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Hofstadter’s Law:
It always takes longer than you expect,
even when you take into account Hofstadter’s Law.

— Douglas Hofstadter






ABSTRACT

The ability to perform entangling gate operations between qubits is
very important in modern physics. The duration of motional-sideband-
resolving entangling gate operations in ion qubits has a physical lower
limit on the order of tens of motional periods. This limits the number
of gate operations that can be applied within the coherence time of
the ion qubits. An entangling ultrafast phase gate operation has been
proposed which can potentially be orders of magnitude faster than
previous gates.

This thesis makes an experimental step towards realizing the ul-
trafast phase gate operation. It shows how to meet all requirements
of the gate operation and details the last necessary steps towards
its experimental implementation. In particular, the thesis presents
experiments with a pulsed laser system which delivers picosecond
pulses at a repetition rate of 5 GHz. It is resonant to the 4S;,, <> 4P3,»
transition in “°Ca™* for coherent population transfer to implement
the ultrafast phase gate operation. The optical pulse train is derived
from a mode-locked, stabilized optical frequency comb and inherits
its frequency stability. Using a single trapped ion, four techniques are
implemented for measuring the ion-laser coupling strength and char-
acterizing the pulse train emitted by the laser. Finally, it is estimated
that the realization of the gate operation requires a factor of 4 increase
in the available laser intensity.

ZUSAMMENFASSUNG

Die Fahigkeit, Qubits zu verschrdnken, ist in der modernen Physik
von grofler Wichtigkeit. Die Zeitdauer von verschrankenden Quan-
tengatteroperation, die die Bewegungsseitenbdander von Ionenqubits
spektral auflosen, ist physikalisch nach unten auf mehrere zehn Mi-
krosekunden begrenzt. Dies limitiert ebenso die Anzahl an Quanten-
gatteroperationen, die innerhalb der Kohdrenzzeit der Ionenqubits
durchgefiihrt werden konnen. Eine verschrankende, ultraschnelle Pha-
sengatteroperation wurde vorgeschlagen, die das Potenzial hat, um
Grofsenordnungen schneller zu sein als bisherige Quantengatteropera-
tionen.
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Die vorliegende Arbeit macht einen Schritt in Richtung der Reali-
sierung der ultraschnellen Phasengatteroperation. Die Arbeit zeigt,
wie alle Voraussetzungen fiir die Implementierung der ultraschnellen
Phasengatteroperation erfiillt werden kénnen und fiihrt die letzten,
notwendigen Schritte zur experimentellen Umsetzung auf. Insbesonde-
re werden Experimente mit einem gepulsten Lasersystem vorgestellt,
das pikosekundenlange Pulse mit einer Repetitionsrate von 5 GHz aus-
sendet, die resonant zum 4S; » <+ 4P3/, Ubergang in *°Ca™ sind und
diesen kohdrent anregen, um die ultraschnelle Phasengatteroperation
zu verwirklichen. Der optische Pulszug nimmt seinen Ursprung in
einem modengelockten und stabilisierten, optischen Frequenzkamm
und erhélt dessen Frequenzstabilitdt. Mithilfe eines einzelnen, gefan-
genen lons werden vier Methoden angewendet, um die Ionen-Laser-
Kopplungsstirke zu messen und den Pulszug zu charakterisieren.
Schluflendlich zeigt eine Abschdtzung, dass zur Realisierung der Gat-
teroperation die Intensitdt der Laserstrahlung noch um einen Faktor
vier erhoht werden muss.
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Part I

INTRODUCTION, THEORY AND
PREREQUISITES






INTRODUCTION

The development of computational tools started thousands of years
ago. One of the earliest of such devices was the abacus, which is still
in use today in some parts of the world. Since then, the development
progressed through mechanical analog computers and much later
also electronic analog computers until the realization of Alan Turing’s
ideas of a digital computer [1]. Initially, most digital computers were
electromechanical such as Konrad Zuse’s Z3 and filled large rooms
with thousands of relays. But with the fast paced development of the
vacuum tube, the transistor and later the integrated circuit, computers
quickly became smaller and smaller. According to Moore’s law [2],
the number of transistors in modern microchips doubles about every
two years, which in a few years would lead to transistors the size of
a single atom. Before that point is reached, new problems will arise
which will prevent such small structures to behave as usual: Quantum
effects will have to be considered. It is unlikely though, that this will
be the end of the development of computers, the effects of quantum
mechanics are both boon and bane.

In the early 1980s, a device was proposed which uses quantum-
mechanical effects to calculate the result of certain computations [3].
Such a device has two applications. On the one hand, its well-known
and controllable quantum system can be used to simulate the behavior
of a more complex system, which classical computers can not do
efficiently. This quantum simulator [4, 5] allows one to examine quantum
systems that are very difficult or even impossible to isolate and control
in the lab, and make predictions of their characteristics. On the other
hand, such a quantum system can be used for the implementation of
quantum algorithms most of which were developed in the 1990s. A
quantum computer running e. g. Shor’s algorithm [6], would be able to
factorize an integer of length N in a time that is polynomial in log(N).
The fastest known classical factoring algorithm is almost exponentially
slower. Other quantum algorithms include those by Deutsch and
Jozsa [7], which is one of the first quantum algorithms that would be
faster than any classical algorithm, and the database search algorithm
by Grover [8]. Shor and — independently — Steane also proposed a
protocol for quantum error correction [9, 10] which is essential for
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fault-tolerant quantum computing. Soon after, DiVincenzo published
a list of requirements for building a quantum computer [11]. In short
these requirements are

1. A scalable quantum system with well-known degrees of freedom
(“qubits”),

2. The ability to initialize the qubits,

3. The quantum system must be isolated from the environment
such that decoherence can be controlled for,

4. A “universal” set of quantum logic gates, which includes a
transformation which is able to entangle qubits,

5. A way to reliably read out the qubit state.

Research groups working with different quantum systems, such as
superconducting qubits, trapped ions and others, are trying to imple-
ment these requirements.

Trapped ions in particular are a well-studied and promising system
for the implementation of a scalable quantum computer [12-16]. Two-
qubit entangling gate operations have been demonstrated [17—20] and
combined with single-qubit gate operations to build an elementary
quantum processor [21-23]. The entangling gate operations in these
experiments have been carried out in an adiabatic regime in which they
rely on coupling to spectroscopically-resolved motional sidebands of
the qubit transition. The requirement to resolve sidebands introduces
an intrinsic limit to the duration of a gate operation: it has to be
longer than the period of motion of the ions in the trap (about 1 ps).
Overcoming this limitation would advance the development of a
scalable quantum computer as it would allow one to increase the
number of gate operations (computational steps) that can be completed
within the coherence time of the ion-qubits.

In 2003, Garcia-Ripoll, Zoller, and Cirac proposed a two-qubit en-
tangling gate operation, which can be completed in less than one trap
period using counter-propagating, ultrashort laser pulses to apply
qubit state-dependent momentum kicks[24]. Instead of resolving a
motional sideband of the ion crystal, this ultrafast phase gate opera-
tion excites many motional states at once and can complete orders of
magnitude faster than previous entangling gates. The proposal has
spawned research in both the theoretical [25-29] and experimental
field of physics. Several groups are working on its realization [30,
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31] but so far, only single-qubit gate operations [32, 33] and single-
ion spin-motion entanglement [34] have been reported on time scales
shorter than the ion oscillation period. The creation of two-qubit entan-
glement by a train of ultrafast laser pulses within a few microseconds
has been demonstrated in the ground-states of a pair of Yb™ ions [35].
Recently, Schifer et al. reported a two-ion entangling gate faster than
the motional period using amplitude-shaped laser pulses [36].

Contrary to the approach taken by the group of Christopher Monroe,
who is using pulses to drive stimulated Raman transitions to produce
a qubit state-dependent kick [30, 32—35], the project described in
this thesis uses resonant laser pulses to realize the state-dependent
momentum kicks.

One difficulty in applying the fast gate operation is in restoring
the excited motional states to their initial state. This requires precise
control over the arrival time of pulses at the ion crystal which can be
achieved either by delaying single pulses with respect to others or by
using a high pulse repetition rate. So far and to my best knowledge,
the highest repetition rate reported in a laser for fast quantum logic is
300 MHz [37]. Though not yet done experimentally, it has been shown
that the gate time of the fastest phase gate operation' a laser of this
repetition rate could implement is on the order of o.5 trap periods
(500ns) [28, 31]. A higher repetition rate could significantly reduce the
minimum required gate time.

The goal of this thesis is to design, build and characterize a laser
system with the help of which it is possible to implement an ultrafast
two-qubit phase gate operation using resonant, counter-propagating
laser pulses in “°Ca* ions. A high repetition rate of 5GHz ensures
that the gate time can be well below a single oscillation period of the
ion crystal in the trap potential. The choice of ion species allows us to
access the knowledge and tool kits available in the Quantum Optics &
Spectroscopy research group at the University of Innsbruck.

This thesis is organized in three parts. Part I introduces the thesis’s
topic and summarizes previous work which the thesis is based on.
After the introduction, the theoretical, fundamental properties of Paul
traps, the *°Ca™ ion and ion-light interaction are introduced in chapter
2. There, the Hamiltonians for describing the ions” harmonic motion
in the trap potential, a two-level system and the ion-laser interaction
are summarized. Chapter 3 then gives an overview of quantum infor-
mation processing with a focus on utilizing trapped ions as qubits.

1 of the FRAG type, see section 4.2.3
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A number of fundamental single and two-qubit gates are introduced
along with previous experimental efforts in their implementation. In
chapter 4, the proposal for the realization of an ultrafast phase gate
operation using a pulsed laser is introduced and previous theoretical
work is summarized with a focus on the implementation in 4°Ca*.

Part II contains a description of the experimental apparatus and
results acquired during the work on the thesis as well as an outlook:
Based on the theoretical proposal, a laser system was designed and
set up, which is described in chapter 5. The system comprises a high
repetition rate, ultrafast pulsed laser which is derived from a stabi-
lized optical frequency comb. Its light is amplified at 1572nm and the
wavelength is shifted via cascaded SHG to 393 nm, resonant to the
4S1/2 ¢+ 4P3, transition in °Ca™. The characterization in chapter 6
shows that the pulses are chirped and that it is possible to pick arbi-
trary pulse sequences out of the 5 GHz pulse train. Chapter 7 describes
the experimental apparatus used for trapping and manipulating 4°Ca™*
ions as well as the hardware and software of the experimental control
system. Next, chapter 8 first introduces models for simulating the
ion-light interaction and then describes the thesis” experimental re-
sults. These show that the laser can coherently drive the 451/, <> 4P3,,
transition in *°Ca™ and that it can create approximate 7-pulses on
that transition with only a single optical pulse: a key-requisite to
implementing a resonant, ultrafast, two-qubit phase gate operation.

Finally, part III completes the thesis with a summary of the thesis
and an outlook into possible future experiments in chapter 9, and with
appendix A, which details the process of preparing the laser system
for a measurement.



TRAPPING 4°CA*+ IONS IN PAUL TRAPS

Experimenting with an ion-based quantum computer requires restrict-
ing ion movement to a region where the ion(s) can be manipulated.
Common ion traps use electric and/or magnetic fields to confine the
ions to a small region where they can be cooled by e. g. laser radiation
to even the motional ground state. In order to prevent the ions from
undergoing collisions with other atoms and molecules, the traps are
typically placed under ultra-high vacuum (UHV) (< 10~ mbar).

This chapter summarizes the effects of the trapping potential and
of a laser field on singly charged (calcium) atoms. In section 2.1 the
Paul trap and its trapping potential is introduced along references [38,
39]. Next, the ion motion is first quantized and then the treatment
is generalized for a few-ion crystal. The “°Ca™ ion is introduced in
section 2.2 and section 2.3 summarizes the interaction of a laser-light
field with the internal and external degrees of freedom of an ion.

2.1 PAUL TRAPS

A typical linear Paul trap consists of six electrodes: Two pairs of radial
electrodes and one pair of axial electrodes. Each pair is typically held
at the same electrical potential and the electrodes of each pair are
on opposite sides of the trap as illustrated in figure 2.1. The radial
electrodes create a time-varying, two-dimensional quadrupole field
that confines the ions in the radial direction. One pair of the radial
electrodes is usually held at a DC potential that defines the electric
ground of the trap. To the other pair, a radio frequency (RF) signal
of amplitude Vp and angular frequency Qrqp is applied. The axial
electrode pair is held at a DC potential Uy which creates a harmonic
potential that confines the ions in the axial direction. A trapped ion
would be located in the middle of the trap, separated by R from the
radial electrodes and by Z from the axial ones.
The radial electrodes create a two-dimensional quadrupole field

%
V(x,y, t) = ZRZO COS(QTrapt) (xz - ]/2)/ (2.1)
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Figure 2.1: Scheme of a linear Paul trap. Figure source: [40]

where x, ~ 1 is a geometrical factor determined by the shape of the
electrodes. The average motion of an ion of charge Q and mass M, on
a time scale slow compared to 1/Qrp, can be approximated by the
motion in the pseudo-potetial

_Mwr, 5 o
()b(x’ y) - 2Q (x + y )/ (2'2)
in which the ion will oscillate at the radial oscillation frequency of
xrQVo
Wyy =W = —(—————— 2.
X,y r \/EMR2QTrap ( 3)

in x and y directiona.
The static potential created by the axial electrodes is given by

K, U 1
U(x,y,z) = ZZO <22 — E(x2 + y2)>, (2.4)

where x, < 1 is another geometrical factor determined by the shape of
the electrodes. An ion will oscillate at the axial oscillation frequency

of
/ Kk QUy
wZ == 8M22 (25)

due to this harmonic potential.

2.1.1  Quantum harmonic oscillator and phase space

A newly trapped ion, which was created by laser ablating an atom
from a target and ionizing it, usually comes along with kinetic and
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potential energy on the order of 1eV [41] (=~ kpl0*K, with kp the
Boltzmann constant) and can thus be considered “hot”. In this regime
the ion follows a classical trajectory through the trap volume. However,
the utilization of nonclassical states and motional qubits requires that
the ion is cooled to well below the quantum limit [39]

ksT < hw, (2.6)

with kg the Boltzmann constant and T the temperature of the ion. In
this regime quantum effects start to matter, and the ion’s motion in
the trapping potential has to be quantized [42, 43].

Classically, the motion of a particle of energy E and mass M in a
harmonic potential U(x) = 2kx? with force constant k must satisfy the
classical equation of the conservation of energy;,

2

P 1 2,2
—E .
M+ Mw*"x =E, (27)

where p is the momentum and w = \/% the oscillation frequency.

Hence in quantum mechanics, the Hamiltonian describing the ion
motion as a harmonic oscillator in the harmonic potential along the
trap axis becomes

P 1, o0
Huo. = M + EMCUZZ , (2.8)
where 2 is the position operator and p = —ifi the momentum

operator. By introducing the ladder operators a and a', given by

_ (2.9)
a+ — % 2 _ ; H
20 M. P )’
the Hamiltonian can be written as
.'. 1
Huyo = hw,|a'a—+ 5 (2.10)

Applying the ladder operators on an eigenstate |n) results in

atn) =vn+1|n41) (2.11)
aln)y =+/nln—1) (2.12)
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Figure 2.2: Phase space diagram of the lowest energy eigenstates |n), n < 6.
Phase space is spanned by dimensionless parameters {x and

p/hg.
and the eigenvalues therefore are

E, = hw, (n + ;) (2.13)

These energy eigenstates |n) are also called Fock states and a particle
in a Fock state has a well-defined number of quanta, in this case
phonons. Similar to the classical oscillator, such particle’s motion in
the harmonic potential is governed by the Schrodinger equation and
the Hamiltonian in equation (2.8) but allowed energies are only the
eigenvalues E;. By introducing the dimensionless parameters position
¢x and momentum p/h{, with { = v/ Mw/h, this becomes

<hp§>2 4 (x)? = Z(n + ;) (2.14)

In phase space spanned by above dimensionless parameters these
phase space trajectories take the form of concentric circles with radii

\/2(n+ %), which are plotted in figure 2.2 for n < 6.

Quantum states such as the motional state of a particle in a harmonic
potential can also be in superpositions of Fock states. The eigenstates
|a) of the annihilation operator a, a ) = « |a), are states that are most
similar to the classical motion of a particle in a harmonic potential.
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They are called coherent states and in general « is a complex number.
In the Fock basis, coherent states can be represented by

Zji

Their energy expectation value is

(2.15)

(a|Hpo. o) = hwz<(o¢\a+a\(x> + ;) = szz(\txlz + ;), (2.16)

which can take any value above h% Coherent states can be created
by displacing the ground state |0) by « using the displacement operator
D(a) = exp(aa® — a*a),

D(a)[0) = |a). (2.17)

In chapter 4 it will be shown that the effect of an ultrashort pulse on a
two-ion crystal is that of applying displacement operators to the ion
state.

2.1.2  Few ion crystals
Trapping more than one ion in a Paul trap complicates the ions’
motion significantly because the ions will interact with each other
due to the Coulomb repulsion. Why this is nonetheless desirable and
even necessary will be made clear in chapter 3. This summary of the
collective ion motion of an N ion crystal follows references [39, 44].
When the linear Paul trap contains more than one ion, the ions
will align in a single row along the trap axis (the z axis) if the radial
confinement is tight compared to the axial confinement w, < w, and
the ions’ temperatures are cold. Under these conditions and with z, ()
the position of ion number n along the trap axis, the potential energy
of the ion chain can be written as (assuming that x, = y, = 0) [44]

1
U= Z szzn Z 87T€0 !Zn O (2.18)

nm=1

m#n

with €g the permitivity of free space. Since we already assumed the
ions are cold, we can write the position of the ions as the sum of the

(0)

equilibrium position z;; ’ and a small displacement g,,(t):

zn(t) = z,(?) + g, (t). (2.19)

11

coherent states

displacement operator
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The z,go) are determined by the partial minimum of the potential energy

{au

E)ZJ o =0. (2.20)

By defining a length scale zs and the dimensionless equilibrium posi-
tion u, by

S Q°
Zg = TrteoMa? (2.21)
Up = Z;(qo)/Zs, (2.22)
equation (2.20) can be written as a set of coupled equations,
n—1
Uy = Z 5+ Z (2.23)

m=1 (u” - Mm m= n+1 le)

These can only be solved analytically for N = 2 and N = 3, for higher
values of N they have to be solved numerically. For N = 2, the u,, are
given by

up = —(1/2)%3, up = (1/2)*7, (2.24)

higher values can be found in reference [44].
The g, (the ions” displacement from their equilibrium positions
along the axial direction) can be approximated using the Lagrangian

M o*U
- 2.2
2 :1 mnz 1 A [axmaxn:| Im=qn=0 ( 5)
M| )
- 7 Z Qn —(,U Z Amn‘]m‘]n ’ (2-26)
n=1 m,n=1
which neglects terms of O(g3) and with
1+2 Z if m=n
p=1 ‘un u,,|
Amn - p#i’l (2‘27)
—=2 if m+#n

|u,,—um\3

()

The eigenvectors b,/ and eigenvalues ji,, of Ay, are defined by

N
Z Amnb,(,f) = yr,bff), (pr=1,...,N), (2.28)
m=1
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where y, > 0, since the matrix A, is real, symmetric and non-
negative definite. Assuming the eigenvectors are numbered in order
of increasing eigenvalue and they are normalized so that

N
21 bbP) = by, Z b Spa, (2.29)
p:

the eigenvectors and eigenvalues for N = 2 are given by

(2.30)

For higher values of N these can again be found in reference [44].
From these results we can determine the normal modes of ion
motion along the axial direction which are defined by

()
f) = Z b, qn(t). (2.31)
-1

They can be used to rewrite the ion oscillation Lagrangian in equa-
tion (2.26):

N\i

N
Z [Qé - w;zaQﬂ , (2.32)

with w, the (angular) oscillation frequency of the p" mode, which is
given by

Wp = \/Hptws. (2:33)

The first mode Q1 (t) corresponds to the center-of-mass mode where
all ions oscillate together, without changing the inter-ion spacing, at
frequency w; = w;. The second mode Q;(t) corresponds to the stretch
or breathing mode, where the ions oscillate with an amplitude propor-
tional to their equilibrium distance to the trap center, at frequency

= V/3w,. For N = 2 these modes are schematically plotted in
figure 2.3.

With the canonical momentum conjugate P, to Qp, P, = MQ,, the

Hamiltonian can be written as

H=_—— Z P+ = Z w5 Q5. (2.34)

13
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Center of mass mode Stretch mode
[§
g 1l 1 L
o V2
(@]
o
©
S o+ i L — lon 1
g lon 2
Y
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o _1 ¢t J L
s V2
)
o
0 1 2 0 1 2
Time (2n/w,) Time (2r/w;)

Figure 2.3: Schematic plot of the normal modes Q,(t) for an N = 2 ion
crystal. The amplitude of the oscillation is greatly exaggerated
to illustrate the differences between the modes. The abscissa is
plotted in units of oscillation period 27t/ w,, the ordinate in units
of the length scale zs. Note that the center of mass mode oscillates
at the same frequency w; as a single ion in the same harmonic
potential, while the stretch mode oscillates at V3w,.
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2.2 THE ¥0ca™t 10N

In order to quantize the ion motion, the following operators have to
be introduced:

. - [hMw
P, =i > P (a;[rJ —ap), (2.36)

..I..
p

[a,,,a;r] = 0pg. This allows writing the interaction picture operator

where a,, af, are the ladder operators of the p™ mode and obey

for the displacement of the n™" ion as

N
du(t) = Y b Oy (1) (2.37)
p=1
2.2 THE *0ca™ 10N

For the experiments of this thesis a singly charged isotope of calcium
was used: °Ca*. Neutral calcium-40 atoms can be ionized to *°Ca™ in
an isotope-selective two-step process [45]. With one of its two valence
electrons removed, °Cat and other ions of alkaline earth metals have
an energy level structure similar to neutral atoms of alkali metals,
particularly to the hydrogen atom [46, 47].

The three lowest orbitals that the valence electron of *°Ca* can
populate are the 4S, the 3D and the 4P orbitals. As shown in figure 2.4
these split into the levels 4S; /5, 3D3/2, 3D5,2, 4P1 /2 and 4P3,,, which in
turn split into Zeeman sublevels with the magnetic quantum numbers
mj when exposed to a magnetic field.

Approximating the ion levels by a two-level system is justified if the
frequencies of electromagnetic fields coupling the levels are close to
only one of the transition frequencies of any two internal levels and
if the Rabi frequencies are always much smaller than the detuning
of the fields relative to all the other transitions. If the two levels |g)
and |e) have the respective energy of iw, and fiw,, the Hamiltonian
describing the two-level system can be written as [53]:

Hp = hwyg [g)(8] + i, |e){e] . (2.38)

Setting the zero energy level to halfway between the two levels
and using the energy splitting fiws = fi(w, — wy), the Hamiltonian
becomes

w
Hpy = hTA(Tz, (239)

15
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my=-1/2 /2

Figure 2.4: Level scheme of 4’Catincluding all Zeeman sublevels of the
three lowest orbitals. Possible transitions are shown with their
wavelengths and branching ratios [48, 49], excited electronic states
with their lifetimes [50-52]. This figure was adapted from [47].

where 0, = |e)(e| — |g)(g] is the Pauli z matrix.

2.3 ATOM-LIGHT INTERACTION

Given a (laser) light field with the electric field

E(t) = %Eo exp(i(wpt — ¢r)) + c.c.,

amplitude Ey, frequency wy, and phase ¢, that couples the states of
the two-level system seen in figure 2.5, the interaction is described by
the Hamiltonian [53, 55]

Hy = o (Igel + legl) - [exp(i(k —wnt 4 ¢u)) + cc. |, (240

with () &« Ey the Rabi frequency and k the wave vector of the light
field. Using the Pauli matrices and |e)(g| = 0. = % (0x +ioy), |g)(e] =

o_ = (0% — i0y) to express the Hamiltonian, it can be written as

Hy = h%(m +o) [explike—wrt+ 1)+ cc ] (241)
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Figure 2.5: Energy level diagram for a two-level system with energy splitting
hwy acting with a near resonant classical light field of frequency
wr. The detuning of the light field frequency with respect to the
system’s transition frequency is A = wp, — wx. Figure adopted
from [54].

Drawing together the results of the previous sections — namely
equations (2.10), (2.39) and (2.41) — the total Hamiltonian of the system
is

H = Hyo. + Ha + Hi. (242)

The dynamics can be simplified by first transforming Hp into the
interaction picture with respect to Ha. Using Ua = exp(—i/hiHat),
the interaction Hamiltonian is

Hint = U\HLUA. (2.43)
After applying the rotating wave approximation and simplifying the
expression (for details see reference [56]) the Hamiltonian becomes

Q A LA
Hint = hi[mr exp(i(kz — At+¢r)) + o_exp(—i(kz — At + ¢r))],
(2.44)

with A = wp — wa the laser detuning from the atomic transition
frequency. If only a single ion is considered, Z can be replaced by the
single normal mode operator Q; from equation (2.35),

Hin =1y [0 exp (iCn(a + ") = At + gu)) +

o exp(—i(iy(a +a') — At + ch)ﬂ , (2.45)

17
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with # the Lamb-Dicke parameter, given by

[ h
n=k M. (2.46)

If the ion trapped in the harmonic potential is occupying motional
states of sufficiently small phonon number n such that

772(2n+1) < 1, (247)

the exponent in equation (2.45) can be expanded to the first order of
7. This regime is called the Lamb Dicke regime and in the interaction
picture with respect to Hy o, the Hamiltonian can be written

Hip(t) :h%m (1 + iq(ae(—int) + a‘fe(iwzt)))
x exp(i(gL — At)) (2.48)
+ H.

This contains three terms and under a second application of the
rotating wave approximation each of the terms becomes resonant (i. e.
time independent) at a different detuning A. The first term is resonant
for A = 0 and is called the carrier resonance. It takes the form

Q
Hear = h? (04 exp(ipL) + o— exp(—i¢r)) (2.49)

and is responsible for |1, g) <+ |n,e) transitions that leave the motional
state unchanged. The term that is resonant for A = —w; is called the
(first) red sideband and is responsible for |n, g) <> |[n —1,e) transitions
that entangle the motional state with the internal state of the ion. It
can be written

Hep = 150y (a0 explign) + ' exp(—ign) ). (250)

Finally, the third term is resonant for A = 4w, and is called the (first)
blue sideband. It is responsible for |n,g) <+ |n+1,e) transitions and
takes the form

Hpgp = h%q <a+(r+ exp(igr) + ao— exp(—iqu)). (2.51)

Unlike the idealized, single-frequency laser, the light of a pulsed
laser has a time-varying electric field E(t) and therefore a finite spectral
width 7. Hence, the Rabi frequency Q(t) = pE(t)/h, where y is
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the dipole moment, also becomes time-dependent. If the pulse is
sufficiently weak such that its maximum Rabi frequency is small with
respect to the trap frequency, () < w,, the previous assumptions are

still valid and the atom-light interaction can be described as above.

However, if the pulses are strong such that () > w, this is not the
case anymore. In this so-called strong-excitation regime [57], the second
rotating wave approximation made above for calculating the terms in
equations (2.49), (2.50) and (2.51) is no longer valid.

2.4 ELECTRIC FIELD OF A LASER PULSE

Modern pulsed lasers emit pulses with a pulse length T on the order of
nanoseconds and shorter. This is much shorter than the ion’s motional
period, T < 27/ w,, and the ion’s position can be considered constant
on the length scale of the laser light’s wavelength during the duration
of such pulse. Therefore, the motional parts of the Hamiltonian in
equation (2.44) can also be considered constant on that timescale and
can be regarded as part of a global phase, and the Hamiltonian can be
rewritten as

Hint(t) = hﬂz(t)a+ exp(i(¢r —At))+ H.c. (2.52)

=c(t)oy + He (2.53)
with the complex, time-dependent coefficient

c(t) = hQZ(t) e'?h), (2.54)
The coefficient’s phase ¢(t) depends on the detuning between the
atomic transition and the laser field, and for a pulsed laser field also
on the variation of the instantaneous frequency w o« $¢(t) during the
pulse, which is also known as chirp [58]. In this thesis, it is assumed the
frequency changes linearly with time, w « t, which is called a linear
chirp, and requires ¢(t) o 2. To describe such a pulsed laser field, c(t)
can be defined either temporally in the time domain or spectrally in
the frequency domain (also compare with figure 5.2 on page 51).

19
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2.4.1  Temporally defined pulses

One way to define the time-dependent coefficient c(t) is by assuming
e.g. a Gaussian shape for the electric field E(t) of a single pulse,
following references [58, 59], to get

2
E(t) = Ey exp(—ZtT2 + iwpt — icp(t)>, (2-55)

with Ey the peak amplitude, Tv/In16 the full width at half maximum
(FWHM) pulse length®, wy, the center frequency and ¢(t) the temporal
phase. Assuming a linear chirp, the phase can be written

olt) =y, (2:56)

with & the linear temporal chirp. The FWHM bandwidth of such defined
pulse is yvIn16 with

1
72 = p(l + txzr4). (2.57)

An N-pulse pulse train can then be described by the sum over N
pulses separated by Tyse Which results in the coefficient

C(t) _ i [h(;() exp (_ (t - z:};ulse)2> %

n

t—nT 2
exp | i(wr — wa)(t — NTpulse) — iaw +in
2 frep

)|

(2.58)
with Qg = uEo.

2.4.2 Spectrally defined pulses

Alternatively, c(t) can be defined by taking the sum over the electrical
fields of the spectral modes of the laser light. The spectrum of a long
train of pulses consists of field modes which are separated by the

Scaling the bandwidth and pulse length with the numerical factor 1/I1(16) results
in 7.7 = 1 for an unchirped (¢’ = 0) pulse. Using instead the FWHM values and
converting 7 from angular frequency to ordinary frequency to calculate the time-
bandwidth product gives T./In(16) - (7+/In(16)/27) = In(16) /27 ~ 0.44 which is
the lower limit of the time-bandwidth product for Gaussian shaped pulses.
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repetition rate frp from each other and offset by the carrier envelope
offset (CEO) frequency fcro. The frequency f, of each mode can be
calculated according to

fn = fCEO +n- frep; (259)

for more details see section 5.1. If one mode with (angular) frequency
wy is detuned by Ag = wp — wa from the atomic transition frequency
wa, all the other modes are then detuned by

A = D+ m - 27 frep. (2.60)

Assuming the spectral envelope of the modes has a Gaussian shape
and a FWHM bandwidth of yv/In 16, every mode can be assigned an
electric field strength E;, and corresponding Rabi frequency );, =
uE,, /h according to their location within the spectral envelope:

(A — (wr, — CUA))2>

Q), = Qfexp (— 22 (2.61)

with (26 the peak Rabi frequency. This can be put together to result in
the time-dependent coefficient

= — Ay - t). .
c(t) ;h 5 exp(ily - t) (2.62)
A linear spectral chirp a’, which is related to a by the equations
/ T4
a = am and (2.63)
4
Y
o =ao 15 a2 (2.64)
can be added to the light field to yield [58, 59]
/ 2
c(t) = ;h%’” exp (iAm o+ izx’Azm). (2.65)

The FWHM pulse length of such defined pulse is TvIn 16 with
1
% = ?(1 + a2, (2.66)

which directly shows that T increases when a pulse is chirped. In
order to conserve pulse energy Py = E37, the Rabi frequency in
equation (2.58) has to be scaled with the chirp as well,
Q=0 QOx'=0
Qg = —— ==
V1+a?yt 1+ a2t

(2.67)
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QUANTUM INFORMATION PROCESSING WITH
TRAPPED IONS

Quantum mechanics is one of those fields of physics that has gained
a lot of attention among the general public and it has indeed rev-
olutionized the way we think about physics and how to interpret
theoretical predictions and experimental results. In the early 1980s
scientists began to realize that the effects of quantum mechanics could
be applied to solving problems a classical computer can not solve
efficiently, such as using a well-controlled quantum system to simulate
another quantum system, over which the experimenter has little or no
control [4]. This and the first proposals to use quantum systems as a
basis for a novel quantum computer [3, 60] initiated a strong research
effort in this domain [12]. The promise of unfathomable speed-up of
certain classes of calculations has further spurred the development
and realization of systems usable for quantum computations [16, 22,
53]. Apparently, quantum mechanics has lived up to the hype with
useful quantum computers seemingly right around the corner.

This chapter summarizes the basic building blocks of a quantum
computer along reference [61], focusing on the implementation of
trapped “°Ca™ ions as qubits.

3.1 QUANTUM INFORMATION, GENERAL

In classical computer science, the bit is the fundamental unit of in-
formation. It can exist in either one of two states, usually called o
and 1. Any physical system that can exist in discernible states can
in principle be used to implement one or more bits, in practice a
bit is encoded e. g. in well-defined charge levels of a capacitance or
the direction of a magnetic field. In contrast, quantum information
correspondingly uses a quantum system that can coexist in two states,
namely |0) and |1). Such “quantum bit” is called a qubit [61]. What
distinguishes a qubit from a classical bit is that the qubit can be in

23
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: —=(2]0)+4]1))
(10) —1

Sl

10) + 1))

1)

Figure 3.1: Bloch sphere representation of a qubit. The green arrow is
a Bloch vector ¥ = (0,0.8,0.6)" representing the state |¢) =
\%(2 |0) +i 1)) = cos(%) |0) +€® sin(%) 1), with § &~ 0.37r and
¢ =r/2.
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a linear superposition of both states. A single, isolated qubit can be
represented by the vector |¢) such that

) =a|0) +B[1) = <Z> b, BeC, o>+ =1 (31)
This can be rewritten as
6 v . (0
lp) = COS<2> |0) +e¢sm<2> 1), (3.2)

with the real numbers 6 and ¢. They define a point on a unit sphere,
allowing one to conveniently visualize any such quantum state |¢) as
a point on the surface of the Bloch sphere as shown in figure 3.1. Such
a system whose state is known exactly is called a pure state.

Another way to represent a quantum system is to describe it by the
density matrix operator p. If a system can only be in the states |¢;) and
the corresponding state probabilities p; are known, the system can be
represented by

o= pilgiwil. (33)

A system with one p; = 1 satisfies tr(p?) = 1 and hence is still a
pure state. A general state of a quantum system with all p; < 1 and
whose state therefore can not be known exactly is called a mixed state
and tr(p?) < 1'. Alternatively, both pure and mixed quantum states
can be described by a real, three-dimensional vector ¥ using the Pauli
matrices,

10 01
op=1= 01 =0y =
o) (o)

(3-4)
0 —i 1 0
O =0y = ) 03 =07 =
) o)
and
I+t . |7
p = 2 P (— U'y 7 (3'5)
o;

1 This statement holds for a system of arbitrary size, not just for a single qubit.
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with |[f| < 1. The vector T is called the Bloch vector and can point
anywhere on the surface of the Bloch sphere (describing a pure state)
or inside the Bloch sphere (mixed state).

Not only are density operators able to describe both pure and mixed
states, they also allow one to easily calculate the expectation value for
any observable A using

(A) = tx(Ap). (6)

In order to describe more than one qubit, one can still either use a
density matrix or for pure states also a state vector. The state vector
for a general two-qubit state is

|¥) = 00 [00) + g1 [01) + a10 [10) + a11 [11) = o 37

x11

where the «;; again have to be normalized, such that Yij ‘(xi]- ‘2 =1and
lij) means that the first qubit is in state i and the second in state j.
While certain states can be described by the tensor product of two
individual qubits, e. g.

W) = |$1) @ [2)
= (a1 [01) + B1]11)) ® (a2(02) + B2 |12)) (3.8)
= a0 ’00> +a1B2 ‘01> + Biaz |10> + B1B2 ‘11>

other states can not be separated into individual states, that is, they
can not be written as a product of those states, e. g.

) = 69

These states are called entangled states, and they can be considered a
physical resource of quantum mechanics and quantum information
that has no classical equivalent [61]. How entangled states can be
created will be explained in the next section.

3.2 QUANTUM COMPUTATION

A classical computer uses the bits it has stored as input to its logic
gates. These can manipulate the input bits and return output bits ac-
cording to the gate operation’s truth table. The NOT gate for example,
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takes one input bit and outputs the opposite. Analogous to the classi-
cal computer a quantum computer uses elementary qubit operations to
manipulate its qubits. These quantum gate operations can be represented
by unitary matrices U/, that act on the qubits’ state vectors:

‘lpoutput> =U }lpinput> (3'10)

Some of the most important single qubit operations are the Pauli
{X,Y, Z}-gates, the Hadamard gate H and the phase gate S, listed
below are their quantum circuit symbols and their unitaries:

X:UXE<0 1)

10
(0 )
z-e=( °)
HZlZG —11>

Qubit operations can also act on more than one qubit, an important
class of these are the controlled qubit operations. In general, they
apply a unitary operator to the target qubit(s) only, if the control
qubit(s) are in state |1). For one target and control qubit each, this is
represented by

)
N
I

(3.11)
u

o O© O =
o o = O

Two important two-qubit operations are the controlled NOT (CNOT)
operation (constructed from the Pauli X-gate),

100 0
e
0100
Cx = 0001 (5-12)
4697
0010
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and the controlled-Z gate, also called a 7r-phase gate:

1 00 O
010 O

Cz = 001 0 (3.13)
00 0 -1

A significant realization is that all quantum gates can be constructed
from other quantum gates. For example, any single qubit operation ¢/
can be written as

U = e*R. ()R, (7)R=(0), (3-14)

with &, B, v and ¢ real numbers, and the rotation operators about the
¥ (2) axis Ry(0) = e~0Y/2 (R,(9) = e~92/2). Similarly, the CNOT gate
can be constructed from the controlled-Z gate and two Hadamard
gates:

(H]

|\ H—14—1H]

o 100 g 00

010 0 0

0 o 00 1 -

0 000 —1
100 0
010 0
= (3-15)
000 1
0010

This is important, because in a physical realization of a quantum
computer some quantum operations can be implemented easier than
others [39], while some can not be implemented (directly) at all. Since
a quantum computer has to be able to carry out arbitrary unitary
operations, it must at least have access to a set of quantum gates
that allow any other quantum operation to be at least approximated
with arbitrary precision. Every such universal set of quantum gates
must contain both single qubit and multi qubit operations [62]. More
precisely, it must contain an entangling gate, i.e. a gate that is able to
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Figure 3.2: Possible qubit states in #°Ca™.

create entanglement between the input qubits. Almost any controlled
qubit operation is an entangling gate, including but not limited to the
CNOT, controlled-Z and the controlled-i/ operations, with I/ any of
the already introduced single qubit operations.

3.3 QUANTUM COMPUTATION WITH TRAPPED IONS

In Ca™, a qubit can be encoded either between two optically sepa-
rated states of the 4S;/, and 3Ds,, manifolds — e. g. [451,2, m; = 1/2)
and |3Ds5,,, mj; = 1/2) — or between the two Zeeman substates of the
451/, ground state —i.e. [4S1/p, m; = 1/2) and [4S1/,, mj = —1/2) -
as seen in figure 3.2. This thesis always uses the former way to encode
a qubit.

In a string of two or more trapped ions, another qubit can be
encoded in the collective motion of the ions [39]. This additional
qubit can be used as a “bus” that mediates interactions between the
individual ion qubits. Coupling the ion qubits via their collective
motion has led to the realization of both the CNOT gate [17] and the
rt-phase gate [18] in the form of the unitary

0
i

, , (3.16)
0 1

S © O =
_ O O O
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|01) — €% |01)

|10) — €' |10)
|00) — |00}, |11) — |11)

Figure 3.3: Phase space representation of the stretch-mode amplitude of two
trapped ions. Image adapted from [18, figure 1].

which can be constructed from the (two qubit) 7-phase gate and the
(single qubit) phase gate S, applying it once to each qubit:

[Z}—s]

The rt-phase gate was implemented by applying a coherent, state-
dependent force to a pair of beryllium ion-qubits. The force acts on the
stretch-mode of motion and displaces the states |01) and |10) along a
circular path in phase space as shown in figure 3.3. Once the path is
closed, the acquired geometric phase ¢ = A/ is equal to the phase
space area A enclosed by the trajectory. The -phase gate requires
¢ = 7/2 which can be achieved by tuning the intensity of the laser
beams that drive the state-dependent force.

Every quantum gate scheme that uses the additional bus qubit has to
spectroscopically resolve the motional sidebands (see equations (2.50)
and (2.51)). This requirement limits the intensity of the exciting laser
and therefore the gate time to more than the motional period of
the ions in the trap [24]. Hence, in order to minimize the effects of
decoherence on the gate and to be able to execute more computational
steps within the coherence time of the qubit it is desirable to reduce
the gate time to below this limit.



ULTRAFAST PHASE GATES

Fast entangling phase gates have been proposed by Garcia-Ripoll,
Zoller, and Cirac (GZC) in 2003 [24, 26]. Unlike essentially all other
entangling gate schemes suggested until then, the GZC scheme’s dura-
tion is not limited by the trap period, and can be orders of magnitude
faster than previous schemes. The original proposal [24] has spawned
both theoretical efforts to improve on and analyze the gate scheme
[25, 27—29, 63] and experimental efforts to implement it in various ion
species [30-32, 35].

This chapter summarizes the work on the GzC and derived gate
schemes. In section 4.1, the GZC gate scheme itself is introduced and
the particularities of an implementation in ¥°Ca™ are highlighted along
references [24, 28]. Alternative gate schemes are outlined in section 4.2.
Section 4.3 derives the requirements of a laser system suitable to
implement the gate scheme in “°Ca™ ions.

4.1 THE GZC PHASE GATE SCHEME

The idea behind reference [24] is to force the motional modes of an
ion crystal onto ion-state-dependent trajectories through phase space,
similar to [18] which was outlined in section 3.3. In both cases, the
acquired geometric phase (difference) (A)¢ = (A)A/h is equal to
the (difference of) phase space area(s) enclosed by the trajectory(-ies).
For a clarifying picture see figure 4.1 and also compare to figure 3.3.
However, instead of using continuous wave (CW) laser fields, GZC pro-
pose to use counter-propagating laser pulse pairs for applying a state
dependent, stimulated force [64], i.e. to transfer momentum to the
ion within a time t < 271/w, with w the trap frequency. Alternating
between such kicks and times of free evolution in the trap potential
then causes the motional modes to follow a state-dependent trajectory
in phase space. GZC show that by carefully choosing the durations of
free evolution the motional state is restored and therefore the phase
space trajectory is closed, independent of the initial motional state and
hence without temperature requirements.
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Fe

Figure 4.1: Trajectories of the center-of-mass state (X, Pc) in phase space.
Unperturbed, the state will describe circles along the dashed
circle. Applying state-dependent kicks, the state follows the solid
line that connects the initial state (black circle) to the final state
(gray circle). Vertical sections of the solid line are the effects of the
kicks, arcs are times of free evolution. Image source: [24, figure 1]
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Figure 4.2: Effect of counter-propagating pulse pairs, resonant to the transi-
tion of the two-level system shown in (a). Every pulse acts as a
rt-pulse on this transition, the pulse pair transfers a momentum
of p = 2 (0:) Ik, where P is parallel [anti-parallel] to k if the ion
is initially in state |0) (b) [|1) (c)].
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4.1 THE GZC PHASE GATE SCHEME

Originally, GZC considered a two-ion crystal in a one-dimensional
harmonic trapping potential. The two ions are assumed to be two-level
systems with the pulsed laser field coupling the levels of both ions
with the same Rabi frequency Q)(t), as seen in figure 4.2a. The laser
pulses are assumed to be short, with a pulse length 6t — 0, but with
Qot = 7. Therefore, () can become very large, in particular () > w,,
which places the interaction in the strong-excitation regime.

To calculate the new interaction Hamiltonian, Z in equation (2.44)
has to be replaced by the two-ion motional mode expansion from
equation (2.37), and the new interaction Hamiltonian becomes

H,, = hﬂét)U;rei/ﬁﬁc(ﬂ++ﬂ)+i/ﬁﬁr(b++b)+
hQ(t) O.Z—Fei/\/irlc(a*+a)—i/ﬁm(b*—i—b) + Hec

> , (4.1)

with 4. = 1, 7, = 7/v/3 * and 7 the Lamb-Dicke parameter, see
equation (2.46).

The full Hamiltonian can then be written as H = Hyuo. + Hj,
where Hy o, = hweata + hw,bth describes the motion in the harmonic
potential, similar to equation (2.10), w. = w, and w, = V3w, are the
frequencies of the center-of-mass and stretch mode, respectively, given
by equation (2.33), and the a,a" and b, b" are the ladder operators of
these modes, see equation (2.9).

Since the laser pulses satisfy ()6t = 7, every laser pulse acts as a
rt-pulse and completely exchanges the populations of the coupled
states. A counter-propagating pair of such pulses will therefore restore
the initial internal state except for a phase factor of —1 and transfer a
momentum of p = 2 () fik to the ion, with k the wave vector of the
first pulse and (o) = 1 (—1) if the ion is initially in the |0) (|1)) state.
For a graphical explanation see figure 4.2b and 4.2c.

A sequence of laser pulses consists of N groups of pulse pairs. The
groups are interspersed by times of free evolution of the motional
modes. Group k is applied at time f; and consists of z; pulse pairs.
The sign of zj indicates which pulse of every pair of this group reaches
the ion first. Changing the sign of z; therefore changes the sign of
the transferred momentum. The z; pulse pairs evolve the state of the
system according to
*ZZ‘Zkk(X]U'lz‘FXzUé)’

Uik = e (4.2)

These definitions for 7. and 7, are the same as in [28], but differ from those in [24] by
a factor of 1/+/2 and v/2, respectively.
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where k = |k| and x1, X2 are the position of the ions [28]. Using
equations (2.30), (2.35), (2.37) and (2.46), the unitary can be written as

e V2izgne(a+a®) (oF +a§)e\/§izkm (b+b") (07 —03) (4.3)

= De(—V2izne (o5 +63)) - Dy(V2izen (0~ 65)), (4.4

Uik =

with the displacement operators D, («) = exp(aa® — a*a) and D, (a) =
exp (ab’ — a*b) acting on their respective modes.
Adding the operator for free motional evolution,

_; ‘o i +
umot —e iwcAtaa e iw, Atib b/ (4‘5)
with Aty = t;1 — tx, the total gate evolution can be written as
N A ; —iwcAtyata S . —iw, Atbth
Ugate = | [ De(—ica)e Dy (—icy)e (4.6)
k=1
Clenk = £V 221 (e (0F £ 05), (47)

where the plus (minus) sign is used for mode c (r).
For the two modes c and r, the effect of Ugate acting on a coherent

state |a) is
u(c,r) |D‘> = eiCW) 5‘(c,r)> ’ (4-8)
where
. N .
&(c,r) = ae” e Te — i Z C(c,r)kelw(c'r)(tkiTG) (49)
k=1

m—1

Cler) = i Z [C(Cff)mc(cff)k sin (w(‘ff’) (tm — tk))] B

m=2 k=1
N .
Re (&) cioppe e | (4.10)
k=1

and Tg = ty — t1 is the total time of the gate operation. The total dis-
placement due to the gate operation is the second part of equation (4.9),
namely

N .
C(c,r) = —i Z C(c,r)kelw(c’r)tk' (4.11)
k=1



4.1 THE GZC PHASE GATE SCHEME

Since this quantity is state dependent and the motional state has to be
restored at the end of the gate, it is required that C.,) = 0 and these
commensurability conditions can be written as

N

zre et =0 and
k=1
v (4.12)
Y zge e = 0.
k=1
If they are satisfied, the evolution operator I/ is given by
u(@) — ei@(rlzazze—iwCTGa+ae—iw,TGb+b (4 13)

where

N m—1
@ = 47? Z Z ZkZm

m=2 k=1

(sin(ﬁwAtkm>

— sin(wAt , 1
with Aty,, = ty — t,. If equations (4.12) are fulfilled and ® = 71/4, the
pulse sequence will act as a controlled-phase gate in the form of the
unitary

1 0 0 0
0 —i 0 0

U(r/4) = , (4.15)
0 0 —i 0
00 0 1

disregarding the motional part of equation (4.13) and a global phase
factor. Comparing equations (3.16) and (4.15) it is easy to see that the
unitaries of these phase gates are equivalent.

The example sequence applies pulses to the ions at N = 4 different
times. Its effect on the center-of-mass mode is plotted in figure 4.1
and a graphical representation of the pulse timing in figure 4.3. The
sequence is defined as (zi, tx) = (1, —n), (1, —w), (-1, ), (-1, 1),
with 71 = 0.54(271/w) > 1 > 0 and therefore takes just over one trap
period to complete, Tg = 273 = 1.08(271/w) [24].

The following sections present a number of fast pulse sequences
that take less than one trap period to complete, Tg < (271/w) and
explore how the gate scheme can be implemented in “°Ca™.
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Figure 4.3: Timing of the simple GZC pulse scheme

4.2 PULSE SEQUENCES FOR FAST PHASE GATES

The authors of [28] have analyzed three pulse sequences, which enable
fast phase gate operations in less than one trap period. One sequence
was proposed by Garcia-Ripoll, Zoller, and Cirac themselves, one by
Duan and one by Bentley et al. Their findings are reproduced here.

4.2.1 Fast GZC gate scheme
GZC proposed a second pulse sequence [24], defined by

(zk, te) = {(-2n,—7), (3n, — 1), (—2n, —13),
(2n,13),(=3n,),(2n,7)}. (4.16)

For a graphical representation of the pulse timing see figure 4.4. The
sequence consists of N, = ) |zx| = 14n pulse pairs and requires the
time T = 27 to complete. T scales with N, as T o< N,/ 2/3 and can be
arbitrarily short, given the laser system is able to apply the required
number of pulse pairs.

Bentley, Carvalho, and Hope have analyzed the effect of the pulse
sequence on a two-ion crystal with n = 10 and T = 222ns, both
for an idealized laser source, which can apply all |z;| pulse pairs
instantaneously, and for a more realistic laser, where two pulse pairs
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Figure 4.4: Timing of the fast GZC pulse scheme

are separated by a pulse period of 200 ps, which corresponds to a laser
repetition rate frep = 5 GHz. Their plots of the phase-space diagrams
of both the center-of-mass mode and the stretch mode is reproduced
in figure 4.5. They find that the idealized laser exactly solves the
commensurability conditions in equations (4.12) and ® = /4, and
show that a laser with a 5 GHz repetition rate can complete a gate
operation using this sequence in ~200ns with error (1-fidelity) below
1078,

4.2.2  Duan gate scheme

The Duan pulse sequence [25] can be simplified to

(zk, tk) = (n,0), (=2n,71), (n,371), (4-17)

with the restriction, that there are no times of free evolution other than
during the pulse period, i.e. 71 = 1/ frep. A graphical representation of
the pulse timing is plotted in figure 4.6. For a given repetition rate and
trap frequency, the integer n has therefore to be chosen such to satisfy
the phase equation (4.14). According to [28], this leads to an error in
restoring the initial motional state, which can be seen in figure 4.7.
Although the sequence can be repeated one or more times in order to
increase the motional stability, the scheme is not an exact solution to
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Figure 4.5: Fast GZC pulse scheme in non-rotating (a), (b) and rotating (c), (d) phase space with n = 10 for both the
center-of-mass (COM) and stretch (SM) motional modes of a two ion crystal. The phase-space trajectory
is plotted for an idealized laser source with infinite repetition rate (brown) and a laser with a repetition
rate of 5 GHz (orange). Image source: [28, figure 1]
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Figure 4.6: Timing of the Duan pulse scheme for n = 10

the commensurability conditions in equation (4.12) and repeating the
sequence comes at the cost of increasing the gate time.

4.2.3 FRAG gate scheme

The fast robust antisymmetric gate (FRAG) pulse sequence, proposed
in [27], is defined by [28]

(Zk, tk) = (—1’1, —Tl), (2?1, —Tz), (—27’1, —T3), (21’1, T3), (—2n, Tz), (1’1, T]).
(4.18)

Figure 4.8 shows the graphical representation of the pulse timing.

The sequence is the result of a search for a gate scheme that uses
large-area pulses and splits them into several (here: 20n) pulses of
area 71, that is experimentally implementable and that is optimal in
the sense that it both minimizes the gate duration and maximizes its
fidelity. Like the GZC pulse sequences, the FRAG sequence solves both
commensurability conditions in equation (4.12) and satisfies @ = /4
in equation (4.14).

The plots in figure 4.9 show that the phase-space trajectories of the
FRAG scheme are similar to those of the GZC scheme (compare with

figure 4.5).
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Figure 4.7:

(a), (b) and double-cycle (c), (d) scheme. The phase-space trajectory is plotted for both the center-of-mass
(COM, brown) and stretch (SM, orange) motional modes of a two ion crystal. The laser is assumed to
have a repetition rate of 5 GHz. The rotating phase-space plots show clearly, that the motional modes
are not restored to the initial motional state. Image source: [28, figure 3]
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Figure 4.8: Timing of the FRAG pulse scheme
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Figure 4.9: FRAG pulse scheme in non-rotating (a) and rotating (b) phase space with n = 10 for the center-of-mass
(COM) motional mode of a two ion crystal. The phase-space trajectory is plotted for an idealized laser
source with infinite repetition rate (brown) and a laser with a repetition rate of 5 GHz (orange). Image
source: [28, figure 2]
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Figure 4.10: Gate time as a function of repetition rate for the presented
schemes. The fits show the optimal scaling of gate time with
pulse number. Solid lines are fit to the high-fidelity FRAG and
GZC gates with error (1-fidelity) below 10~8. Dashed lines are
fit to the Duan scheme, which has much lower fidelity. The
Roman numerals enumerate the number of repetitions of the
Duan scheme. Source: [28, figure 4]

4.2.4 Comparison of fast gate schemes

Of the three schemes presented here, both the fast GZC scheme and the
FRAG scheme seem to be suitable for implementation. Their realization
would require technically equal amounts of time and effort, and they
also are quite similar in terms of speed and fidelity as is shown in
figure 4.10 and table 4.1.

The Duan scheme on the other hand is potentially very fast but
with a fidelity of only 0.65. The fidelity can be improved to 0.97 but at
the cost of speed and it remains poor compared to the other schemes.
Furthermore, its experimental realization is complicated by the require-
ment to switch the pulses” momentum transfer from one direction to
the other within the time between two consecutive pulses, i. e.200 ps
in this case. Since it is planned to switch the momentum transfer
direction using a Pockels cell with a rise time of 5ns (see section 5.3),
the Duan scheme appears to be unsuitable for implementation in this
thesis” experimental setup.
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SCHEME Tg (ns) 1 - FIDELITY PROS & CONS

Fast GzC 220 <1078 fast and high fidelity
Duan I 65 0.35 very fast but low fidelity, dif-
ficult to implement
Duan IV~ 330 0.03 relatively  slow  with
medium fidelity, difficult to
implement
FRAG 170 <1078 fast and high fidelity
Table 4.1: Comparison of fast gate schemes, assuming a laser repetition rate
of 5 GHz.
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Figure 4.11: Effect of counter-propagating pulse pairs, resonant to the auxil-
iary transition |0) <> |e) of the three-level system shown in (a).
Every pulse acts as a 7-pulse on this transition, the pulse pair
transfers a momentum of p = 2 (i|¢?|i) ik, with (i|¢?|i) =1 —i.

4.3 REQUIREMENTS FOR AN EXPERIMENTAL REALIZATION
4.3.1 GZC scheme in *Ca™

In order to implement the fast phase gate operation in °Ca™, one can
use the 451/, <+ 4P3/, transition to transfer momentum to the ions
[28]. In contrast to the previous assumptions of a two-level system
where both qubit states are effected by the laser pulses, these only
couple to the |0) state in this case, while the |1) state, which is encoded
in the 3D5,,manifold, is left untouched. This situation is depicted in
figure 4.11 (also compare to figure 4.2). Furthermore, the pulse lengths
can no longer be assumed to be infinitesimally short, but need to be
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much longer than the atomic transition periods of O(107'°s) in order
to satisfy the rotating wave approximation.

Since only one of the qubit states is affected by the momentum kicks,
the unitary from equation (4.2) becomes

Uniey, = e~ 2mk(nicitng), (4.19)
where ¢* is the Pauli z matrix acting only on the |0) and |e) levels, not

on [1): ¢*|0) = |0), ¢* |e) = — |e) and ¢* |1) = 0. This leads then to the
asymmetric phase condition equation

) N m-—1 sin(\@wAtkm>
®=r Z ZkZm 7 —sin(wAtyy,) |, (4.20)
m=2 k=1 3

which differs from the symmetric case — shown in equation (4.14) —
only in the missing factor of 4 on the right-hand side.

4.3.2 Requirements on a laser system for a fast phase gate operation

Five key requirements on a laser system, able to implement a fast
phase gate operation, can be identified:

1. The system needs to provide pulsed laser light with a repetition
rate much larger than the trap frequency of ~1MHz, in order
to provide for fine-grained control over the timing of pulse
sequences.

2. The pulse length 6t has to be much shorter than the “°Ca* 4P3/,
state’s lifetime p = 6.9ns [50] to avoid or at least minimize
spontaneous decay, and much longer than the atomic transition
period Ta = A/c = 1.3fs of the 451/, <+ 4P3,, transition, with
A =393 nm and c the speed of light in vacuum:

TA L0t L 1p

3. The center frequency of the laser light has to be resonant with
the 45/, <+ 4P3/, transition at 393.366 nm.

b) Alternatively, non-resonant pulses can be used to apply
state-dependent momentum kicks [33]. In order to realize
this alternative, the laser system’s center frequency needs
to be tuned in-between the two fine structure components
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4512 <> 4P1/7 and 4S; /5 <+ 4P3/, such that Stark shifts can-
cel, while limiting overlap of the laser with the 4P/, /
4P3/7 gap.

4. The laser intensity needs to be high enough to achieve a complete
population transfer between the two levels by a single laser pulse.

5. There needs to be a way to control the direction of the state-
dependent momentum kick, i.e. to control which pulse of a
pulse pair reaches the ions first.

45






Part I1

THE LASER, EXPERIMENTAL SETUP AND
RESULTS






A PULSED LASER SYSTEM FOR AN ULTRAFAST
PHASE GATE OPERATION

For the proposed fast phase gate operation in *°Ca™, a picosecond
laser system with a repetition rate on the order of GHz and a center
wavelength of 393.366 nm can be constructed by frequency-quadrup-
ling the light generated by commercial lasers operating in the L-band
of optical fiber communication (1565 nm to 1625 nm). An overview of
the optical setup is provided in figure 5.1.

The system is seeded by an optical frequency comb (panel A). Filter
cavities serve to multiply the laser’s repetition rate. Subsequently,
the desired laser wavelength range is selected by spectral filters and
the laser output is amplified (panel B). Fast and slow pulse picking
elements enable the selection of arbitrary pulse sequences (panel C).
Finally, the laser frequency is quadrupled by two single-pass second
harmonic generation (SHG) stages (panel D).

Parts of this chapter have been published before — though in less
detail — in reference [65].

5.1 SEED LASER: AN OPTICAL FREQUENCY COMB

An idealized frequency comb consists of a cavity of length L in which
a single laser pulse circulates. It emits copies of that pulse which are
separated by the cavity’s round-trip time T = 2L /v,, where v, is the
mean group velocity. The rate at which pulses are emitted is called
the repetition rate frep = 1/T. The pulse copies are identical except
for the phase between the carrier wave and the intensity envelope: it
changes from pulse to pulse by the carrier envelope offset (CEO) phase
A¢cro as is illustrated in figure 5.2. The spectrum of an infinitely long
train of pulses consists of equidistant modes, separated by frp, and
limited by a spectral envelope. These modes are offset by the CEO
frequency fcro = 5=APcEo - frep and the frequency of the mode with
mode number # is

fn = fCEO +n 'frep- (51)
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Figure 5.1: Schematic setup of our laser system. The lettered panels are de-
scribed in detail in the following sections: Panel A: Section 5.1,
panel B: Section 5.2, panel C: Section 5.3, panel D: Section 5.4.
AWG: arbitrary waveform generator, BD: beam dump, DM:
dichroic mirror, EDFA: erbium-doped fiber amplifier, FC: op-
tical frequency comb, PBS: polarizing beam splitter, PD: photo
detector, PPLN: periodically poled lithium niobate, PPKTP: peri-
odically poled potassium titanyl phosphate, SOA: semiconductor
optical amplifier, TOD: third order dispersion compressor. This
figure was taken from [65].




5.1 SEED LASER: AN OPTICAL FREQUENCY COMB
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Figure 5.2: Schematic pulse train in time and frequency domain.
Adapted from [40].

In this work, a fiber-based optical frequency comb* with frep =
250MHz and fcgo = 20MHz was used to seed the laser system
(panel A in figure 5.1). Figure 5.3 gives an overview of the comb and
its stabilization electronics. The laser consists of a fiber ring and free-
space optics (panel A). The active part of the fiber ring is doped with
erbium ions and pumped by an external diode laser. Four waveplates
— two at each end of the fiber — control the laser’s mode of operation,
passively mode-locked or continuous wave (CW). The laser operates
in a mode-locked state if the waveplates compensate the non-linear
(i. e. intensity-dependent) polarization rotation of the fiber ring such
that the losses at the out-coupling polarizing beam splitter (PBS) are
minimal for the maximum optical intensity. The mode-locked laser
creates short pulses of 74 fs pulse width with a center wavelength
of 1570nm and a spectral bandwidth of 45nm. The length of the
fiber ring, and therefore the repetition rate, can be controlled by a
piezo-mounted back-reflecting mirror and an intracavity electro-optic
modulator (EOM). The CEO frequency can be coarsely adjusted in steps
of ~1MHz by a wedge that is pushed in or pulled out of the beam
path by a stepper motor. Modulating the current of the pump diode
also allows one to control fcgo.

1 Menlo Systems FC1500-250-WG
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Figure 5.3: Schematic overview of the optical frequency comb and lock elec-
tronics. (P)BS: (polarizing) beam splitter, CEO: carrier-envelope
offset, EDFA: erbium doped fiber amplifier, EOM: electro-optic
modulator, DDS: direct digital synthesizer, DRO: dielectric res-
onator oscillator, FC: fiber coupler, OCXO: oven-controlled crystal
oscillator, PID: proportional-integral-derivative controller, QWP:
quarter-wave plate, WDM: wavelength division multiplexer, WP:
waveplate.
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Both fcpo and frep are locked to a frequency reference provided by
a GPS-disciplined oven-controlled crystal oscillator* with a fractional
frequency instability of ~2 x 1073, In order to measure and stabilize
fcro, light from the comb is amplified and spectrally broadened
to an octave spanning spectrum. Frequency doubled light from the
red end of the spectrum at frequency 2- f, = 2 (fceo + 7 - frep)
is beat with light from the blue end of the spectrum at frequency
fon = fcro + 2n - frep to create the frequency difference at fpear =
2 fu — fan = fcro-. As seen in panel C of figure 5.3, the fcgo signal is
then stabilized in a phase-locked loop (PLL) by feeding back on the
current of the comb’s pump diodes.

The frep signal can be measured directly by detecting it with a
fast photo diode. In order to increase sensitivity the fourth harmonic
at 1GHz is detected. After mixing it down to 20MHz by a fixed
frequency signal at 980 MHz, a PLL stabilizes frep to a variable direct
digital synthesizer (DDS) frequency around 20 MHz by feeding back
on a piezo controlling the length of the comb’s fiber ring (panel B).
Alternatively, frep can be stabilized by using an optical beat between
the comb and another stable (CW) laser and additionally feeding back
to an intracavity EOM.

In addition to measuring and stabilizing the CEO frequency and to
seeding the laser system described in this chapter, the comb’s output
is also used for determining the frequency of CW lasers of wavelengths
from 729nm to 866 nm and around 1068 nm. The light for measur-
ing the former wavelength range is created by first amplifying and
frequency doubling the comb’s output light. Then, the light is cou-
pled into a nonlinear photonic-crystal fiber (PCF) which broadens the
light’s spectrum to the aforementioned range. The light for measuring
lasers around 1068 nm is created by also first amplifying and then
frequency-shifting the comb’s output light to that wavelength. For a
more detailed description see section 4.2.4 of reference [40].

5.2 PULSE AMPLIFICATION AND FILTERING

In order to meet all four pulse criteria described earlier, a number of
pulse characteristics need to manipulated:

* The pulses should be amplified to cancel the insertion loss of the
optical elements (typically on the order of a few dB each) and
be able to act as a 7r-pulse after frequency doubling.

2 Menlo Systems GPS 6-12
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Figure 5.4: Intensity autocorrelation of chirped pulses, measured (a) at the
output of the stretcher fiber and (b) at the output of the high
power EDFA (compare with figure 5.1). The solid lines are Gaussian
bell curves, fit to the data. From the fit FwHM of (a) 51.2(5) mm,
the pulse width 7 can be calculated: 7(,) = 51.2(5) mm/ (v/2¢) =

120.8(13) ps, Typ) = 6.83(5) mm/(v/2c) = 16.1(1) ps.

e The spectral bandwidth should be limited to about 1 THz (=
0.5nm at 393 nm) to avoid residual off-resonant excitation of the
4S1/2 <+ 4P1 /5 transition.

¢ The center wavelength should be resonant to the 4S;,, <+ 4P3/,
transition.

¢ In order to have a higher resolution of the pulse timings, the
repetition rate is additionally multiplied by a factor of 20.

Erbium doped fiber (pre-)amplifiers (EDFAs) and semiconductor op-
tical amplifiers (SOAs) are used to compensate insertion loss at various
stages in the set-up (panels B in figure 5.1). After the first pre-amplifier,
the pulse train travels through a stretcher fiber3 which adds normal dis-
persion and stretches the pulses from 74 fs to 120.8(13) ps for chirped
pulse amplification [66]. Part (a) of figure 5.4 shows the autocorrelation

3 ~40m OFS UltraWave Ocean Fiber IDF
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Figure 5.5: Schematic overview of the cavity locks and lock electronics. AOM:
acousto-optic modulator, BDU: beat detection unit, BS: beam split-
ter, EDFA: erbium doped fiber amplifier, EOM: electro-optic mod-
ulator, PDH: Pound-Drever-Hall lock, PID: proportional-integral-
derivative controller, SOA: semiconductor optical amplifier.

measurement of the stretched pulses. Fitting a Gaussian bell curve to
the data confirms the assumption of a Gaussian pulse shape.

After stretching, the pulse train travels through a spectral filter
which selects the new center wavelength of 4 - 393nm = 1572nm and
reduces the spectral bandwidth to 8 nm.

Two filter cavities with a free spectral range of 5GHz each then
increase the repetition rate from 250 MHz to 5 GHz by transmitting
only the light’s spectral modes that are 5 GHz apart and suppressing
all others. The second cavity’s purpose is to increase the extinction
ratio and therefore equalize the optical intensity of the output pulses.
Both cavities are locked to an auxiliary CW laser which in turn is locked
to a mode of the frequency comb. Figure 5.5 shows an overview of
these locks.

The subsequent fast pulse picker (bandwidth of 7GHz) will be
described in more detail in the next section. Furthermore, a second
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LOCATION P (mW) Ac (nm) AA (nm)
after stretcher fiber 210 1570 45
after 1st spectral filter 4.7 1572.9 8.7
after cavity 1 1.9 1570.6 8.5
after cavity 2 3.1 1572.8 10.9
before pulse picker 12.7 1573.1 9.7
after pulse picker 2.6 1573.0 9.3
after SOA 2 38.5 15771 6.2
after 2nd spectral filter 14.8 1577.2 6.1
after 1st stage of HP EDFA 240 1575.3 6.1
after TOD variable 1573.4 7.4

Table 5.1: Overview of important light parameters within the laser system. P:
light power, Ac: center wavelength, AA: bandwidth

spectral filter is used to compensate amplifier-induced frequency
shifts [67] of up to 4nm and further to limit the bandwidth to 6.4 nm.
Next, a high power EDFA amplifies the pulse train from 15mW to
a maximum average power of 7W. At this point, the pulses have
been shortened to 16.1(1) ps as shown in figure 5.4b. The shortening
of the pulse is dominated by the spectral filtering but also due to
anomalous dispersion in the silica fibers of the system. Finally, a
free-space third-order dispersion (TOD) compressor reduces the pulse
width to 680fs (time bandwidth product 0.53) which is close to the
transform limited pulse width of 560 fs for a Gaussian-shaped pulse
of the given bandwidth.

5.3 PULSE PICKING

In order to select the pulse sequences described in section 4.1 out of
the 5GHz pulse train, an optical element is needed that is able to
select pulses at this rate and to withstand up to 2.8 W of laser power
after the high power EDFA. To satisfy both requirements, a twofold
approach was chosen, using a fast switching element before the high
power EDFA (where the average laser power can be limited to 10 mW)
and a slow element after the amplifier to create the desired pulse
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sequences. A schematic of the setup is shown in panel C in figure 5.1
(page 50).

The fast element is a pulse picker* which contains a Mach-Zehnder
interferometer with an EOM of 7 GHz bandwidth. It also features a DC
bias input and appropriate control electronics which are needed to
correct for (thermal) drift of the interferometer and to optimize the
pulse picker’s extinction ratio. The voltage to be applied to the DC
bias input depends on the duty cycle of the EOM input signal because
the EOM input is capacitively coupled (AC coupled). A description of
how to determine the DC bias voltage can be found in appendix A.

Since the pulse picker’s maximum optical input power is on the
order of a few mW, it is installed before the high power EDFA where
the light intensity is sufficiently low. Considering the amplifier’s need
to be seeded continuously with a maximally allowed dark time on
the order of 20ns, an additional switching element is needed after
the amplifier with a high damage threshold and a switching time of
less than 20ns. For this, a barium borate (BBO) Pockels cell’ is used,
with a driver® that enables switching of the cell with a rise/fall time of
7ns at a maximum repetition rate of 10 MHz and a measured optical
extinction ratio of 30 dB. Its specified half-wave voltage is 4.16kV at
790 nm.

Both the pulse picker and the Pockels cell are controlled by an AWG?
with a sample rate of 25GS/s. Figure 5.6 shows a detailed schematic
setup of the AWG. It is synchronized with the frequency comb by a
250 MHz radio frequency (RF) signal derived directly from the laser’s
pulse train. Channel 1 of the AWG is amplified and fed into the pulse
pickers EOM, channel 2 is used to create a 156 MHz clock signal for
a delay generator® that turns a single transistor-transistor logic (TTL)
trigger from the AWG into the start and stop signals for the Pockels
cell.

The delay generator controls the BBO Pockels cell via a splitter
box? as shown in figure 5.7. The splitter box only allows switching
the Pockels cell every 35ns (= 14 MHz maximum repetition rate) to
prevent damage to the Pockels cell driver. Figure 5.8 shows a schematic
switching sequence indicating this limitation. The second Pockels cell

4 custom-made Modbox by Photline, now iXblue

5 Leysop BBO-3-25-AR790

6 Bergmann Mefigerite Entwicklung PCD_bpp

7 Tektronix AWG 70002A

8 2x Bergmann Mefigeridte Entwicklung BME_SGo8p
9 Bergmann Mefigerdte Entwicklung BME_GSo1

57



58 A PULSED LASER SYSTEM FOR AN ULTRAFAST PHASE GATE OPERATION

PD 270 MHz

250 MHz >

from comb

reference in

trigger AWG

from PB
Chl Ch2 Trigger
9 Q@ 9Q
l trigger to scope

MBC trigger to delay generator
156 MHz clock
t I t

DC bias o delay generator
AL =
o >
5 GHz from = arbitrary pulse sequence
filter cavities  5r-c picker to high power EDFA

Figure 5.6: Schematic overview of the AWG and pulse picker setup. The
AWG outputs a pre-programmed bit-pattern on channel 1. This
signal is amplified and sent to the pulse picker, which blocks
or transmits the optical pulses according to the bit-pattern. The
250MHz comb signal references both the AWG and the 5 GHz
pulse train to ensure synchronism. AWG: arbitrary waveform
generator, EDFA: erbium doped fiber amplifier, MBC: modulator
bias controller, PB: pulse box, PD: photo detector.
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Figure 5.7: Schematic overview of the delay generator and Pockels cell setup.
The delay generators are triggered either by the AWG or the pulse
box. After a predefined delay of O(ns), the Pockels cells are first
switched on and after another delay switched off. Depending on
the input signal (A in or B in) the rise and fall times of the Pockels
cell will be visible (A out) or suppressed (B out). AWG: arbitrary
waveform generator, BBO: barium borate, BD: beam dump, DG:
delay generator, PB: pulse box, PBS: polarizing beam splitter, RTP:
rubidium titanyl phosphate.
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Figure 5.8: Schematic switching sequence of BBO and RTP Pockels cells.

shown in figure 5.7 is made from rubidium titanyl phosphate (RTP)"°
and uses a driver'" that enables switching of the cell with a rise/fall
time of 5ns at a maximum repetition rate of 20 MHz. Due to its
specified half-wave voltage of 1.1kV at 790 nm — which is much less
than the 4.16 kV of the BBO Pockels cell — it is possible to switch the
RTP Pockels cell at this higher rate. Both Pockels cells have four TTL
inputs, two “on” and two “oft” inputs (“A on”, “A off”, “B on”, “B
off”). In the case of the BBO Pockels cell, both on (off) inputs have
to be triggered simultaneously. After switching the cell on (off), the
waiting time of 35ns has to be strictly observed before switching it off
(on) again. In the case of the RTP Pockels cell, the two input groups (A
and B) can be switched independently, but the waiting time between
switching the same input group is 50 ns as indicated in figure 5.8.

At the time of this writing the RTP Pockels cell is already installed
in the beam path but is not in use. Its purpose will be to switch the
pulses between two different beam paths (see figure 9.1 on page 130)
and thus enable one to choose which pulse of each counter-propa-

10 Leysop RTP-4-20-AR650-1000
11 Bergmann Mefgerdte Entwicklung PCD_dpp
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Figure 5.9: Pulse train mode: The AWG outputs the idle signal (here at
1.25GHz) which is turned into an optical signal by the pulse
picker. The optical signal is cropped by the Pockels cell. Figure
adapted from [65].

gating pulse pair reaches the ion first (for an explanation why this is
necessary see section 4.1).

5.3.1 Modes of operation

The AWG and delay generator are set up to work in two different
modes of operation. In the first mode, the AWG continuously outputs a
periodic signal and only the BBO Pockels cell switches the pulse train
on and off from the ion’s point of view. This mode is therefore called
the pulse train mode. In the second mode of operation both AWG and
BBO Pockels cell are used to send an arbitrary number of pulses to the
ion. This mode is called the single pulses mode.

5.3.1.1 Pulse train mode

In this mode the AWG outputs a signal such that the pulse picker picks
only every n'h pulse, and outputs a pulse train with a repetition rate
of 5/nGHz, typically n € [1,2,3,4]. This signal is called the idle signal
and can be seen in figure 5.9. Further down in the beam path the BBO
Pockels cell and a PBS are used to either direct the pulses into a beam
dump (Pockels cell off) or towards the ion (Pockels cell on). Triggering
the delay generator with a TTL signal — which usually is generated by
the pulse box (see section 7.3.1) — turns on the BBO Pockels cell for as
long as the TTL signal is in the logical high level. This mode therefore
allows sending pulse trains of 30 ns and longer (up to continuously)
to the ion because the Pockels cell driver can not be switched faster.

61

idle signal



62

payload signal

A PULSED LASER SYSTEM FOR AN ULTRAFAST PHASE GATE OPERATION

Since the Pockels cell’s rise and fall times of 7 ns are much longer than
typical pulse periods of the idle signal of n - 200 ps this causes the
pulses during the rise and fall times to be attenuated with respect to
other pulses. Nevertheless, due to the long pulse trains of typically
2 1ps effects of these attenuated pulses can be neglected.

5.3.1.2 Single pulses mode

In contrast to the pulse train mode, the single pulses mode allows one
to send from o to an arbitrary number of pulses and also arbitrary
pulse sequences to the ion — limited only by the AWG’s memory of
2GS. This pulse sequence is called the payload signal or just payload
and is shown in figure 5.10. As long as no pulses should reach the ion
the AWG outputs the idle signal to keep the high power EDFA seeded,
while the BBO Pockels cell remains switched off. When the payload
should be sent to the ion, the AWG triggers the delay generator to
switch on the BBO Pockels cell, while simultaneously switching off the
pulse picker for at least 12 ns before sending the payload. This ensures
the Pockels cell has c