
sically deterministic, high-fidelity generation of any two-qubit entangled state. This
approach is applicable to a broad range of candidate systems and thus presents itself
as a promising method for distributing information within quantum networks.

Optical cavities are often proposed as a means to improve the efficiency of atom-
photon entanglement generation. Experiments using single emitters [21, 25, 31, 35]
collect photons over a limited solid angle, with only a small fraction of entanglement
events detected. However, by placing the emitter inside a low-loss cavity, it is possible
to generate photons with near-unit efficiency in the cavity mode [41, 128]. Neutral
atoms in a resonator have been used to generate polarization-entangled photon pairs
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[126, 129], but this has not yet been combined with coherent operations on the atomic
state. Trapped ions have the advantage of well-developed methods for coherent state
manipulation and readout [42, 43]. Using a single trapped ion integrated with a
high-finesse cavity, we implement full tomography of the joint atom-photon state and
generate maximally entangled states with fidelities up to (97.4± 0.2)%.

In earlier demonstrations of atom-photon entanglement, the amplitudes of the re-
sulting state are fixed by atomic transition amplitudes [21, 25, 35, 126, 129]. If the
final atomic states are not degenerate, as in the case of a Zeeman splitting, the phase
of the atomic state after photon detection is determined by the time at which detec-
tion occurs. In contrast, we control both amplitude and phase via two simultaneous
cavity-mediated Raman transitions. The bichromatic Raman fields ensure the inde-
pendence of the atomic state from the photon-detection time; their relative amplitude
and phase determine the state parameters. Within a quantum network, such a tun-
able state could be matched to any second state at a remote node, generating optimal
long-distance entanglement in a quantum-repeater architecture [40].

A tunable state has previously been employed as the building block for telepor-
tation [31] and a heralded gate between remote qubits [130]. In this case, tunability
of the entangled state is inherited from control over the initial state of the atom.
The photonic qubit is encoded in frequency, and as a result, integration with a cavity
would be technically challenging. The entangling process is intrinsically probabilistic,
with efficiency limited to 50% even if all emitted photons could be collected. In the
scheme presented here, the entangling interaction itself is tunable, and no coherent
manipulation of the input state is required. For atomic systems with a complex level
scheme in which several transition paths are possible, the two most suitable paths can
be selected.

8.2 Entanglement and Bell inequalities

Entanglement is one of the most fascinating properties of quantum mechanics in which
two remote, entangled quantum objects show non-classical correlations without inter-
action. While nowadays entanglement is regarded as a key resource for quantum
communication and computing, in the history of quantum mechanics its implications
have caused fundamental debates on the correct constitution of a physical theory
[131–133]. Experiments have confirmed the predictions of quantum mechanics, but
its limits remain to be clarified: why can we entangle quantum objects as atoms and
photons but not classical objects [132]?

Mathematically, the global state of a composite system ρA,B is entangled if it cannot
be separated into a product of the states ρA and ρB of the individual subsystems A
and B: ρA,B 6= ρA ⊗ ρB. If one wants to describe the state of subsystem A (or B)
alone by tracing out the other subsystem B (or A) of ρA,B, one obtains a completely
mixed state ρA. A mixed ensemble is entangled if its state cannot be decomposed into
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a mixture of factorisable pure states.

A quantitative characterization of entanglement is possible via entanglement mea-
sures. For a pure state, the entanglement is given by the entropy of subsystem A (or
B). For mixed states, this measure can be generalized to the entanglement of forma-
tion, which can in turn be expressed as an explicit function of the density matrix ρ
via the concurrence [39]. The concurrence is an entanglement measure itself, ranging
from 0 to 1 [134]:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (8.1)

where λi are the eigenvalues, in decreasing order, of the concurrence matrix R(ρ) =√√
ρρ̃
√
ρ, with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) and σy the y-Pauli operator.

Unsatisfied with the probabilistic structure of quantum mechanics, Einstein, Podol-
sky and Rosen argued in 1935 that “the wavefunction does not provide a complete
description of the physical reality” [131]. Theories that do fulfill such a classical
description and imply realism (objects have certain properties independent of a mea-
surement) and locality (the properties of spatially separated objects are independent
from each other) can be summarized as local hidden-variable models (LHVMs). In
1964 John Bell introduced a quantitative version of the so-called “EPR-paradox,” an
inequality capable of testing quantum mechanics against LHVMs [133]. A generalized
inequality has been derived by Clauser, Horne, Shimony and Holt (CHSH), accessible
in experimental tests [135]. The first experiments showing a violation of a CHSH-Bell
inequality were performed with photons [136–139], followed by experiments with mas-
sive particles [140, 141]. With this work, we add one more experiment that shows the
violation of a CHSH-Bell inequality, using the entanglement of the hybrid atom-photon
system [129, 142].

Although all experimental tests of Bell-type inequalities to date confirm the pre-
dictions of quantum mechanics, they suffer from at least one loophole [143]. While
photon experiments have been able to close the locality loophole [144], they suffer
from the detection loophole. Experiments with atoms, on the other hand, have closed
the detection loophole [140] but continue to be subject to the locality loophole.

The possibility of a loophole-free test of Bell-type inequalities with a hybrid atom-
photon system like the one studied in this work has been analyzed in [143]. Although
the proposed generation of non-maximally entangled states between atom and photon
can be realized in our setup, not all requirements can be fulfilled. First, the overall
photon detection efficiency would have to be increased from 6% to ∼ 43%, which could
only be achieved by using better cavity mirrors (see section 8.10). Second, in order to
enforce locality of the measurements, the photon would have to be measured at a dis-
tance from the atom large enough to circumvent information transfer of measurement
results between atom and photon via classical communication. Given the minimum
time of ∼ 170 µs needed in our setup for complete detection of the atom at an error
6 1%, the separation needs to be on the order of c · 170 µs = 50 km. Even if the
detection time could be decreased by an order of magnitude, e.g., by using higher NA
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objectives and additional detectors, the losses in an optical fiber at the wavelength of
854 nm would be on the order of 30 % [145], making this method very challenging.

A loophole-free test of a Bell-type inequality appears more promising via simultane-
ous measurement of two remote, entangled atoms [146]. Long-distance entanglement
of remote atoms can be achieved via atom-photon entanglement [36]. In order to avoid
the locality loophole, the time required for atomic detection sets the necessary dis-
tance between the two atoms. With two ion-trap cavity systems capable of generating
atom-photon entanglement as described in this work, a minimum separation of 5 km
is necessary with the current atom-detection method. In this case, photon absorption
in the optical path only determines the rate at which entanglement between the atoms
can be generated but does not influence the detection loophole, if the entanglement of
the atoms can be heralded.

8.3 Bichromatic Raman transition

In most of the reported atom-photon entanglement experiments, a monochromatic ex-
citation initiates a process in which exactly two transitions are driven simultaneously,
resulting in entanglement between the electronic state of the atom and the polariza-
tion of the photon [21, 25, 35, 126]. Here, the structure of the atomic level scheme has
to ensure that exactly two transitions are possible. The means by which entanglement
is generated is thus fixed by the level scheme of the chosen species. An exception to
those monochromatic schemes is the experiment of [31], in which a short pulse with a
broad frequency spectrum is used in order to map an atomic superposition state to an
atom-photon entangled state. However, the application of this method is restricted to
the particular level scheme of the atom employed.

Given the level structure of 40Ca+ , making use of a cavity resonant with the D−P
transition, neither of the these methods can be applied. In this work, we have therefore
developed a new driving scheme, in which we select exactly two appropriate transitions
in the level scheme of 40Ca+ via bichromatic excitation. This bichromatic driving
scheme not only enables the generation of atom-photon entanglement but also allows
for the tunability of the atom-photon interaction. Due to this tunable interaction, all
parameters of the entangled state can be controlled, as demonstrated in sections 8.7
and 8.8. Moreover, the scheme we have developed also results in a time-independence
of both the entangled atom-photon state as well as the atomic superposition state after
photon detection, as demonstrated in section 8.6. By starting in a superposition state
of the atom, the bichromatic scheme also enables various additional protocols such as
state mapping, as described in chapter 9. This tunable interaction could in principle
be applied to any atomic species, as it allows one to freely choose two appropriate
transitions in a system with a complex level structure.

The choice of transitions in 40Ca+ for atom-photon entanglement has been discussed
in section 7.1. As indicated in fig. 8.1(a), the magnetic field is oriented orthogonally
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(b)(a)

Figure 8.1: Beam geometry and entanglement sequence. (a), A single ion is confined in
a Paul trap (indicated schematically by two end-caps) at the point of maximum coupling
to a high-finesse cavity. A 393 nm laser generates atom-photon entanglement via cavity-
mediated Raman transitions. To characterize entanglement, a 729 nm laser manipulates
the atomic state. The polarization of photons exiting the cavity is analyzed using half-
and quarter-waveplates (L/2, L/4), a polarizing beamsplitter cube (PBS), and two fiber-
coupled avalanche photodiodes (APD0, APD1). Omitted for clarity: lasers that photo-ionize,
Doppler cool, and repump the ion, as well as the RF electrodes of the trap. (b) A single
40Ca+ ion is initialized in state |S〉. A bichromatic Raman pulse with Rabi frequencies Ω1,Ω2

and detunings ∆1,∆2 couples |S〉 to states |D〉 and |D′〉 via two cavity modes H and V .
This process generates a single cavity photon, whose polarization state (H,V ) is entangled
with the atomic state (D,D′) (1). To read out entanglement, |D′〉 is mapped to |S〉 (2), and
coherent operations on the S −D transition (3) prepare the ion for measurement in the σx,
σy, or σz basis.
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8 Tunable ion-photon entanglement

to the cavity axis, while the drive beam propagates along the magnetic field axis with
σ− polarization.

The entangling process is illustrated in fig. 8.1(b). Following a Doppler cooling
interval, the ion is initialized via optical pumping in the state |S〉 ≡ |S1/2,−1

2
〉. In

order to couple |S〉 simultaneously to the two states |D〉 ≡ |D5/2,−3
2
〉 and |D′〉 ≡

|D5/2,−5
2
〉, we apply a phase-stable bichromatic Raman field, detuned by ∆l1 and ∆l2

from the |S〉 − |P 〉 transition. Here, the intermediate state |P 〉 ≡ |P3/2,−3
2
〉 is used.

The cavity is stabilized at detuning ∆c
1 ≈ −400 MHz from the |P 〉−|D〉 transition and

∆c
2 = ∆c

1 + ∆D,D′ from the |P 〉− |D′〉 transition, where ∆D,D′ is the Zeeman splitting
between |D〉 and |D′〉. When ∆c

i and ∆i satisfy the Raman resonance condition for
both i = (1, 2), population is transferred coherently from |S〉 to both |D〉 and |D′〉,
and a single photon is generated in the cavity [26, 27, 95, 147].

The effective coupling strength of each of the two transitions is given by Ωeff
i as

defined in eq. 7.1. In free space, these two pathways generate π- and σ+-polarized
photons, respectively. Within the cavity, the π photon is projected onto the horizon-
tally (H) polarized mode and the σ+ photon onto the vertically (V ) polarized mode
of the cavity [48, 52].

Ideally, the bichromatic field Ω1e
iωl1 t + Ω2e

i(ωl2 t+ϕRaman) generates any state of the
form

|ψ〉 = cosα|DH〉+ eiϕ sinα|D′V 〉, (8.2)

where α ≡ tan−1 (Ωeff
2 /Ω

eff
1 ) and ϕ is determined by the relative phase of the Raman

fields ϕRaman.

For the generation of entanglement, the bichromatic fields have to be classical,
described by coherent states |α〉 [66]. Only then can the two paths not be distinguished
via the absorption of a photon from either of the two fields, since a coherent state
remains constant after annihilation of a single photon â |α〉 = |α〉.

Finally, it should be noted that the chosen geometry with a σ− drive beam opti-
mizes the efficiency of the entanglement in two ways. On the one hand, it maximizes
the strengths of the Raman transitions with respect to off-resonant scattering. On
the other hand, it also provides optical pumping. While a linearly polarized beam
that drives π and/or σ+/σ− transitions could off-resonantly excite more than one Zee-
man substate of the P3/2 manifold, the σ− drive beam can only populate the state
|P3/2,−3

2
〉. While decay on the P3/2 ↔ S1/2 transition in general thus populates both

S1/2 states, out of which one is uncoupled in the case of the σ− drive beam, the de-
cay automatically re-initializes the |S1/2,−1

2
〉 state. As no initial phase information

can be lost, this re-initialization hence increases the efficiency compared to the use
of a linearly polarized drive beam. The only process that still reduces the efficiency
of photon generation is decay on the P3/2 ↔ D5/2 transition. One could therefore
argue that for this particular geometry, only the decay rate of the P3/2 ↔ D5/2 state,
γP3/2↔D5/2

= 2π× 0.85 MHz has to be considered for the relevant cavity-QED param-
eters (g, κ, γ).
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8.4 Experimental sequence and temporal pulse-shape overlap

In order to realize the bichromatic Raman transition described above, we have to iden-
tify the two target Raman transitions and generate the required optical frequencies.
For the phase of the atomic state to be independent of the photon detection time, we
set the frequencies of the Raman fields at 393 nm to be resonant with the atomic levels
(sec. 8.6). Furthermore, the state detection of the atom at 729 nm has to be phase
coherent with the entanglement generation at 393 nm. Therefore, we generate these
fields via AOMs driven by RF signals which are in turn generated by DDS boards
referenced to the same clock signal (sec. 4.11).

In a first step, we identify all Raman transitions via monochromatic spectroscopy
(fig. 7.3), continuously driving the ion with a Raman beam at 393 nm and repump
beams at 854 nm and 866 nm as described in sec. 7.2. At this stage, the single-pass
AOM (sec. 4.4) is driven at 80 MHz creating a monochromatic field. Having identified
the target transitions, we set the radio frequency of the double-pass AOM at 393 nm
(sec. 4.4) in order to generate a field centered between the two target transitions.

In a second step, we measure the frequencies of the quadrupole carrier transi-
tions |S1/2,−1

2
〉 ↔ |D5/2,−5

2
〉 and |S1/2,−1

2
〉 ↔ |D5/2,−3

2
〉 at 729 nm required

for the atomic state detection (sec. 8.5) to a precision of ∼ 100 Hz. From the fre-
quency difference δν of these two transitions, we extract the level splitting between
the D and D′ states of ∆ED,D′ = hδν. In the experiment, we obtain a value of
∆ED,D′ = h · 4.9740(1) MHz, corresponding to a magnetic field amplitude of B =
2.9615(5) G. Finally, we generate a bichromatic Raman field by driving the single-
pass AOM (sec. 4.4) at the two distinct radio frequencies 80 MHz ±δν.

In order to simultaneously generate single photons on both transitions, we repeat
the following sequence: after 800 µs of Doppler cooling the ion, optical pumping
for 60 µs prepares the ion in the |S1/2,−1

2
〉 state. After 3 µs of waiting time, a

bichromatic Raman pulse of 37 µs duration generates a single photon. For the atomic
state detection, explained in more detail in sec. 8.5 and 5.4, we apply a 4 µs mapping
pulse, an optional 4.3 µs rotation, and 500 µs of fluorescence detection. The repump
lasers transfer all population back to the S manifold during the next Doppler cooling
interval. In total, each sequence lasts 1.5 ms.

While the atom is measured in all attempts, the probability that a photon is
detected on one of the APDs when the sequence is run is 5.7 %. This overall efficiency
is distributed over the efficiency of generating a photon (90%), the cavity output
coupling of 20% (sec. 4.3), the optical path transmission of 80% and the mean APD
detection efficiency of 40%.

The mean rate at which single photons are detected is 40.5 events/s. A faster
detection rate could be achieved by triggering ion-state readout on the detection of
a photon. In the case of no photon detection, unnecessary heating due to detection
settings of laser frequencies and intensities could be avoided and thus the Doppler
cooling time could be reduced.
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(a)

(b)

Figure 8.2: Temporal pulse shape of H and V cavity photons for simultaneous drive of the
two Raman transitions. (a), H,V photons for Raman phase 0.25 π, containing ∼ 13,000
events. The relative difference of the integrated curves is 1.4%. (b), H,V photons for all
eight measured Raman phases, containing ∼ 112,000 events. The relative difference of the
integrated curves is 2.4%.

In order to circumvent entanglement of the photon’s polarization degree of freedom
with its time-bin degree of freedom, it is necessary to overlap the two temporal pulse
shapes of H and V photons. As discussed in sec. 8.6, only the Rabi frequencies
Ω1,Ω2 should be used for this purpose, while the detunings ∆1,∆2 should be fixed. In
principle, the Rabi frequencies should be set according to the ratio of the transition

strengths of
√

4/15
2/3·1/2 ≈ 0.9 in order to drive both transitions with the same probability

(sec. 7.1). In the experiment, however, we found the best overlap of the pulse shapes for
the values Ωdrv

1,2 = 2π × (40, 50) MHz, resulting in a ratio of 0.8. The Rabi frequencies
were calibrated via a measurement of the AC Stark shift of the Raman transition as
a function of the Rabi frequency of the drive laser.

For a comparison of the probabilities of generating an H or V photon, the detection
path efficiencies of the two output paths after the PBS have to be known. As these
might change on the percent level from day to day in the lab, an easier and more robust
alternative to daily measurement is to swap the paths between two measurements and
add the events from corresponding channels. We thus perform two measurements for
every photon polarization detection setting.

Fig. 8.2 demonstrates the identical pulse shapes of H and V photons resulting from
the optimized ratio of Rabi frequencies. The data plotted here contain the subset of
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the data further analyzed in sec. 8.5 and 8.7, in which photons were measured in the
H/V basis. The data of fig. 8.2 (a) contain ∼ 13,000 events, measured over the course
of ∼ 40 minutes. Here, the probability to generate an H photon is 1.4% smaller than to
detect a V photon. For the data of fig. 8.2 (b), containing ∼ 112,000 events measured
over the course of six hours, the corresponding difference in probability is 2.4%. The
causes and implications of this minor imbalance will be discussed in sec. 8.9.

In conclusion, we can accurately overlap the temporal pulse shapes of the orthogo-
nally polarized photons on both transitions by optimizing the ratio of Rabi frequencies.

8.5 Quantum state tomography

Quantum systems are difficult to measure. This difficulty is based on the complex
state space on the one hand and the change of a quantum state depending on how
it is measured on the other hand. State tomography is a method which completely
characterizes an ensemble of equally prepared quantum systems. It measures and
reconstructs the density matrix of the system, from which all observables of interest
can be calculated. As the density matrix can be decomposed into an operator basis, as
can be seen in eq. 2.4 for a single qubit, the state can be reconstructed by measuring
the expectation values of these operators, e.g., (σx, σy, σz).

In a single-qubit experiment, however, one typically measures the expectation val-
ues of projectors Pi onto the possible eigenstates of the Pauli operators,
Pi ∈ { |0〉〈0| , |1〉〈1| , |+x〉〈+x| , |−x〉〈−x| , |+y〉〈+y| , |−y〉〈−y| }, with |±x〉 = 1√

2
( |0〉±

|1〉) and |±y〉 = 1√
2
( |0〉 ± i |1〉). The expectation values 〈σi〉 of eq. 2.4 can then be

inferred from the expectation values of the projectors [108]. The density matrix de-
scribing a single qubit (eq. 2.3) has three free real parameters due to the requirement
that ρ is hermitian and normalized (see section 2.1.2). If the expectation values of
both projectors for each measurement setting are accessible, then three measurement
settings, e.g. (σx, σy, σz), are enough to completely determine ρ. For a system con-
sisting of n qubits, access to expectation values of all projectors corresponding to all
combinations of observables

∏
i,j,...AiAj... must be available. In this case, 3n measure-

ment settings are necessary in order to determine the 4n − 1 free real parameters of
ρ.

Provided the measurements have no noise or uncertainties, the expectation values
〈σi〉 to be inserted in eq. 2.4 can be obtained from a set of linear equations containing
the projectors Pi and the observables σi [148]. This linear reconstruction method has
notable disadvantages. First, the density matrix obtained is not necessarily physi-
cal; solutions to this problem are discussed in [148]. Second, even for measurements
without experimental imperfections, error estimation can be misleading as measure-
ments are directly interpreted as probabilities rather than frequencies of occurrence
[149]. Both problems are circumvented by using the maximum likelihood method [150].
Here, the density matrix that maximizes a likelihood functional is found in an opti-
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setting λ/2 angle (deg) λ/4 angle (deg)

H/V 0 0
D/A 22.5 0
R/L 0 45
V/H 45 0
A/D -22.5 0
L/R 0 -45

Table 8.1: Waveplate angles for the six polarization measurement settings.

mization routine. Constraints on the properties of ρ are contained in the functional,
and renormalization can be applied after every optimization step, resulting in the
physical density matrix which is most likely consistent with the measured data. Error
bars are obtained by non-parametric bootstrapping [151, 152]. Assuming a multino-
mial distribution, Monte-Carlo simulations are used to simulate sets of data, for which
new density matrices are reconstructed. From these matrices, standard deviations of
any observable can be calculated.

In order to perform state tomography of the entangled ion-photon state, we have
to measure the electronic state of the ion (section 5.4) and the polarization state of the
photon. For these measurements, expectation values of all projectors are accessible in
every setting. For the atom, both probabilities of being in the S or D state are obtained;
for the photon, both outputs of the PBS are measured in each setting. It is therefore
sufficient to measure ion and photon in all nine combinations of ion Pauli-operators
{σx, σy, σz} and photon polarization bases {horizontal/vertical (H/V ), diagonal/anti-
diagonal (D/A), right/left circular (R/L)} [108]. In order to measure the ion in all
three bases, we first map the superposition of {D′, D} onto the {S,D} states with
a π pulse on the S − D′ transition [42, 43]. We then perform an optional π/2 pulse
on the S − D transition to select the measurement basis. Finally, states S and D
are discriminated via fluorescence detection [75]. In order to measure the polarization
of the photon, the cavity output path branches at a polarizing beamsplitter into two
measurement paths. The angles of the half- and quarter-waveplate before the PBS
determine the polarization basis, as documented in table 8.1. For each of these settings,
we measure the ion in three bases, yielding 6 × 3 = 18 measurement settings for the
full tomography. For given values of α and ϕ of eq. 8.2, we perform the full state
tomography in order to obtain ρ. The fidelity with respect to a target state |ψ〉 is
then calculated by the overlap F ≡ 〈ψ| ρ |ψ〉.

In a first set of measurements, we choose the case α = π/4, corresponding to a
maximally entangled state |ψ〉. For each of the 18 measurement settings, we record
on average 4722 events in which a single photon has been detected. From the tomo-
graphic data, the density matrix is obtained via maximum likelihood reconstruction;
we gratefully acknowledge the development of a computational toolbox in our group by
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Figure 8.3: Quantum state tomography of the joint ion-photon state, containing ∼ 40, 000
events. Real and imaginary parts of all density matrix elements for Raman phase ϕ = 0.25,
from which a fidelity F = (97.4±0.2)% is calculated. Colors for the density matrix elements
correspond to those used in fig. 8.6.

Thomas Monz and Philipp Schindler [149]. The resulting density matrix is shown in
fig. 8.3(a). In the ideal case, only populations at |H,H〉 and |D′, V 〉 are expected on
the diagonal; the coherences between these two populations should be the only nonzero
off-diagonal elements. The density matrix that we obtain almost perfectly resembles
the ideal case. The relative size of the real and imaginary part of the coherences is
determined by the phase ϕ of the state.

The fidelity yields a value of F ≡ 〈ψ| ρ |ψ〉 = (97.4 ± 0.2)% with respect to the
maximally entangled state, placing our system definitively in the non-classical regime
F > 50%. The concurrence (eq. 8.1) is calculated to be (95.2 ± 0.5)%. We also
use ion-photon entanglement to test a CHSH Bell-inequality, as described in section
8.2. While LHVMs require the Bell observable of the CHSH-inequality to be less
than 2, we measure a value (2.75 ± 0.01)> 2, where quantum mechanics provides an
upper bound of 2

√
2. The measurement thus violates the inequality by 75 standard

deviations. The error bars of the stated values correspond to one standard deviation
of the results obtained from Monte-Carlo simulations taking into account the number
of measurements for each setting.

Time-resolved detection of the photons at both APDs allows for analysis of the
entangled state as a function of photon detection time. This will be used in the
following section in order to investigate phase evolution during the drive pulse. For
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the results presented here, we have taken into account data from all time bins until
the end of the 37 µs long drive pulse.

8.6 Time independence of the entangled state

The phase of the entangled atom-photon state is inferred from the measurements of
photon polarization and atomic-state phase. In the experiments of refs. [25, 35, 126],
although the phase of the entangled state is time-independent before photon detection,
the phase of the atomic state after photon detection evolves due to Larmor precession.
It is thus necessary to fix the time between photon detection and atomic state readout
in order to measure the same ϕ for all realizations of the experiment. In contrast,
for the case of Raman fields Ω1e

iωl1 t and Ω2e
iωl2 t, the correct choice of frequency

ωl1 − ωl2 = ∆ED,D′/~ means that both the phase of the entangled atom-photon state
before photon detection and the phase of the atomic state after photon detection are
independent of photon-detection time. This result is explained here in two different
approaches using the mathematical description introduced in sec. 2.3.

We define a model system with bases { |S, n〉, |P, n〉, |D,n〉, |D′, n〉}, where n = 0, 1
is the photon number in either of the two degenerate cavity modes. The energies of the
bare atomic states are ES,P,D,D′ = ~ωS,P,D,D′ . As the cavity supports two degenerate
polarization modes, the energy of a cavity photon of either mode is Ec = ~ωc. As
shown in fig. 8.4, the |S, n〉 ↔ |P, n〉 transition is driven by two fields Ωie

iωli t, (i = 1, 2)
at detunings ∆li = ωS − ωP − ωli .

In the first approach, we choose the unitary transformation into a rotating frame

U = e−iωl1 t |S〉〈S| . (8.3)

After adiabatic elimination of the state |P, n〉 (see section 2.3), the Hamiltonian reads

H/~ =(ωS − ωP + ωl1) |S〉〈S| + (ωD − ωP ) |D〉〈D| + (ωD′ − ωP ) |D′〉〈D′|
+ ωc |1〉〈1| +

(
geff

1 |D, 1〉〈S, 0| + geff
2 |D′, 1〉〈S, 0| + h.c.

)
, (8.4)

where the energy reference is the P state. If both Raman conditions hold, i.e., ωS +
ωl1 = ωD + ωc and ωS + ωl2 = ωD′ + ωc, the states |S, 0〉 and |D, 1〉 are degenerate in
this frame, and the couplings are

geff
i =

(Ω1 + Ω2e
i(ωl2−ωl1 )t) · g

2∆li

. (8.5)

The coupling between |S, 0〉 and |D, 1〉 has one constant and one time-dependent term.
In the rotating-wave approximation, terms rotating much faster than the coupling are
omitted [59]. As |geff

i /(2π)| ≈ 30MHz·1.4MHz
2·400MHz

≈ 50 kHz � |ωl1 − ωl2| ≈ 5 MHz, the
time-dependent coupling between |S, 0〉 and |D, 1〉, which corresponds to off-resonant
Raman coupling, is neglected. The coupling geff

1 is then given by the time-independent
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Figure 8.4: Model scheme of the entanglement protocol. Indicated are the relevant levels
S, P,D,D′, the two driving fields with Rabi frequencies Ω1,Ω2 and detunings ∆l1,∆l2, and
the vacuum field of the cavity with coupling strength g. In the case shown, both Raman
conditions ∆l1 = (ωD − ωP ) − ωc and ∆l2 = (ωD′ − ωP ) − ωc are fulfilled. See text for the
definition of ωS,P,D,D′ and ωc.

term Ω1g
2∆l1

. The states |S, 0〉 and |D′, 1〉 are split by ~(ωl1−ωl2) in this frame. Because

of this energy splitting, the time-dependent term in geff
2 resonantly drives the transition

between |S, 0〉 and |D′, 1〉, whereas the time-independent term is off-resonant. As a
result, a Larmor precession of the entangled atom-photon state at frequency ωl1 − ωl2
occurs during the Raman transition. The detection of a photon corresponds to a
quantum jump and projects the system into a superposition of |D, 0〉 and |D′, 0〉 [64].
Due to the energy splitting between the states |D, 0〉 and |D′, 0〉 of ∆E = ~(ωD−ωD′),
a Larmor precession of the atomic superposition at frequency ωD−ωD′ is also present
after photon detection. However, for the frequency choice ωl1 − ωl2 = ωD − ωD′ , the
frequencies of Larmor precession before and after photon detection are equal. As a
result, the atomic superposition state does not depend on the photon detection time.

The Larmor precession during the entire time evolution of the system, both during
Raman transfer and after photon detection, motivates a second approach. Here, a
transformation into the rotating frame

U = e−iωl1 t |S〉〈S| e−i(ωl1−ωl2 )t |D′〉〈D′| (8.6)

takes this precession into account. After adiabatic elimination of the state |P, n〉 (see
section 2.3), the Hamiltonian now reads

H/~ = (ωS − ωP + ωl1) |S〉〈S| + (ωD − ωP ) |D〉〈D|
+ (ωD′ − ωP + (ωl1 − ωl2)) |D′〉〈D′| + ωc |1〉〈1|
+
(
geff

1 |D, 1〉〈S, 0| + geff
2 |D′, 1〉〈S, 0| + h.c.

)
, (8.7)
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8 Tunable ion-photon entanglement

Figure 8.5: Phase of the ion-photon state vs. photon detection time. Arrows indicate
time-bin intervals of the tomography data. Within error bars, the phase remains constant
over the entire photon pulse shape.

where the energy reference is again the P state. If both Raman conditions hold, i.e.,
ωS + ωl1 = ωD + ωc and ωS + ωl2 = ωD′ + ωc, all three states |S, 0〉, |D, 1〉 and |D′, 1〉
are degenerate in this frame, and the couplings are

geff
1 =

(Ω1 + Ω2e
i(ωl2−ωl1 )t) · g

2∆l1

, geff
2 =

(Ω2 + Ω1e
i(ωl1−ωl2 )t) · g

2∆l2

. (8.8)

In the rotating-wave approximation, time dependent terms in eq. 8.8 can be neglected,
resulting in time-independent couplings between both |S, 0〉 and |D, 1〉 and |S, 0〉 and
|D′, 1〉. In this frame, there is thus no Larmor precession of the entangled atom-photon
state during the Raman transfer. Since the states |D, 0〉 and |D′, 0〉 are degenerate in
this frame, there is also no Larmor precession of the atomic superposition state after
photon detection. As a result, ϕ remains fixed both during Raman transfer and after
photon detection.

In summary, the frequency difference ωl1 − ωl2 of the two Raman fields should be
set equal to the energy splitting ωD−ωD′ in order to obtain a constant phase ϕ for all
photon detection times. Only the amplitudes Ω1 and Ω2 can thus be tuned in order
to adjust the probabilities of the two Raman transitions with respect to each other.

In order to demonstrate that the photon detection time does not determine the
phase ϕ of the state in the experiment, we extract this phase as a function of the
photon detection time. For this purpose, we have defined photon time bins, each
containing a similar number of detection events. For each bin, we extract the phase
ϕ from state tomography of this data subset. As can be seen in fig. 8.5, the phase ϕ
of the entangled state remains constant across all time bins, that is, during the entire
drive pulse.
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8.7 Tunable phase of the entangled state

8.7 Tunable phase of the entangled state

The ability to tune the entangled atom-photon state is a valuable resource for various
schemes in quantum communication. A tunable state has for example been employed
for teleportation [31] and a heralded gate between remote qubits [130]. In quantum
computation, the tunability of controlled phase shift gates between multiple qubits
reduces the required number of gates in the quantum Fourier transform [153]. It thus
may also be very useful to be able to control all parameters of the entangled atom-
photon state for future applications in which multiple nodes of a quantum network
are connected.

We first establish that we can control the phase ϕ of the final entangled state
|ψ〉 over the full range from 0 to 2π via tuning the Raman phase ϕRaman. For this
measurement, we set the amplitudes of |ψ〉 to α = π/4, corresponding to a maximally
entangled state.

The phase ϕ of the resulting state depends on the definition of the basis in the data
analysis. The Raman phase ϕRaman, on the other hand, is set by the phase between the
two radio frequencies generated by the DDS (sec. 4.11). In order to find the relation
between ϕ and ϕRaman, we perform a full state tomography for each value of ϕRaman

and find the phase ϕ that optimizes the overlap with a maximally entangled state. The
linear relation obtained is then used for the calculation of the fidelity as a calibration
measurement.

For eight different values of ϕRaman, we perform full state tomography. The real and
imaginary parts of the coherence ρ14 = 〈D,H| ρ |D′, V 〉 vary sinusoidally as a function
of ϕRaman (fig. 8.6(a)). Both curves are fitted simultaneously, with the phase offset
constrained to π/2. The amplitude fit parameter yields a value of (94.2±0.3)% for the
real part and (97.5 ± 0.5)% for the imaginary part. The fidelity has a mean value of
(96.9± 0.1)% and varies only slightly within error bars (fig. 8.6(b)). These error bars
correspond to one standard deviation of the values obtained by parametric bootstrap-
ping (sec.8.5) and thus contain only the statistical errors given by the finite number
of measured events. As the data for the eight settings of the Raman phase contains
∼ 340, 000 events measured with the same ion over the course of ∼ 6 hours, transi-
tion probabilities slightly fluctuate on the timescale between measurements (sec. 8.9),
resulting in an additional error of ∼ 0.5%. Considering both error sources, all target
states have been generated with high fidelity independent of the Raman phase.

8.8 Tunable amplitudes of the entangled state

The fact that the entangled state amplitudes are tunable opens up new possibilities
in quantum networks as well as for fundamental studies of quantum mechanics. In
a quantum network, a tunable state at one quantum node could be used to match
the amplitudes of a state at a second node for which transition amplitudes are fixed
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8 Tunable ion-photon entanglement

(a) (b)

Figure 8.6: (a) State tomography as a function of Raman phase (∼ 340, 000 events).
Upper graph: Re(ρ14) (blue circles) and Im(ρ14) (red diamonds) as a function of Raman
phase. Error bars are smaller than the size of the symbols. Each value is extracted from a
full state tomography of ρ as in fig 8.3a. Both curves are fitted simultaneously, with phase
offset constrained to π/2. The fit contrast is 95.6(4)%. Lower graph: fidelities of the eight
states, with a dashed line indicating the mean value. (b) State tomography for three values
of amplitude cosα. Upper graph: the density matrix elements ρ11 (orange squares) and ρ44

(green triangles) are plotted for the three target amplitudes cosα = {1/
√

2, 1/
√

3, 1/
√

8}.
Error bars are smaller than the size of the symbols. Solid lines represent the amplitudes of the
target states. Lower graph: the corresponding fidelities are F = {96.3(3), 96.8(3), 98.0(4)}.
A dashed line indicates the mean value.
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by atomic transition strengths and/or geometry factors [25]. For a loophole-free test
of Bell inequalities, an asymmetric, non-maximally entangled atom-photon state has
been proposed to reduce the detection-efficiency threshold necessary for closing the
detection loophole [143].

A second measurement set demonstrates control over the amplitudes cosα and
sinα of the entangled ion-photon state. After selecting three target amplitudes cosα =
{1/
√

2, 1/
√

3, 1/
√

8}, we generate each corresponding state by adjusting the Raman
field amplitudes, since α is a function of the ratio Ω2/Ω1. The density matrix for each
state is then measured via tomography. In the upper graph of fig. 8.6(b), the popu-
lations ρ11 ≡ 〈DH| ρ |DH〉 and ρ44 ≡ 〈D′V | ρ |D′V 〉 for the three target amplitudes
agree well with theoretical values. The fidelities of the asymmetric states, plotted in
the lower graph of fig. 8.6(b), are as high as those of the maximally entangled states
and are limited by the populations, that is, by errors in tuning the Raman fields to
match the target values.

8.9 Experimental imperfections

In previous atom-photon entanglement experiments, typical error sources include im-
perfect atomic state detection [21, 146], atomic decoherence [129] and multiple exci-
tations of the atom [25]. These sources play a minor role in the experiment presented
here. For atomic state discrimination, a signal-to-noise ratio above 100 is obtained
at a fluorescence rate of 50 kHz and a background rate below 0.5 kHz. With the
chosen detection time of 500 µs, the atom detection error is less than 10−3 (sec. 5.4).
The measurement of the atomic coherence time for a superposition of the D and D′

states was described in sec. 5.7. For the relevant time scale of this experiment, i.e.,
the 40 µs interval between the start of the drive pulse and atomic state detection, the
measured Ramsey contrast remains constant at the value of 98.4%, exhibiting no loss
in atomic coherence during this interval. Multiple excitations of the atom can only
occur if the atom decays from the metastable D5/2 manifold back to the S1/2 manifold
during the drive pulse. Given the lifetime τ = 1.168 s of the metastable D5/2 manifold
[77], this process occurs with probability 1− exp(− 0.04ms

1168ms
) ≈ 3 · 10−5 and can thus be

neglected. This small probability for multiple excitations also manifests itself in the
excellent, dark-count-limited two-photon suppression of 3 · 10−4 in the single-photon
source [27].

Misalignment of the measurement axes and the drive beam propagation axis with
respect to the cavity axes also constitute a minor error � 1% (sec. 4.10).

Another possible error source is the process where the ion stays in the |S1/2,−1
2
〉

state during Raman excitation without producing a photon. In this case, the |S1/2,−1
2
〉

population is transferred to the |D5/2,−5
2
〉 state during state detection, leading to

false events in the case of a dark ion, interpreted as the ion being in the |D5/2,−3
2
〉

state. This process could be avoided by shelving all remaining |S1/2,−1
2
〉 population
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8 Tunable ion-photon entanglement

to another D5/2 state before state detection and further analysis pulses. However,
the remaining |S1/2,−1

2
〉 state population in the experiment is negligible after Raman

excitation. We conclude that all of these error sources reduce the fidelity by less than
1%.

The largest error source which limits the fidelity is caused by dark counts of the
APDs at a rate of 36 Hz. In a test analysis, we assume that dark counts contribute to
APD detection events in a way uncorrelated with the atom. Only for the purpose of an
error estimation, we subtract dark counts from the measured atom-photon correlations
and obtain a fidelity of the reconstructed state of 98.9% for the data of fig. 8.3. The
dark counts thus limit the fidelity by 1.5%.

The second-largest reduction in fidelity is due to the imperfect ratio of driving
probabilities of the two Raman transitions, resulting in unequal populations of the
ideal maximally entangled state (cosα and sinα in eq. 8.2). The transition proba-
bilities are given by the Rabi frequencies and the detuning of each field from Raman
resonance. The Rabi frequencies are set by variable RF-attenuators (sec. 4.4), which
might drift with temperature over the hour-long timescales of data acquisition. The
Raman detunings are set via the radio frequencies generated by the DDS. However, as
the two Raman transitions do not perfectly overlap in frequency due to a differential
AC stark shift, the transition probabilities might change if the laser frequency drifts
by ∼ 5 kHz due to a temperature change of the locking cavity. For the data of fig. 8.3,
which were taken over the course of 40 minutes, the relative difference in total counts
of H and V photons is 1.4% (fig. 8.2(a)). As populations in ρ contribute to one-half
the fidelity, while the other half is given by the coherences, this imbalance results in
a reduction of the fidelity of 0.7%. The relative wavepacket mismatch of H and V
photons of the data from all eight Raman phase measurements (fig. 8.6), taken over
the course of six hours, is 2.4% (fig. 8.2(b)), and corresponds to a fidelity reduction of
1.2%.

As apparent in the offset of the Ramsey fringe amplitude at zero waiting time
(sec. 5.7), imperfect initialization and manipulation of the ion due to its finite tem-
perature and laser intensity fluctuations decrease the fidelity by ∼ 0.8%.

8.10 Conclusion

To our knowledge, this measurement represents both the highest fidelity and the fastest
rate of entanglement detection to date between a photon and a single-emitter quantum
memory. This detection rate is limited by the fact that most cavity photons are
absorbed or scattered by the mirror coatings, and only 16% enter the output mode.
The cavity mirrors in this setup have transmission T1 = 13 ppm and T2 = 1.3 ppm,
with combined losses of 68 ppm. State-of-the-art combined losses at this wavelength
are L = 4 ppm [154]. In our cavity, these losses would correspond to an output coupling
efficiency of T1/(T1 + T2 + L) = 71%. To improve this efficiency, an output mirror
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with higher transmission T1 could be used; for example, T1 = 500 ppm corresponds to
an efficiency of 99%. The cavity decay rate κ would also increase, but single-photon
generation with near-unit efficiency is still valid in the bad-cavity regime [128].

In contrast, without a cavity, using a lens of numerical aperture 0.5 to collect
photons, the efficiency would be 6.7%. In addition, the infrared wavelength of the
output photons is well-suited to fiber distribution, enabling long-distance quantum
networks. We note that a faster detection rate could be achieved by triggering ion-
state readout on the detection of a photon.

We have demonstrated full control of the phase and amplitude of an entangled ion-
photon state, which opens up new possibilities for quantum communication schemes.
In contrast to monochromatic schemes, evolution of the relative phase of the atomic
state after photon detection is determined only by the start time of the experiment
and not by the photon-detection time. The state |ψ〉 is in this sense predetermined
and can be stored in, or extracted from, a quantum memory in a time-independent
manner.
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9 Ion-photon state mapping

Alternatively to atom-photon entanglement, direct state transfer is a second protocol
that enables quantum communication between distant nodes of a quantum network.
Such direct state transfer makes use of state mapping between atom and photon.
In this chapter, we demonstrate the faithful mapping of a quantum state from a
single ion onto a single photon within an optical cavity. The mapping process is
time-independent, allowing us to characterize the interplay between efficiency and
fidelity. As the techniques for coherent manipulation and storage of multiple ions at a
single quantum node are well established [42, 43], this process offers a promising route
toward networks between ion-based quantum computers. The results of this chapter
are submitted for publication [54].

9.1 Description of the protocol

In the original proposal for quantum-state transfer [41], a photonic qubit comprises
the number states |0〉 and |1〉. Such a qubit was subsequently employed for the
cavity-based mapping of a coherent state onto an atom [29]. However, due to losses
in a realistic optical path, it is advantageous instead to encode the qubit within a
degree of freedom of a single photon. As a frequency qubit [31] would be challenging
to realize reversibly within a cavity, we choose the polarization degree of freedom, as
for ion-photon entanglement in the previous chapter. The target process then maps
an electronic superposition of atomic states |S〉 and |S ′〉 to the polarization state |H〉
and |V 〉 of a photon,(

cosα |S〉+ eiϕ sinα |S ′〉
)
⊗ |0〉 −→ |D〉 ⊗

(
cosα |H〉+ eiϕ sinα |V 〉

)
, (9.1)

preserving the superposition’s phase and amplitude, defined by ϕ and α; |D〉 is a third
atomic state.

9.2 Implementation of the protocol

For the implementation of state mapping protocol, just as for the entanglement pro-
tocol previously, we again employ two phase-stable driving fields. In contrast to the
entanglement protocol, here, by coupling two initial atomic states to one final state,
the ion’s electronic state is transferred coherently to the photon, and no information
remains in the ion. The crux of this mapping problem is to maintain amplitude and
phase relationships during the transfer process.
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9 Ion-photon state mapping

As the coherence of the mapping process will be destroyed by any off-resonant
scattering, two atomic transitions should be chosen that maximize the coherent ion-
cavity interaction (sec. 7.1). For the ion-photon entanglement, the choice of a σ−-
polarized driving beam at 393 nm resulted in a robust situation: the Clebsch-Gordan
coefficients of the S1/2 ↔ P3/2 transition were maximal, and any scattering from the
P3/2 state automatically re-initialized the correct S1/2 state. Experimentally, we were
able to accurately adjust the polarization of this beam via the fluorescence signal of
the ion.

For state mapping, it at first appeared straightforward to keep the experimental
geometry for entanglement, i.e., the orientation of the magnetic field axis, the ori-
entation of the drive laser beam, and the polarization of this beam with respect to
the cavity and trap axes. In this scenario, the protocol could be realized by transfer-
ring the initial superposition of |S〉 ≡ |S1/2,−1

2
〉 and |S ′〉 ≡ |S1/2,+

1
2
〉 to the final

atomic target state |D5/2,−3
2
〉 via two distinct Raman transitions (fig. 9.1(a)), as we

proposed in [52]. If the initial state was |S〉, the photon would be in a vertically polar-
ized state |H〉; if the initial state was |S ′〉, a horizontally polarized photon |V 〉 would
be generated. As the polarization modes of the cavity are degenerate, entanglement
of the polarization with the frequency degree of freedom is avoided. The geometric
factors that enter the transition strengths of the two Raman transitions involved, as
introduced in eq. (7.1), are:

for |S1/2,−
1

2
〉 ↔ |P3/2,−

3

2
〉 ↔ |D5/2,−

3

2
〉 : αi · βj =

√
4

15
≈ 0.52 (9.2)

for |S1/2,+
1

2
〉 ↔ |P3/2,−

1

2
〉 ↔ |D5/2,−

3

2
〉 : αi · βj =

√
1

3
· 2

5
· 1

2
≈ 0.26 (9.3)

On the one hand, the selected transitions fulfill the requirement of strong and
similar coupling strengths (compared to other transitions indicated in fig. 7.1); in
order to preserve the amplitudes of the initial state during mapping, the difference
in transition strengths by a factor of two can be compensated for using the Rabi
frequencies of the bichromatic field.

On the other hand, a problem arises with the time independence of the mapping
process. This time independence was of fundamental importance for the entanglement
scheme: by choosing the difference frequency of the lasers to match the energy splitting
of the target states, the phase evolution of the entangled state over time vanished and
the state could be read out at any time. For the proposed state-mapping scheme,
the following problem arises: due to the different Clebsch-Gordan coefficients of the
S1/2↔ P3/2 transitions (indicated in fig. 9.1), a differential AC-Stark shift between the
initial states S = |S1/2,−1

2
〉 and S ′ = |S1/2,+

1
2
〉 would be introduced. This differential

AC-Stark shift is calculated via eq. (2.28) and corresponds to a frequency difference
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Figure 9.1: Different driving schemes for ion-photon state mapping. Indicated are the
Clebsch-Gordan coefficients of the S1/2 ↔ P3/2 transitions and the Rabi frequencies of the
bichromatic driving field Ω1 and Ω2. (a) σ−-beam driving scheme. The different Clebsch-
Gordan coefficients (indicated in red) result in a differential AC-Stark shift of the atomic-
qubit levels S and S′. We therefore avoid this scheme, although we initially proposed it in
[52]. (b) π-beam driving scheme without AC-Stark shift between S and S′. We choose this
scheme in the experiment. (c) Wrong polarization components σ+/σ− (blue dotted lines)
result in two unwanted effects: first, Raman transitions generate photons with unwanted
polarizations (orange dotted lines). Second, Raman transitions between S and S′ are driven
that introduce a spin flip error to the atomic qubit.

of

∆νS,S
′

AC−Stark ≈
Ω2

0

4π∆l,c

(
1−

√
1

3

)
≈ 200 kHz (9.4)

for a typical Rabi frequency of Ω0 = (2π) × 20 MHz and Raman detuning of ∆l,c =
(2π) × 400 MHz. The phase of the initial state would thus precess at frequency

νS,S
′

AC−Stark. As a consequence, the phase of the final photonic state would depend on
the photon detection time within the photon time window of ≥ 10 µs.

In principle, this differential AC-Stark shift could be compensated for via the differ-
ence detuning of the driving field ∆1−∆2. As the shift depends on the Rabi frequency
of the bichromatic field, however, a calibration would represent a time-consuming ex-
perimental procedure. Additionally, intensity fluctuations of the drive beam could
influence the fidelity of the mapping process.

A more robust alternative can be realized by a second driving scheme: applying
a π-polarized drive beam, two Raman transitions can be driven that both end at
|D5/2,+

1
2
〉, as indicated in fig. 9.1(b). In this scenario, the photon is in a horizontally

polarized state |H〉 if the initial state was |S〉; if the initial state was |S ′〉, a verti-
cally polarized photon |V 〉 is generated. The transition strengths of the two Raman
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transitions involved are exactly the same as for the previous scheme:

for |S1/2,−
1

2
〉 ↔ |P3/2,−

1

2
〉 ↔ |D5/2,+

1

2
〉 : αi · βj =

√
2

3
· 2

5
≈ 0.52 (9.5)

for |S1/2,+
1

2
〉 ↔ |P3/2,+

1

2
〉 ↔ |D5/2,+

1

2
〉 : αi · βj =

√
2

3
· 1

5
· 1

2
≈ 0.26 (9.6)

In contrast to the previous scheme, however, differential AC-Stark shifts caused by
different Clebsch-Gordan coefficients of the S1/2 ↔ P3/2 transitions are avoided.

In order to realize this π-beam driving scheme in the laboratory, the polarization
of the drive field has to be carefully aligned. If any σ-component of the drive beam
polarization is present, unwanted Raman transitions could be driven in which a photon
with unwanted polarization is generated (fig. 9.1(c)), corresponding to a spin flip error
of the photonic qubit. Moreover, Raman transitions between S and S ′ would be driven
without generating a photon in the resonator.

In the experiment, the propagation direction of the 393 nm drive beam is unchanged
from the ion-photon entanglement measurement, but the magnetic-field direction is
now orthogonal both to the cavity axis and to the drive-beam’s propagation direction
(the magnetic field is now oriented along the y axis of fig. 8.1). Additionally, we in-
crease the amplitude of the magnetic field to 4.5 G for optimal separation of the target
carrier transitions from the motional sidebands of neighboring transitions (fig. 7.4(a)).
For optimizing the drive beam’s linear polarization, we employ the population transfer
caused by the undesirable Raman transition between S and S ′ as a signal. With the
laser at 393 nm detuned by ≈ 4 GHz from the S1/2 ↔ P3/2 transition, we minimize
the population transfer such that after 2 ms less than 10% of the S state population is
transferred to the S ′ state. At this suppression, population transfer between the S and
S ′ state during the mapping process is negligible compared to off-resonant scattering
(sec. 9.4).

For both schemes discussed in this section, there are two other origins of differential
AC-Stark shifts between the two Raman transitions: the different Clebsch-Gordan
coefficients on the cavity transitions (P3/2 ↔ D5/2) and the different detuning of the
bichromatic field from the two S1/2 ↔ P3/2 transitions. The different Clebsch-Gordan
coefficients on the cavity transition result in a shift on the order of 1 kHz, while the
different detuning results in a shift on the order of 5 kHz for the values of Ω0 and
∆l,c given above. At the corresponding time scale of photon detection of ≥ 200 µs,
the coherence of the photonic state, however, is limited by other processes (as will be
described in sec. 9.4), and these two shifts can therefore be neglected in our experiment.

9.3 Quantum process tomography

The mapping process of eq. (9.1) is characterized via process tomography, in which
the bichromatic Raman transition is applied to four orthogonal initial states of the
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atom: |S〉, |S ′〉, |S − S ′〉, |S + iS ′〉. Following optical pumping to the Zeeman state
|S〉, the atomic qubit is encoded in the states |S〉 and |S ′〉 via two laser pulses on
the quadrupole transition that couples the S1/2 and D5/2 manifolds. The length and
phase of a first pulse on the |S〉 ↔ |D5/2,mJ = −1/2〉 transition set the amplitude
and phase of the initial state. The state is subsequently transferred back to the S
manifold via a π-pulse on the |D5/2,mJ = −1/2〉 ↔ |S ′〉 transition. For each input
state, we measure the polarization state of the output photon via state tomography,
using three orthogonal measurement settings (fig. 8.1 and table 8.1).

Process tomography extracts the process matrix χ, which parameterizes the map
from an arbitrary input density matrix ρin to its corresponding output state ρout in
the basis of the Pauli operators σ0,1,2,3 ≡ {1l, σx, σy, σz}:

ρout =
∑
i,j

χi,jσiρinσj. (9.7)

As the ideal mapping process preserves the qubit, the overlap χ0,0 with the identity
should be equal to one. We identify χ0,0 as the process fidelity, which quantifies
the success of the mapping. A maximum likelihood reconstruction [155] of χ for the
experimental data is plotted in fig. 9.2(a) for a 2 µs window of photons exiting the
cavity. Here the matrix element χ0,0 indicates a process fidelity of (92 ± 2)%, well
above the classical threshold of 1/2. Other diagonal elements χ1,1 = (3 ± 1)% and
χ3,3 = (4± 2)% reveal a minor depolarization of the quantum state.

Another metric for quantum processes is the mean state fidelity, which evaluates
the state fidelities 〈ψiin| ρiout |ψiin〉 for a set of input states |ψiin〉, where ρiout represent
the corresponding photon output states. The mean state fidelity can also be directly
extracted from the process fidelity for an ideal unitary process [156]. For each of our
four input states, state tomography of the output photon is shown in fig. 9.2b, using
the same photon collection window as in fig. 9.2a. The corresponding state fidelities
are (96 ± 1)% for |S〉, (94 ± 2)% for |S ′〉, (97 ± 2)% for |S − S ′〉, and (95 ± 2)%
for |S + iS ′〉, yielding a mean of (96± 1)%. This agrees with the value of (95± 1)%
extracted from the process fidelity and exceeds the classical threshold [156] of 2/3.

9.4 Time evolution of the photon polarization

We now consider the evolution over time of the photonic output states ρiout generated
from these four atomic input states. In fig. 9.2(c), we plot the temporal shape of the
emitted photon in each of three measurement bases, a total of 12 cases. For each input
state, there exists one polarization measurement basis in which photons would ideally
impinge on only one detector. If the ion is prepared in the state |S〉 and measured
in the H/V polarization basis, for example, the mapping scheme of fig. 9.1(b) should
only produce the photon state |H〉. However, a few microseconds after the Raman
driving field is switched on, we see that the photon state |V 〉 appears and is generated
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Figure 9.2: Process and state fidelities of the ion–photon mapping. (a), Absolute
values of the process matrix χ reconstructed from cavity photons detected between 2 µs and
4 µs after the bichromatic field is switched on at time = 0. (b), State tomography of photons
in the same time window for the four input states |S〉, |S − S′〉, |S + iS′〉, and |S′〉, shown
in rows from top to bottom. (c), Each state tomography corresponds to measurements in
the three bases H/V , D/A, and R/L (columns). For each input state, the temporal shapes
of single photons are plotted in red for polarizations H,D,R and in blue for polarizations
V,A,L. In each row, in two of three columns, photons are equally distributed over both
detectors, while in the third, photons are generated ideally with a single polarization. Master-
equation simulations (red and blue lines) successfully reproduce the observed dynamics. The
grey shaded area indicates the time window used for tomography.

with increasing probability over the next 55 µs. The mechanism here is off-resonant
excitation of the 42P3/2 manifold and decay to the previously unpopulated state |S ′〉,
followed by a Raman transition generating the ‘wrong’ polarization. If the ion is
prepared in |S ′〉, the temporal photon shapes are inverted and symmetric, with the
initial state |V 〉 followed by the gradual emergence of |H〉. We have confirmed this
process through master-equation simulations of the ion–cavity system, also plotted in
fig. 9.2(c). These simulations will be described in more detail in Birgit Brandstätter’s
thesis [83].

For the superposition input states |S−S ′〉 and |S+ iS ′〉, the mapping generates a
photon with anti-diagonal polarization A = (H−V )/

√
2 and right-circular polarization

R = (H+iV )/
√

2, respectively. Thus, photons impinge predominantly on one detector
in the diagonal(D)/anti-diagonal(A) and right(R)/left(L) bases, where D and L are
defined in table 2.1. Here, as for states |S〉 and |S ′〉, photons with the ‘wrong’
polarization are due to off-resonant scattering before the mapping occurs. In this case,
scattering destroys the phase relationship between the S and S ′ components. (Note
that for eight of the cases in fig. 9.2c, the measurement basis projects the photon
polarization onto the two detection paths with equal probability.)
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9.4 Time evolution of the photon polarization
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Figure 9.3: Time dependence of process fidelity and efficiency. (a), Cumulative
process fidelity and (b), process efficiency are plotted as a function of the photon-detection
time window, where error bars represent one standard deviation. A green dashed line indi-
cates the simulated process fidelity for the same parameters as in fig. 9.2. To this model, we
now add the effects of detector dark counts, imperfect state initialization, and magnetic-field
fluctuations, quantified in independent measurements, with the result indicated by a red line.
A fit to the process efficiency is used to weight the effect of dark counts. The second model,
including detector dark counts etc., agrees well with the data, while the first one represents
achievable values for this ion–cavity system.

The accumulation of scattering events over time suggests that the best mapping
fidelities can be achieved by taking into account only photons detected within a cer-
tain time window. Such a window is used for the preceding analysis of process and
state fidelities. For each attempt to prepare and map the ion’s state, the probability
to detect a photon within this window is 4 · 10−4, which we identify as the process
efficiency. This efficiency can be increased at the expense of fidelity by considering
a broader time window. Fig. 9.3 shows both the cumulative process fidelity and effi-
ciency as a function of the photon-detection window. The fidelity initially increases
because at short times (< 100 ns), photons are produced primarily via the off-resonant
rather than the resonant component of the Raman process and thus are not in the
target polarization state. This coherent effect, which we have investigated through
simulations, is quickly damped due to the low amplitude of off-resonant Raman tran-
sitions. The cumulative process fidelity reaches a maximum between 2 µs and 4 µs
after the bichromatic driving field is switched on, the time interval used to analyze
the data of fig. 9.2(a) and (b). The fidelity then slowly decreases as a function of time
due to the increased likelihood of off-resonant scattering.
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9 Ion-photon state mapping

If all photons detected within 55 µs are taken into account, the process efficiency
exceeds 1%, while the process fidelity of (66±1%) remains above the classical threshold
of 1/2. This process efficiency includes losses in the cavity mirrors, output path,
and detectors. The corresponding probability for state transfer within the cavity is
14.7%. A longer detection time window would allow transfer probabilities approaching
one, but fidelities would fall below the classical threshold. Simulations that include
the effects of detector dark counts, imperfect state initialization, and magnetic-field
fluctuations agree well with the data of fig. 9.3. In the absence of these three effects,
simulations indicate that fidelities of 98% would be possible in our ion–cavity system.

The atomic superposition of |S〉 and |S ′〉 experiences a 12.6 MHz Larmor preces-
sion, which corresponds to a rotation of the states’ relative phase at this frequency.
One might expect that as a result, it would not be possible to bin data from photons
generated from this superposition across a range of arrival times as described above.
However, because the frequency difference ∆1 − ∆2 of the bichromatic Raman field
matches the frequency difference between the two states, the Raman process generates
a photon that preserves the initial states’ relative phase. As a result, the phase of the
photon superposition is independent of detection time, as will be discussed further in
the next section. This transfer scheme thus offers advantages for any quantum system
in which a magnetic field lifts the degeneracy of the states encoding a qubit.

9.5 Time independence of the mapping process

If one employs a mapping protocol with one drive laser field (monochromatic) such
as the one presented in [30], the phase of the atomic qubit changes due to Larmor
precession if the atomic states involved are non-degenerate. This is a similar scenario
as for the monochromatic entanglement protocols of refs. [25, 35, 126], in which the
time interval between photon detection and atom detection has to be constant for
all measurements if non-degenerate atomic states are involved. For a monochromatic
mapping protocol, it is the time interval between the initialization of the atomic state
and its mapping to the photon that has to be constant. Otherwise, the phase of the
photon state will reveal the atom’s Larmor precession [30]. In contrast, for the two
Raman fields Ω1e

iωl1 t and Ω2e
iωl2 t, the mapping field can be applied at any time for

the correct choice of frequency ωl1 − ωl2 = ∆ES,S′/~. For this choice, the phase of the
photon state remains constant although the atomic state undergoes Larmor precession.
We explain this result here, following the notation of sec. 8.6.

In contrast to sec. 8.6, the model system now consists of two initial states |S, n〉,
|S ′, n〉, two intermediate states |P, n〉, |P ′, n〉 and only one target state |D,n〉, as
indicated in fig. 9.4). The |S, n〉 ↔ |P, n〉 transition is driven by the field Ω1e

iωl1 t at
detuning ∆l1 = ωS − ωP − ωl1 , while the |S ′, n〉 ↔ |P ′, n〉 transition is driven by the
field Ω2e

iωl2 t at detuning ∆l2 = ωS′ − ωP ′ − ωl2 .
We choose a unitary transformation that takes into account the atomic precession
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{

{

Figure 9.4: Model scheme of the mapping protocol. Indicated are the relevant levels
S, S′, P, P ′, D, the two driving fields with Rabi frequencies Ω1,Ω2 and detunings ∆1,∆2,
and the vacuum field of the cavity with coupling strength g. In the case shown, both Raman
conditions ∆l1 = (ωD − ωP )− ωc and ∆l2 = (ωD − ω′P )− ωc are fulfilled.

at the frequency ωS − ωS′ :

U = e−iωl1 t |S〉〈S| e−iωl2 t |S
′〉〈S′| . (9.8)

After this transformation and adiabatic elimination of the state |P, n〉 (see section
2.3), the Hamiltonian is given by

H/~ =(ωS − ωP + ωl1) |S〉〈S| + (ωS′ − ωP + ωl2) |S ′〉〈S ′|
+ (ωP ′ − ωP ) |P ′〉〈P ′| + (ωD − ωP ) |D〉〈D|
+ ωc |1〉〈1| +

(
geff

1 |D, 1〉〈S, 0| + geff
2 |D, 1〉〈S ′, 0| + h.c.

)
, (9.9)

where the energy reference is the P state. Both ion-cavity couplings are time inde-
pendent:

geff
i =

Ωi · g
2∆li

. (9.10)

If we choose the frequencies of the two drive fields such that |ωl1 − ωl2| = |ωS − ωS′ |,
corresponding to the Raman conditions ωS + ωl1 = ωD + ωc = ωS′ + ωl2 , we calculate
the energy of |S ′, 0〉 to be

ωS′ − ωP + ωl2 = ωS − (ωS − ωS′)− ωP + ωl1 − (ωl1 − ωl2) = ωS − ωP + ωl1 . (9.11)

We conclude that the states |S, 0〉 and |S ′, 0〉 are degenerate in this frame, resulting
in a constant phase of the atomic state. As the couplings are also time-independent,
the phase ϕ of the mapped photonic state is constant at all times.
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9 Ion-photon state mapping

In the experiment, |ωS − ωS′| ≈ 12.6 MHz, and |ωl1 − ωl2| is set via the RF signals
send to the AOM, which can be controlled to a precision of 0.2 Hz (sec. 4.11). The time-
independence of the mapping process is thus only limited by the residual differential
AC-Stark shifts caused by the different detuning of the bichromatic field and different
Clebsch-Gordan coefficients of the P3/2 ↔ D5/2 transitions (sec. 9.2).

In this description, we have neglected off-resonant Raman transitions in which
the drive laser Ω1 and Ω2 couple |S ′, n〉 to |P ′, n〉 and |S, n〉 to |P, n〉, respectively.
Taking these transitions into account, the coupling terms in the Hamiltonian after
transformation into the rotating frame and adiabatic elimination of |P, n〉 are identical
to the ones in eq. (8.8). These coupling terms, oscillating at |ωl1 − ωl2|, account
for off-resonant Raman transitions. These terms were neglected in sec. 8.6 because
|geff
i | � |ωl1 − ωl2| in the rotating wave approximation. However, these terms cannot

be neglected on timescales shorter than 1/geff
i , where the rotating wave approximation

is no longer valid. On the time scale of ≤ 100 ns, these terms give rise to weak off-
resonant Raman transitions that produce photons with undesired polarization. As a
consequence, the process fidelity is low for the first datapoint of fig. 9.3. The rising
probability to generate photons with the right polarization on longer timescales then
results in a larger process fidelity for the second datapoint in fig. 9.3.

9.6 Conclusion

Following the deterministic initialization of an atomic qubit within a cavity, we have
shown the coherent mapping of its quantum state onto a single photon. The mapping
scheme achieves a high process fidelity, and by accepting compromises in fidelity,
we increase the efficiency of the process within the cavity up to 14%. The transfer
measurement is primarily limited by detector dark counts at 5.6 Hz, imperfect state
initialization with a fidelity of 99%, magnetic-field fluctuations corresponding to an
atomic coherence time of 110 µs, and the finite strength of the ion–cavity coupling
in comparison to spontaneous decay rates. While a stronger coupling would improve
the fidelity for a given efficiency, we note that the mapping fidelity in our current
intermediate-coupling regime could also be improved by encoding the stationary qubit
across multiple ions [157]. A direct application of this bichromatic mapping scheme
is state transfer between two remote quantum nodes [22, 41]. Furthermore, via a
modified bichromatic scheme, a single ion-cavity system can act as a deterministic
source of photonic cluster states [158], an essential resource for measurement-based
quantum computation [159].
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Summary

The goal of this dissertation was to explore the potential of an ion-cavity system for
the realization of quantum network protocols.

As a first step, we have implemented tools for coherent initialization, manipulation,
and state readout of the ion via laser pulses on the quadrupole transition. Furthermore,
we extended the atomic coherence time by increasing the magnetic field stability. For
interfacing the atomic qubit with a flying qubit, we optimized the ion-cavity coupling
via improved cooling and precise positioning of the ion in all three dimensions.

We define the atomic qubit by the electronic state of the ion and the photonic
qubit by the polarization of a single cavity photon. In order to couple these two
qubits, we connect individual Zeeman substates of the atom via cavity-driven Raman
transitions. Each Raman transition generates a single cavity photon. Its polarization
is determined by the atomic states at which the Raman transitions starts and ends,
as verified via spectroscopy. Finally, we have implemented a bichromatic scheme that
drives two Raman transitions simultaneously. By selecting two appropriate transitions
that produce photons with orthogonal polarization, we have realized two fundamental
protocols of an ion-photon interface: ion-photon entanglement and state mapping.

The first protocol, entanglement between an ion and a photon, is regarded as a key
resource of distributed quantum information processing. In our realization, we control
both the phase and amplitudes of the entangled state. We verify the entanglement
by quantum state tomography of the joint ion-photon state, resulting in a fidelity of
97.4% at near-unit photon-generation efficiency within the cavity. The second proto-
col, ion-photon state mapping, realizes the faithful transfer of the qubit state from the
stationary to the flying qubit. In the future, quantum-state transfer between distant
ions could be realized by connecting our cavity to a second ion-cavity apparatus. We
characterize the ion-photon state mapping via quantum process tomography, yielding
a process fidelity of 92.2% at a photon generation efficiency of 0.5%. This efficiency is
increased to 15% by taking into account a longer time window for mapping, although
in this case the fidelity decreases to 66% due to off-resonant excitation during the
Raman process.

The high fidelities and efficiencies of the presented protocols are comparable to
state-of-the art quantum interfaces that employ single neutral atoms in optical cav-
ities [22, 29]. Although our apparatus does not realize strong atom-cavity coupling,
this remarkable result is reached by the well-controlled localization of the ion in the
resonator and the bichromatic driving scheme. In contrast to [22], the protocols pre-
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sented in this dissertation combine a single-atom single-photon quantum interface with
deterministic initialization and read-out of the atomic state. As a result, the success
probability of any protocol that relies on the read-out of the atomic state (such as the
quantum repeater) is increased by about one order of magnitude.

In summary, the results presented in this work offer a promising route towards
networks connecting ion-based quantum computers. Moreover, the bichromatic driv-
ing scheme realized in this work ensures time independence of the quantum states in
both protocols. As a result, this scheme is applicable to a range of physical systems
incorporating non-degenerate qubit states.

Outlook

In the future, a prototype of a quantum network could be realized by two remote
ion-cavity systems in a similar way as for neutral atoms in [22]. The ion-photon
entanglement and state mapping protocols demonstrated here could then be applied
to both systems to achieve direct state transfer and entanglement between distant
ions. A second setup with a fiber cavity is under construction in our group. Although
parameters of both setups will be different, the combination of both setups is possible.
The temporal shape of photons from both setups can be overlapped via adjustment
of the pulse shapes and Rabi frequencies of drive lasers [95]. Experiments involving
both setups may then demonstrate a very efficient prototype of an ion-cavity quantum
network.

In addition, two quantum interface protocols for one ion-trap cavity apparatus can
be explored with the current setup. A first, direct application of the state-mapping
protocol in a slightly modified version is the generation of photonic cluster states
[158], a universal resource for measurement-based quantum computation [159]. In this
protocol, the atom acts as a quantum memory and sequentially emits single photons
interleaved with local operations on the memory. In an extension of this scheme,
two or more ions could be used to generate two-dimensional photonic cluster states
deterministically [107]. Although the original proposal considers quantum dots as
photon emitters, an ion-cavity system presents itself as an optimal system: it combines
the ability to perform local operations with perfect indistinguishability of the emitters.

The fidelity of the ion-photon state mapping protocol presented in this work is
limited by off-resonant scattering due to a finite ion-cavity coupling. This limitation
could be addressed by coupling multiple ions to the same cavity mode and encoding
the logical qubit in the common state of all ions [157]. Entanglement between N ions
would then increase the coupling of the logical qubit to the cavity by

√
N . In this way,

well-established methods of generating entanglement of a string of ions [118] could be
used to address the fundamental technical challenge of building a small cavity around
an ion trap in order to obtain strong atom-cavity coupling.
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A Battery circuit for trap-cavity piezo control
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Figure A.1: High voltage battery circuit diagram.

Two 300 V batteries (Energizer EVEREADY 493) supply the voltages for the
fast and slow piezo, tuned via 100 kΩ potentiometers. The fast piezo, responsible
for stabilizing the cavity length, is connected on one electrode to the signal of a PI
controller, and on the other electrode to the voltage V2. As the slow piezo needs about
one third of the voltage in order to move by the same distance as the fast piezo, the
slow piezo is driven by a fraction of ∼ 1/3 of V2 plus the voltage of the other battery V1.
We can thus control the position of the cavity by changing V2 while the cavity remains
locked. A switch enables a scan mode where the second electrode of the slow piezo is
connected to a signal generator in order to scan the cavity length. Higher values of
the potentiometers and resistors would further reduce currents and therefore raise the
battery lifetimes. However, 10-turn precision potentiometers with more than 100 kΩ
resistance were not available at the time the circuit was built. They are available now
and will be inserted in the future.
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The work presented in this thesis has given rise to a number of journal publications:

Tunable ion-photon entanglement in an optical cavity
A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter,
T. E. Northup and R. Blatt
Nature 485, 482 (2012)

Quantum-state transfer from an ion to a photon
A. Stute*, B. Casabone*, B. Brandstätter, K. Friebe, T. E. Northup and R. Blatt
Nature photon. (accepted for publication)

Toward an ion-photon quantum interface in an optical cavity
A. Stute, B. Casabone, B. Brandstätter, D. Habicher, H. G. Barros, P. O. Schmidt,
T. E. Northup and R. Blatt
Appl. Phys. B 107, 1145 (2012)

Additional articles have been published in the framework of this thesis:

Quantum to classical transition in a single-ion laser
F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt and
R. Blatt
Nat. Phys. 6, 350 (2010)

Deterministic single-photon source from a single ion
H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt and R. Blatt
New J. Phys. 11, 103004 (2009)

Raman spectroscopy of a single ion coupled to a high-finesse cavity
C. Russo, H. G. Barros, A. Stute, F. Dubin, E. S. Philips, T. Monz, T. E. Northup,
C. Becher, T. Salzburger, H. Ritsch, P. O. Schmidt and R. Blatt
Appl. Phys. B 95, 205 (2009)

119



B Journal publications

120



Bibliography

[1] P. Benioff, The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines, Journal
of Statistical Physics 22, 563 (1980).

[2] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467
(1982).

[3] P. W. Shor, Algorithms for quantum computation: discrete logarithms and fac-
toring, in Proc. Annu. Symp. Found. Comput. Sci., pp. 124–134 (1994).

[4] L. Grover, A fast quantum mechanical algorithm for database search, in Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing, pp.
212–219, ACM (1996).

[5] C. Bennett, G. Brassard, et al., Quantum cryptography: Public key distribution
and coin tossing, in Proceedings of IEEE International Conference on Comput-
ers, Systems and Signal Processing, vol. 175 (1984).

[6] R. Hughes, et al., ARDA Quantum Computation Roadmap (2004).

[7] P. Zoller, et al., Quantum information processing and communication, Eur. Phys.
J. D 36, 203 (2005).

[8] P. Shor, Fault-tolerant quantum computation, in Proceedings of IEEE 37th
Annual Symposium on Foundations of Computer Science, pp. 56–65, and
arXiv:quant–ph/9605011v2 (1996).

[9] P. W. Shor, Scheme for reducing decoherence in quantum computer memory,
Phys. Rev. A 52, R2493 (1995).

[10] A. M. Steane, Error Correcting Codes in Quantum Theory, Phys. Rev. Lett. 77,
793 (1996).

[11] D. G. Cory, et al., Experimental Quantum Error Correction, Phys. Rev. Lett.
81, 2152 (1998).

[12] J. Chiaverini, et al., Realization of quantum error correction, Nature 432, 602
(2004).

121



Bibliography

[13] P. Schindler, et al., Experimental Repetitive Quantum Error Correction, Science
332, 1059 (2011).

[14] H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).

[15] L.-M. Duan and C. Monroe, Colloquium: Quantum networks with trapped ions,
Rev. Mod. Phys. 82, 1209 (2010).

[16] C. Monroe, Quantum information processing with atoms and photons, Nature
416, 238 (2002).

[17] S. Barz, et al., Demonstration of blind quantum computing, Science 335, 303
(2012).

[18] D. P. DiVincenzo, The physical implementation of quantum computation,
Fortschr. Phys. 48, 771 (2000).

[19] R. Ursin, et al., Entanglement-based quantum communication over 144 km, Na-
ture Phys. 3, 481 (2007).

[20] L.-M. Duan and H. J. Kimble, Efficient engineering of multiatom entanglement
through single-photon detections, Phys. Rev. Lett. 90, 253601 (2003).

[21] J. Volz, et al., Observation of Entanglement of a Single Photon with a Trapped
Atom, Phys. Rev. Lett. 96, 030404 (2006).

[22] S. Ritter, et al., An elementary quantum network of single atoms in optical
cavities, Nature 484, 195 (2012).

[23] A. Kuzmich, et al., Generation of nonclassical photon pairs for scalable quantum
communication with atomic ensembles., Nature 423, 731 (2003).

[24] C. W. Chou, et al., Measurement-induced entanglement for excitation stored in
remote atomic ensembles, Nature 438, 828 (2005).

[25] B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, Observation of
entanglement between a single trapped atom and a single photon, Nature 428,
153 (2004).

[26] J. McKeever, et al., Deterministic generation of single photons from one atom
trapped in a cavity, Science 303, 1992 (2004).

[27] H. G. Barros, et al., Deterministic single-photon source from a single ion, New
J. Phys. 11, 103004 (2009).

[28] R. Miller, et al., Trapped atoms in cavity QED: coupling quantized light and
matter, J. Phys. B 38, S551 (2005).

122



Bibliography

[29] A. D. Boozer, et al., Reversible State Transfer between Light and a Single Trapped
Atom, Phys. Rev. Lett. 98, 193601 (2007).

[30] H. P. Specht, et al., A single-atom quantum memory, Nature 473, 190 (2011).

[31] S. Olmschenk, et al., Quantum Teleportation Between Distant Matter Qubits,
Science 323, 486 (2009).

[32] J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement
with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001).

[33] D. N. Matsukevich, et al., Entanglement of a Photon and a Collective Atomic
Excitation, Phys. Rev. Lett. 95, 040405 (2005).

[34] J. Sherson, et al., Quantum teleportation between light and matter, Nature 443,
557 (2006).

[35] E. Togan, et al., Quantum entanglement between an optical photon and a solid-
state spin qubit, Nature 466, 730 (2010).

[36] D. L. Moehring, et al., Entanglement of single-atom quantum bits at a distance,
Nature 449, 68 (2007).

[37] J. Simon, H. Tanji, and V. Saikat Ghosh, Single-photon bus connecting spin-wave
quantum memories, Nature Phys. 3, 765 (2007).

[38] J. Hofmann, et al., Heralded Entanglement Between Widely Separated Atoms,
Science 337, 72 (2012).

[39] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits,
Phys. Rev. Lett. 80, 2245 (1998).

[40] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: the role
of imperfect local operations in quantum communication, Phys. Rev. Lett. 81,
5932 (1998).

[41] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum State Transfer
and Entanglement Distribution among Distant Nodes in a Quantum Network,
Phys. Rev. Lett. 78, 3221 (1997).

[42] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of
single trapped ions, Rev. Mod. Phys. 75, 281 (2003).
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hatte. Ihre Ruhe und Sorgfalt waren in dieser Situation Balsam für meine Seele.

Bei Andreas Reinalter, Anton Schönherr, Helmut Jordan und Armin Sailer von der
mechanischen Werkstatt bedanke ich mich für die sorgfältige Fertigung vieler Teile,
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Patricia Moser, Karin Köhle, Renate Kemedinger, Ingeborg Kaindl, Nicole Jorda
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