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A B S T R A C T

Quantum information processing offers a more general concept to
computing, which promises to be more efficient than classical com-
puters. By encoding information in entangled quantum states, certain
algorithms such as the factorization of integers promise an exponential
speedup compared to the best known classical variants.

Trapped ions are one of the leading technologies in the highly
active field of quantum information processing. They allow proof-
of-principle demonstrations, but are still limited to operations on
tens of qubits. Scaling these systems to a size where their computing
power exceeds the capabilities of classical computers remains a very
challenging task.

In the scope of this thesis a cryogenic ion trapping apparatus was
modified and characterized with the goal of demonstrating building
blocks of scalable quantum computing. This thesis presents three
connected projects.

The first project concerns the experimental setup itself which houses
a segmented surface trap capable of trapping 40Ca+and 88Sr+ions. We
describe the apparatus and the modifications that were implemented
along with the characterization measurements performed to evaluate
its performance.

The setup was then used to develop and evaluate a novel calibration
algorithm for entangling gates. The performance of quantum gate
operations is experimentally determined by how accurately opera-
tional parameters can be determined and set, and how stable these
parameters can be maintained. The developed calibration protocol can
automatically estimate and adjust the experimental parameters of the
widely used two-qubit Mølmer-Sørensen entangling gate operation
in a trapped-ion quantum information processor. The protocol using
Bayesian parameter estimation completes in less than one minute,
with a residual median gate infidelity due to miscalibration that is
smaller than the infidelity given by sources of decoherence.

Lastly, a novel gate scheme was used to demonstrate mixed-species
entanglement, which can enable in-sequence readout without per-
turbing the entire register, a crucial ingredient for error correction.
The same gate scheme can also be used for generating entanglement
between qudits, a generalization of qubits. By using more levels of
each ion more information can be encoded in the same number of
particles, allowing to increase the size of the quantum computational
Hilbert space.
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Z U S A M M E N FA S S U N G

Der Quantencomputer verallgemeinert das Konzept der Informations-
verarbeitung und verspricht dabei, effizienter als klassische Rechner
zu sein. Hierbei wird Information in Quantenzuständen kodiert, was
für gewisse Algorithmen wie die Primzahlfaktorisierung eine expo-
nentielle Verbesserung der Laufzeit verspricht.

Eine der führende Technologien in diesem sehr aktiven Forschungs-
feld der Quanteninformationsverarbeitung sind gespeicherte Ionen.
Diese erlauben bereits die Demonstration aller notwendiger Baustei-
ne eines Quantencomputers, aber solche Systeme sind immer noch
limitiert auf Operationen mit einigen zehn Qubits. Eine zentrale Her-
ausforderung bleibt der Bau von Quantencomputern mit einer aus-
reichenden Grösse, sodass ihre Rechnungsleistung die Fähigkeiten
klassischer Maschinen übersteigt.

Im Rahmen dieser Dissertation wurde ein kryogener Ionenfallen-
aufbau modifiziert und charakterisiert mit dem Ziel, grundlegende
Elemente für skalierbare Quanteninformationsverarbeitung zu de-
monstrieren. In dieser Arbeit werden drei verbundene Projekte prä-
sentiert.

Das erste Projekt beschäftigt sich mit der Versuchsapparatur selbst,
die eine segmentierte Oberflächenfalle beinhaltet die sowohl 40Ca+wie
auch 88Sr+Ionen fangen kann. Diese Ionenfalle ist in einer Vakuumap-
paratur gekühlt von einem Kryostaten untergebracht. Wir dokumen-
tieren den Apparat und die zugehörigen Laser und Kontrollsysteme
mit den implementierten Modifikationen und präsentieren die Cha-
rakterisierungsmessungen die zur Evaluierung durchgeführt wurden.

Die Güte von Gatteroperationen ist abhängig davon wie genau
die Betriebsparameter der Operation bestimmt werden können, und
wie stabil diese gehalten werden können. Fehler in den Betriebspara-
metern können zu Gatterfehler führen. Deshalb wurde im Rahmen
dieser Arbeit ein neuartiger Kalibrationsalgorithmus für verschränken-
de Gatter wurde entwickelt und evaluiert. Das Kalibrationsprotokoll
kann automatisch die experimentellen Parameter des verschränken-
den Mølmer-Sørensen Gatters bestimmen. Die Durchführung des
Protokolls basierend auf Bayesscher Optimierung benötigt unter einer
Minute, und resultiert mit einem kleineren medianen Gatterfehler
durch Miskalibration als die Gatterfehler gegeben durch Dekoheränz-
quellen.

Im letzten Projekt dieser Dissertation wurde ein neuartiges Gatter-
schema verwendet um Verschränkung zwischen zwei verschiedenen
Ionenspezies zu demonstrieren, was Zustandsdetektion während einer
Sequenz ermöglichen kann, eine essenzielles Element für die Quan-
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tenfehlerkorrektur. Das gleiche Schema kann verwendet werden um
Quditverschränkung zu erzeugen. Die Verwendung mehrerer atoma-
rer Energieniveaus pro Ion ermöglicht es mehr Information mit der
gleichen Anzahl an Partikeln zu kodieren, was die verfügbare Grösse
des Hilbertraums zur Speicherung von Information erhöht.
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1
I N T R O D U C T I O N

Many feats of human ingenuity not only rely on the inspiration to
ask the right questions, but also require the capability to eventually
compute an answer.

The capacity for performing computations has undergone an un-
precedented transformation. Historically, the term computer was de-
scribing a job, which consisted of performing the required calculations
by hand [1]. Mechanical aids were invented to aid with calculations
or perform them, ranging from abacuses, slide rules over mechanical
integrators [2] to the never-completed programmable Analytical En-
gine of Charles Babbage [3]. A breakthrough came with the advent of
electronic computers, along with the invention of the transistor that
heralded the information age [4]. While the first of these computers
were large enough to a fill a room [5], as the technology matured
the size of the devices drastically decreased. By the 1970s personal
computers were possible that fit on a desk while nowadays a computer
can be carried around in a pocket. This development was paired with
an enormous rise in computing power, where a smartphone is now
faster than a CRAY-2 supercomputer from 1985 at performing floating-
point operations1. This has been an enormous boon for scientific and
engineering applications, and made it economical to use computing
power for private entertainment, enabling tasks such as the worldwide
distribution of cat pictures.

Despite the technological advances for building computers, some
problems however elude all these improvements in computational
power, and remain intractable as their computational complexity fun-
damentally scales unfavorably with the size of the problem, requiring
exponentially more resources as the size of the problem increases.
A computer whose operations are instead described using the laws
of quantum mechanics can solve some of these problems efficiently,
making new classes of problems accessible to be calculated.

These range from the Deutsch algorithm [7], which first showed
the possibility of a speedup over a classical algorithm, to problems
of Database search [8], the factorization of integers [9]. These com-
putational problems are joined by problems requiring simulation of
quantum mechanics such as nitrogen and carbon dioxide fixation in

1 CRAY-2 1.45 GFlop/s [6], iPhone 13 mini 8.5 GFlop/s measured with Mobile Linpack.

1
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quantum chemistry[10] or high-Tc superconductivity and quantum
phase transitions in solid state systems[11].

Several quantum systems have been proposed to implement a quan-
tum computer, among them photons[12, 13], cold atoms [14, 15], quan-
tum dots[16, 17], and donors in solid state systems[18], the currently
most mature platforms are provided by superconducting circuits[19,
20] and trapped ion systems[21, 22]. While these state-of-the-art sys-
tems have allowed building blocks of quantum computers to be demon-
strated[23–25], solving problems of practical interest requires much
larger machines than those currently available. However scaling up
quantum computing computers remains a very challenging problem.

This thesis addresses some of the challenges for building a large
scale quantum architecture based on trapped ions. The content of the
thesis is structured in the following way:

chapter 2 presents the core requirements for building a quantum
processor and gives an overview of the fundamental building
blocks of quantum information processing, two-level quantum
systems called qubits, and the operations being performed on
these qubits. We also introduce qudits, an extension of qubits
where information is encoded in more than two levels per fun-
damental unit.

chapter 3 illustrates the techniques utilized to implement quantum
information processing in hardware. Here the focus lies specifi-
cally on a system of atomic 40Ca+and 88Sr+ions that are trapped
using electromagnetic fields. We show how light can be used to
couple to both the electronic and motional degrees of freedom
of the system. We then describe how these interactions with
laser light can be harnessed to prepare, manipulate and detect
information encoded in this system.

chapter 4 describes the experimental setup used during this work,
including the vacuum system that houses the ion trap, the cryo-
genic cooling system being employed, the electronics used to con-
trol the apparatus as well as the various laser systems required
to trap and manipulate the ions. It highlights the modifications
made during the course of this thesis, and characterizations of
the system performance are shown.

chapter 5 focuses on the particular problem of calibrating quantum
gates in such a trapped-ion system, and we discuss an automated
routine we developed for estimating the control parameters of
an entangling two-qubit gate based on Bayesian inference. We
evaluate the performance of the algorithm, demonstrating that
our method can find suitable parameter sets quickly and reliably.

chapter 6 shows how the light shifts induced by a Raman inter-
action can be used for two different applications, for one to



introduction 3

entangle different atomic species, but also to implement gates
in qudit systems with more than two logical levels per ion. We
evaluate the states produced by the application of the gate and
investigate their entanglement properties.





2
Q UA N T U M I N F O R M AT I O N P R O C E S S I N G

"Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a

wonderful problem, because it doesn’t look so easy."

— Richard P. Feynman [26]

This chapter gives an introduction to quantum information process-
ing, where we explain how we can manipulate information that is
encoded in a system governed by the laws of quantum mechanics. To
this purpose we look at two-level quantum systems called qubits as
the fundamental building blocks for storing information, and describe
how logical operations can be performed on these qubits to perform
calculations. Furthermore, we illustrate how the language of qubits
can be extended to higher-dimensional systems.

When talking about a quantum computer we are looking for a
system that is both programmable and controllable such that a variety
of different algorithms can be executed. Analogous to how a classical
Turing machine can perform every possible classical algorithm[27],
every sufficiently capable quantum machine has in principle the same
computational power[28], and is a so called universal quantum computer.
Building such a universal quantum computer is a significant challenge,
and a variety of different physical systems have been proposed as
candidates for implementation. While the possible platforms each have
unique challenges and advantages, there is a common set of crucial
capabilities called the DiVincenzo criteria any system must possess to
realize an universal quantum computer[29]. These criteria are listed in
the following:

1. A scalable physical system with well characterized qubits: The qubits
are the physical basis in which the information is encoded. They
are discussed in the following Sections 2.1 and 3.2, and the
challenges to scaling them are elaborated in Section 3.6 but also
influence the experimental setup described in Chapter 4.

2. The ability to initialize the state of the qubits to a simple fiducial state:
The ability to prepare the system in a known initial state is
essential and is discussed in Section 3.4.

5
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3. Long relevant decoherence times, much longer than the gate operation
time: The decoherence time describes the duration until a qubit
looses the information encoded in it. This criterion demands
that quantum information can be stored for the duration of the
computation. The measurement of this quantity is discussed in
Sections 3.5.2, 4.3 and 4.4.

4. A universal set of quantum gates: The gate operations allow the
manipulation of the quantum information stored in the register
to implement an algorithm of interest. The requirements on
the availability of gates is described in Section 2.2, and their
implementation is discussed in Section 3.5

5. A qubit-specific measurement capability: Once a computation has
been performed, its results need to be read out. Sections 3.4.1
and 4.6 describe how the information can be extracted from a
quantum state.

2.1 qubits

The qubits are the information carriers in a quantum computer anal-
ogous to the classical bits that encode the information in a classical
computer. While a single bit can take on either the state of 0 or 1, the
most general state of a single qubit is described by a superposition of
the two basis states |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where the two variables α, β ∈ C are normalized by the condition
|α|2 + |β|2 = 1. The squared amplitude of these variables |α|2, |β|2
corresponds to the probability to finding the system in state |0⟩ or |1⟩
respectively.

Alternatively the state can be described by two angles θ, ϕ ∈ R

|ψ⟩ = cos(θ) |0⟩+ sin(θ)eiϕ |1⟩ , (2.2)

which fulfill the normalization condition for all θ, ϕ as cos(θ)2 +

sin(θ)2 = 1. For a single qubit it is possible to graphically repre-
sent its state as a vector on a sphere, called the Bloch sphere where
the angles θ, ϕ are interpreted as defining a point on the surface of the
sphere. Fig. 2.1 depicts a state |ψ⟩ on the Bloch sphere.

For an N-qubit state, the 2N possible combinations of |0⟩ and |1⟩
states form a basis of a complex-valued vector space called the Hilbert
space, and to represent an arbitrary state in this space Eq. (2.1) general-
izes to

|ψ⟩N =
2N−1

∑
i=0

βi |(i)2⟩

with ∑
i
|βi|2 = 1,

(2.3)
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|x〉
|y〉

|0〉

|1〉

φ

θ

|ψ〉

Figure 2.1: State of a single qubit on the Bloch sphere. The angles θ and
ϕ parameterize the space for a pure state.

where |(i)2⟩ is the i-th basis state where the 0 and 1 state of the N
qubits correspond to i represented as an N-digit binary number. The
dimensionality of this space scales exponentially with the number
N of qubits involved, and representing an arbitrary state requires
an exponential number of factors βi. This behavior makes it hard to
simulate large quantum systems on classical machines, as in a general
case an exponential amount of resources are required to store and
manipulate these probability amplitudes.

2.1.1 Entanglement

For a composite system AB Eq. (2.3) can be rewritten as a product of
basis states

∣∣ei
A
〉

,
∣∣∣ej

B

〉
of the two subsystems.

|ψAB⟩ =
dA−1

∑
i=0

dB−1

∑
j=0

Ai,j

∣∣∣ei
A

〉
⊗
∣∣∣ej

B

〉
, (2.4)

where dA, dB are the dimensions of the corresponding subsystem.
Any state of such a composite system can be decomposed into a
sum of orthonormal states

∣∣ψi
A
〉

and
∣∣ψi

B
〉

of the subsytems A and B
respectively [30, 31] such that

|ψAB⟩ = ∑
i

λi

∣∣∣ψi
A

〉
⊗
∣∣∣ψi

B

〉
, (2.5)

where the coefficents λi satisfy ∑i λ2
i = 1. These are called the Schmidt

coefficients. The minimal number of coefficients required to describe a
state is called the Schmidt number, which corresponds to the rank of
the matrix of coefficients

r(ψ) = rank(Ai,j) ≤ min[dA, dB]. (2.6)
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This number is one way to quantify the amount of entanglement
between the systems of A and B, with the state |ψ⟩ being separable
only if the Schmidt number is equal to 1[30]:

If the number is greater than 1, the subsystems are entangled and
can exhibit non-classical correlations, with a famous example being
the Bell states such as |ψ⟩ = 1√

2
(|00⟩+ |11⟩). This particular state is

composed of a sum of two orthogonal states |00⟩ , |11⟩ and thus has a
Schmidt number of 2.

2.1.2 Density Matrix Formalism

The state description of Eq. (2.3) assumes perfect knowledge of the
state; we call these states pure states. A physical system, however, is
not always in such a pure state, as we can have imperfect knowledge
of our state. This may arise whenever our system is not fully closed.
For example noise can cause uncontrolled interactions with the envi-
ronment that leads to a local loss of information, illustrated in Fig. 2.2
by a state vector slowly spiraling inwards. The state of this system can
then still be described as a probabilistic ensemble of different pure
states.

Such a probabilistic ensemble of pi, |ψi⟩ where pi is the probability
to be in state |ψi⟩ can be formally written as[30]

ρ = ∑
i

pi |ψi⟩⟨ψi| . (2.7)

The Hermitian trace-1 matrix ρ is called the density matrix. For a
pure states the density matrix will fulfill the condition of the purity
tr
(
ρ2) = 1, otherwise for 1/d ≤ tr

(
ρ2) < 1 the state is mixed. For

a pure state to become mixed indicates a loss of information, which
can be described by the partial trace. This is an operator acting on the
composite system consisting of subsystems A, B. The system described
by the density matrix ρAB composed of basis states |ai⟩ ,

∣∣bj
〉
, giving

ρA = TrB(ρAB) =TrB

(
∑
i,j

pi,j |ai⟩⟨ai| ⊗
∣∣bj
〉〈

bj
∣∣)

=∑
i,j

pi,j |ai⟩⟨ai|Tr(
∣∣bj
〉〈

bj
∣∣). (2.8)

Its effect is to produce a density matrix describing only the subsystem
of A, retaining no information of the system B.

To analyze a quantum state one would like to compare them to other
states. A figure of merit that allows to do so is the fidelity, defined as
the following [32]

F(ρ, σ) = (Tr[
√

ρσ
√

ρ])2, (2.9)
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|x〉
|y〉

|0〉

|1〉

Figure 2.2: Trajectory of a single qubit rotating due to a σz interaction while
being subjected to dephasing. This causes the state vector to
continuously shrink as the state becomes progressively more
mixed.

where ρ and σ are the density matrices of the two states being com-
pared1. The fidelity is bounded 0 ≤ F(ρ, σ) ≤ 1, with F(ρ, σ) = 1 only
if ρ = σ. In the special case that the two density matrices describe
pure states |ψ⟩ , |ϕ⟩, the fidelity in Eq. (2.9) becomes the transition
probability between the two states [32]

F(|ψ⟩⟨ψ| , |ϕ⟩⟨ϕ|) = |⟨ϕ|ψ⟩|2. (2.10)

2.2 universal set of gate operations

To utilize a register of qubits to implement an algorithm, a sequence
of gates is applied that manipulate the state. These can be expressed
as operations U acting on the state vector |ψ⟩ by |ψ‘⟩ = U |ψ⟩. For the
normalization conditions of Eq. (2.3) for arbitrary |ψ⟩ to be fulfilled,
the matrix of the operation U has to be unitary, meaning it has to
fulfill the condition U†U = 1 [30]. These operations are referred to as
gate operations or gates in analogy to classical logic gates.

Directly implementing arbitrary N-qubit unitary operations UN ∈
SU(2N) is infeasible in practice, as we only have a limited set of inter-
actions available that can be experimentally created and controlled.
We thus rely on the decomposition of such an interaction into more
elementary building blocks that are then applied to the qubits.

1 This definition by Jozsa [32] is the square of the other commonly used definition
given in Nielsen and Chuang [30]. The choice has been made due to the agreement
described in Eq. (2.10).
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For a single qubit some of the most important gates are given by
the Pauli operators

X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (2.11)

Other commonly used gates to build a single-qubit gate set are the
Hadamard, Phase- and the T-gate, described by the following matrices:

H =
1√
2

(
1 1

1 −1

)
, P =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
(2.12)

To implement an algorithm, additionally controlled two-qubit oper-
ations are required. The canonical example for a such a quantum gate
is the controlled-NOT (CNOT) gate. It has two inputs, a control and a
target qubit. If the control is set to |0⟩ the target qubit is unaffected,
but if the control is |1⟩ the state of the target is flipped. Its action in
matrix representation is given by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.13)

The CNOT gate is an entangling gate, which can be seen when
applying it to a pair of qubits. Starting in the zero state if we first apply
a Hadamard gate to the control qubit, the state becomes |00⟩ → (|00⟩+
|10⟩)/

√
2. The CNOT gate then transforms this to the entangled Bell

state (|00⟩+ |11⟩)/
√

2.
It can be shown [30, 33] that an arbitrary N-qubit operation UN ∈

SU(2N) can already be decomposed into a sequence of gates of single-
qubit gates U1 ∈ SU(2) and one type of entangling two-qubit gate
U2 ∈ SU(4). This still requires arbitrary SU(2) rotations, but following
the Solovay-Kitaev theorem these can be efficiently approximated us-
ing only a finite set of single-qubit gates, requiring only O = logc(1/ϵ)

gates, where c is a constant[34].
Thus, it is sufficient instead of arbitrary unitaries to only implement

a limited set of gates given by {X, Y, Z, H, P, T, CNOT}, consisting of
the Hadamard, Phase-, T- and the CNOT-gate, along with the Pauli
operations to perform possible quantum algorithms.

2.3 qudits

The physical systems in which one may implement a qubit are typi-
cally not true two-level systems. Instead they feature a multitude of
states from which two are selected to represent the logical levels of a
qubit, with the other states being ignored for the purpose of encoding
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quantum information. Using more states per physical information
carrier increases the size of the accessible Hilbert space for a computa-
tion for a given number of physical information carriers, suggesting a
reduction in atoms required for performing an algorithm such as the
quantum phase estimation algorithm[35, 36]. Error correcting codes
for qudits further promise more favorable thresholds[37], and more
efficient methods for magic state distillation[38], a highly resource
intensive aspect of error correction. Simulations of spin systems with
spins > 1/2 promise to be more efficient if directly implemented on a
qudit system rather than mapping each simulated spin to a collection
of qubits[39], but also qubit circuits may be compiled more efficiently
with regards to the number of entangling gates required[40–42].

To perform algorithms on a qudit system, we would like to have a
set of gates that can be applied to a register analogous to the qubit
case.

While single-qubit operations can be described by SU(2), rotations
on a single d-dimensional qudit are described by SU(d). For a qutrit the
special unitary group SU(3) is spanned by the Gell-Mann matrices [43]

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0

 (2.14)

λ4 =

0 0 1

0 0 0

1 0 0

 λ5 =

0 0 −i

0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 (2.15)

λ7 =

0 0 0

0 0 −i

0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 (2.16)

These matrices do form three independent SU(2) algebras con-
sisting of {λ1, λ2, λ3}, {λ4, λ5, (λ3 +

√
3λ8)/2} and {λ6, λ7, (−λ3 +√

3λ8)/2}, each corresponding to single qubit operations on a two-
level subspace while leaving the third level unaffected. These sub-
algebras reflect the fact that single-qudit operations can be constructed
by concatenating the two-level interactions used in the qubit case on
different pairs of levels.

These operations can be generalized to arbitrary dimensions d,
where the SU(d) algebra is described by the d2 − 1 generalized Gell-
Mann matrices[44]. These are given by the collections of symmetric
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matrices λs
j,k, anti-symmetric matrices λa

j,k and diagonal ones λl , de-
fined by:

λs
j,k = Ek,j + Ej,k for 1 ≤ j < k ≤ d (2.17)

λa
j,k = i(Ek,j − Ej,k) for 1 ≤ j < k ≤ d (2.18)

λl =

√
2

l(l + 1)

(
l

∑
j=1

Ej,j − lEl+1,l+1

)
for 1 ≤ l ≤ d− 1, (2.19)

where Ek,j is the matrix with 1 in the k, j-th entry and zero otherwise.
Using at most O

(
d2) two-level gates any single-qudit gate can be

implemented[45].

2.3.1 Qudit Entanglement

As in the case of qubits, an entangling two-qudit gate is required to
complete the toolbox for implementing universal qudit circuits. For
qubits the choice of gate is of little consequence for compiling circuits,
as any two fully entangling gates can be transformed into each other
by local rotations. In the case of qudits the situation becomes more
complex, with not all entangling operations being equal up to local
rotations [46].

As a basic entangling gate we can consider the controlled exchange
gate (CEX), which can be formed by embedding the CNOT gate in a
higher dimensional space. Its action on a state |jk⟩ is given by

CEXt1,t2 :

|jt1⟩ ↔ |jt2⟩ , if j = d− 1, k ∈ {t1, t2}
|jk⟩ → |jk⟩ , if j ̸= d− 1

(2.20)

It swaps two states |t1⟩ , |t2⟩ of the target qudit if and only if the control
qudit is in the specific state |d− 1⟩.

This gate can be used to construct the controlled increment gate,
that increments the state of the target qudit by 1 if and only the control
qudit is in the specific state |d− 1⟩[45]:

CINC :

|jk⟩ → |jk⟩ , if j ̸= d− 1

|jk⟩ → |j(k⊕ 1)⟩ , if j = d− 1
, (2.21)

where ⊕ denotes the addition modulo d. The CINC gate can be
composed of d applications of the CEX gate.

The SUM gate[47] in turn changes the state index of the second
qudit depending on the state of the first qudit:

SUM : |jk⟩ → |j(k⊕ j)⟩ (2.22)

This gate is a generalization of the CNOT gate, and can in turn be
composed of d applications of the CINC gate, which corresponds to a
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total of d2 CEX gates or embedded two-qubit gates. Thus a pattern
emerges that while it is possible to decompose any qudit-gate into
embedded two-qubit gates, doing so may incur a significant overhead
in the number of gates utilized. As a consequence for a qudit-based
quantum processor expanding the toolbox of available entangling
gates will be beneficial, promising more efficient implementations of
circuits by choosing the right type of gate for the specific task given.





3
T R A P P E D I O N Q UA N T U M C O M P U T E R

"It’s still magic even if you know how it’s done."

— Terry Pratchett, A Hat Full of Sky

To build a quantum computer, the desired capabilities specified
by the DiVincenzo criteria for initializing, manipulating and reading
out a quantum system must be implemented in hardware. Trapped
ions are currently one of the most mature technological platforms,
offering identical qubits with long coherence times, as well as high-
fidelity gates and state detection [48–50]. They also offer the possibility
of remote entanglement via photon generation [51, 52], and shared
motional modes allow for full connectivity between qubits in the same
potential well.

In the following, we will discuss the fundamental techniques to
implement quantum operations on this system. First we explore the
physics of Paul traps (Section 3.1) and discuss the properties of the
atomic species used (Section 3.2). We will then review the techniques
used to manipulate the ions (Sections 3.3 to 3.5).

3.1 paul traps

Atoms are a perfect choice for implementing qubits, as they are identi-
cal quantum systems that can have long lived states in which quantum
information can be encoded. However, to practically utilize atoms for
storing information they need to be trapped and shielded from the en-
vironment. Studying charged atoms compared to neutral ones opens
the possibility to use the interaction of their charge with electromag-
netic fields to build a trap for the particles that spatially confines them.
By placing the trap inside an ultra-high vacuum (UHV) environment
collisions with other particles are minimized which can lead to loss of
the ions.

The two most prominent trapping schemes used for confining
charged particles are the Penning trap [53] and the Paul trap [54],
where in this thesis the latter has been used. Its working principle is
described in the following section.

15
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3.1.1 Pseudo-potential Approximation

To successfully trap a particle, one needs to confine it in all three
spatial dimensions. Generally speaking, to create confinement requires
a restoring force that counteracts any disturbances a particle may
experience. For a charged particle interacting with an electric field
the force is the derivative of the electric potential, thus a trapping
potential requires a potential minimum to generate such a restoring
force. Such a minimum is characterized by a vanishing first derivative
and a second derivative > 0. Generating a confining electric potential
in free space may seem prohibited by Earnshaw’s theorem, which
directly follows from Gauss’ law, one of the Maxwell equations. The
condition of the Laplace equation on the electric potential in free space
is given by

∇2Φ =
∂2Φ
∂x2 +

∂2Φ
∂y2 +

∂2Φ
∂z2 = 0. (3.1)

This equation directly shows that not all second derivatives of the elec-
tric potential Φ can have the same sign, and thus a confining potential
in two dimensions will necessarily produce an anti-confining potential
in the third direction. It follows that the static electric potential cannot
have any minima in free space.

However it is possible to generate an effective potential, also named
pseudo-potential, that has the desired minimum by the introduction of
an oscillating radio frequency (RF) field. We can use a Taylor expansion
to write out the lowest orders of the potential of a static and an
oscillating field as

ΦRF (⃗r, t) =
VRF

2|r0|2
cos(ΩRFt)(∑

i
αir2

i )

ΦDC (⃗r) =
UDC

2|z0|2
(∑

i
βir2

i )
(3.2)

where ΩRF is the frequency of the oscillating field, while VRF, UDC
correspond to the RF and direct current (DC) voltages applied, and
r0, z0 are characteristic distances that correspond to the distance from
an electrode in a macroscopic bulk trap as depicted on the left in
Fig. 3.1. To fulfill the Laplace equation Eq. (3.1) the coefficients α, β

obey
∑

i
αi = ∑

i
βi = 0. (3.3)

A single particle with charge Q subject to the potential Φ(⃗r, t) expe-
riences a force given by

F⃗(⃗r, t) = −Q∇Φ(⃗r, t). (3.4)
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Figure 3.1: Electrode geometries for a bulk trap (left) and a surface trap
(right).

We insert the potentials Eq. (3.2) into Eq. (3.4) to find a differential
equation for the position of the particle, which we bring into the form
of a Mathieu equation [55]

0 =
∂2⃗r
∂ξ2 + (⃗a + 2⃗q cos(2ξ))⃗r, (3.5)

where we performed the following substitutions for the static and
oscillating field:

ξ =
ΩRFt

2
(3.6)

a⃗ =
8QUDC

mz2
0Ω2

RF
β⃗ (3.7)

q⃗ =
4QVRF

mr2
0Ω2

RF
α⃗ (3.8)

For an ideal linear Paul trap we choose an RF potential in the x-y
plane and no contribution in the z-axis, and a DC potential that is
confining in z while being symmetric and anti-confining in x-y. These
conditions lead to a choice of coefficients for the potentials (Eq. (3.2))
of

αx = −αy, αz = 0,

−βx = −βy =
1
2

βz > 0
(3.9)

Stable solutions to the equations of motion (Eq. (3.5)) can be found
for the parameter range of 0 < a < q < 1, for which the motion of the
charged particles is described by

r⃗(t) = A⃗ cos(ω⃗t + ϕ)(1 +
q⃗
2

cos(ΩRFt)), (3.10)

This periodic motion consists of two separate terms, the oscillations at
the frequencies ω⃗ are called the secular motion, while the oscillations at
the drive frequency ΩRF is called the micro motion. The secular motion
is given by [55]

ω⃗ = ΩRF/2
√

a⃗ + q⃗2/2, (3.11)
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Figure 3.2: Equipotential lines of the RF field for different trap ge-
ometries in the xy-plane. On the left an ideal quadrupole trap
geometry with two RF and two DC electrodes is shown, while
on the right a surface trap geometry is depicted where all the
electrodes have been moved into a plane.

which for the previous choice of coefficients results in the following
frequencies:

ωz =

√
2

βzQUDCβz

mz2
0

, (3.12)

ωx = ωy =

√
2
(

QVRFαx,y

mr2
0ΩRF

)2

− 2βzQUDCβz

2mz2
0

. (3.13)

Large micro motion amplitudes are generally an undesirable feature
for quantum information processing [56, 57], and we thus try to
minimize its effect by overlapping the trapping position with the
RF-null, the axis along which the amplitude of the RF field is zero.

3.1.2 Segmented Surface Traps

The potential landscape described in the previous section can be
generated by a set of two RF and two ground electrodes that generate
the radial pseudo-potential together with a pair of so called end-cap
electrodes that provide confinement along the z-axis. This design is
very successful at confining a register of ions to be used as a quantum
processor [58, 59], but it is limited by the availability for only a single
potential well. As more ions are added to a potential well, the ratio
of radial to axial confinement required increases to keep the ions in
a linear string as well as the number of the motional modes. As the
spacing between modes decreases, it becomes ever more difficult to
control the interaction with the motional modes as the closer spacing
makes it harder to resolve the individual modes.



3.2 calcium + strontium 19

One approach to mitigate the challenges of working with long ion
strings is to instead pursue a modular approach and consider oper-
ating several potential wells that are controlled by micro-structured
DC electrodes. In this quantum charge-coupled device (QCCD) architec-
ture [60], the individual registers of ions can then be moved, rotated,
split and merged to reconfigure the ion crystals as required during a
computation. This promises to be able to maintain the high fidelities
achievable in a single trapping region while scaling up to a larger
system, as the quantum interactions are always limited to a small
sub-register.

The electrode configurations generating a trapping pseudo-potential
are not unique. A planar electrode configuration shown on the right
in Fig. 3.1 can be used instead, with Fig. 3.2 showing the equipotential
lines for two examples of the different kinds of electrode configura-
tions. A planar configuration has the advantage of providing good
optical access as one side is entirely unobstructed by the trapping elec-
trodes. They are also well-suited to micro-fabrication technologies that
can pattern complex electrode structures [61–63], which are necessary
to realize a QCCD architecture.

To control the potential for splitting and merging operations, the
fields need to be controlled on the length scale of the ion spacing.
As the trapping potentials decrease exponentially as a function of
the ion-electrode distance, this becomes more challenging with in-
creasing distance. The length scale is also set by the dimension of the
electrodes [64], thus control electrode for these operations typically
have sizes that are on the same length scale the ion-electrode distance.
This imposes a reduction in scale for traps that implement a QCCD
architecture: While bulk traps typically have a spacing between ions
and electrodes on the order of ≈ 1mm, chip traps are often designed
smaller with typical ion-electrode distances of ≈ 100µm [65].

A smaller scale lowers the voltages required to achieve the same trap
frequencies compared to bulk traps, which is advantageous for the
technical requirement on the electronics providing necessary dynamic
DC control fields.

A significant challenge of miniaturizing ion traps is that as the
distance to the surface of the nearest electrode decreases, this leads
to an increased sensitivity to the electric field noise present on those
electrodes. That in turn can alter the state of motion of the ion crystal,
causing motional heating [65].

A further disadvantage of the surface geometry is that the potential
barrier perpendicular to the trap surface is low compared to a 3D-
trap, which increases the chance of an ion loss after an event like a
background gas collision.
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Figure 3.3: Levels for 40Ca+and 88Sr+and the relevant transitions for quan-
tum information operations. The S1/2 ↔ P1/2 transition allows for
cooling and state detection. The S1/2 ↔ D5/2 transition is used
for manipulating the encoded information. The D5/2 ↔ P3/2 tran-
sition is used to reset the state, while the D3/2 ↔ P1/2 transition
returns population that decayed to the D3/2 state. The lifetimes
and transition wavelengths are tabulated in Tables E.1 and E.2.
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3.2 calcium + strontium

While ion traps can confine any kind of charged particle, only a few
selected species have the properties desirable for implementing quan-
tum operations. For laser-cooling the ions a closed-cycling transition
is required (see Section 3.4), where photons are scattered repeatedly
while the ions remain in a preferably small number of electronic levels.
Long-lived states are necessary to store information, and a state depen-
dent detection method to read out that information. Typically atoms
with 2 electrons in the occupied shell with the highest energy are
chosen such as Earth alkali metals, which after single ionization leaves
the atom with a hydrogen-like level structure. Practical considerations
involve the availability of appropriate laser sources and optical com-
ponents to drive the necessary transitions. For multi-species operation
the mass ratio between species becomes relevant, as it determines
how similar the trapping parameters for the different species. The
larger the difference, the smaller the region of stable parameters for
both species becomes. Furthermore the mass difference changes the
participation of the species in the normal modes of motion [66].

Both 40Ca+and 88Sr+are suitable atomic species for quantum infor-
mation processing applications, sharing a very similar level structure,
which is described in the following subsection.

3.2.1 Atomic Level Structure

Figure 3.3 gives an overview of the important atomic levels for quan-
tum information processing applications for both 40Ca+and 88Sr+,
with their usage described in the following:

The two sub-levels of the 42S1/2 ground state have functionally
infinite lifetime, with the coherence only limited by the stability of
the magnetic field that determines their energy splitting, making it
possible to also encode information between the two levels. Transitions
between these two states can be mediated via Raman interactions by
laser beams detuned from the 42S1/2 ↔ 42P1/2 transition.

In 40Ca+the 42S1/2 ↔ 42P1/2 transition at 397nm allows for a closed
cycling transition, with only a single additional laser at 866nm re-
quired. This laser returns population that decays into the 32D3/2 level
to the cycling transition, which is critical for cooling the ions (Sec-
tion 3.4).

The 32D5/2 level is long lived (≈ 1.1s) as the decay to 42S1/2 is
dipole-forbidden, making it suitable to define a qubit between the
32D5/2 and the 42S1/2 level. The state is also inaccessible from the
states involved in the closed cycling transition. It is thus excellently
suited to enable state dependent readout, with the only error channel
being the spontaneous decay of the 32D5/2 to the ground state.
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The transition can be driven via its quadrupole element by a laser
at 729nm to manipulate the quantum information, which will be
described in more detail in Section 3.5.

A transition at 854nm 32D5/2 ↔ 42P3/2 allows resetting the state,
returning all population to the 42S1/2 manifold via spontaneous decay.

The techniques just illustrated can be directly mapped to the very
similar level scheme of 88Sr+shown in Fig. 3.3, where instead the
ground state is the 52S1/2 level. The closed-cycle transition 52S1/2 ↔
52P1/2 lies at 422nm, with a laser at 1064nm to return population. The
42D5/2 state has a shorter lifetime of ≈ 0.4s than its equivalent in
calcium, but can be utilized in the same way.

A technical advantage for choosing 40Ca+and 88Sr+is the availabil-
ity of laser systems (See Section 4.4) and optics, avoiding the need
for light at deeper UV frequencies of other popular species (313nm
for 9Be+, 279nm for 25Mg+, 369nm for 171Yb+). The values for the
relevant transition frequencies, branching rations and lifetimes have
been summarized in Appendix E.

3.3 atom-light interaction

As the techniques used in this thesis for manipulating trapped ions
rely on lasers, we need to understand the interaction of light with the
atom. This topic has been extensively discussed in the literature, [57,
67–69] and will review the theory in the following.

For simplicity we will consider only two electronic levels |g⟩ and
|e⟩, and a single motional mode of a harmonic oscillator formed by
the atom being confined in the potential of the trap. The Hamiltonian
of the non-interacting system is then given by

H0 = Hmotion + Helec =
p̂2

2m
+

mω2
m

2
x̂2 +

h̄ωeg

2
σz (3.14)

where m is the mass of the atom, ωeg the transition frequency of the 2

levels, ωm the motional frequency of the harmonic oscillator, p̂ and x̂
are the momentum and position operators of the oscillator while σz is
the Pauli-z matrix operator acting on the electronic levels.

With the common substitution of creation and annihilation operator
for position and momentum, the motional part of the Hamiltonian
Hmotion can be simplified to

Hmotion = h̄ωm(a†a +
1
2
). (3.15)

For a quantum harmonic oscillator, the motional state can be ex-
pressed using number or Fock states |n⟩ [57] where a†a |n⟩ = n |n⟩.

We model the light as a planar wave with frequency ωl and a phase
ϕ, where we assume for simplicity that its wave vector k⃗ is aligned
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with the motional mode. The interaction Hamiltonian is then given by
[57]

Hint =
h̄Ω
2

(σ+ + σ−)(ei(kx−ωl t+ϕ) + e−i(kx−ωl t+ϕ)) (3.16)

where Ω gives the coupling strength of the interaction, The expression
can be simplified by introducing the Lamb-Dicke parameter which is
defined by

η = k

√
h̄

2ωmm
. (3.17)

Inserting the raising and lowering operators through a substitution of
kx̂ = η(a† + a) allows rewriting the interaction as

Hint =
h̄Ω
2

(σ+ + σ−)
(

ei(η(a†+a)−ωl t+ϕ) + e−i(η(a†+a)−ωl t+ϕ)
)

(3.18)

As the transition frequency between the levels is much higher than
those of the motional mode or the frequency difference between laser
and transition ωeg ≪ ωm, ωeg −ωl , we can perform a rotating wave
approximation, where we change into an interaction picture rotating
at frequency ωeg and neglect fast terms that rotate at 2ωeg, letting us
simplify the interaction Hamiltonian to

Hint =
h̄Ω
2

(
σ+ exp

(
iη(a†eiωmt + ae−iωmt)

)
exp(i(ϕ− ∆t)) + h.c.

)
,

(3.19)
where ∆ = ωeg −ωlight is the frequency difference between the transi-
tion and the light field.

If the oscillation amplitude is small relative to the size of the wave-
packet, we enter the Lamb-Dicke regime where η2(2n + 1)≪ 1, and
it is possible to perform the Lamb-Dicke approximation where we
expand the Hamiltonian in η to first order, obtaining

Hint =
h̄Ω
2

(
σ+
(

1 + iη
(

a†eiωmt + ae−iωmt
))

ei(ϕ−∆t) + h.c.
)

. (3.20)

We are left with three terms in the Hamiltonian corresponding to dif-
ferent frequencies for which we drive dynamics between the electronic
states, which we identify as the carrier transition, and the red and blue
sideband transition. If we choose a frequency close to the carrier tran-
sition (|∆| ≲ Ω), the light will induce a coherent population transfer
between the states |g⟩ and |e⟩ called Rabi oscillations [30]. Starting from
an initial state in |g⟩ the probability for the excited state population is
given by [70]

P(|e⟩ , t) =
Ω2

Ω2 + ∆2 sin2

(√
Ω2 + ∆2t

2

)
=

Ω2

Ω2
eff

sin2
(

Ωefft
2

)
(3.21)

where we introduce the effective Rabi frequency Ω2
eff = Ω2 +∆2. These

oscillations leave the motion of the ion unaffected.
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Figure 3.4: Measured Rabi frequency as function of motional state for the
carrier and the 1st sideband transitions. The error bars are on the
order of the marker size. The solid lines correspond to a single-
parameter fit of the Rabi frequency to the theoretical predictions
in the Lamb-Dicke regime.

When bringing the frequency detuning ∆ of the driving laser field
close to the motional frequency either at −ωm or ωm we will drive
the same kind of oscillations, but the change in spin state will also
be accompanied by a change in the motional state, and the motional
state modifies the effective coupling strength. For ∆ = ωm a phonon
is added to the mode when starting from the state |g⟩, which we
identify as blue sideband, named as the corresponding wavelength of
the driving frequency is shifted towards the blue relative to the carrier.
The Rabi frequency is modified compared to Eq. (3.21) given by

Ωblue =
√

n + 1ηΩ, (3.22)

and depends on the motional state n of the mode. For ∆ = −ωm a
phonon is removed from the mode when starting from the state |g⟩,
which we identify as red sideband. The Rabi frequency on this sideband
is then given by

Ωred =
√

nηΩ. (3.23)

Fig. 3.4 shows the dependency of the Rabi frequencies of the sidebands
on the motional state n, with the difference being largest for n = 0.
The carrier Rabi frequency is also affected by the motional state but
only in second order of η, as can be seen in Fig. 3.4. This interaction
of the laser with both spin and motion of the ion forms the basis of
the manipulation techniques that will be subsequently discussed in
Sections 3.4 and 3.5.



3.4 laser cooling 25

3.4 laser cooling

The capability for cooling of the ions inside a trap is crucial for ex-
periments for several reasons. First it increases the time ions stay
inside the trap, but also once the kinetic energy is sufficiently low,
the ions form spatially ordered structures where the individual ions
are well localized. Such a structure is known as a Coulomb crystal
as the arrangement is controlled by the combination of the mutual
repulsive Coulomb interaction between the ions and the external trap-
ping potential. To precisely control coherent interactions even lower
temperatures are required, where a high fraction of the population in
the motional ground state is wanted.

A variety of cooling techniques can be applied to reduce the kinetic
energy of trapped ions. For atomic species that have the appropriate
level structure, laser cooling is preferred, but even among them there
is a variety of available techniques [57, 68, 71–73]. These cooling tech-
niques have different advantages and disadvantages, trading cooling
rate and being effective over a wider range of frequencies for the low-
est possible achievable final temperatures. Thus effective cooling relies
on a combination of different techniques, two of which are described
in the following.

3.4.1 Doppler Cooling

The technique of Doppler cooling relies on the Doppler effect, where
the apparent frequency of laser light is changed depending on the
velocity [68].

The effect can be derived from a particle in free space experiencing a
force from the momentum transfer of scattered photons. Each photon
carries momentum h̄⃗k, and the process occurs at the rate Γρee, where
Γ is the decay rate of the transition, and ρee is the probability of the
ion to be in the excited state |e⟩. We can write down the average force
acting on the particle as [57]

F⃗avg = ⟨dp⃗
dt
⟩ ≈ h̄⃗kΓρee. (3.24)

The excitation probability ρee is given by

ρee =
s/2

1 + s + (2 ∆e f f
Γ )2

, (3.25)

where s = 2Ω2/Γ2 is the saturation parameter on resonance with
Ω being the Rabi frequency, while ∆e f f = ∆− k⃗v⃗ gives the effective
detuning between laser frequency and the Doppler shifted transition
of the ion.

We are primarily interested in the regime of low velocities, where
the spatial extent of the ion shrinks below the wavelength of the
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Figure 3.5: Fluorescent light at 397 nm of 8
40Ca+ions trapped in a linear

configuration imaged on a camera.

laser, and the Doppler shift becomes small compared to the transition
linewidth. In this case the force can be linearized in the velocity v⃗ [57]

F⃗ ≈F⃗0(1 + κ⃗v⃗) = h̄⃗kΓ
s/2

1 + s + 4∆2/Γ2

(
1 +

8k∆Γ
1 + s + 4∆2/Γ2 v⃗

)
.

(3.26)

For a red-detuned beam (∆ < 0), the force F is opposed to the velocity,
leading to a damping effect. For an ion confined in a trap we can clas-
sically write the velocity as a periodic motion v(t) = v0 cos(ωt). The
cooling rate can then be calculated by averaging over many oscillation
cycles of the ion in the trap, where

Ėcool = ⟨F⃗v⃗⟩ = F0(⟨⃗v⟩+ κ⟨⃗v2⟩), (3.27)

where ⟨⃗v⟩ = 0 for a particle in a harmonic potential.
Due to the random nature of the emission process, the ion cannot

cool to zero temperature. Even at zero velocity, it will continue to
scatter, gaining momentum from the recoil [57] and thus kinetic energy,
creating a heating effect that counteracts the cooling.

This heating effect can be described by the momentum kicks due
to absorption and emission. The momentum kicks due to absorption
are aligned with the direction of the laser beam, while the kicks of
the emission are random. We can average over all directions, where
the anisotropy of the emission is described by a geometric scale factor
ξ = 2/5 for dipole radiation [74], leading to a heating rate of:

Ėheat = Ėabs + Ėem = Ėabs(1 + ξ) (3.28)

=
(h̄⃗k)2

2m
Γρee(1 + ξ) (3.29)

Neglecting correlations between absorption and emission, which cor-
responds to a low enough laser intensity such that the transition is
not saturated (Ω ≪ Γ), we can set Ėheat = Ėcool and infer the final
temperature

kBT = m⟨v2⟩ = h̄Γ
8
(1 + ξ)

(
(1 + s)

Γ
2∆

+
2∆
Γ

)
, (3.30)
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which is minimal for a choice of detuning

∆ = Γ
√

1 + s
2

. (3.31)

We can relate a temperature to an average number of motional
excitations n̄ of an ion in the trap by h̄ω(n̄ + 1/2) = kbT. For calcium
we get with an optimal choice of detuning, low saturation s ≊ 0
and a decay rate Γ = 2π · 22.4 · 106s−1 with a typical trap frequency
of ω = 2π · 1MHz a limit of n̄min ≈ 7, while for Strontium (Γ =

2π · 20.2 · 106s−1) with a trap frequency of ω = 2π · 0.7MHz we expect
n̄min ≈ 10.

Effects of micro-motion have been neglected in this treatment here,
which can have a significant influence for non-crystallized ions [75],
and can increase the residual energy. However, it does not change
the cooling dynamics expected from the harmonic trap approxima-
tion [76].

The closed cooling transition S1/2 ↔ P1/2 used for Doppler cooling
is also used for detection. The photons scattered by the ions can be
focused onto a camera to form an image of the ions as can be seen in
Fig. 3.5, or send the light onto a photo multiplier tube (PMT). This not
only confirms the presence of the ions in the trap, but can facilitate
state detection relative to the long-lived D5/2 state. This does not
couple to the closed cooling transition and consequently does not
scatter any photons. We can utilize the presence or absence of light
scattered by a given ion to infer its electronic state, determining if it is
either in the S1/2 level or the D5/2 level, corresponding to a projective
measurement in the σz basis.

3.4.2 Resolved Sideband Cooling

In the regime where the effective transition linewidth is smaller than
the motional sideband frequency Γ < ω it then becomes possible to
tune the laser frequency to the red sideband transition ∆ = −ωm. The
condition on the sidebands being resolved means that the targeted
transition is predominantly being driven, causing each absorption
event to reduce the phonon number by one. In the Lamb-Dicke regime
spontaneous decay predominately occurs over the carrier transition,
which leaves the motional state unchanged. Fig. 3.6 shows the energy
of the combined electronic and motional states, where we can start
moving down the sideband ladder, with each cycle removing a phonon
until we reach close to the motional ground state. This technique is
called resolved sideband cooling.

For a Lorentzian excitation profile of the transition with no detuning
from the sideband and an effective Rabi frequency in the Lamb-Dicke
regime of ΩRSB = η

√
nΩ the cooling rate Γcool is given by [57]

Γcool = Γtransition
nη2Ω2

Γ2
transition + 2nη2Ω2

, (3.32)
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Figure 3.6: State ladder for a two-level system coupled to a harmonic

oscillator. The states are split by ωeg while the levels of the
oscillator are separated by ωm. The red and blue sideband tran-
sitions change simultaneously the internal and motional state,
while the carrier transitions marked in green do not change the
motional state.

where Γtransition is the decay rate of the upper state. Due to the phonon
state dependent coupling strength the cooling rate now depends on the
current phonon number, disappearing for n = 0 as the red sideband
becomes suppressed. Given the long-lived nature of the D5/2 states in
both 40Ca+and 88Sr+it would be impractical to attempt to cool them
by natural decay. Instead the lifetime is artificially shortened by an
additional laser that couples the D5/2 to the short-lived P3/2 levels,
leading to an effective decay rate [77]

Γtransition =
Ω2

quench

(ΓP3/2→S1/2 + ΓP3/2→D5/2)
2 + 4∆2

quench
ΓP3/2→S1/2 , (3.33)

where Ωquench, ∆quench are the Rabi frequency and the detuning of the
quenching laser. From the P3/2 levels the ions decay down to the S1/2
state, completing the cycle.

Resolved sideband cooling is limited by competing heating pro-
cesses. The leading order processes that can heat are off-resonant
excitation of the carrier transition followed by a decay on the red
sideband, or off-resonant excitation of the blue sideband transition
followed by a decay on the carrier. Either of these processes reintro-
duces a phonon into the system [57]. The probability for off-resonant
excitation is Ω2/(4ω2

m) for the carrier and Ω2/(4(2ωm)2) for the side-
band, respectively. The chance for a red sideband decay is given by
η′2Γtransition, the chance for a carrier decay is given by Γtransition instead.
The Lamb-Dicke factor η′ for the decay is not equal as photons have a
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different wavelength and can be scattered in any direction. The rate of
heating can then be written as a sum of the two contributions:

Γheat =
ΓtransitionΩ2

4ω2
m

(η′2 + η2/4). (3.34)

We can equate in the steady state Γheat = Γcool and estimate for small
phonon numbers (2nη2Ω2 < Γ2

transition) the residual phonon number n̄
given by

n̄ =

(
Γtransition

2ωm

)2 (η′2

η2 +
1
4

)
(3.35)

There is a trade-off between the minimal achievable temperature
(Eq. (3.35)) and the cooling rate (Eq. (3.32)) depending on the effec-
tive decay rate of the upper state, controlled by the quenching laser.
No detuning and Ωquench = 2π · 300kHz for the quenching laser in
40Ca+leads to an effective decay rate of 170kHz, resulting in a theoret-
ical limit on the minimum phonon number of n̄ ≈ 0.007.

3.5 coherent control

In the following we will discuss how we can utilize the interaction of
the laser with the ions described in Section 3.3 to coherently manipu-
late their state, which enables performing the quantum gates required
for implementing algorithms.

3.5.1 Single Qubits

The atom-light interaction described above in Eq. (3.20) can be used
to perform single qubit operations directly. If set on resonance, the
interaction performs the rotation

R(θ, ϕ) = exp
[
−iθ(σx cos(ϕ) + σy sin(ϕ))

]
(3.36)

where we introduce the rotation angle θ = Ωt.
For a choice of a pulse duration of Ωt = π/2 and a phase of

ϕ = 0, π/2 a σx, σy Pauli operation is performed.
A σz operation can be applied by means of the AC Stark effect. From

Eq. (3.21) we do not expect any changes of the populations for large
detunings ∆≫ Ω as the resonant coupling tends to 0, but the applied
field will lead to a shift of the energy levels. Under these conditions we
can apply the James-Jerke approximation [78] to Eq. (3.20), retaining
only the zeroth order term in η to get the following interaction:

HAC =
h̄Ω2

4∆
σz. (3.37)

These AC Stark shifts can also appear as an unwanted source of
errors, as applied laser beams can off-resonantly couple to other
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Figure 3.7: Gate set of single qubit operations. The rotations are illus-
trated on the Bloch sphere, transforming the starting red state to
the final blue state. The Rotation axes are shown in green
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Figure 3.8: Excitation of a Ramsey experiment as function of frequency.
Ramsey fringes showing the excited state population P(|e⟩) for a
waiting time of 150µs and a Rabi frequency of Ω = 2π · 17.5kHz

transitions, introducing undesirable phase shifts. It should be noted
that σz gates can also be implemented virtually by adjusting the phase
of the frequency reference that controls the phase of the gate laser for
other operations [59].

With this toolbox we can implement the single qubit gate set shown
in Fig. 3.7 and discussed in Section 2.2.

3.5.2 Ramsey Measurement

Coherent rotations of qubits can be used to perform Ramsey experi-
ments [79], a fundamental tool both for performing frequency measure-
ments and characterizing the performance of qubits. This technique
involves first applying a π/2 pulse to the qubit. Then it is left to evolve
for a certain wait time, after which a second π/2 pulse is applied with
a phase ϕ relative to the first pulse.

During the wait time the qubit acquires a phase due to any mis-
match of the frequency of the laser versus the frequency of the qubit
transition, which can originate either from systematic shifts or from
noise affecting either the laser or the qubit.

For such an experiment the expected population to be measured in
the excited state is given by [80]

P(|e⟩ , τ) =
4Ω2

Ω2
eff

sin2(Ωefft/2)
[

cos(Ωefft/2) cos(∆τ/2 + ϕ)

+
∆

Ωeff
sin(Ωefft/2) sin(∆τ/2 + ϕ)

]2
,

(3.38)
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where the effective Rabi frequency is given by Ωeff =
√

Ω2 + ∆2.
The time t is the duration of the π/2 laser pulses. The shape of
this excitation pattern can be seen in Fig. 3.8, consisting of a slow
envelope corresponding to the Rabi coupling to the transition and
a fast oscillating term depending on the wait time τ, giving rise to
so-called Ramsey fringes.

Typically, the detunings of interest are much smaller than the Rabi
frequency ∆≪ Ω, allowing simplification of Eq. (3.38) to

P(|e⟩ , τ) =
1
2

[
1 + cos

(
∆(τ +

4t
π
) + ϕ

)]
sin2(Ωefft/2). (3.39)

This type of measurement is frequently used to determine the
frequency difference of a transition to the probing laser. For this
purpose the measurement is performed with a Rabi frequency Ωt = π

2
and a phase of ±π/2 of the second pulse relative to the first, resulting
in the measured probabilities P+π/2, P−π/2. For ∆ = 0 we expect an
excitation probability of 50% for both measurements, and the slope of
the pattern as function of detuning is maximal. We can connect the
measured outcomes to the phase acquired during the experiment by

arcsin
(

P−π/2 − P+π/2

P−π/2 + P+π/2

)
= ∆

((
τ +

4t
π

))
, (3.40)

allowing us to determine the frequency detuning as long as the total
phase acquired is < π/21.

Another application of the Ramsey technique is to measure the
coherence of the system. In a quantum computing application the
coherence limits the ability to perform the identity operation, on
how long a state can be stored. This is crucial as all other quantum
operations rely on the information being reliably stored. In this context
we assume that the detuning changes between each measurement
due to fluctuations of the laser frequency and the qubit transition
frequency being affected by noise. We can average Eq. (3.39) over
different realizations of the experiment, where for long probe times
t≪ τ we can write the excitation probability as

P(|e⟩ , τ) =
1
2
[
1 + C(τ) cos (∆τ + ϕ)

]
sin2(Ωefft/2), (3.41)

where we introduce C(τ) as the waiting-time dependent contrast given
by integrating over the probability distribution p(∆′) of detunings

C(τ) =
∣∣∣⟨ei∆τ⟩

∣∣∣ = ∣∣∣∣∫ ∞

−∞
p(∆′)ei∆′τd∆′

∣∣∣∣. (3.42)

1 The issue of a wrong frequency estimate due to a too large acquired phase is called
fringe hopping, it can be avoided by evaluating the measurements using Bayesian
methods as has been shown in [81].
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Figure 3.9: Trajectory of the gate in phase space. Shown are the two Sφ

eigenstates under the Hamiltonian of the Mølmer Sørensen gate.
Notably the trajectories meet at the origin again, leaving the spin
and motional states separable.

We can explore the expected contrast for some choices of a probabil-
ity density function. As Eq. (3.42) describes a Fourier transform, for a
Gaussian distribution p(∆) = 1√

πσ
exp

(
−∆2

σ2

)
we expect the contrast

to follow a Gaussian shape

C(τ) = exp
(
− (στ)2

4

)
. (3.43)

If we instead insert a Lorentzian lineshape of p(∆) = 1
π

γ
γ2+∆2 for

the frequency detuning fluctuations we expect an exponential decay.

C(τ) = exp(−γτ) (3.44)

With this we can find conclusions about the noise affecting a qubit
from the measured coherence time. A general noise spectral density
p(∆) can be used to predict the Ramsey contrast [58, 82]

A variant of the Ramsey measurement includes adding a π pulse
after half the waiting time. This is known as a spin echo, and the spin
flip cancels constant phase shifts during a single experiment [83]. This
allows us to distinguish the kind of noise affecting the coherence,
separating slow sources that introduce phase shifts varying shot-to-
shot from fluctuations on timescales faster than the wait time.

3.5.3 Geometric Phase Gates

The single-qubit control has to be augmented by an implementation
of the CNOT gate to complete the gate set as previously discussed
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in Section 2.2. This gate can be directly implemented using the Cirac-
Zoller scheme [21], but a different type of gate has proven itself as
the primary way for mediating interactions in trapped ion systems;
the geometric phase gates, as this type of gate is more robust to the
initial phonon state. They rely on spin-dependent forces that couple
to the motion, producing closed trajectories in phase space. Fig. 3.9
shows the trajectory taken depending on the initial state of the system
due to the spin-dependency of the force. At the point where the paths
close, the spins and the motion are separable again, leaving a phase
conditional on the path taken [84]. Different physical mechanisms
allow generating a spin-dependent force. In the following we will look
at a way to produce a σxσx type interaction leading to a gate known as
the Mølmer-Sørensen gate [85, 86], and subsequently we will discuss
a mechanism that generates a σzσz interaction, which is known as a
light-shift gate [87].

3.5.4 Mølmer-Sørensen Gate

The Mølmer-Sørensen gate couples two qubits mediated via a shared
motional mode, with a bichromatic drive field detuned from the shared
mode, coupling the spin state of the ions with the motion. Fig. 3.10

shows the four possible paths by which the bichromatic field couples
the |gg⟩ to the |ee⟩ state.

In the following we will review how the laser interaction can pro-
duce the desired gate action on the qubits. Given the Hamiltonian
of the atom-light interaction described in Eqs. (3.14) and (3.16), the
system of two qubits and a single motional mode can be described by
the following Hamiltonian

H = H0 + Hint (3.45)

H0 =
2

∑
j=1

h̄ωeg

2
σz,j + h̄ωm(a†a + 1/2) (3.46)

Hint =
2

∑
j=1

2

∑
i=1

h̄Ω(t)
2

(σ+
j + σ−j )

× [ei(k⃗i x⃗j−ωit+ϕ) + e−i(k⃗i x⃗j−ωit+ϕ)] (3.47)

where the frequencies ωi correspond to the two laser frequencies of
the bichromatic drive field, while j indexes the two ions.

We can rewrite the frequencies of the two tones of the laser as a
combination of the symmetric (ωs = (ω1 − ω2)/2) and asymmetric
(ωa = (ω1 + ω2)/2 − ωeg) detuning from the qubit transition fre-
quency ωeg:

ω1 = ωeg + ωs + ωa, (3.48)

ω2 = ωeg −ωs + ωa (3.49)
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Figure 3.10: Level Scheme of the Mølmer-Sørensen gate. The bichromatic
laser beam with frequencies ω1 (blue), ω2 (red) couples the
symmetric internal state via the levels with asymmetric levels
with ±1 phonon with a detuning δ.

The combination of AC stark shifts of the electronic levels and
the asymmetric detuning create a so called center line detuning of
ωcl(t) = ωAC(t)−ωa between the mean of the bichromatic frequencies
and the carrier transition.

We can then go to the interaction picture and apply the rotating
wave approximation, allowing us to discard any fast rotating terms at
2ωeg, leaving us with

Ĥint =
2

∑
j=1

h̄Ω(t)
2

(σ+
j + σ−j )

×
[
ei(k⃗1 x⃗j−(ωcl+ωs−ωm)t+ϕ) + ei(k⃗2 x⃗j−(ωcl−ωs+ωm)t+ϕ) + h.c.

]
.

(3.50)

We then introduce the detuning δ = ωm − ωs as the difference
between the motional mode frequency and the symmetric detuning.
Furthermore, we can rewrite the position and momentum term as
k⃗ · x⃗ = ηi(a† + a), where ηi is the Lamb-Dicke factor of the ith tone.
However, since ωd ≪ ωeg, we can approximate them as η1, η2 ≈ η.
As we operate in the Lamb-Dicke regime, we can perform the same
expansion of the exponential as in Eq. (3.20), keeping only up to the
first order terms in η:

Ĥint =− ηh̄Ω(t)(a†eiδt + ae−iδt)

×
[
Sy cos(ϕ + Λ(t)) + Sx sin(ϕ + Λ(t))

]
,

(3.51)
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where we used the spin operators

Sα =
1
2 ∑

j=1,2
σα,j, α = x, y, z (3.52)

and Λ(t) contains the integrated phase due to any center line detuning,
defined as

Λ(t) ≡
∫ t

0
ωcl(t′)dt′. (3.53)

Ideally the gate applied does not include any center line detuning,
leading to the case of Λ(t) = 0. Under this condition the Hamiltonian
can then be exactly integrated to obtain the evolution operator [86]

Û = D[γ(t)Sϕ] exp
[
iθ(t)S2

ϕ

]
, (3.54)

γ(t) = iηh̄
∫ t

0
Ω(t‘)eiδt‘dt‘, (3.55)

θ(t) = (ηh̄)2 Im
{∫ t

0

∫ t‘

0
Ω(t‘)Ω(t“)e−iδ(t‘−t“)dt“dt‘

}
, (3.56)

where D[α] is the displacement operator and we introduce the spin
operator Sϕ = Sy cos(ϕ) + Sx sin(ϕ). For a constant Ω(t) = Ω, the
integrals can be simplified to

γ(t) =
ηΩ
δ

sin
(

δt
2

)
eiδt/2, (3.57)

θ(t) =
(ηΩ)2

δ2 (δt− sin(δt)). (3.58)

To implement the desired gate action entangling the two qubits
involved, we need to choose the proper gate parameters for the evo-
lution in Eq. (3.55): As we do not want any residual entanglement
with the motional mode remaining, we want γ(tg) = 0 at the gate
time tg, ensuring that the gate operation causes no displacement of
the final motional state relative to the starting state. In case of a square
pulse profile, this occurs at every full period of the oscillating term of
Eq. (3.58):

|δ| = 2πK/tg, (3.59)

where the integer K is the number of loops performed. For the MS
gate we will only use the single loop case of K = 1. The previous
condition allows us to only consider the spin states, where the action
with ϕ = 0 is now described by

ÛMS = exp
[
iθS2

x
]

=


cos(θ/2) 0 0 −i sin(θ/2)

0 cos(θ/2) −i sin(θ/2) 0

0 −i sin(θ/2) cos(θ/2) 0

−i sin(θ/2) 0 0 cos(θ/2)

 .

(3.60)
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Figure 3.11: Decomposition of the CNOT gate into an Mølmer-Sørensen gate
and local rotations on the qubits.

Further we typically want to drive a gate with a rotation angle of
θ = π/2 to obtain entanglement between the qubits. For a square
pulse this results in a condition on the effective Rabi frequency of

(ηΩ)2tg/δ = π/2 . (3.61)

Fig. 3.11 shows how the Mølmer-Sørensen gate can be used to im-
plement a CNOT gate by adding local rotations before and after the
entangling gate, completing the universal gate set, and thus any circuit
can be also written as a composition of Mølmer-Sørensen gates and
local rotations.

3.5.5 Light-Shift Gate

The light-shift gate is an alternative method to generate interaction
between a pair of ions. Like the Mølmer-Sørensen gate, it relies on
producing a spin-dependent force to drive a closed loop in phase
space.

The gate is realized using a pair of Raman beams that produce a
standing wave, which generates spatially varying light shifts on the
qubits. We can write the Hamiltonian of a pair of beams indexed by i
on a pair of ions indexed by j in the interaction picture as [57]

Hint = ∑
j=1,2

∑
i=1,2

∑
s∈{e,g}

− h̄Ωi,s

2

∣∣aj
〉 〈

sj
∣∣ ei(k⃗i r⃗j−δi,s+φi) + h.c., (3.62)

where rj is the position of the j-th ion, Ωi,s denotes the coupling of
each state |s⟩ to the auxiliary state |a⟩ generated by both Raman beams,
and δi,s describes the detuning from the respective |s⟩ ↔ |a⟩ transition,
while φi is the phase of that beam. We now assume that the difference
in detunings is much smaller than the absolute detuning from the
respective transitions |δ1,s − δ2,s| ≪ |δ1,s|, |δ2,s| such that we can apply
the James-Jerke approximation [78].
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The result is a combination of time-dependent and time-independent
light shifts with no population transfer between the states |a⟩ and ei-
ther of the

∣∣sj
〉

states [78].

Hint = ∑
j=1,2

∑
s∈{e,g}

{
− h̄Ω1,sΩ2,s

4∆s

∣∣sj
〉 〈

sj
∣∣ [eiδ⃗kr⃗j−ωt+ϕ + h.c.

]

+ ∑
i=1,2

h̄Ω2
i,s

4∆i,s
(
∣∣sj
〉 〈

sj
∣∣− |a⟩ ⟨a|)},

(3.63)

where ω = ∆2,s − ∆1,s is the difference frequency between the beams
and 1

∆s
= 1

2 (
1

∆1,s
+ 1

∆2,s
). Notably, this interaction does not affect the

population of the ions. Since we do not expect any populations in the
auxiliary state |a⟩, we can drop the terms affecting only this state.

We can rewrite the positions r⃗j = r⃗ + δ⃗rj, where r⃗j are the offsets
from the equilibrium position of the ion crystal. Restricting ourselves
to the center-of-mass (COM) mode, the term δ⃗k · r⃗ can be written as
η(a + a†). We can now switch to the interaction picture with regards
to Eq. (3.47) and take the Lamb Dicke approximation and expand the
exponential to first order, resulting in equation

Hint = ∑
j=1,2

∑
s∈{e,g}

{
− h̄Ωs

2

∣∣sj
〉 〈

sj
∣∣ [2 cos

(
δ⃗kδ⃗rj −ωt + ϕ

)
+iη

(
aei(δ⃗kδ⃗rj−(ω−ωm)t+ϕ) + a†ei(−δ⃗kδ⃗rj+(ω−ωm)t+ϕ)

−ae−i(δ⃗kδ⃗rj−(ω+ωm)t+ϕ) − a†e−i(−δ⃗kδ⃗rj+(ω−ωm)t+ϕ)
)]

+ ∑
i=1,2

h̄Ω2
i,s

4∆i,s
(
∣∣sj
〉 〈

sj
∣∣)},

(3.64)

where we introduced the effective Rabi frequency Ωs =
Ω1,sΩ2,s

2∆s
. The

time-dependent light shift oscillating at ω becomes small for ω ≫
Ωs and can furthermore be minimized by shaped pulses [88, 89].
We now choose a difference frequency close to the motional mode
δ = ωm −ω, |δ| ≪ ωm allowing us to neglect the terms oscillating at
ωm + ω. As the non-time-dependent frequency shifts commute with
the time dependent terms, we will later address them separately. We
are left with the terms

Hint = ∑
j=1,2

∑
s∈{e,g}

− h̄Ωs

2

∣∣sj
〉 〈

sj
∣∣ iη
[
aei(δ⃗kδ⃗rj−δt+ϕ) + a†ei(−δ⃗kδ⃗rj+δt+ϕ)

]
.

(3.65)
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We can identify this as a spin-dependent force, where we can apply
the same kind of integration that was used on the Hamiltonian of the
Mølmer-Sørensen gate to find the propagator

Û = D[γ(t)Γ] exp
[
iθ(t)Γ2], (3.66)

Γ = ∑
j=1,2

∑
s∈{e,g}

− h̄Ωs

2

∣∣sj
〉 〈

sj
∣∣ ei∆⃗kr⃗j , (3.67)

γ(t) =
η

δ
sin
(

δt
2

)
ei(ϕ−δt/2), (3.68)

θ(t) =
η2

δ2 (δt− sin(δt)). (3.69)

where D[α] is the displacement operator and we introduce the spin
operator Γ to describe the interaction on the electronic states. γ(t) has
the same form as for the Mølmer-Sørensen gate, and consequently the
displacement vanishes at times δt = 2π, decoupling the spins and the
state of motion. This Hamiltonian gives different forces on the four
possible state combinations which are listed in the following for a
choice of ϕ = −∆⃗k · r⃗1 and ∆ϕ = ∆⃗k · r⃗2 − ∆⃗k · r⃗1

|ee⟩ : Ωe,1 + ei∆ϕΩe,2

|eg⟩ : Ωe,1 + ei∆ϕΩg,2

|ge⟩ : Ωg,1 + ei∆ϕΩe,2

|gg⟩ : Ωg,1 + ei∆ϕΩg,2

(3.70)

where r⃗ corresponds to the separation of the ions. As long as the
phase acquired by the even states |ee⟩ , |gg⟩ is different from the phase
acquired by the odd states, the interaction acts as an entangling gate,
but for maximizing efficiency, we want to control the phase ∆ϕ to
maximize the phase difference.

We have previously neglected the time-independent frequency shifts.
These can be addressed in different ways; for qubits in the Zeeman
manifold of the same species, the shifts can be canceled by choosing the
appropriate polarization to equalize the Rabi frequencies Ωg = −Ωe,
setting the shifts for |gg⟩ , |ee⟩ to zero while |ge⟩ , |eg⟩ experience the
same force amplitude ±(Ωe + Ωg). For cases where the coupling
cannot be equalized such as mixed species gates or optically encoded
qubits, a spin-echo sequence can be used to balance the force on the
states |ge⟩ , |eg⟩. As the propagator of the light-shift gate

ÛLS = exp
[
iθS2

z
]

(3.71)

matches the propagator of the Mølmer-Sørensen gate Eq. (3.60) up to
a basis change, a similar composition can be used to implement the
CNOT gate, and thus it can also be used to form a complete gate set.
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The gate that has been just described can be generalized to be
applied to more than two states |s⟩ per ion, where the following
Hamiltonian can be derived

H = ∑
j

∑
s

ih̄η

2
Ωs,j

∣∣sj
〉 〈

sj
∣∣ (e−i(δt+ϕ)ei∆⃗kr⃗0,j a† + h.c.

)
. (3.72)

We can integrate this Hamiltonian to produce phase shifts on the
pair of ions after closing the loop in phase space. We now assume
the couplings to both ions to be equal Ωs,1 = Ωs,2 = Ωs and choose
an encoding of states such that Ω0 ≫ Ωs for s > 0. This can be
practically achieved by selecting one state from the S1/2 manifold and
a set of states from the D5/2 manifold, with a detuning close to the
S1/2 ↔ P1/2 transition such that the differences in detuning between
different D5/2 states are negligible. In this case the phase shifts are
now given by

Φ̃ij =


Φ00 if i = 0

Φodd if i = 0 or j = 0

≈ 0 if i > 0, j > 0

. (3.73)

This interaction can be symmetrized by interleaving multiple appli-
cations of this interaction with cyclic permutations where the popu-
lations are transferred to the level with the next higher index each.
These cyclic permutations for dimension d take the form of

Xd =
d−1

∑
j=0
|j + 1 (mod d)⟩ ⟨j| , (3.74)

which can be implemented by a succession of d− 1 π-pulses between
the 0th and each successive level j > 0. In this scheme, each logical
state spends the same amount of time in each physical state, sym-
metrizing the phases imprinted on the levels:

G(θ) =

|jj⟩ → |jj⟩|jk⟩ → exp(iθ) |jk⟩ if j ̸= k
. (3.75)

This operator generates qudit entanglement with a single gate opera-
tion as opposed to merely embedding qubit-level entanglement in a
larger Hilbert space.

3.6 challenges for scaling ion trap technology

Ultimately the goal of a quantum processor is to be capable of solv-
ing problems of interest in fields of science that cannot be solved
on classical hardware. There is a major challenge in scaling up ion
trap hardware to the size required for accomplishing this task. The
difficulty stems from the fact that this scaling requires simultaneously
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more and higher fidelity gates. However, many error sources scale
with the number of qubits, decreasing performance of the gates. For
example, as more ions are added, the axial mode frequency needs to
be decreased to keep the ions in a linear string, which leads to both
higher heating rates and decreased cooling performance. Furthermore
the spacing between individual modes decreases, leading to mode
crowding that makes it harder to isolate any particular mode.

As a consequence we want to limit the number of qubits stored in
a single potential well. Instead a large scale architecture will require
multiple trapping sites in order to retain high-fidelity control over
the ions in each register, but this also requires methods to connect
the different sites. This decoupling comes at the disadvantage that
the all-to-all connectivity in a single crystal is lost, leading to more
overhead. Furthermore connecting sites by splitting and merging the
crystal is generally slower than gate operations inside a single register,
making them costlier in terms of decoherence being acquired.

Quantum error correction promises to be able to boost fidelities once
a certain threshold for the fidelity of gate operations is exceeded by
redundantly encoding quantum information and correcting for errors
that occur during operations. This redundant encoding has a cost, as
it comes with a significant increase in the number of physical qubits
required and the error correction by itself requires gate operations to
be performed. Error correction does introduce additional challenges
of mid-sequence readout, which is necessary for identifying if and
where an error has occurred. For this process to be beneficial, the
readout must not compromise the information stored in other qubits.
Furthermore, most readout schemes lead to heating of the ion, which
will affect logic operations following the readout.

The experimental setup described in the following chapter is de-
signed to tackle several of these challenges. By using a segmented
trap, the ions can be split up into several independent wells; and by
using two species, this enables the possibilities of using one species
for readout and cooling during a sequence, without affecting the ions
of the other species. We developed an automatic calibration algorithm
that is suitable for ensuring high fidelity entangling gate operations,
which is crucial for future operation of multiple parallel trapping and
interaction sites. Finally we investigated light-shift gates in two differ-
ent applications. It was used to implement a mixed-species entangling
gate, where this capability enables using the second species as an
ancilla qubit that can be read out independently. We demonstrate a
novel gate for generating qudit entanglement. While qudits cannot be
scaled indefinitely given the limited suitable electronic levels available,
they offer an interesting pathway to increase the capability of a single
register in a larger architecture without increasing the particle count.





4
E X P E R I M E N TA L S E T U P

In this chapter, the components of the experimental setup are dis-
cussed, with a particular focus on the changes and improvements
made during this work. The setup is an evolution of the apparatus
designed by Matthias Brandl [90, 91], which was named Cryostina by
him. The experimental setup has been modified during the course of
this thesis to accommodate a new generation of traps.

In the first section the vacuum assembly housing the ion trap is
described, followed by the electronic components and the control
system of the experiment. Next the laser systems for manipulating the
ions are presented, and the detection optics is discussed. The chapter
concludes with the trap that was utilized for the work presented in
the following chapters.

4.1 vacuum chamber

The cryogenic vacuum system is the core of the experimental setup: It
houses the ion trap in the UHV environment required for trapping and
manipulating the ions. First a description of the cryostat is provided,
then the surrounding vacuum system is discussed.

4.1.1 Cryostat

For cryogenic cooling, a flow cryostat is used which operates by
evaporating a liquid cryogen that provides cooling power. Its main
advantage is the lack of any moving parts in contrast to for example
pulse tube or Gifford-McMahon cryo coolers, and thus the absence of
any moving valves or switching magnetic fields that may introduce
noise into the system. While the cryostat does not vibrate at any
specific frequencies, the boiling of liquid cryogen inside the cold-finger
still produces movement. These vibrations do have a detrimental effect
on the phase stability between the ions and an applied laser beam.
For this reason the cold-finger is decoupled by flexible braided copper
strands thermally connecting the experimental section of the apparatus
with the cold-finger. Fig. 4.1 illustrates the cryostat system: Liquid
cryogen is supplied by a storage Dewar which is connected through
an insulated transfer line to the cold-finger. The natural boil off in

43
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Figure 4.1: Schematic of the cryostat system. The pressure in the Dewar
pushes the cryogen through the transfer line into the coldhead
of the cryostat. A temperature probe connected to a proportional
integral derivative (PID) controller controls an electronic pressure
valve to regulate the Dewar pressure.

the Dewar produces a positive pressure, pushing cryogen through the
transfer line into the cryostat. The flow of cryogen is roughly regulated
by a turning valve on the lance. Both liquid nitrogen (LN) and liquid
helium (LHe) can be used as cryogens. To keep the flow of cryogen
stable, a pressure regulator limits the pressure of the Dewar. A fixed
regulator is used for nitrogen while an electrically adjustable regulator
is used for helium. The adjustable regulator is set from the control
computer by a slow PID, in order to keep the temperature constant.
When operating using nitrogen the exhaust gas is piped out of the
laboratory. When LHe is used, the gaseous helium is instead fed to a
recovery facility in the basement, where it is captured in a balloon and
then compressed into high-pressure gas bottles to be later re-liquefied
by the on-site helium liquefier.

The temperature profile for a typical cooldown is shown in Fig. 4.2:
To limit the consumption of LHe, the setup is precooled with LN when
starting from room temperature. Once the setup is thermalized at
liquid nitrogen temperatures, in this example after 24h, the cryostat is
switched to liquid helium. The process typically takes 2 days.

During regular operations the temperature of the coldfinger is
kept at 15K in order to maintain a practical usage of cryogens us-
ing 0.68(7)L h−1 of LHe. Under these conditions the Dewar needs to
be refilled approximately every two weeks. The temperature can be
pushed lower at the expense of efficiency, as the gas that exits the
cryostat under these circumstances is still cold. This leads to visible
ice formation around the exhaust lines from freezing water vapours
in the air. The 15K operating temperature is sufficient to reach an
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Figure 4.2: Temperature over time of the cryostat during a cool-down

from room temperature: Initially liquid nitrogen is used to
pre-cool the setup from room temperature. Once the temperature
of the trap mount is low enough, the cryostat is switched to
liquid helium. An initial rise of the cold finger temperature while
switching between cryogens stems from gaseous helium flowing
through the cryostat as initially the liquid evaporates still inside
the transfer line until it is sufficiently cooled.

inner shield temperature of approximately 35K, at which point the
single-ion lifetimes increase from minutes to timescales longer than
we were typically measuring (> 8h).

4.1.2 Mechanical Assembly

The cutaway render of the setup in Fig. 4.3 shows the vacuum cham-
ber. It consists of an upper utility section and a lower octagon that
houses the experimental section. The utility section includes the DC

feedthroughs for the trap electrodes. Two ion pumps and two non-
evaporable getters (NEGs) are installed here. Auxiliary equipment such
as a venting valve, a pressure gauge, an angle valve for the turbo-
molecular pump which is used for initial evacuation of the chamber,
and the feedthroughs for heaters and for the temperature probes are
all mounted in this section.

Inside the chamber, this section houses the mid shield which con-
tains the DC filters for the electrodes, as well as the vibration isolation
and thermal connection between the cold head and the experimental
section. The outer thermal shield is mounted to the mid shield. Its
primary purpose is to reduce the thermal conductivity by black-body
radiation. Inside the outer shield, a the steel tube is attached below
the mid shield which mechanically supports the inner shield. This
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Figure 4.3: Cutaway view of the vacuum chamber on the left, with the exter-
nal view on the right.
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tube houses the copper rod that thermally links the vibration isolation
stages from the cold head to the inner shield.

The inner shield houses the trap assembly, which consists of a base
plate housing the resonator (see Section 4.2.2). On this plate the in-
vacuum optics (Section 4.6) are mounted and aligned with respect to
the trap mount (Section 4.2.1) on which the actual trap is installed.

The shields have windows aligned with the 8 viewports of the
octagon, giving optical access at increments of 45◦ in a plane perpen-
dicular to the surface of the trap.

The ovens that produce the neutral atom beams are mounted on
the room-temperature octagon due to the energy dissipated while
actively running the oven, which could lead to thermal expansion
of the apparatus if it was mounted on the cold stage. This would in
turn cause a misalignment of the beams after loading. The beam of
neutral atoms passes through a hole in both shields and enters the
trapping region through the central slot of the trap. The outer shield is
equipped with a shutter to block the atom beam. The shutter protects
the trap while initially melting the indium seals of the ovens and when
establishing the relation between atom flux and oven current.

The whole vacuum chamber assembly is mounted on a floated
optical table for vibration isolation. The optical table has two layers,
where the chamber is placed in a cutout of the upper optical table
such that the center of the view ports lines up with the beam height
of the optics on the upper layer.

4.2 electronics

In the following section, the electrical components of the vacuum
chamber assembly will be discussed. This is followed by a description
of the driving electronics for controlling the experiment.

4.2.1 Trap Mount

For ease of handling, the trap is glued and wire-bonded to a PCB.
This interposer PCB routs all the connections for the electrodes from
the landing pads of the wirebonds to pads on the backside of the
interposer. Fig. 4.4 shows the packaged and bonded trap while in the
cleanroom. The PCB is then inserted and mechanically clamped to a
socket.

The socket1 itself contains so-called fuzz buttons, which are small
gold springs. These springs get compressed by the inserted interposer,
providing electrical contact between the pads of the interposer and
the matching pads of the breakout PCB on which the socket is placed
as can be seen in Fig. 4.5 showing a cross-section of the stack. The
socket and breakout PCB are mounted to the copper mounting bracket

1 Custom Interconnects
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Figure 4.4: Packaged trap glued and wire-bonded on interposer PCB:
The separated lead for the RF is visible on the right side, with
the center electrode connected from the left side. The traces for
the segments are fanned out symmetrically at the top and bottom
edge of the trap.

Figure 4.5: Schematic cross-section of the stack for the trap mount-
ing. Wirebonds along the edge of the trap connect to the inter-
poser. The fuzz buttons provide electrical connectivity between
the breakout board and the interposer.
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Figure 4.6: Component view of the trap mount. The packaged trap is fixed
vertically in the socket, which is in turn held by the mounting
bracket. The resonator is installed inside the base plate, on top of
which the optics and the bracket are attached.

as shown in Fig. 4.6. This bracket provides mechanical support for the
assembly and aids as a thermal conductor to thermalize the trap with
the inner shield, as RF dissipation in the trap is the largest source of
heat inside the experimental section.

In previous iterations of the setup, the electrical connections were
routed from the trap to the feedthroughs via twisted wire pairs made
of phosphor bronze. Given the increased number of connections de-
sired for operating the new trap, the twisted-pair solution was im-
practical for the current iteration. The expected thermal loads and
resistances for some common wire materials used in cryogentic ap-
plications are tabulated in Table 4.1. The size of the combined cross-
section to physically mount in the system, the increased thermal load
of the wires, and the challenge of tracking the connectivity of the
wire pairs during assembly made the previous method non-viable.
Instead, wire harnesses made of polyether ether ketone (PEEK) with
24 manganin cable strands each were utilized, offering a more com-
pact solution. As 80 control channels were available to generate DC

voltages (see Sec. 4.2.4), 4 wire harnesses were used, where from each
20 connections (Resistance ≈ 19Ω m−1 per connection) are connected
to the DC control channels, while the remainder are designated as
ground connection. The choice of manganin was made according to
availability by the manufacturer; copper assemblies impose excessive
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Table 4.1: Calculated heat load between stages and resistance per individual
lead for possible wire materials: Twisted-pair options, wire harness
designs and flex PCB traces are listed. Values for thermal and
electrical conductivity taken from [92, 93]

Size (µm) Resistance (Ω m−1) Heat load (mW)

4− 77K 77− 300K 4− 77K 77− 300K

Copper twisted pair �202 0.011 0.14 4.4 6

Phosphor-Bronze twisted pair �202 1.4 1.5 0.07 0.53

Copper loom �90 0.06 0.72 0.87 1.2

Copper Flex PCB trace 12 × 50 0.6 7.6 0.08 0.1

Manganin loom �110 18 19 0.02 0.1

Constantan loom �110 22 22 0.02 0.1

heat load, while constantan is ferromagnetic, and assemblies made of
phosphor-bronze were not available.

This arrangement simplifies assembly of the apparatus while in-
creasing the available channels from 24 to 80, reducing the chance of
assembly errors. The two photos in Fig. 4.7 display the wiring with
the old and the new solution.

The breakout board was designed to be mounted with nano-D
connectors, but due to difficulties in sourcing the appropriate con-
nectors, the leads of the wire harnesses were hand-soldered instead.
For the connections to the filterboard 25 pin micro-D connectors were
used, while the feedthrough for the vacuum chamber consists of 4

DSub-25 connectors. The wire assemblies were first sourced from
CMR-Direct with polyester insulation, which were later replaced by
assemblies from Tekdata with polyimide insulation due to concerns
over out-gassing of the insulation.
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(a) Twisted-pair wiring (b) Loom-based wiring

Figure 4.7: Comparison of the old twisted pair wiring (a) compared to the
new wire harness based DC connections shown in (b). The wire
harnesses enable a reduction in individual connections that need
to be completed while increasing the amount of available chan-
nels.

4.2.2 Resonator

To produce the necessary RF voltages for operating an ion trap, res-
onators are commonly employed to amplify the voltage of a RF source.
External helical resonators are popular for room-temperature setups,
but prove impractical for a cryogenic setup, as the required low-Ohmic
connection to the trap necessarily imposes a large heat load. Such a
resonator can be placed directly on the cold stage, but available space
is at a premium while designing cryogenic systems. This makes com-
pact RLC-resonators an attractive alternative for cryogenic setups [94],
where an inductance is combined with the natural capacitance of the
trap to form a resonator circuit.

Previously, in this setup different kinds of compact coils were inves-
tigated to form a resonator with the capacitance of the trap device [95].
While a coil made from high-temperature superconductor showed the
best performance in terms of quality factor and thus voltage amplifica-
tion, this coil experienced a critical failure under repeated temperature
cycles. Thus a more conventional wire coil was utilized to ensure
more reliable trap operation. To fabricate the wire coil of the RLC
resonator, a core made of substrate commonly used for creating PCBs

is used2 with equally spaced holes drilled at two radii. A silver plated
copper wire is then manually threaded through the holes, forming
a coil. A single separate loop of wire is additionally included in the
coil to function as an inductive pickup. Fig. 4.8 shows how the coil
is housed together with an impedance matching circuit inside the
base plate below the trap mount, where it is connected to the trap

2 Rogers 4350B
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Figure 4.8: Wire coil wound through a PCB core housed inside the base plate.
The smaller PCB on the left allows mounting of the capacitors for
impedance matching.
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Figure 4.9: The quality factor and resonance frequency of the resonator are
shown in the left graphic, while on the right the back reflection
and the transmission to the pickup are shown versus its tempera-
ture.
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Figure 4.10: Schematic of the filters between the voltage source VDC and the
DC segments of the trap with a cutoff frequency of 34kHz.

PCB. The matching circuit is required as the resonator is driven by a
transmission line with an impedance of 50Ω, but an RLC resonator on
resonance has a low impedance, which would lead to almost all power
being reflected back. By matching the impedance the back-reflection
can be minimized. The left plot of Fig. 4.9 shows how the quality
factor of the coil increases with lower temperatures as the resistance
of the coil decreases, accompanied by a shift in resonance frequency.
The right plot displays how the impedance matching of the resonator
changes with the temperature of the inner shield as the matching is
also sensitive to the resistance of the coil and matching circuit.

An in-house RF stabilization unit is used to keep the RF voltage level
stable [90]. The device works by measuring the voltage at the pickup
coil of the resonator and using it as the input for the PID controller
regulating a voltage controlled attenuator inserted between direct
digital synthesis (DDS) frequency source generating the trap frequency
and the amplifier.

4.2.3 DC Filters

The DC filters are designed to prevent noise from either the voltage
source or picked up by the cables from reaching the trap electrodes
where it will affect the ions. The DC filters for a segmented surface
trap are a trade-off between filtering high-frequency noise that causes
heating of the motional modes, which in turn limits the fidelity of
quantum gates, and the requirement to have sufficiently high cutoff
frequency to change the applied voltages quickly to perform shuttling
operations. A cutoff frequency of 34kHz was selected.

We chose 2nd order RC filters for the task, the circuit of which
is shown in Fig. 4.10. Besides filtering, the second capacitor of the
network also accomplishes the task of a shunt, diverting the RF picked
up via capacitive coupling between the RF and the DC electrodes
to ground. The filters were manufactured from Rogers 4350B PCB
substrate, with a gold finish, and fitted with ceramic capacitors3 which
have been shown to have low temperature dependence [96]. The choice

3 C0G/NP0 ceramic capacitor
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of RC filters was motivated to avoid a feature of the LC filters used
previously, which included resonances in their frequency-response
profile around their nominal cutoff frequency. These resonances do
additionally distort higher-frequency components of time dependent
waveforms, making it more difficult to compensate during shuttling
operations [97].

A consideration when using resistors in a filter circuit is the gen-
erated Johnson–Nyquist noise. We can estimate the expected heating
rate Γ from the electric field noise spectral density SE(ω) [65].

Γ ≈ e2

4mh̄ω
SE(ω) (4.1)

where m is the mass of the ion species and ω is the frequency of the
motional mode of the trap.

The noise spectral density can in turn be estimated from the voltage
noise R(ω)

SE(ω) = 4kBT
R(ω)

D2 . (4.2)

The frequency-dependent voltage noise R(ω) is simulated using a
SPICE simulation of the filter network, while the characteristic distance
D can be inferred from a simulation of the trapping fields. For a
40Ca+ion at a trap frequency ω = 2Π · 1MHz we estimate a heating
rate of ΓCa < 0.1ph s−1 on the axial mode due to Johnson noise for an
electric field noise of 4 · 10−16V2 m−2 Hz−1 (See Fig. 4.11), and we thus
do not expect the filters to limit the performance.

External RC-filters with a cutoff frequency of 1 Hz can be added at
the feedthroughs of the vacuum chamber for applications that do not
require shuttling to provide better suppression of any technical noise
originating from the voltage source.
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Figure 4.11: Calculated filter response (left) and expected field noise

and heating rate due to Johnson noise (right). The solid
lines correspond to the largest contribution to the axial heating
rate, while the dashed lines give the largest influence in the radial
direction. The vertical lines mark the expected trap frequencies
of 1MHz axial and 3.5MHz radial.

4.2.4 Control System

To perform quantum operations the frequency and amplitude of vari-
ous laser pulses as well as the voltages of the trapping potentials need
to be controlled on the timescale of microseconds. In the following we
will give an overview over the system used in this experimental setup.

For controlling frequency, amplitude and phase of laser pulses
works we generate RF pulses, which are the transferred onto the light.
For this the device of choice is the acousto-optic modulator (AOM),
which imprints the properties of the RF pulses onto the laser.

Some channels need to be controlled synchronously with an ex-
perimental cycle, while for other channels asynchronous control is
sufficient as they do not need to be updated during a single experi-
ment.

Fig. 4.12 gives an overview of the components of the control system
and how they are being connected: The core of the control system to
produce these RF pulses is the PulseBox [99], a field programmable
gate array (FPGA) that controls the timing, amplitude, frequency and
phase of pulses produced by the 6 DDS frequency generator channels
and the the timing of 32 transistor–transistor logic (TTL) channels. This
device provides all the synchronous control channels utilized in the
experiment.

The pulse generator is programmed by the Trapped Ion Control
Software (TrICS) running on the control PC [100]. A software inter-
face called trixit allows setting experimental parameters as well as
scheduling and evaluating experiments from python code instead of
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Figure 4.12: Overview of the experiment control system. The system
allows for RF control as well as DC channels for trap voltage
control. The bus system controls DDS frequency sources either
via a output card in the computer or a raspberry pi. Ethernet
communication is used for non-timing sensitive channels. The
PulseBox is programmed by the control PC and controls the
timing of RF and TTL channels. With the TTL channels PMT and
camera are synchronized to perform measurements. Illustration
made using [98].

the graphic user interface (GUI), which is a central feature in enabling
the automation routine presented in Chapter 5.

For asynchronous frequency channels, DDSs are used that are pro-
grammed from TrICS and are switched via TTL if required. The com-
mands for programming the DDS are sent via a parallel bus system
[101], either driven by a NIDAQ card, or a raspberry-pi based bus con-
troller (See Appendix D). The RF switches4 are controlled by the TTL

signals, and allow to enable and disable these channels synchronized
to the experiment.

The control software also can send commands to secondary control
programs, such as the controllers for the camera, the trap voltage
supply, and the wavemeter locks (see Appendix D). The control PC
also runs software to control the ovens and to program the cryostat as
discussed in Section 4.1.1.

To control the voltages applied to the electrode segments of the
trap, we utilize a custom FPGA-based arbitrary waveform generator
developed by collaborators in Mainz [102, 103]. The system named
Bertha supports 80 digital-to-analog converter (DAC) channels with an
output range of ±40V and a resolution of ≈ 1.2mV. The system can

4 Mini-Circuits ZASWA-2-50DR+
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Figure 4.13: Inner Shield after silver-plating and before installation.
The contact surfaces were gold plated to maximize conductivity
across the interface. Visible at the top rim of the left half shell are
the two slots for passing through the ribbon cable assemblies.

run at a maximum sample rate of 2.5 MSamples/s The voltage ramps
are programmed via ethernet, and are then synchronized to the pulse
generator via a TTL channel.

For measurements a PMT and an electron multiplying charge-coupled
device (EMCCD) camera5 are available. The camera is synchronized via
TTL and read out via CameraLink from a PC, while the PMT data is
collected by a counter card6 connected to the control PC.

4.3 magnetic field

To operate a quantum processor a magnetic field is required to spa-
tially define the quantization axis and split the Zeeman sublevels in
frequency such that they can be individually addressed. A field of
≈ 3.5 G is targeted, leading to a splitting of the S1/2 states by about
10 MHz while neighboring D5/2 sublevels are split by about 6 MHz.
To this end, we utilize a pair of Helmholtz coils driven by a stable
current supply7 to generate this field. Initially we used a pair of coils
producing 11 G A−1, but we found that the high inductance (≈ 46 mH)
made the current difficult to stabilize, and we switched instead to
a coil pair (≈ 1 mH) that was initially intended to compensate the
gradient. It generates only 0.6 G A−1, so a much higher current of
6 A is required to produce the same field, but the relative stability of

5 Andor iXon Ultra 897

6 National Instruments NI-6733

7 Keithley 2280S Programmable DC Power Supply
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Figure 4.14: Magnetic field suppression of the inner shield as function

of frequency. For sub-Hz frequencies the effect vanishes, while
at the mains frequency of 50Hz a suppression of ≈ 75dB is
achieved. The fit has a slope of 32(1)dB/dec. The first data point
is omitted from the fit as the frequency is so low that during
the measurement the noise is not sufficiently averaged over all
phases, leading to an overestimate of the field attenuation.

the current was improved, which resulted in an improvement of the
observed coherence times.

4.3.1 Magnetic Field Shielding

Noise from current fluctuations in the bias coils as well as stray mag-
netic fields adversely affect the coherence of the qubits. Of particular
importance is the 50Hz noise generated by the alternating current (AC)
mains that powers all the laboratory equipment. To suppress this
noise, we utilize a copper shield enclosing the trap assembly with a
wall thickness of > 20 mm. The shield can be seen in Fig. 4.13 before
installation. The skin effect significantly attenuates alternating mag-
netic fields passing through a conductor once the thickness exceeds
the skin depth [90].

We measure the magnetic field suppression by intentionally apply-
ing an AC current of varying strength and frequency to a separate coil
next to the vacuum chamber. The field created by the additional coil is
aligned with the direction of the bias field. It is the most sensitive di-
rection as we are primarily sensitive to changes in the field magnitude
rather then its direction. For small noise amplitudes the effect of fields
perpendicular to the bias field the change is quadratically suppressed
compared to fields aligned with the bias field.
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We then observe the decay of the Ramsey fringe contrast (Eq. (3.39))
for a given noise environment. The measured Ramsey contrast can be
fitted with a combination of a reference decay without any intention-
ally applied noise, and a contribution from the induced fluctuations at
a fixed frequency. As both the sensitivity of the transition to magnetic
fields and the field generated by the coils are known, one can calculate
the suppression ratio between externally applied magnetic field and
the field measured at the ion The results are plotted in Fig. 4.14 where
we find a suppression exceeding 70dB at the crucial 50 Hz frequency.

Note that besides attenuating magnetic fields this shield also acts as
a shield for the purpose of limiting thermal radiation transfer.

4.3.2 Stabilization System

Figure 4.15: Installation of stabilization system: The two sensors are
placed on either side of the vacuum chamber. Three sets of coils
are installed around the optical table. A double loop (green) in
Helmholtz configuration was used in the direction aligned with
the bias field generated by the Helmoholtz coils (orange), as
noise along this direction has the largest influence on coherence.
The single loops (blue, red) compensate in the other two axes.

As the effectiveness of the inner shield drops for low frequencies,
slow magnetic field fluctuations still affect the ions on a shot-to-shot
basis. Effectively during each individual measurement the ions will
experience a different detuning from the transition frequency. These
shot-to-shot detunings can be compensated in spin-echo sequences,
but it would be still preferable to eliminate rather than compensate the
noise. To this end we installed a commercial magnetic field canceling
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Figure 4.16: Coherence times with and without the magnetic field com-
pensation system measured between the Zeeman states∣∣42S1/2, mj = −1/2

〉
↔

∣∣42S1/2, mj = 1/2
〉
. For both Ramsey

and Spin-Echo experiments the coherence time is increased by
the stabilization system, from 3.0(5)ms to 23(4)ms and from
13.5(6)ms to 76(4)ms respectively. The reduced initial contrast
for the stabilized measurements is attributed to imperfect cali-
bration of the transfer π pulses.
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system8 around the experimental apparatus. The system uses two
magnetic field sensors placed on the optical table on either side of
the vacuum chamber to measure the magnetic field. The PID in the
control unit then uses the sensor readings to control the current in
compensation coils, consisting of large cable loops around the entire
optical table, each aligned with a different axis. For the geometry of
the compensation coils see Fig. 4.15.

The effect of the magnetic field cancellation system can be seen in an
improvement of the coherence times on the ground state qubit show in
Fig. 4.16, where we observe an increase of the ground state coherence
time from 3.0(5)ms to 23(4)ms without a spin echo pulse, while
with the addition of a spin echo the coherence time increases from
13.5(6)ms to 76(4)ms. The passive measurements were best fitted by
a Gaussian, while the stabilized data was better modeled with an
exponential, which points to a different shape of the distribution of
fluctuations (See Section 3.5.2).

While the improvement of the coherence times demonstrates the
utility of the field cancellation system, the observation that the addi-
tion of a spin echo pulse to cancel static frequency offsets still has a
significant effect indicates that slow fluctuations are still present even
with the cancellation system being active, likely due to the sensors not
being at the same position as the ions.

4.4 quadrupole laser setup

As described in Chapter 3 we can utilize light to control the quantum
state of the ions as well as their coupling to motional states, necessi-
tating light sources with the appropriate frequencies and line-widths.
Diode lasers are highly popular as a source of light for this task in
quantum optics applications as they require a small footprint, are com-
paratively affordable, and are also highly efficient, such that they can
typically operate without the complexity of additional cooling systems
such as water-cooling. For both ion species 40Ca+and 88Sr+discussed
in this thesis diodes are available at all relevant wavelengths for quan-
tum information processing. In particular the external cavity diode
laser (ECDL) design has proven itself as a reliable option to provide
light to drive dipole transitions, offering sub-Megahertz linewidths
while free running, while also being tuneable to match the targeted
transitions.

The requirements on lasers driving the quadrupole transition are
more stringent than those affecting the dipole transitions due to the
different task these transitions are used for. For an optically encoded
qubit the relative stability of the frequency of the laser and the atomic
transition directly affects the performance of the qubit [104]. Ideally
the linewidth of the laser is smaller than the inverse of the upper state

8 Spicer Consulting SC24 Magnetic Field Canceling System
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Figure 4.17: Layout of the optical setup of the Quadrupole Laser inside the
shielding box. Two identical setups are housed inside the box,
one each for a 729 nm and for a 674 nm laser.

lifetime, such that the coherence of the qubits encoded in these states
is not limited by the laser.

Ion trapping quantum information has an additional requirement on
phase noise at frequencies offset from the carrier due to the nature of
the implementation of entangling gates. As described in Section 3.5.4
the gates involve applying laser tones close to the motional sidebands,
typically spaced at ≈ 1MHz. This causes any spectral components
of the laser at the same distance away from the center frequency of
the laser to become resonant with the carrier transition of the ions.
As the coupling to the sidebands is lower than to the carrier by the
Lamb-Dicke factor and the sidebands are driven off-resonantly, the
effective coupling of these spectral components is increased compared
to the strength of these components in the laser spectrum. This can
turn into a significant source of errors for entangling gate operations.
Coincidentally, many typical laser lock setups for diode lasers have
a matching control bandwidth ≈ 1 MHz. This means that at this
frequency, the phase lag of the feedback loop reaches 180◦, and the
intrinsic phase noise of the laser diode is no longer suppressed, or even
worse, can be amplified by the servo loop [105, 106]. In the following a
laser system is described designed to enable higher servo bandwidths
to suppress this crucial source of errors.



4.4 quadrupole laser setup 63

−4 −3 −2 −1 0 1 2 3 4
Frequency (MHz)

10−5

10−4

10−3

10−2

R
el

at
iv

e
R

ab
iF

re
qu

en
cy

729 nm
674 nm

Figure 4.18: Power spectrum of the two quadrupole lasers measured on the
ion. The excitation is measured relative to resonantly driving the
Rabi frequency of the central carrier.

4.4.1 Intracavity EOM ECDL

The linewidth of the laser is stabilized by a Pound-Drever-Hall (PDH)
lock [107, 108] to a high-finesse cavity from Stable Laser Systems9.
The cavities are built around spherical ultra low expansion glass (ULE)
spacers with a diameter of 50 mm to minimize the effects of drifts
due to thermal expansion [109]. They have a finesse of F = 242742(6)
[110] for 729 nm and F = 253200(600) for 674 nm (see Appendix C),
respectively. The schema for locking is illustrated in Fig. 4.17 and
works the following: The light is first split into a branch that is sent
to be amplified for the experiment, and a branch to generate the
feedback signal. The second branch passes a frequency-shifting AOM

setup to bridge part of the frequency difference between ion resonance
and the cavity mode. Subsequently, it is then sent through a clean-
up fiber to reduce scattering into non-TEM00 modes of the cavity
due to the non-perfect spatial mode profile of the diode laser and to
decouple the alignment of laser and cavity. The light passes an optical
isolator to prevent undesirable feedback caused by backreflections to
the laser, followed by a Glan-Taylor laser polarizer (GLP)10 to clean up
the polarization. A polarizing beam splitter (PBS) is used to redirect
part of the light to a photo diode for intensity stabilization, with the
stabilization adjusting the power of the frequency-shifting bridge AOM.
This intensity stabilization is necessary as it has been observed that
the incident laser light (≈ 20 µW) can cause frequency shifts on the

9 Stable Laser Systems
10 Thorlabs GL10-B
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Figure 4.19: Phase noise of the 729nm laser. The noise is recorded by a
beat note measurement with a narrow-linewidth 729nm TiSa
laser [82] from the LinTrap experiment.

order of ≈ 100 Hz µW−1 [111], and intensity fluctuations of the light
in the locking branch can thus translate into frequency fluctuations.

An electro-optic modulator (EOM)11 is then used to generate the
sidebands for the PDH lock. To minimize the effect of residual am-
plitude modulation [112], the EOMs are temperature-stabilized12 by a
feedback loop controlling a Peltier element mounted to the side of
the EOM. The modulated light is then coupled into the TEM00 mode
of the cavity. The backreflection from the cavity is recorded by a fast
photo diode, and then demodulated by mixing it with the reference
frequency that was used for producing the sidebands, generating
the frequency-dependent error signal characteristic of a PDH locking
scheme [107, 113]. The phase of the reference signal sent to the mixer
is adjusted by the choice of cable length to maximize the contrast of
the PDH signal.

The down-modulated error signal produced by the PDH is then
fed to a fast PID controller13, which produces both a fast and a slow
feedback signal. The fast branch is applied to the intra-cavity EOM,
while the slow branch is sent to the laser control unit affecting both
the piezo-controlled grating and the current of the diode. The EOM

provides a feedback element with a high response speed, enabling a
bandwidth of approximately 3.5MHz for the 729nm laser, while the
slow branch controlling the piezo can follow large drifts (The tuning
coefficients are on the order of 1GHz V−1). With a much higher DC
gain, it keeps the bias point of the fast branch close to 0.

11 QUBIG PM7-NIR_18F
12 Thorlabs TED200C
13 Toptica FALC 110
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The narrow-linewidth light in the branch directed to the experiment
is amplified by a tapered amplifier (TA)14 before it is sent to the
switching setup. The output power of the TA is stabilized using a
photo diode, with a controller15 feeding back onto the current of the
TA.

The setups for Calcium and Strontium are in principle identical,
except for additional beam shaping optics at the output of the 674nm
laser to reduce the ellipticity of the laser output mode. However
despite the similarities of the setup, the performance of the lasers
significantly diverges as can be seen in Fig. 4.18, where the spectral
components of the laser were recorded by measuring the excitation
probability of a single ion relative to the strength of the carrier cou-
pling. The off-resonant components of the 729 nm laser are lower than
those of the off-resonant components of the 674 nm laser by more than
an order of magnitude. We attribute this to the response of the laser
diode itself by process of exclusion, as the natural cavity linewidths
are comparable, their mechanical construction identical, and swapping
of the locking electronics between the two setups had no effect on the
performance.

To provide a reliable long-term frequency reference the cavities
need to be shielded from external influences. To achieve this, they
are temperature stabilized and mounted in vacuum chambers. As
set-temperatures the zero-crossing temperature (ZCT) is chosen, corre-
sponding to −0.6 ◦C for the 729nm cavity and −2.5 ◦C for the 674nm
cavity (See Appendix C). The entire setup is installed on active vibra-
tion isolation stages16, which are then installed in a box, including
further active temperature stabilization of the interior of the box and
passive acoustic shielding. A detailed description of the box can be
found in [114]. The temperature of the cavities is stabilized by a PID17

controlling a Peltier element each. As we found residual frequency
drifts of the cavity relative to the ion transition frequency that were
correlated to the temperature of the box, additionally the temperature
of the box itself was stabilized. This was accomplished by implement-
ing a feedback on the water chiller18 of the box via a PID running on
a Raspberry Pi. This controller adjusts the set point of the chiller de-
pendent on the temperature measurement inside the box. This leaves
the transition frequency with a residual drift of ≈ 100 mHz s−1 due to
ageing of the cavity.
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Figure 4.20: Quadrupole Laser Switching setup. The intensity stabilization
photo diode feeds back on the current of the TA. The double pass
AOMs operate at 250MHz while the single pass AOMs are driven
at 80MHz

4.4.2 Laser Switching Setup

The narrow bandwidth light is sent through a fiber to the experimental
setup. As environmental noise tends to induce phase fluctuations on
a kHz scale in long fibers, a fiber noise cancellation setup is used to
suppress this effect [115]. The light is then amplified using a tapered
amplifier19, and the sent to a switching setup depicted in Fig. 4.20:
Here the light is split into two lines, each with a double-pass AOM20

and a single-pass AOM21 in sequence. The double-pass AOM diffracts
light with acceptable efficiency over a wide range of frequencies,
enabling to access all quadrupole transitions, while multiple RF tones
can be applied to the single-pass AOM simultaneously, producing
multiple laser tones required for implementing Mølmer-Sørensen
entangling gates.

4.4.3 Coherence time of the optical qubit

The goal would be to have a laser sufficiently narrow such that the
coherence of the qubits is entirely given by the natural linewidth of the
qubit transition, which in the case of Calcium corresponds to 136 mHz.

The performance of the laser can be evaluated using a Ramsey
experiment. For 40Ca+we measure a T2 = 19.2(13)ms extracted from
the decay shown in Fig. 4.21. We can extract an upper bound on
the laser linewidth by assuming it is entirely limited by laser noise
using Eq. (3.43), resulting in a linewidth of δν729 = 1

πT2
= 16.6(4)Hz.

14 Toptica BoosTA
15 Stanford Research Systems SIM960

16 Halcyonics Micro-60

17 Stanford Research Systems PTC10

18 Coherent T225P
19 Toptica BoosTA
20 Brimrose TEM-270-65-729/TEM-270-65-674

21 Brimrose TEM-80-10-729/TEM-80-10-674
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Figure 4.21: Coherence times of the 729nm and 674nm ECDL with and with-
out spin echo measured on the
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〉
transition in 40Ca+and on the∣∣52S1/2, mj = −1/2

〉
↔

∣∣42D5/2, mj = −1/2
〉

transition
in 88Sr+, respectively. The difference between Ramsey
(19.2(13)ms) and Spin-Echo (119(7)ms) decay times for
40Ca+indicates the presence of slow frequency fluctuations. For
88Sr+a Ramsey time of (7.8(3)ms) and a Spin-Echo decay time
of (38(5)ms) are extracted from fits.

This is consistent with a beat measurement with another 729nm laser
shown in Fig. 4.19. A spin-echo sequence can be used to gain more
information about the type of noise affecting the laser frequency. We
measure T∗2 = 119(7)ms where fluctuations slower than the probe
duration are canceled. This kind of noise can be partially mitigated by
decoupling techniques.

A similar analysis can be done for the 674nm laser for 88Sr+(See
Fig. 4.21). We find that 88Sr+has significantly reduced coherence time
of T2 = 7.8(3)ms compared to 40Ca+, corresponding to a linewidth of
δν674 = 40.8(5)Hz for the 674nm laser. As the sensitivity of the two
species to magnetic field noise is identical, we can conclude that the
noise for 88Sr+originates from the laser itself.

4.5 raman laser setup

For light-shift gates a pair of laser beams illuminating the ions in a
Raman configuration are required. These are provided by a frequency-
doubled titanium sapphire (Ti:Sa) laser system22 which was set up
by Benjamin Wilhelm in the course of his master’s thesis (see [116]).

22 M Squared SolsTiS + ECD-X
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The Ti:Sa is pumped by a Nd:YAG laser emitting at 1064 nm 23, which
is then frequency-doubled to produce up to 18 W of output power
at 532nm. After frequency-doubling the emission of the Ti:Sa with
a nonlinear optical lithium-triborate crystal in a bow tie cavity the
system can produce ≈ 1.2 W of optical power around 400 nm. A λ/2
waveplate and a Glan-Taylor laser polarizer (GLP)24 allow for adjusting
the power, with the unwanted light sent to a beam dump.

The beam is coupled into a fiber, transferring it to the experiment
table. For the optical fiber both a high power photonic crystal fiber25

and a regular polarization-maintaining fiber26 were used.
On the experiment table the beam is split up into two branches.

Each is individually controlled and switched by an 80 MHz AOM27

and then coupled into a separate optical fiber, guiding the light to the
upper table. Due to thermal effects the switching AOMs suffer from
beam pointing perpendicular to the plane of deflection, which causes
intensity fluctuations when the beam is re-coupled into a fiber. This
problem is mitigated by applying RF at a higher frequency (115 MHz)
during periods where the AOM is supposed to be off, heating the
device without coupling any diffracted light into the fiber, keeping
the temperature constant.

The two laser beams are then sent to the trap at a 90◦ angle to
each other, with a 45◦ angle to the axial direction of the trap. A GLP

and a λ/2 wave plate each allow control of the polarisation. Each
beam contains a sampler, directing some power to a monitoring photo
diode (PD). The laser intensity is stabilized by a sample-and-hold PID

unit, feeding back on the RF power of the switching AOMs. The beams
are steerable using motorized mirror mounts28 which can be controlled
from the experiment control PC, and were typically optimized daily
for maximizing coupling to the ions.

4.6 high collection efficiency lens

For both fast and high-fidelity detection of the state of the ions it is
desirable to collect as many photons scattered by the ions as possible.
While for a surface the available numerical aperture (NA) to the back is
limited by the slot, the NA to the front is unobstructed. Exploiting that
NA does pose challenges: Room-temperature setups frequently employ
inverted view ports to position collection optics close to the ions. Such
a viewport, however collides with the need for thermal shields to limit
the radiative heat transfer from the warm walls to the cold trap. Out-
of-vacuum optics without inverted viewports would require infeasibly

23 Lighthouse Photonics Sprout-G18W
24 Thorlabs GL10-A
25 NKT Photonics aeroGUIDE-5-PM
26 OZ Optics QPMJ-3A3A-400-3/125-3
27 Brimrose QZF-80-40-397

28 Newport 8821 Picomotor Mount
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Figure 4.22: View of the trap through the slot in the high NA lens. The cut
allows for optical access at 45◦ to the trap axis.

large optics and demand large holes in the thermal shields which is
also undesirable. This leaves in-vacuum optics inside the inner shield
as an option where high-NA optics with a small footprint is possible
due to the small distance to the trap. However, these optics pose its
own set of challenges: To compensate for possible misalignment of
the inner lens, it is mounted on two nanopositioners stages29 which
allows us to move the lens perpendicular to the trap axis and to adjust
the focal length. The copper lens mount sits atop the nanopositioners,
holding the high-NA lens. The lens mount itself must conform to
the weight limits of the nanopositioners to be capable of moving at
cryogenic temperatures, and is balanced to not exert any torque on the
positioners. The aspheric lens with a focal length f = 9 mm has been
modified to incorporate two slots for laser access, as the radius of the
lens exceeds the front focal length, and thus interferes with beams
passing at 45◦. The slots enable access for the Doppler and repump
lasers, with Fig. 4.22 showing a render of the lens from the direction
of the Doppler beam.

A secondary lens with an NA of 0.2 and a focal length f = 22.5mm is
installed on the backside of the mount, limited by the geometry of the
central slot. It allows for additional optical access, and the increased
focal length gives a larger field of view. The slot further acts as shutter,
blocking light scattered from the surface of the trap. Fig. 4.23 gives a
view of the entire assembly with both lenses.
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Figure 4.23: Trap assembly with lenses mounted. The high NA lens
(NA=0.83, left) has an unobstructed access to the surface, while
the lower NA lens (NA=0.22, right) is restricted to the numerical
aperture of the slot.

4.6.1 Fluorescence Detection

For state detection two tools are available, a PMT30 and an EMCCD

camera. The camera can read out the full state of the ions, but it is
limited in terms of readout speed due to the technical overhead in
reading out the camera. This overhead is independent of the exposure
time. Meanwhile a PMT can be directly read by an electronic counter,
but can only record the summed fluorescence of all ions. This limits
which states can be distinguished.

By proper blocking of background stray light, we can achieve with
the PMT a signal-to-noise ratio of 30 with a bright count rate of 453(3)×
103s−1 for one ion.

To characterize the detection capabilities of the system, we can pre-
pare a single ion in a superposition of the bright S1/2 and the dark D5/2
state and record the counts on the detecting PMT for a varying duration.
The distribution of counts can then be fitted with a sum of two Pois-
son distributions cdark ∗ Pois(λdark, n) + cbright ∗ Pois(λbright, n), with
weights cbright,dark and the rates λbright,dark corresponding to the aver-
age bright and dark counts. For a given threshold t the detection error
can then be determined by integrating the probability distributions
over the region corresponding to a misidentification of the state. For

29 Attocube ANPx51, ANPz51

30 Hamamatsu H10682-210
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Figure 4.24: Detection error for a single ion as a function of detection

time. Statistical error bars are comparable to the size of the
markers. The steps in the detection error curve correspond to
a change of the optimal threshold value. The inset shows the
measured distribution of counts for 50µs detection window. The
threshold for which the detection error is minimized is marked
with a dotted line.

the bright state this corresponds to the Poisson distribution, while the
dark state does acquire an additional correction due to the probability
of an ion in the D5/2 state decaying to the bright state during the
detection time tdet due to its finite lifetime of about τ ≈ 1.1 s. The
probability distribution then becomes [117]

Pdark =
τ − tdet

τ
Pois(λdark, n) +

tdet

τ

Γ(λbright, n + 1)− Γ(λdark, n + 1)
λbright − λdark

(4.3)
where Γ(λbright,dark, n + 1) is the gamma distribution. By minimizing
the summed error for both states over all possible thresholds we
can extract the detection error for both states. The summed error is
shown in Fig. 4.24 as function of detection time. The steps in the
curve correspond to changes of the optimal threshold, which can
only take integer values. The lens allows us to achieve a detection
error < 10−4 in a 50 µs detection window. Such a time window is
shorter than a single typically used entangling gate, and thus not
a limiting factor. For practical in-sequence detection the timing is
instead limited by the requirement for recooling the ion crystal after a
bright detection, as that will lead to the ion crystal thermalizing at the
Doppler temperature due to the photons being scattered during the
detection time.
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Figure 4.25: Left: Trap cross section. Trenches separate the different elec-
trodes. The widening slot allows for optical access from the
backside. Right: Top view of the device. 27 electrode pairs
shape the DC potential. The RF electrode is connected from the
left, while the central DC electrode is routed in from the right.

4.7 golden gate trap

The redesign of this setup anticipated use of a segmented surface
microtrap developed at Sandia National Labs [118]. As the perfor-
mance of that trap was insufficient for high-fidelity gate operations,
an alternate trap design described in the following was used which
we named the Golden Gate Trap, details of which can be found in the
thesis of Martin van Mourik [97].

4.7.1 Trap Description

The surface trap used for the experiments presented in this thesis is
an iteration of a design originally developed by the group of Hartmut
Häffner at University of California, Berkeley, which was adapted to a
previous version of this setup by incorporating a central slot as can
be seen on the left of Fig. 4.25, which shows a cross section of the
trap structure. The electrode structure can be seen in the top view
of the device on the right. The new version of the trap has a tighter
electrode spacing of 100µm compared to the previous 200µm electrode
pitch. It retains the same optical access with a NA of 0.24 from the
backside, with the front NA being unrestricted. The trap consists of
a fused silica die that was structured by Translume31. The electrodes
are then formed by covering the structured die with gold, where the
trenches separate the regions being metalized to ensure that they form
separately usable electrodes. This step is performed in-house in the
cleanroom of the university. After the evaporation step the trap is
glued and wirebonded to the interposer PCB (see [97]). This package
is then installed in the socket.

31 Translume Inc., 655 Phoenix Dr, Ann Arbor, MI 48108, USA
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Figure 4.26: Axial heating Rate ΓCa measured as function of the axial trapping
frequency. A power law with an exponent of -1.8(3) has been
fitted to the data.

4.7.2 Motional Characteristics

When installing a new trap, it is crucial to know the motional coher-
ence of the ions in the trap. For one, the coupling strength of the lasers
does depend on the motional state of the ions, and thus a different
motional state from the expected one can lead to errors in the rotation
angle of quantum operations. Even more sensitive is the effect on
entangling operations, which utilize the motional modes of the ion
crystal as bus for information. If the motional state changes in an
uncontrolled way during a quantum operation, this will directly lead
to an error on the gate being performed.

The two characteristics of interest are the heating rate and the
motional coherence. The heating rate Γ is determined by measuring
the phonon number for different waiting times [119]. The phonon
number can be measured using sideband thermometry. Here the
spectrum of the red and blue sideband are both measured with a
probe duration corresponding to a π-pulse on the blue sideband. The
coupling strength of the two transitions depends on the motional
occupation number n, thus for a thermal state we get a total excitation
probability

P↑(t, ∆) =
∞

∑
n=0

nn

(n + 1)n+1
Ω2

n
Ω2

n + ∆2 sin2(
√

Ω2
n + ∆2 t/2) (4.4)

where ∆ is the detuning of the sideband, and Ωn is the motional state
dependent coupling strength of the red and blue sideband, respectively.
This model of the excitation probability can be fitted to the data. A
linear fit as function of waiting time is then used to determine the rate.
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Figure 4.27: Motional coherence of the axial mode at 1.08 MHz measured
with a single 40Ca+ion. The fits correspond to a Ramsey time of
22(2)ms and a spin echo time of 43(2)ms

Fig. 4.26 shows the heating rate for different axial trap frequencies.
For our typical operating axial trap frequency of 1.08 MHz we find a
heating rate of 27(2) s−1.

The motional coherence can be measured using Ramsey interferom-
etry. First a superposition is created between the S1/2 and the D5/2
qubit levels with phase 0 on the carrier transition. With a π pulse
on the blue sideband the population is then transferred back to the
S1/2 state, creating a superposition between the n = 0 and n = 1
motional states. After the interrogation period the motional coherence
population in the n = 1 state is mapped back to the optical qubit with
another π-pulse on the blue sideband followed by a measurement
of the contrast, i.e. a π/2-pulse with variable phase on the carrier.
Fig. 4.27 shows the measured contrast as function of the waiting time.
For the spin echo, a π pulse on the carrier is interleaved between two
π pulses on the blue sideband. We measure a motional coherence
time of 22(2)ms(43(2)ms) without (with) spin echo. The difference
between the two values indicates the presence of slow fluctuations of
the trap frequency, likely induced by the voltage supply.
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The fidelity of a quantum gate operation depends on its control
parameters, and the ability to correctly determine these control pa-
rameters is a requirement to consistently achieve fidelities limited by
the noise processes of a system. Additionally, gates acting on different
subsets of qubits may require unique sets of control parameters, mak-
ing it increasingly challenging for an operator to manually calibrate
the gates.

Thus we want to find a calibration procedure that can determine the
optimal control parameters accurately and without human interven-
tion, such that the procedure can be integrated into a larger framework
for calibrating all the elementary operations of a trapped ion quantum
computer system.

In this chapter we first discuss the creation of a model that describes
the action of a miscalibrated Mølmer-Sørensen gate. We then describe
how Bayesian inference can utilize such a model to generate param-
eter estimates from measurements, and discuss the issues arising to
practically apply the Bayesian parameter estimation to the particular
problem of the Mølmer-Sørensen gate. We test the algorithm by run-
ning it on our trapped ion system, and characterize the performance
of the procedure with regards to consistency and achievable infidelity
as well as the time required for the algorithm.

1 The author of the present thesis designed the experiment, measured and analyzed
the data.

2 The author of the present thesis measured and analyzed the data.
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5.1 model generation

As a starting point for the model we use the interaction of the ideal
Mølmer Sørensen gate that has been previously discussed in Sec-
tion 3.5.4. From this we identify the parameters of the interaction
Hamiltonian that need to be determined for the correct application of
the gate. We find the set of parameters

Θ = (Ω, ωcl , δ, ∆φ), (5.1)

where Ω is the carrier Rabi frequency, ωcl the center line detuning, δ

the sideband detuning, and ∆φ the phase difference of the gate, as
they all can be affected by the control parameters.

These gate parameters should be as close as possible to their optimal
values

Θopt =

(
Ωopt =

π

ηtg
, ωcl,opt = 0, δopt =

2π

tg
, ∆φopt = 0

)
(5.2)

to achieve a high-fidelity gate.
As we are focusing on the effects of systematic parameter miscal-

ibration, we are neglecting incoherent error sources such as finite
motional and spin coherence times, laser amplitude noise, resonant
carrier excitation or unequal coupling strengths to the ions.

We need to first verify that this description of the gate agrees with
the experimental results, as the success of the routine presented later
depends on the quality of this description, and to justify the neglecting
of the additional error sources.

To this purpose, we measure the population outcome probabilities
of different gate sequences as function of the control parameters. In
Fig. 5.1 the expectation values obtained from numerically integrating
the Hamiltonian are being compared with the measurements in the ex-
periment for different numbers of applied gates to validate the model.
For the numerical simulations, the QuTiP software package [120]
written in the python programming language was used.

Comparing the measurement results to numerical simulations with
the same parameters, we calculate reduced χ2 values of < 2.5 for
varying the center line detuning, sideband detuning and phase, while
the Rabi frequency scans for Ng = 5 and Ng = 7 gates have higher
χ2 values of up to 4. We attribute the higher χ2 to the AC Stark
shift not being re-compensated during these measurements as the
actual laser power was varied instead of adjusting detuning and
gate time to control the effective Rabi frequency Ω, leading to a
simultaneous shift of the effective center line detuning. While the χ2

are larger than one, these results do indicate that the Hamiltonian
(Eq. (3.51)) captures the effects of the parameter miscalibrations and is
not dominated by unmodelled error sources. This suggests that the
described Hamiltonian is a viable model to describe our experimental
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system, and the results from numerically integrating the dynamics
can be used as a probability landscape to perform Bayesian inference
on.

5.1.1 Experimental Control Parameters

We previously identified that calibrating the Mølmer-Sørensen gate
requires to set the parameters of the interaction Hamiltonian (Eq. (5.1))
to the optimal values given in Eq. (5.2). The challenge now lies in that
we do not have direct access to the parameters of the Hamiltonian,
but we instead rely on changing the control parameters of the gate

Ξc = (tg, fcl , fsb, ϕ), (5.3)

i.e. the gate time tg, the common frequency fcl = ( fr + fb)/2 is the
mean frequency between the red ( fr) and blue ( fb) tone of the laser,
the difference frequency 2 fsb = fb − fr of the bichromatic laser field,
and the difference in the common phases between consecutive gates,
ϕ, of the two laser tones.

These control parameters Ξc can be used to calibrate the gate in the
following way: By performing measurements of the populations of the
ions after the application of a gate sequence we can obtain estimates
of the parameters of the Hamiltonian that we denote as

Θ = (Ω, ωcl , δ, ∆φ), (5.4)

of the current parameters Θ. The control parameters Ξc can then be
adjusted to set the parameters Θ to Θopt given the estimates of the
parameters of the interaction Hamiltonian: The time of the gate will
be corrected as

tg → tg
Ωopt

Ω
, (5.5)

where we choose to change the time of the gate instead of the laser
power since it is easier to control in the experiment, while producing
an equivalent correction. This both avoids any non-linearity of the
AOM and allows us to make use of all the available power.

The other corrections are implemented by subtracting the difference
between the estimated and the ideal parameter value from the control
parameter. In the case of the sideband detuning this is given by

fsb → fsb − δ + δopt, (5.6)

where fsb is the corresponding control parameter. As for the correction
of the center line detuning, this is described by

fcl → fcl −ωcl + ωcl,opt. (5.7)

Finally, the phase between consecutive gates is changed by

ϕ→ ϕ− ∆φ + ∆φopt. (5.8)
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Figure 5.2: Measured populations for center-line detuned MS Gates

applied to different Fock states. Solid lines correspond to
model predictions by numerical integration.

With this set of rules, we update the parameters of the MS gate to
iteratively bring the parameters Θ to converge to Θopt as the estimates
are getting refined as more measurement data is being added.

5.1.2 Model Validation with higher Fock States

While the primary focus was on generating a suitable model to be
used for gate calibration, its behaviour can also be explored in regimes
usually not utilized for driving gates. One such example is to look
at the different initial motional Fock states of the harmonic oscillator
mode.

One of the advantageous features of the Mølmer-Sørensen gate is
its insensitivity to the population of the motional mode, such that
it can even be driven with thermal states [122]. Thus, for a perfectly
calibrated gate, no differences are expected compared to the case of the
gate driven starting from the motional ground-state. This behaviour
however changes when considering parameter miscalibrations as can
be seen in Fig. 5.2, where the center line detuning shows an asymmetric
behavior of the populations for n = 0, while for higher Fock states the
populations become more symmetric around 0 center line detuning.

Experimentally, the Fock states were prepared by shelving one ion
to the D5/2 manifold using the addressed beam [58]. Then π-pulses
are alternatingly applied on the blue and red sideband on the axial
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Figure 5.3: Phase shifts for a center-line detuned MS Gates applied to

different Fock States. Dashed lines correspond to theory pre-
dictions from first order Magnus expansion of the Hamiltonian.

COM mode, with each pulse adding one phonon [67]. For odd target
states a π pulse on the carrier is added to return to the electronic
ground state. The preparation sequence is terminated by a final pulse
returning the shelved ion. After the preparation sequence for Fock
states n > 0, we measure 5% population outside the target electronic
state, which decreases the signal-to-noise ratio of the measurement.
We use an additional repumping step to return this population to the
electronic ground state, but this leaves us with a corresponding error
in the initial prepared Fock state.

We then perform a sequence of two center line detuned MS gates,
where we intentionally change the phase φd of the second one with
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Figure 5.4: Slopes of phase shifts for different Fock states The linear
fits to the data in Fig. 5.3 is compared to theory predictions from
a semi-analytical model [121].
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respect to the first one. For small center line detunings the state is then
predicted by

P(ee) =
1 + cos(2φd + ϕ(ωcl , n))

2
(5.9)

where ϕ(ωcl , n) denotes the phase shift depending on detuning and
motional state. ϕ(ωcl , n) can then be extracted by fitting a sine to the
measured populations as function of φd. Offset and amplitude of the
fitting function are kept as free parameters to account for SPAM errors
and errors of this simplified model.

The results are shown in Fig. 5.3, showing to first approximation
a linear relationship between centerline detuning and the acquired
phase, the slope of which depends on the initial motional Fock state.

In Fig. 5.4 these slopes are compared to theory predictions, where we
find good agreement between the values predicted by a semi-analytical
model applying a Magnus expansion to the Hamiltonian [121], and
the slope of the measured experimental data.

5.2 bayesian inference algorithm

The model developed previously can predict the measurement out-
come probabilities for a given set of parameters of the Hamiltonian.
For the task of calibrating a gate, we are interested in the inverse prob-
lem, finding a set of parameters given a set of measurement outcomes.
Bayesian statistics offers the tools to accomplish precisely this.

Bayes’ theorem [123] prescribes how to estimate the probability
distribution of a set of parameters Θ, given a prior distribution before
the measurement P(Θ), a measurement with outcome m, and the
likelihood of obtaining this measurement outcome according to the
model of the process, P(m|Θ). The result is an updated probability
distribution called the posterior distribution

P(Θ|m) =
P(m|Θ)P(Θ)

P(m)
(5.10)

where P(m) is the marginal likelihood, and effectively corresponds to
a normalization factor as it does not depend on the set of parameters
Θ, and thus does not affect the relative probabilities [124].

We can apply Bayes’ theorem iteratively as new measurements are
performed, for each one inserting the previously obtained posterior as
the new prior for the subsequent measurement. This results in an iter-
ative process where the probability distribution after T measurements
is then given by

p(Θ|m1, ..., mT) ≡ p(Θ|m1:T) ∝ P(Θ)
T

∏
t=1

P(mt|Θ), (5.11)

where we assume that all the measurement outcomes, mt for t =

1, ..., T, are independent from each other. In order to refine the param-
eter estimates we want the degree of uncertainty of the parameters
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Figure 5.5: Top (1): Representation of a cycle of the calibration process.
The initial probability distribution at iteration t with t− 1 mea-
surements, p(Θt|m1:t−1), is updated by performing a new set of
measurements, mt, to obtain p(Θt|m1:t). The estimates obtained
from this probability distribution can then be used to calibrate
the parameters, obtaining the initial probability distribution for
iteration t + 1.
Bottom (2): Steps followed to perform an iteration of the

particle filtering algorithm. A simplified case with only one
parameter, Θ is shown here. In (a) we have particles {Θ̃i,t, w(i)

t }
(red dots) from the prior probability distribution p(Θt|m1:t−1)
(green). A new set of measurements is performed to obtain the
posterior probability distribution p(Θt|m1:t) (yellow) in (b) by us-
ing the likelihood of the outcome obtained for the measurement,
p(mt|Θt) (red). The weights are updated following Eq. (5.13),
where a bigger weight is visually represented by a bigger size of
the particle. These weighted particles can be used to obtain the
estimate of the parameter at this iteration, Θ̄t, by using Eq. (5.14).
In (c), a resampling process is performed to obtain particles with
equal weights that approximate particles from the posterior proba-
bility distribution. The previously obtained value Θ̄t is also shown
here. Finally, in (d), Θ̄t has been used to calibrate the parameter Θ,
where for this example we are assuming that the ideal value of Θ
is zero, therefore, the correction applied is to change the value of
the parameter by −Θ̄t. The probability distribution p(Θt+1|m1:t)
(blue) consequently has an estimate of zero.
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Θ to decrease for an increasing number of measurements. This con-
vergence is dependent on the choice of the measurement settings, as
they affect how much information can be gained about the parameters.
The process can be terminated if a desired limit of uncertainty for the
estimates of Θ is reached.

The framework just described can be mapped to a quantum experi-
ment as follows:

• The process of the gate can be simulated to provide a model.

• The experiment provides discrete measurement outcomes.

• Repeated measurement outcomes are independent of each other.

It thus looks promising to be applicable for inferring the parameters Θ

of the Mølmer-Sørensen gate. However, while the model probabilities
P(m|Θ) can be obtained by integrating the Hamiltonian in Eq. (3.51)
for ωcl ̸= 0, no analytical solution is known that results in a closed-
form expression for these probabilities. As a consequence this type of
miscalibration can only be studied numerically [122]. Without a closed-
form expression, the Bayesian inference cannot be performed using
analytic expressions of the probability distribution either, and has
to be performed using discretized representations of the continuous
probability functions, which will be described in detail in the following
section.

5.2.1 Particle Filters

We can approximate the continuous probability distributions using a
so-called particle filter3 [125–127], where we represent the probability
function by a sum of Np weighted particles instead:

p(Θ)dΘ ≈
Np

∑
i=1

w(i)δ(Θ− Θ̃i)dΘ, (5.12)

with δ(Θ − Θ̃i) being the Dirac delta function around the vector
of parameters Θ̃i . Each parameter vector Θ̃i corresponds to a single
particle with the associated weight w(i), and the set {Θ̃i, w(i)}Np

i=1 forms
the particle filter.

The Bayesian inference requires a choice of an initial prior, which is
then transformed into a set of particles. A Gaussian function is a simple
choice for an initial prior, corresponding to knowing a mean and
standard deviation of the parameters, and allows for computationally
inexpensive sampling from the distribution. We can then initialize
the particle filter from that prior probability function by randomly
sampling Np times from the distribution and setting all the weights to
1/Np.

3 The nomenclature of a filter stems from filtering estimates out of a stream of noisy
measurement data
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5.2.2 Bayesian Update

In the next step we want to look at how these discretized probability
function is getting updated. The procedure which is described in
the following is illustrated in Fig. 5.5 for a one-dimensional example.
The particle filter {Θ̃i, w(i)}Np

i=1 is updated to incorporate the outcome
m obtained by performing a measurement by adjusting the weights,
according to the formula

w(i)
m ∝ P(m|Θ̃i)w(i). (5.13)

The weights w(i)
m are normalized such that ∑

Np
i=1 w(i)

m = 1, ensuring that
the filter represents a valid probability distribution. This corresponds
to step 1 in Fig. 5.5(2)

The update procedure requires the model probabilities P(m|Θ̃i)

for each discrete particle. These could be obtained by numerically
integrating the Hamiltonian given in Eq. (3.51) for each specific set
of parameters. However, performing these numerical calculations
during an optimization run in real time would be prohibitively time
consuming, as the computation for a single particle requires ≈ 1s on a
desktop computer4. This would result in a computation time of several
hours to update 10000 particles which we use in our particle filter (See
Section 5.6).

To speed this process up, we instead precompute the outcome
probabilities of a single experimental shot on an equally spaced 4

dimensional grid, corresponding to the 4 parameters of the Hamilto-
nian (Eq. (5.1)). The outcomes for particles with values between those
grid points can then be calculated using an interpolation function.
We use a cubic spline interpolator [128], which allows us to better
approximate the outcome probabilities without increasing the number
of grid points required compared to using linear interpolation. The
spline interpolator requires a careful choice of grid parameters, for
example to prevent nonphysical probabilities < 0 the number of points
for interpolating the phase difference ∆φ is chosen such that the local
extrema of the outcome probabilities when varying solely the phase
difference do align with the grid points. The choice of the number of
grid points and their ranges is shown in Table 5.1.

Querying the interpolation function to receive the outcome proba-
bilities at any set of parameters inside the region can be done quickly,
with 10000 particles taking approximately 100− 500ms to compute5.
This computation is faster than the time required to acquire the exper-
imental data for a single iteration (see Section 5.4), and thus does not
represent a limiting factor on the total time of an optimization run.

We additionally include in our model probabilities a small amount
(1%) of depolarizing noise to account for experimental errors, such

4 CPU: Intel i5-4670S@3.10GHz
5 CPU: Intel i7-6700K@4.00GHz
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as SPAM, motional and spin dephasing errors. This is necessary as
noise is always present, preventing the expectation values P(|e, g⟩)
and P(|g, e⟩) from going to zero, while the perfect model predicts
arbitrarily small expectation values at the targeted gate parameters.
Without this adjustment any measurement result of an unwanted
state |g, e⟩ or |e, g⟩ causes a strong suppression of the probability at
the center of the distribution due to the small expectation value for
the outcome, and any difference between the perfect model and the
experimental outcomes causes instabilities in convergence. The added
depolarizing noise instead limits how much the likelihood can be
adjusted by a measurement of |g, e⟩ or |e, g⟩.

5.2.3 Parameter Estimation

From the particle filter we want to extract the important statistical
information, most notably the mean Θ and the variance Var(Θ) of
the probability distribution. The particle filter allows us to directly
extract these values, the integrals of the estimators over the probability
distribution are transformed by Eq. (5.12) into

Θ =
Np

∑
i=1

w(i)
m Θ̃i, (5.14)

Var(Θ) =
Np

∑
i=1

w(i)
m (Θ̃i −Θ)2. (5.15)

This information can be used to adjust the control parameters, to
monitor the convergence of the calibration routine (see Section 5.3),
and they can also inform decisions about the next experimental setting
discussed in Section 5.4.

5.2.4 Resampling

We are expecting the probability distributions to converge as infor-
mation from more measurements is added. This corresponds to a

Table 5.1: Choice of simulation parameters for range and spacing of the
interpolation grids. The simulation points are linearly spaced over
the given range. The gates are simulated for a 100µs gate duration.

1 Gate 2-7 Gates

Range Points Range Points

Ω/Ωopt 1± 0.5 21 1± 0.5 21

ωcl 0± 7 · 2πkHz 21 0± 3.5 · 2πkHz 21

δ 10± 10 · 2πkHz 21 10± 5 · 2πkHz 21

∆φ 0 1 2π 25
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θ a
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θ a

(b)

θ a
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θb
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Figure 5.6: Illustration of the resampling process. The distribution of weighted particles (the
size of red dots indicates the weight) in (a) should be resampled while preserving the
mean and covariance (ellipse and x in red). In (b) a new set is drawn from the weighted
particles and moved towards the mean (covariance ellipse shown in green). As the points
are sampled with replacement, some are chosen multiple times (the size of green dots
indicates the frequency). In (c) offsets are randomly sampled from a normal distribution
with a covariance matrix calculated from the covariance matrix of the initial distribution
according to Algorithm 5.1 and are then added to the newly drawn points to lift the
degeneracy of multiply chosen points. In (d) the new set of equally weighted points
(yellow) now represents the distribution, the starting (red) and final (yellow) mean and
covariance are shown. The process is shown in two dimensions for ease of illustration,
with the axis θa, θb corresponding to two parameters of Θ.
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Algorithm 5.1 : Liu-West Resampling

input : A list of Np weighted particles {w(i), Θi} with dim n
loss parameter a

output : A list of Mp equally weighted particles Θ′
j

begin

Set parameter h to
√

1− a2

Compute mean Θ over all particles Θ̃i with weights w(i)

Compute covariance matrix Cov(Θ) over all particles Θ̃i
with weights w(i)

Compute matrix square root S of h ·Cov(Θ)

for j← 0 to Mp do

Randomly select s from Θ weighted by w(i)

Draw a sample N from a n-dimensional normal
distribution

Set Θ′
j to a · s + (1− a) ·Θ + ⟨S, N⟩

end

return List of particles Θ′
j

end

decrease of the variance of the parameter estimates, indicating that
information about the parameters is being gained from the performed
measurements. Repeatedly updating the weights poses a problem for
the particle filter since it leads to many particle weights going to zero
while simultaneously having only a few particles with high weights.
This situation causes both unnecessary computations to update the
weights on particles that represent a small probability and thus con-
tribute little to the estimates, and under-sampling of the distribution
around the particles with high probability, limiting the final precision
of the estimate.

We counteract this problem by a so-called resampling procedure [129,
130], where we generate a new set of particles with equal weights to
represent the same probability distribution, corresponding to step 2 in
Fig. 5.5 (2).

{Θ̃i, w(i)
m }Np

i=1 → {Θ̂i, ŵ(i) = 1/Np}Np
i=1 (5.16)

We use the Liu-West algorithm [131] for this task described in Algo-
rithm 5.1, which generates a new set of particles by randomly sampling
with replacement from the old weighted particles. The behavior of the
algorithm is graphically shown in Fig. 5.6. Sampling with replacement
already generates a set of equally weighted particles, but particles
cannot explore new locations since they are up to this point duplicates
of particles of the old set. To lift this degeneracy every particle of
the filter is moved towards the mean of the filter. The loss parame-
ter a of Algorithm 5.1 controls this interpolation, and has been kept
at 0.98 for the work presented here. This corresponds in Fig. 5.6 to
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selecting the distribution in (b) from the initial distribution in (a). A
random perturbation is then applied to each particle, with the values
of the perturbation sampled from a normal distribution. In Fig. 5.6
this matches generating the distribution shown in (c) from (b). The
covariance matrix of this normal distribution is chosen as described in
Algorithm 5.1 such that the mean and covariance of the particle filter
is preserved. In Fig. 5.6 (d) the mean and covariance of the initial and
final distribution are shown, with the visible mismatch due to the low
number of particles used in the illustration.

5.2.5 Feedback

The last step remaining to complete the parameter estimation protocol
is to transform the posterior probability distribution into the prior
distribution for the next iteration. This is step 3 illustrated in Fig. 5.5(2).
We calculate the required adjustments of our experimental control
parameters Ξc for a gate with no miscalibration using Eqs. (5.5)-(5.8),
given the current knowledge of our parameter estimates (Eq. (5.4)).
We also apply these corrections to the positions of our particles such
that the expectation values of the new prior now fulfill the relations
required for a perfect gate. These new values for the experimental
control parameters Ξc can now be used in the next iteration of the
algorithm, performing additional measurements with the new settings,
iteratively improving the estimates of the parameters. An example
of this behaviour estimating the four MS gate parameters is shown
in Fig. 5.7, where the probability distributions are mapped to the
experimental control parameters tg, fsb, fcl , and ϕ. At each update,
100 experimental shots are performed using the best estimates for
the control parameters by the previous iteration and the particle
filter is then updated according to those measurement results. Over
several iterations the probability distribution narrows, reducing the
uncertainty on the estimates (shown in orange), and the changes to
the control parameters become smaller between iterations until the
distribution fulfills the termination criterion, which will be explained
in the following section.
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Figure 5.7: Projections of the particle filter for the control parame-
ters Ξc at each iteration of a single calibration run. The
same filter is projected to each of its 4 dimensions. The mean and
standard deviation of the probability distribution of the control
parameters calculated using the relations in Eqs. (5.5) to (5.8)
is shown in orange. The probability density of each plot is nor-
malized to its maximum. Each iteration uses the measurement
outcomes of 100 repetitions of the experiment to update the
probability density. As an initial prior a Gaussian with widths
of σΩ = 0.2 ·Ωopt Rabi frequency uncertainty, σωcl = 2 · 2πkHz
center line uncertainty, σδ = 2 · 2πkHz sideband uncertainty and
σ∆φ = 0.16π phase uncertainty was chosen, which corresponds to
typical experimental uncertainties after preliminary calibration.
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5.3 stopping criterion for the algorithm

The standard deviations from the probability distributions provide a
measure of progress of the routine, but this measure does raise the
question of how accurately do the parameters need to be determined.
Typically, entangling gates are not quantified by the uncertainty in
their control parameters, but rather by the fidelity [32] of the output
state compared to the ideal expected state, averaged over all possible
input states.

As the fidelity of any real gate is limited by incoherent noise pro-
cesses, it is thus sufficient to determine the parameters to an accuracy
so the gate fidelity is limited by the present stochastic noise instead of
the errors due to calibration.

A naive approach may look at the fidelities of the gate sequences
used in the tuneup routine, but here the fidelity of different gate se-
quences have different dependencies on the parameters. Furthermore,
all the errors considered here are coherent, and as a consequence the
fidelity does not scale exponentially with the number of gates which
makes it hard to assign a per-gate error.

5.3.1 Randomized Benchmarking

By averaging fidelities obtainable for various inputs states and unitary
gate sequences, a more relevant quantity for performing an algorithm,
the average gate fidelity, can be extracted [132–134]. In order to relate
miscalibrated parameters to gate fidelity, we simulate randomized
cycle benchmarking [135] with mis-set parameters. Here the multi-
ple applications of the Mølmer-Sørensen gates are interleaved with
random single qubit Pauli operations. We consider the effect of the pa-
rameters individually where only one parameter is imperfectly chosen,
with the resulting infidelities shown in Fig. 5.8. For each parameter we
can then define a threshold TΘ which defines an acceptable region in
which a miscalibration is no longer expected to significantly influence
the gate performance. In our case we choose a threshold of 2 · 10−3

for the infidelity caused by a miscalibration of that single parameter,
leading to a choice of thresholds on the individual parameters of
TΩ = 0.02 ·Ωopt, Tωcl = 150 · 2πHz, Tδ = 200 · 2πHz, T∆φ = 0.028π.
We proceed to run the calibration algorithm until the particle filter con-
verges in all four dimensions to an uncertainty below the thresholds.
Assuming the parameters are normally distributed with the standard
deviation of the distributions equal to the thresholds, we expect from
simulation a median infidelity of ≈ 5 · 10−3, but correlations between
the errors in the parameters are expected to significantly affect the
expected infidelity (see Section 5.7).
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Figure 5.8: Simulated expected randomized benchmarking infidelity.
The infidelity is plotted as function of individual parameter mis-
calibrations for a 100µs gate. These curves inform the choice of
target thresholds (cyan dashed lines), an infidelity of 2 · 10−3

(purple dashed line) for each parameter has been chosen as a
threshold. The fixed parameters were kept at Ω = Ωopt, ωcl = 0,
δ = 10 · 2πkHz, ∆ϕ = 0.

5.4 selection of measurement settings

The framework discussed in Section 5.2 describes how to process the
measurement obtained by an experiment, but there is no guarantee
that this will lead to a reduction in uncertainty. This problem can be
mitigated by performing different experiments, in this case we have
a choice of the sequence of gates for which we want to perform a
measurement. Different gate sequences have different dependencies
on the modeled gate parameters. As an extreme example, a single
gate has no dependency on the phase difference ∆φ between sub-
sequent gates, thus a measurement of a single gate cannot provide
any information about that parameter and thus will not reduce its
uncertainty. A successful tuneup routine thus requires a strategy for
selecting suitable measurement settings that ideally maximize the
amount of information gained from performing a measurement using
the selected gate sequence.

We restrict our considerations for possible experiments to sequences
of MS gates without any local operations. Besides the number of gates
Ng we can also intentionally introduce a phase difference ∆φtarget

between the gates. We restrict the phase difference settings to either
∆φtarget = 0 or ∆φtarget = ±π/4, corresponding to either consecutive
MS0(

π
2 ) gates or a sequence of MS0(

π
2 )MS± π

4
(π

2 ) ... MS±(Ng−1) π
4
(π

2 )

gates. We chose these two types of sequences as they change which
parameters the sequence is most sensitive to as can be seen in Fig. 5.9.
The model outcome probabilities for two selected sequences are shown
here, with the slope of the probabilities determining the sensitivity to
a parameter.
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Figure 5.9: Expected outcome probabilities of P(|g, g⟩) (green), P(|e, e⟩) (red)
and P(|e, g⟩) + P(|g, e⟩) (blue) for a 3 gate sequence (dotted,
3 MS0(

π
2 )) and for a 2 gate sequence (dashed, MS0(

π
2 )MS π

4
(π

2 )).
The 2 gate sequence is first-order insensitive to Rabi frequency
miscalibrations as can be seen in figure (a) due to the local min-
imum of the outcome probabilities around zero which leads to
only small variations in the likelihood of possible outcomes, and
its symmetry around zero does not allow us to discriminate the
sign of the miscalibration. The same argument can be used to see
in figure (b) that this sequence is first-order-sensitive to phase dif-
ference miscalibrations. For the second gate sequence the relation
is inverted, being sensitive to Rabi frequency miscalibrations at
the cost of first-order-insensitivity to the phase difference. The
qualitative behaviour of the sensitivity of the center line matches
the sensitivity of the phase difference, while the behaviour of the
sideband detuning matches the Rabi frequency.

Applying more gates increases the sensitivity of the sequence as the
features of the likelihood function P(m|Θ) become narrower, resulting
in an increased first-order sensitivity to miscalibrations. At the same
time, the peaks of the likelihood function become more closely spaced.
This can lead to issues as a wide prior may cover several of these
peaks, resulting in a multi-modal posterior distribution which causes
slow convergence. Additionally, the effect of unmodelled error sources
such as decoherence increases with the number of additional gates,
limiting the total length of the sequence used in the optimization. The
goal of the measurement strategy is thus for each step to choose the
number of gates Ng applied, as well as the targeted phase difference
between consecutive gates.

In the following two approaches for a measurement strategy are
presented.
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Figure 5.10: Illustration of the decision-making process for the vari-
ance minimization strategy. Figure (a) shows the expected
outcome probability P(|g, g⟩) for the |g, g⟩ state according to
the model for each setting (Ng = 1 red, Ng = 3 purple, Ng = 5
green with ∆φtarget = 0) depending on the Rabi frequency Ω.
In this case the outcome probability for P(|e, e⟩) = 1− P(|g, g⟩)
with population in the remaining states being zero. Figure (b)
illustrates the variance minimization strategy for the prior given
in cyan and the expected posterior probability distributions cal-
culated using the expected outcomes. We compare the standard
deviations (dashed lines) of the expected posteriors for each
setting under consideration (Ng = 1 red, Ng = 3 purple, Ng = 5
green with ∆φtarget = 0) to select the smallest for next measure-
ment setting. In this example the deviation for 3 gates is the
narrowest and is thus chosen.

5.4.1 Variance Minimization Strategy

To maximize the information gain from a measurement, we want to
perform a measurement that is expected to decrease the variance of our
posterior distribution as much as possible. This can be accomplished
by the strategy shown in Algorithm 5.2 described in the following: For
each measurement setting s we can predict the posterior estimate Θmj,s

and variance Var(Θmj,s) for each measurement outcome mj by first
calculating the weights for each possible outcome of the measurement
with Eq. (5.13) using the corresponding probabilities Ps(m, Θ)

Θmj,s =
Np

∑
i=1

ΘiPs(mj|Θi)w(i), (5.17)

Var(Θmj,s) =
Np

∑
i=1

(Θi −Θmj,s)
2Ps(mj|Θi)w(i). (5.18)
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We can estimate the total probability of an outcome by averaging
over the particle filter

Ps(mj) =
Np

∑
i=1

Ps(mj|Θi)w(i). (5.19)

By weighing the variance with the expected probability for that out-
come we can calculate the most likely variance Var(Θs) for a given
measurement setting given the current knowledge before actually
measuring,

Var(Θs) = ∑
j

Var(Θmj,s)⟨mj,s⟩. (5.20)

We aim to minimize our variance to improve the estimate of all our
parameters, however different measurement settings do not affect all
parameters equally. For different parameters, there may be a different
optimal setting with the lowest predicted variance. We thus employ a
heuristic to calculate a score for each measurement setting for which
we normalize each variance with its target threshold TΘ defined in
Section 5.3 and sum up all the normalized variances to get a score Xs

for the measurement setting

Xs = ∑
Θ

Var(Θs)

T2
Θ

. (5.21)

We then apply the measurement setting with the lowest score to the
experiment. The process is illustrated for 1 dimension in Fig. 5.10.

We need to calculate the outcome probabilities at each particle
location for each measurement setting, which is computationally ex-
pensive. We interpolate probabilities from precomputed simulations to
speedup this calculation, but the interpolation remains the most time
consuming operation in our classical computations. While calculating
the probabilities is an unavoidable step for performing the Bayesian
update of the particle filter as discussed in Section 5.2.2, predicting the
variances requires running this calculation for each measurement set-
ting under consideration. This significantly increases the total classical
computational overhead.
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Algorithm 5.2 : Variance Minimization Strategy

input : A particle filter Θi, w(i),
A list of measurement settings s

output : A measurement setting sopt

begin

foreach setting s do

Compute outcome probabilities Ps(mj, Θi)

Compute variance Var(Θmj,s) for each outcome mj.
Average Var(Θmj,s) by total probability Ps(mj) for an

outcome.
end

Score variances Var(Θs) by normalizing each parameter by
its target treshold TΘ.

Select setting sopt with the lowest score
end

5.4.2 Thresholded Strategy

While the previous strategy tries to minimize the number of measure-
ments required, it does not account for the time required to choose that
measurement setting. The strategy thus does not necessarily minimize
the total run time of a calibration run, which affects the total fraction
of time a quantum processor requires for calibration tasks. While it
would be possible to decouple the processing and measurements and
schedule other experiments during the evaluation time, it is much
preferable if the processing time was not the limiting factor for the
Mølmer-Sørensen gate calibration routine.

In order to find an alternative we want to look at which settings are
considered optimal by the Variance Minimization strategy, and try to
find a less expensive way to identify these settings. In practice this
strategy means selecting the setting that uses the most gates while
avoiding a multi-modal posterior distribution. These multi-modal pos-
teriors are caused by the likelihood function having two maxima over
the range of the prior. To avoid them, ideally the chosen measurement
settings would yield outcome probabilities that have only one likely
parameter value. While it is impossible to simultaneously fulfill this
for all parameters, we can still attempt to limit the amount of possible
maxima of the likelihood function with the right choice of measure-
ment setting. To accomplish this, we want to impose a requirement on
the maximal width of the prior before using a specific measurement
settings.

We examine the expected outcomes of the model restricted to one
dimension for each parameter and for each experimental setting, while
the other parameters are set to their optimal values. We then choose
the local extremum closest but not equal to the optimal value in the
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Figure 5.11: Illustration of the decision-making process for the thresh-
olded strategy. The figure (a) shows the expected outcome
probability P(|g, g⟩) for the |g, g⟩ state according to the model
for each setting (Ng = 1 red, Ng = 3 purple, Ng = 5 green with
∆φtarget = 0) depending on the Rabi frequency Ω. In this case
the outcome probability for P(|e, e⟩) = 1− P(|g, g⟩) with popu-
lation in the remaining states being zero. The dotted lines show
the thresholds used for the thresholded strategy, aligned with
the local extrema of the expected outcome probabilities. In the
right figure (b) these thresholds are used to evaluate the prior.
We only consider the standard deviation of the prior (dashed
lines), with the width of the prior being larger than the 5 gate
threshold (green) but below the 3 gate threshold (purple), lead-
ing to the 3 gate setting being chosen. The single gate setting
does not have any thresholds, being the fallback option if no
other setting passes the thresholds.

outcome probabilities, and define a threshold as the distance of the
extremum to the center for each measurement setting. While this
ignores possible correlations of the probability distribution between
the parameters, we have found in practice that these thresholds are
already sufficient to avoid multi-modal posteriors.

We split the settings into first-order Rabi frequency Ω sensitive
settings and into first-order phase difference ∆φ sensitive settings
depending on whether the |e, e⟩ and |g, g⟩ populations have a local
extremum exactly at the optimal parameter value or a linear slope
in either phase or Rabi frequency respectively as can be seen for the
outcome probabilities of two example sequences in Fig. 5.9.

These thresholds are now used to for the measurement strategy
described in Algorithm 5.3 that will be used by the calibration algo-
rithm: On each iteration we alternate between selecting from either
Rabi frequency or phase first-order-sensitive settings, comparing the
defined thresholds to the current variances to ensure that the variance
of both Rabi frequency Ω and phase difference ∆φ are being improved.
We now compare the variance of our prior with the thresholds, and
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Algorithm 5.3 : Thresholded Strategy

input : A particle filter Θi, w(i),
A sorted list of Rabi frequency sensitive settings sA

with thresholds ts,A
A sorted list of phase difference sensitive settings sB

with thresholds ts,B

output : A measurement setting sopt

begin

Calculate current mean and variance ΘVar(Θ)

if Last step used sA settings then

Use phase difference sensitive settings sB

else

Use Rabi frequency sensitive settings sA
end

foreach setting s do

if Var(Θ) < ts for all parameters Θ then

return setting s as sopt

end

end

end

discard any setting for which the variance exceeds a threshold in
any parameter. Among the remaining settings we pick the setting
with the highest number of MS gates (For an example see Fig. 5.11).
This gives us a way to select measurement settings while avoiding
the computational overhead incurred by the Variance Minimization
strategy, with the time needed to evaluate the strategy (≪ 1ms) being
negligible compared to the time required to update the particle filter
(Section 5.2.2).

5.5 run time of the algorithm

A single experimental shot only takes ≈ 10 ms, while computing the
particle filter update requires ≈ 100− 500ms. To balance the classical
computational effort for updating the particle filter and the latency
in updating the control system with the duration of the experiment,
we run 100 experimental cycles with the same measurement setting
before updating the particle filter and choosing the next experimental
setting. The variance minimization strategy additionally needs time
(≈ 0.6− 3 s) for selection of the next measurement setting, while the
time required to evaluate the thresholded strategy is negligible.

In Fig. 5.12 (a) we show the number of individual experiments re-
quired to reach the target thresholds, giving a comparable number of
experimental shots for the variance minimization strategy (1200± 500
shots) and the thresholded strategy (1100± 500 shots). Fig. 5.13 (a)
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Figure 5.12: The number of experimental cycles required to reach the target
thresholds is shown as a fraction of all runs in (a). The thresh-
olded strategy takes 1100± 500 cycles on average compared to
1200± 500 for the variance minimization strategy. The total time
required is show in (b), where the thresholded strategy takes
42± 17s cycles while the variance minimization strategy requires
60± 26s.

and (b) display the measurement settings used during these calibra-
tion runs. The variance minimization strategy focuses on either the
phase or the Rabi frequency sensitive setting, trying to reduce the
largest variance component before switching. The thresholded strat-
egy instead alternates between the settings of different sensitivity.
Both settings increase the number of gates on later iterations as the
variances decrease. While the order of which measurement setting is
chosen is different between the strategies, the number of experimental
shots required is comparable.

From this we can conclude that the thresholded strategy is a compet-
itive heuristic to select measurement settings compared to the variance
minimization strategy.

Fig. 5.12 (b) shows the distribution with the computational overhead
taken into account. Here the thresholded strategy has the advantage,
completing with average run time of 41± 17 s compared to an aver-
age of 60± 26 s for the variance optimization. Averaged over both
strategies we find that we require 1200± 500 experimental shots to
reach our target thresholds. A strict quantitative comparison to all
other possible optimization strategies is difficult to define. Using our
Bayesian algorithm we achieve a significant speedup compared to
manual iteration over 1D parameter scans as defined in Akerman
et al. [136]. Simulations of 1D parameter scans achieve worse residual
infidelities, while requiring significantly more measurements. This
comparison is fully discussed in Appendix A.
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Figure 5.13: Measurement settings used during the calibration runs

for the two strategies. The y axis corresponds to independent
runs and the x axis to iterations of the algorithm during a cali-
bration run, at each iteration 100 measurements were performed
with the chosen setting. The colors indicate the measurement
setting used at a given iteration of a run, characterized by the
number of gates Ng (first number in the legend) and the selected
phase difference ∆φtarget (second number) used for the gate se-
quence.

5.6 capture range & particle number

Any Bayesian procedure requires a choice of an initial prior, where
in our case we consider normal distributions. It is reasonable that if
the true values are unlikely given our initial prior, that is, if the true
values are too far away from the center of our initial prior, then the
routine will fail to converge to them. In this section we will study the
dependence of the failure rate of our algorithm on this initial distance
in parameter space. We will also study the dependence of the success
rate of the algorithm on the number of particles in the particle filter,
since a larger number of particles allows for a more accurate sampling
and, therefore, a better approximation of the probability distributions
under study. This increase in the number of particles comes with the
cost of a linear growth in the classical computing time required by the
algorithm.

To be able to compare parameters with different units we study
these effects by first obtaining a normalized distance, Dstart, of the
initial values of the parameters from their target values using the
widths of the prior

D2
start = ∑

Θ

(Θstart −Θopt)2

σ2
Θ

(5.22)

with σ2
Θ being the initial variance of the prior projected onto parameter

Θ, with the starting value Θstart and Θopt the optimal value for that
parameter.
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Figure 5.14: Capture range of the algorithm. The width of the initial
Gaussian prior has been held constant at σΩ = 0.2 ·Ωopt Rabi
frequency uncertainty, σδ = 1 · 2πkHz sideband uncertainty,
σωcl = 1 · 2πkHz center line uncertainty and σ∆φ = 0.33π phase
uncertainty. The starting distance has been calculated using
Eq. (5.22). The fraction captured represents the number of runs
that terminate within two times the target thresholds of the
optimal parameter values. For each distance, 2000 tuneups were
run. The shaded area corresponds to one standard deviation.
For 10000 particles we additionally measured the capture range
experimentally, where the results are represented with purple
squares. The error bars correspond to the statistical deviation of
the data points.

We generate random combinations of initial gate time, center line
frequency and sideband frequency with the chosen starting distance
and then run simulated calibration runs. The phase was not varied
as the space is periodic, and thus limits how far the phase values can
be from the optimal value. The fraction of calibration runs that con-
verged is shown in Fig. 5.14, where we consider any run that ends up
closer than twice the termination thresholds of the stopping criterion
(Section 5.3) in all parameters a success. Since for each parameter the
estimated error is below the threshold, for a Gaussian distribution at
least 95% of results should be between these thresholds. Due to the
statistical nature we do not expect a perfect success rate even if the
particle filter were to perfectly approximate the continuous probability
function.

We find that for 2000 particles and less in the particle filter the
capture range is reduced as compared to the higher particle numbers,
and performance is decreased even at starting distance of 1 compared
to the higher particle numbers. This is expected as a particle filter
with too few particles will lead to an undersampling of the probability
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distribution, which in turn results in a poor approximation of this
probability distribution. As a consequence, discretisation artifacts will
appear, such as the particle filtering not being able to track the peaks
of the distribution well enough.

We choose 10000 particles as our default value to work with since
in simulation the gains for using more than 5000 particles decrease
significantly.

Experimentally, we find a reduction of 10-25% of the success rate
compared to the simulations using the same sample size for starting
distances < 2 due to effects not included in the model affecting the
algorithm. For larger distances, the success rate is comparable between
experiment and simulation. While we are unable to pin down the
exact cause of failures, we hypothesize that these events may be due
to transients in the control fields.

These effects may lead to a difference between our estimated likeli-
hoods and the true ones, which then suppress the posterior probability
distribution around the true values. This can then shift the parameter
estimates away from the true values, but also lead to underestimating
the variances compared to the true error. The algorithm might then
use unsuitable measurement settings, or prematurely terminate if the
variances are small enough to fulfill the stopping criterion. These
effects can then lead to a final parameter estimates of the algorithm
far from the ideal values.

5.7 confirmation measurements

To use the calibration algorithm even with less than perfect success
rate, we insert confirmation measurements after completing the pro-
cedure to detect and then reject outliers in the final gate parameters
predicted by the algorithm. For rejected calibration runs the algorithm
can then be repeated.

To detect outliers, we employ check sequences. We choose a se-
quence of 8 consecutive MS0(

π
2 ) gates and a sequence of 6 gates with

∆φtarget = ±π
4 which both ideally return all populations to the ground

state. The sequences are chosen because they are sensitive to Rabi
frequency or phase difference miscalibrations, respectively. We choose
an acceptance threshold of at least 85 out of 100 measurements be-
ing in the target state. This threshold was chosen as a compromise
between acceptance rate and the fidelity of the accepted runs, as
more stringent thresholds start decreasing acceptance rate without
significant improvements of either maximum or median infidelity of
accepted runs. We run repeated calibration runs including confirma-
tion measurements and record the final parameter estimates produced
by the calibration runs. These values are plotted in Fig. 5.15, with
the runs that fail the confirmation tests marked in red. 95(2)% of
runs pass the confirmation test. The distribution of accepted runs has
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Figure 5.16: Histogram of gate infidelities due to imperfect calibra-
tion. Randomized benchmarking is used to compute a per-
gate infidelity from the difference of the final parameter esti-
mates of independent calibration runs compared to their mean
value (Fig. 5.15). We calculate a median infidelity of 1.3(1) · 10−3

caused by imperfect calibration and a 95 percentile of 7.4 · 10−3.

standard deviations of σtg = 1.9(1)µs, σfcl = 0.12(1) · 2πkHz, σfsb =

0.21(2) · 2πkHz, σϕ = 0.025(3) · π. Translating these deviations to
the gate parameters Θ we find they are in agreement or below the
thresholds set in Section 5.3.

We evaluate the estimated infidelity due to imperfect calibration
of the accepted runs of the algorithm by simulating randomized cy-
cle benchmarking using the difference between the final parameter
estimates and the mean of all accepted calibration runs as miscalibra-
tion, and calculate the expected infidelity due to calibration error. The
distribution of these expected infidelities is shown in Fig. 5.16. We
achieve´ a median calibration infidelity of 1.3(1) · 10−3. This value is
lower than what was calculated for independent errors in Section 5.3,
which we attribute to the correlations between the parameters partially
compensating each other. We can compare this to the fidelity of Bell
states [32, 137] generated by repeated application of the MS gate on
the same system, and find that the infidelity per gate is measured to
be 4(1) · 10−3. While this state fidelity is not suited to characterize the
effects of coherent errors, it does pose a limit on the achievable fidelity
due to incoherent errors present in the system. We expect laser phase
noise and dephasing of the motional mode as the leading sources of
decoherence. From this infidelity we conclude that our calibration rou-
tine can produce parameter estimates such that our entangling gates
are not limited by calibration errors, but limited by the performance
of the machine.
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In conclusion, the algorithm can be used to calibrate a gate to a me-
dian residual infidelity due to parameter miscalibration of 1.3(1) · 10−3

(Fig. 5.16) in 1200± 500 experimental shots, achieving a significant
speedup over manually iterating over 1D parameter scans (See Ap-
pendix A for an estimate on the capabilities of the 1D parameter scan
method). These results demonstrate the suitability of the described
approach to reliably and consistently calibrate a set of control parame-
ters to achieve a gate fidelity that is limited by incoherent processes
in the quantum system. Our approach considerably eases the opera-
tional burden and can produce valuable time savings for the operating
experimentalist. Furthermore, periodic re-calibration can be included
within long experimental data-taking sequences, protecting against
slow parameter drifts, and thus guaranteeing high quality output over
considerably longer time.



6
L I G H T- S H I F T G AT E S

In this chapter we present the results of our entangling gate operations
using light-shift gates on ions where the quantum information is
encoded in states separated by optical transitions as proposed by
Sawyer and Brown [138].

We investigate two different applications of this gate scheme in
this chapter. The first application is generating entanglement between
different species of ions, which is of interest for quantum communica-
tions, to use a species as quantum memory, or for a partial readout of
a quantum register while protecting the other qubits.

The second application is the extension of the gate scheme to oper-
ate on a qudit which encodes information in more than two levels per
ions instead of a two-level qubit. These higher-dimensional quantum
systems hold promise as a powerful resource for quantum computa-
tion and simulation [139] (Section 2.3). We demonstrate how the gate
is utilized to generate entanglement between two qudits state, and we
discuss the results of the experimental implementation.

6.0.1 Gate Mechanism

The light-shift gate utilizes the coupling of electronic states to a mode
of motion via a Raman type interaction to create entanglement, where
the Hamiltonian of this interaction has been previously discussed in
Section 3.5.5. This interaction requires two laser beams with a relative
detuning, which create a standing wave.

The coupling strength of the light fields to the motion is governed
by the Lamb-Dicke factor, which in turn depends on the geometry of
the beams, in particular on the overlap of the wave vector of the light
field with the mode of motion.

For the standing wave the effective wave vector is given by the
difference of the k-vectors of the individual light fields of the two
beams. The beam geometry is illustrated in Fig. 6.1: We use a pair
of beams at a 90◦ angle to each other to generate the standing wave
pattern, with the two beams at 45◦ to the trap axis. The wave vector
is then aligned with the axial modes of motion. The polarization of
the two beams influences the kind of standing wave that is created.
For a choice of polarizations such as σ∓, σ± with two opposite cir-

105
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Figure 6.1: Beam geometry used for light-shift gates. Two beams at a
wavelength of λ = 401nm are intersecting at a 90◦ angle to gener-
ate a standing wave pattern that drives a spin-dependent force.

cularly polarized beams a standing wave with spatially-modulated
polarization is generated. In contrast if the polarizations align such
as for a pair of parallel linearly (π) polarized beams, the amplitude is
modulated. These two kinds of standing wave are depicted in Fig. 6.2.
We utilize an intensity-modulated field to generate the optical dipole
forces, the strength of the gate interaction is maximized for a pair of
beams linearly polarized orthogonal to the k-vector [138].

6.0.2 Calibration of the Beam Alignment

The Raman beams are aligned with the ions by means of a Stark shift
measurement. For this purpose a Ramsey type experiment with a
spin-echo pulse is set up using the quadrupole laser with a duration
for which the visibility is still high, typically 1 ms. Then, a pulse
from one of the Raman beams is applied during one half of the spin-
echo experiment, introducing a phase shift. We measure periodic
oscillations as a function of the pulse duration. On this signal the
alignment of the beam to the ions can be optimized with the goal of
maximizing the oscillation frequency. Once a phase shift close to π is
achieved, the probe duration is reduced to remove any disambiguity
if the frequency is increasing or decreasing. This procedure is then
iterated until the coupling can no longer be improved. As we are
measuring the combined signal of both ions, a small difference in
coupling strength manifests in a reduction of the contrast of the mean
excitation of both ions. To remove this difference the coupling to the
two ions is further balanced by choosing a probe time corresponding
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Figure 6.2: Standing wave for different polarization configurations.
The top case shows a wave with spatially modulated amplitude
generated by a pair of linearly polarized beams, the bottom case
shows a wave with spatially modulated polarization generated
by a pair of beams with opposite circular polarization.

to a phase shift of an integer multiple of π. As small adjustments here
lead to an increase of coupling on one ion while reducing it for the
other, minimizing respectively maximizing the excitation balances the
strength on both ions. For this we change the beam alignment in the
plane of the axial mode only. This procedure is performed for both
beams independently.

6.0.3 Calibration of the Ion Spacing

The entangling gate relies on different spin states receiving different
phases. The phase imparted on the states (Eq. (3.70)) depends on
the position of the ions with respect to the standing wave pattern. A
gate can be performed for any value of phase difference except for
the special case where the shift on the odd states (|eg⟩ , |ge⟩) exactly
equals the shift on the even states (|gg⟩ , |ee⟩) but doing so may not
be efficient. To minimize the required laser power for a fixed gate
duration or the achievable gate duration for a fixed available power,
the spacing of the ions needs to be adjusted to maximize the phase
difference when driving the gate on either the center-of-mass (COM)
or the out-of-phase (OOP) mode, corresponding to a half-integer or an
integer multiple of the wavelength of the standing wave, respectively.

This can be calibrated by minimizing the excitation when resonantly
driving the blue sideband transition while in the electronic ground
state |gg⟩. Here the detuning between the two Raman beams is set
equal to the mode frequency, exciting a coherent motional state. The
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Figure 6.3: Coupling strength as function of the axial modes of a

two-ion
40Ca

+
crystal. The two horizontal axes give the mode

frequencies for the two axial modes, the center-of-mass (COM)
and the out-of-phase (OOP), of the ion crystal at the same axial
confinement. The fit corresponds to the expected ion spacing from
the trap frequency for a harmonic potential, with an offset of the
trap frequency that can be explained through a static quadrupole
component on the order of 2 · 1016V/m4.

phonon state is then read out by driving a red sideband transition
using the 729nm laser. As the transition is suppressed for the motional
ground state we get a signal that depends on the motional state.
Minimizing the coupling to the blue sideband transition maximizes the
phase difference for applying the gate. Figure 6.3 shows the coupling
strength of the Raman laser to the two axial modes of motion of a two-
ion crystal. By adjusting the confinement of the ion crystal the spacing
of the ions can be controlled to find an optimum that maximizes the
phase difference when driving the gate on the chosen mode.

6.1 mixed species gates

Mixed species gates promise to combine the advantages of different
atomic species while avoiding their individual shortcomings. One
well-explored technique is quantum logic spectroscopy [140], where a
secondary species is used to interrogate an atom without a feasible
closed cooling transition. Here the secondary species is used not only
to sympathetically cool the ion of interest [141, 142], but also to map
its state onto the secondary species for readout.

For quantum computation one might also wish to combine two
species. A species with long coherence times could act as a memory
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Figure 6.4: Pulse scheme for the mixed species gate. The light-shift interaction
ULS pulses are interleaved with a spin-echo sequence. The final
π/2 pulses are used for the parity measurements only.

ion, while a species with high detection fidelity could be used for
readout [143].

Another aspect is quantum error correction, which will be essential
for large-scale quantum computation. The correction step in an error
correction cycle makes critical use of the partial readout of the quan-
tum register, while preserving the information stored in the remaining
register. For a single species photons scattered can be reabsorbed by
other ions in the part of the register that should remain unperturbed,
causing additional errors. Using a secondary species however allows
us to detect the state without the readout introducing additional errors
caused by absorption, as the transition frequencies of the two species
are spectrally well separated [144].

Mixed species gates can also find applications in quantum commu-
nication and remote entanglement generation [145]. There it can be
advantageous to choose a secondary species to generate photons as
flying qubits due to the differences in performance of optics, detectors
and optical fibers available at different wavelengths.

6.1.1 Gate implementation and measurements

The implementation of the mixed species light-shift gate has been
performed on a two-ion 40Ca+-88Sr+crystal, where we implement a
σzσz light-shift gate on the qubits encoded between the respective S1/2
and D5/2 states.

The required single qubit rotations are performed using the resonant
729nm and the 674nm lasers, while the entangling interaction as
described in Eq. (3.65) is generated by the pair of Raman beams that
drive the gate on the axial COM mode. The crystal is initially Doppler-
cooled by simultaneous illumination from the 40Ca+and 88Sr+cooling
beams. This is then followed by sideband cooling of the calcium ion
using the 729nm and 854nm laser, preparing the ions in the motional
ground state.

The ions do experience unwanted single-qubit phase shifts due to
the Raman beams. These shifts can be canceled by performing two
loops in the motional phase space, while inserting π pulses on both
ions between the two loops to swap the populations between the |ee⟩
and |gg⟩ state, with the pulse sequence being shown in Fig. 6.4. This
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Figure 6.5: Loops in phase space for the mixed-species gate. The excursion
for 4 different states are shown, the encoding is referring in order
to 40Ca+-88Sr+. For |ee⟩ the enclosed phase is negligible due to
the large detuning from the states, while |gg⟩ cannot be perfectly
nulled due to the unequal coupling to the two species. This also
causes the difference between |eg⟩ and |ge⟩, requiring the use of
spin echo pulses for symmetrization.

also symmetrizes the phase shifts experienced by the |e, g⟩ and |g, e⟩
states, without having to tune the wavelength of the Ti:Sa laser system
(Section 4.5) to equalize the coupling strength to both species. The
trajectories of the states in phase space are plotted in Fig. 6.5, where
the phase shift corresponds to the area enclosed by the trajectory.

To limit the laser power required for implementing the gate, the
wavelength of 401nm has been selected to get comparable coupling
strengths on both 40Ca+and 88Sr+, as the difference in coupling strength
leads to an excursion of the |gg⟩ state, acquiring a phase that counter-
acts the gate action as can be seen in the area enclosed by the trajectory
of |gg⟩ in Fig. 6.5.

The gate is set up by first individually calibrating the local rotations
to perform the appropriate π and π/2 pulses, respectively. The trap
frequency can be measured using sideband spectroscopy with the
quadrupole lasers. The frequency of the Raman laser is then set ac-
cording to the measured trap frequency and the targeted gate length.
By varying the pulse duration and observing the evolution of the un-
wanted odd states |e, g⟩ , |g, e⟩, the detuning can be adjusted to match
the targeted gate duration. The time evolution of the states displayed
in Fig. 6.6 shows an asymmetry between the |e, g⟩ and |g, e⟩ states
due to the different coupling strength to the 40Ca+and the 88Sr+ion,
however the population of these states goes to zero for the targeted
gate length. The phase acquired by the target states to get the correct
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Figure 6.6: Populations for the mixed calcium-strontium entangling

gate. The evolution is shown as a function of the duration of the
interaction. The first state label describes the calcium state and
the second refers to the state of the strontium ion. The asymmetry
of the |eg⟩ , |ge⟩ states when the loop is not closed stems from the
different coupling strength to the two species.

gate is calibrated by adjusting the amplitude of the gate pulses, such
that the populations in the states |e, e⟩ , |g, g⟩ in Fig. 6.6 are balanced
at the targeted gate length.

To separate the contributions of state preparation and measurement
(SPAM) errors from the gate errors we apply the gate multiple times.
Only odd numbers of gates were used, as these gate sequences produce
Bell states. For the Bell states, the state fidelity is given by

F(ρ, |ψ⟩⟨ψ|Bell) =
(
(11 + σzσz)/2 + (σxσx + σyσy)/2

)
/2, (6.1)

where we identify the first two terms as a population component
and the last two as a parity component [32, 137]. Even numbers of
applications ideally produce either the |ee⟩ or the |gg⟩ state, which
does not have a parity component. This allows us to measure the
decay of the state fidelity [32] as a function of the number of gates
applied. The result is shown in Fig. 6.7, where we extract a fidelity of
0.990(2) per gate from the fit.

In contrast applying the same gate scheme on a single species
40Ca+-40Ca+ion crystal we can achieve a fidelity of 0.995(1), where
we attribute the difference in fidelity primarily to the performance of
the 674 nm laser driving the quadrupole transition of 88Sr+affecting
the local gates.
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Figure 6.7: Fidelity for multiple applications of the mixed species gate.
The population overlap correspond to the first two terms in
Eq. (6.1) while the parity contrast corresponds to the latter two.
The average between the population overlap and the parity con-
trast gives the fidelity of the produced Bells states.

6.2 native qudit gates

The work presented in this section has been published in:

P. Hrmo, B. Wilhelm, L. Gerster, M. van Mourik, M. Huber, R. Blatt, P.
Schindler, T. Monz, and M. Ringbauer

"Native qudit entanglement in a trapped ion quantum processor"
Nature Communications 14, 2242 (2023)1

In the following section we describe how the light-shift gate can be
generalized to qudit systems and how it can be utilized to generate
genuine qudit entanglement. Here a single state of the S1/2 manifold
is used together with multiple states in the D5/2 manifold to encode
the qudit.

An advantageous feature of the demonstrated gate is the indepen-
dence of the gate mechanism to the dimension of the qudit, which
keeps the experimental calibration overhead constant with increasing
qudit dimension. The gate mechanism is based on spin-dependent
light-shifts as detailed in Section 3.5.5. The interaction between two
ions can be generalized to qudits where it takes the form described in
Eq. (3.72). To turn this interaction into a logical gate it is symmetrized
by local cyclic permutation gates of the form

Xd =
d−1

∑
j=0
|j + 1 (mod d)⟩ ⟨j| (3.74 revisited)

1 The author of the present thesis measured and analyzed the data.
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Figure 6.8: Pulse Sequence for implementing the Qutrit gate. The en-
tangling light-shift interaction ULS is interleaved with the permu-
tation pulses X3.

generalizing a spin-echo. These can be implemented by a succession
of d− 1 π-pulses between the 0th and each successive level j > 0, and
can be written as

Xd =
d−1

∏
j=1

R0,j(π, 0), (6.2)

where R0,j(θ, φ) is a rotation between levels 0 and j with angle θ and
phase φ.

By applying these permutations each logical state spends the same
amount of time in each physical state during the entire gate operation.

A series of d Raman interaction pulses, each forming a closed loop
in phase space, and d local cyclic permutations is used to implement
the gate operator in dimension d.

The gate sequence is illustrated for the qutrit case (d = 3) in Fig. 6.8,
consisting of entangling light-shift interactions ULS and local X3 cyclic
permutations.

Each light-shift interaction ULS Eq. (3.71) imprints a phase Φ̃ij de-
pending on the electronic state,

Φ̃ij =


Φ00 if i = j = 0

Φodd if i = 0 or j = 0

≈ 0 if i > 0, j > 0

, (6.3)

the time evolution of which is illustrated in Fig. 6.9. We recall from
Section 3.5.5 that due to the symmetrization after the entire sequence
we are left with a relative phase between the symmetric |jj⟩ and the
non-symmetric |jk⟩ , j ̸= k states given by

G(θ) =

|jj⟩ → |jj⟩|jk⟩ → exp(iθ) |jk⟩ if j ̸= k
. (3.75 revisited)

To investigate the action of the gate we require an appropriate
initial state. Analogous to the qubit case we want to prepare an equal
superposition as the initial state:

|ψ⟩init =
1
d

(
d−1

∑
j=1
|j⟩
)
⊗
(

d−1

∑
k=1
|k⟩
)

. (6.4)
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The equal superposition is chosen since the gate operator changes
only the phases, and not the populations, and the equal superposition
already has the populations expected of a d-partite fully entangled
state.

To accomplish this, we first prepare the ions in the electronic |00⟩
state and motional ground state using sideband cooling and opti-
cal pumping. The superposition is then prepared by applying the
following operator

P =
d−1

∏
j=1

R0,j(ϑj, 0), (6.5)

using rotations R0,j between the levels 0 and j, where the angles ϑj are
chosen as ϑj = 2 arcsin

(
1/
√

j + 1
)
. Here each pulse transfers 1/d-th

of the population to the respective sublevel, generating the state in
Eq. (6.4).

This can be reversed by the conjugate sequence P† which applies
the pulses in reversed order. That sequence is used after the gate has
been applied to create the target states which we further investigate.

6.2.1 Performance of the gate

To analyse the gate we can directly estimate the state fidelity and the
amount of entanglement of the generated states after applying the
gate sequence from the relative amplitudes of the components |ii⟩,
as well as their pairwise coherences. Experimentally, the population
of the |00⟩ state can be measured by driving the S1/2 ↔ P1/2 transi-
tion with a 397 nm laser and collecting the fluorescence photons on
a photo-multiplier tube. Using additional π-pulses T j

0 = R0,j(π, 0),
the same procedure gives access to all components |jj⟩ by swapping
the population with the |00⟩ state, allowing them to be measured.
Using Bayesian parameter estimation we can extract the combined
population fidelity ∑D

j=0 P(|jj⟩) from the separate measurements, as
well as the populations of the individual states P(|jj⟩) and confidence
intervals for these estimates [146]. The Bayesian technique delivers
estimates within the uncertainty of the naive technique of fitting the
components individually, but importantly delivers much tighter esti-
mates for the error bars, and constrains the total summed population
over all states to the physical maximum of 1.

The coherence terms between the states |00⟩ and |jj⟩ are estimated
by applying a π/2-pulse Aj

0,ϕ = R0,j(π/2, ϕ) with variable phase ϕ to
both ions before performing the fluorescence readout. Depending on
the phase ϕ this pulse will transfer populations in the |00⟩ , |jj⟩ states to
either the |0j⟩ , |j0⟩ states or leave them in the |00⟩ , |jj⟩ states, causing
sinusoidal oscillations as function of ϕ. Applying Tk

0 before Aj
0,ϕ allows

us to measure the coherence between the states |kk⟩ and |jj⟩. We
then extract the coherence between the two terms from the parity
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Figure 6.9: Phase evolution of the two-qudit state for dimensions d =
2, 3, 4, 5. The phases of the components are shown relative to
the |00⟩ ground state during the application of the d LS gate
pulses. Each plot shows the evolution during a closed loop of
the motional mode. Notable is the difference of the phase of the
symmetric states which returns to zero after the full sequence,
while phase shifts are imparted on the asymetric states. The
interaction is symmetric with respect to the ions, the trajectory of
the |jk⟩ states are equivalent to the |kj⟩ states.
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Figure 6.10: Pulse Sequence for analyzing the Qudit gate fidelity. The
gate operator G(θ) is applied n times. The pulses T j

0 select state
j for being detected, while the pulses Ak

0 are only used for co-
herence measurements, probing the pairwise coherence between
states j and k.

oscillations by Bayesian inference (see Section 5.2), which accounts for
measurement statistics and guarantees that the extracted amplitudes
of the oscillations stay physically possible.

The observed fidelity is affected by state preparation and measure-
ment (SPAM) errors, which includes the inital pulses P, their inverse
P†, the transfer pulse T j

0 and analysis pulse Aj
0,ϕ. In order to separate

the errors due to SPAM from errors due to the gate G(θ) itself for
each dimension d, we insert up to n applications2 of G(θ) between
the preparation operators P and P†. The pulse sequence is shown in
Fig. 6.10. We then compute the state fidelity for each n that results in
an entangled state and fit an exponential decay to estimate the fidelity
per gate. Such repeated gate applications are sensitive to any source
of non-Markovian noise present in our system, leading to deviations
from a purely exponential decay expected if all noise exhibited Marko-
vian behaviour. The extracted fidelities should thus be interpreted as
an estimate for the SPAM corrected average gate performance over a
sequence of length n.

We apply this procedure for all the investigated qudit dimensions
d = 2, 3, 4, 5 and obtain fidelities of 99.4(1)%, 99.0(1)%, 97.5(2)%,
95.0(3)% respectively. While the intrinsic limits on gate fidelity due to
finite state lifetime and Raman beam scattering depend only weakly on
d (see Appendix B), the measured gate performance degrades quadrat-
ically with dimension as seen in Fig. 6.11. This can be understood if
the total gate error is dominated by the errors of the local pulses, since
their number increases quadratically with qudit dimension, whereas
the number of entangling pulses increases linearly.

Indeed this is confirmed by a numeric error model that computes the
expected decay data using all independently measured error sources
as inputs (see Appendix B), reproducing the observed data with
very good agreement (blue bars in Fig. 6.11). This model suggests in
particular that, for d = 2 the gate fidelity is limited by the motional
coherence time of the ion, but for d = 4, 5 the dominant error source
becomes slow frequency noise that causes dephasing of the local
operations. From this we can conclude that the gate fidelity in higher

2 For the different qudit dimensions: nd=2 = 11, nd=3 = 14, nd=4 = 9 and nd=5 = 9
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Figure 6.11: Fidelity of the qudit gate. The average gate fidelities, shown
in red, are extracted from fits to the fidelity decay when applying
multiple gates between encoding and decoding pulses. The error
bars correspond to 1 standard deviation in the fit parameters.
The simulated fidelities from a detailed noise model are shown
in blue

dimensions can be significantly improved if technical noise sources
such as magnetic field noise contributing to the aforementioned local
operation dephasing or Rabi frequency fluctuations can be suppressed.

6.2.2 Qudit entanglement of the resulting state

Another point of interest are the entanglement properties of the state
prepared by the application of a single gate. We can quantify that
entanglement by measures such as Concurrence and the Schmidt
number, comparing the properties of the experimentally produced
states to the expected outcomes for a perfect gate.

We are interested in states of the form |ψ⟩ =
√

1/d ∑d
j=0 |jj⟩ as a

generalization of Bell states. For d ≤ 4 we can generate these states by
applying the gate to the initial state (Eq. (6.4)), however for d = 5 we
cannot produce a state of this form with a single application of the gate,
instead we expect as the target state |ψT⟩ = (3 |00⟩+ 2 ∑4

j=1 |jj⟩)/5
with a single gate operation. The difference between the target state
for d = 5 and d ≤ 4 can be explained by the choice of initial state and
the structure of the entangling interaction. For a maximally entangled
state the partial trace over one of the qudits must be diagonal, with
entries TrB(|ψT⟩⟨ψT|)jj = 1/d. The equal superposition matches this
distributions of populations, but for the relative phases we need to
ensure all the off-diagonal elements of the reduced density matrix
are set to zero. These are given by TrB(|ψT⟩⟨ψT|)ij = 1/d ∑k ⟨ik|ρ|jk⟩,
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Figure 6.12: Concurrence vs dimension of the qudit gate. The blue points
display the measured concurrence, with the dashed lines dis-
playing the maximal achievable values for each dimension, the
dotted line shows the maximum for the target state.

however the entangling interaction only affects the symmetric states,
thus only the terms involving |jj⟩ , |ii⟩ can be controlled. Only up to
d = 4 it is possible to choose the phases so the sum becomes zero
for all off-diagonals, explaining the different structure of the state for
d = 5.

The first entanglement quantifier we want to study is the concur-
rence. It is a continuous quantifier of entanglement that can be defined
as the convex roof extension [147] of the square-root of the linear
entropy.

C := inf
D[ρ] ∑i

pi

√
2(1− Tr[TrB(|ψAB

i ⟩⟨ψAB
i |)2] , (6.6)

where D[ρ] is the space of all possible decompositions into tuples of
probabilities and pure state vectors, and can be written as D[ρ] =
{(pi, |ψi⟩) : ∑i pi |ψi⟩⟨ψi| = ρ}. While it is NP-hard to determine the
concurrence in high-dimensional systems exactly, even if the density
matrix is completely known, it can be lower-bounded by easily acces-
sible measurements. In particular, the lower bound from Ref. [148] is
given by

C ≥ 1√
d(d− 1)

∑
i ̸=j
⟨ii|ρ|jj⟩ −

√
⟨ij|ρ|ij⟩⟨ji|ρ|ji⟩, (6.7)

where the individual density matrix elements ⟨ij| ρ |ij⟩ can be esti-
mated from measurements in the computational basis and the remain-
ing off-diagonal elements through pairwise interference measurements
as described in Section 6.2.1.
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Figure 6.13: Fidelity vs dimension of the qudit gate. The measured state
fidelities after a single application of the gate is shown for di-
mensions d = 2− 5 in red. The shaded bars represent the lower
bound of fidelity required to certify maximal Schmidt number
entanglement. The fidelity exceeds the threshold for all consid-
ered dimensions, certifying d-partite entanglement.

This measure is bounded for a bipartite state[149, 150], where the
bound for a d-dimensional state |φ⟩ is given by:

C(|φ⟩) ≤
√

2(1− 1
d
) (6.8)

For all dimensions d > 2 our final state exceeds the d = 2 bound of the
concurrence (Fig. 6.12), which demonstrates genuine high-dimensional
entanglement. However for d = 4, 5 the bounds for d = 3 are not
reached due to experimental imperfections.

Table 6.1: Fidelities and Schmidt numbers for the states produced by a single
entangling gate for qudit dimensions d = 2, 3, 4, 5. The fidelity
threshold corresponds to the minimum fidelity to achieve maximal
Schmidt number, while the maximum concurrence gives the value
for a pure maximally entangled state of a given dimension.

fidelity
fidelity concurrence maximum Schmidt

threshold ≥ concurrence number

d = 2 0.990± 0.006 0.5 0.99± 0.03 1 2

d = 3 0.978± 0.012 0.66 1.14± 0.03 1.154 3

d = 4 0.947± 0.012 0.75 1.16± 0.03 1.224 4

d = 5 0.885± 0.012 0.84 1.08± 0.02 1.264 5
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Another figure of merit we consider here to evaluate the entangling
properties of the gate is the Schmidt number, also referred to as dimen-
sionality of entanglement [151]. It is a discrete measure of how many
distinct product states are required to describe the state (Eq. (2.6)).
The metric is indicative of the gates usefulness for quantum computa-
tion as producing states with a large Schmidt number is a necessary
ingredient for achieving a quantum speedup [152], suggesting that
it plays a crucial role in the computational complexity of a quantum
system [153].

The Schmidt number generalizes to mixed states from the version for
pure states (Eq. (2.6)) by minimizing over all possible decompositions
D(ρ).

r(ρ) := inf
D(ρ)

max
|ψi⟩∈D(ρ)

rank(TrB|ψi⟩⟨ψi|) . (6.9)

Computing the Schmidt number is a challenging problem that is at
least as hard as deciding whether a given density matrix is separable
(NP-hard), however there are easily computable lower bounds. In
particular, the fidelity overlap of an experimental state ρexp, with an
entangled target state of the form

|ψT⟩ =
d−1

∑
i=0

λi|ii⟩, (6.10)

has an upper bound depending on Schmidt rank r of the state ρexp.
This bound is given by F(ρexp, |ψT⟩ ⟨ψT|) ≤ ∑r−1

i=0 λ2
i , where the coef-

ficients λi are in decreasing order. As target state we designate the
maximally entangled state in d = 2, 3, 4, while for d = 5 the expected
state |ψT⟩ = (3 |00⟩+ 2 ∑4

j=1 |jj⟩)/5 was chosen. We get resulting fi-
delities of 99.0(0.6)%, 97.8(1.2)%, 94.7(1.2)%, 88.5(1.2)%, which each
exceed the fidelity thresholds for Schmidt numbers r = d− 1 using
the target states (see Fig. 6.13 and Table 6.1). The case for d = 5 is
the closest to its corresponding threshold, but assuming a Gaussian
distribution of the uncertainty the state fidelity is σ = 3.7 away above
the threshold. Thus the Schmidt number must be indeed maximal
in all experimentally implemented dimensions, confirming genuine
d-dimensional entanglement for these states.

In conclusion both metrics considered here, the concurrence and
the Schmidt number, demonstrate genuine high-dimensional entangle-
ment for d > 2. While the concurrence growth slows asymptotically
with dimension and thus the bounds are not exceeded for d > 3, the
Schmidt rank is maximal, which confirms genuine qudit entanglement.
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C O N C L U S I O N & O U T L O O K

The goal of this thesis was to investigate the scalability of ion trap
technology for the purpose of building quantum computers.

To this purpose, an existing setup for dual species operation based
on 40Ca+and 88Sr+with a segmented surface trap was modified to
accept traps with higher electrode counts and integrate high-NA
collection optics as described in Chapter 4. We characterized the
trap, finding an axial heating rate of 27(2) s−1 at a trap frequency of
1.08 MHz and can achieve of a coherence time of T2 = 19.2(13)ms
in 40Ca+. The detection optics allows in a 50µs window for sub-10−4

detection error for a single 40Ca+ion.

During the course of this thesis, an algorithm using Bayesian pa-
rameter estimation to calibrate all the necessary control parameters of
the entangling two-qubit Mølmer-Sørensen gate was developed and
implemented, which is described in Chapter 5 in detail. We tested
two different strategies for choosing the gate sequences used in the
algorithm, where we demonstrated that a simple heuristic can match
the performance of the more complex and computationally intensive
method that chooses a gate sequence that minimize the predicted
variance of the parameters.

We evaluated the performance of this algorithm with regard to the
estimated parameters and found a resulting median residual infidelity
of 1.3(1)× 10−3 due to parameter miscalibration, requiring 1200± 500
experimental shots. This is a significant speedup over manually iterat-
ing 1D scans of the individual parameters.

These results demonstrate that this approach is suitable for reliable
and consistent calibration of a system, where the performance is
limited by the incoherent noise processes present in the system rather
than calibration errors.

The Bayesian algorithm will benefit the quantum CCD ion trap
architecture, enabling the calibration of entangling gates in multiple
interaction zones where it is no longer plausible to perform this
manually. The method is also suitable for addressed gates in a linear
ion crystal, where 2 ions are individually addressed, the interaction
mediated by a shared radial mode of motion.

121
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A possible extension of this approach is to consider N-qubit en-
tangling gates, to which the Mølmer-Sørensen gate scales naturally
using the same set of control parameters [137]. The Bayesian algorithm
will work as long as the classical simulation remains traceable, and
imperfections such as non-uniform Rabi frequencies and magnetic
field gradients are either negligible or sufficiently well modeled in the
simulation.

The model underlying the calibration only included a depolarizing
noise term. To further refine the model deviations from the ideal,
unitary gate action due to independently measured noise sources
could be included, which may help to improve the capture range of
the algorithm.

The Bayesian algorithm is also extensible to other gates, not limited
to the trapped-ion platform, with the requirements being a model
of the experimental outcomes of the gate action as function of the
parameters of interest. The largest limitation here is the number of con-
trol parameters that can be considered, as the amount of information
stored in the interpolator will grow exponentially.

The scheme can further be extended to perform track the control pa-
rameters, where instead of running the full calibration routine with an
unbiased prior, the starting prior is chosen depending on the outcome
of the last calibration run and then updated with as few measurements
as necessary. By reducing the number of shots required, the routine
can be run more often for the same allocated calibration overhead,
making the system even more robust against parameter drifts.

We demonstrated in Chapter 6 a mixed-species two-qubit entan-
gling gate, using one 40Ca+and one 88Sr+ion. We utilized a single
laser to realize a light-shift gate on the pair of qubits. Mixed species
entanglement is a beneficial resource for in-sequence readout and for
integrating quantum computing techniques with ion-photon entangle-
ment generation schemes, that can connect separate trap modules to
scale a quantum computer.

We generated native qudit entanglement between two trapped ions
up to dimension d ≤ 5 with the same gate scheme used for the mixed-
species gate. We analyzed the entanglement properties of the produced
states [151] and find that in all probed dimensions the Schmidt number
is maximal, certifying d-partite entanglement. Using a simulation with
a numeric model using independently measured noise parameters, we
can reproduce the observed data. The numerical model suggests that
the performance for higher dimensions is currently primarily limited
by amplitude noise affecting the single qudit operations.

The scheme directly couples all states of the qudit, creating entan-
glement between multiple qudit levels. The gate is scalable to different
dimensions, requiring only adjustment of the power of the gate laser
by an analytic ratio. This is a major advantage for calibrating the gate
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compared to previous schemes using entangling gates that couple
to individual transitions[154], which each require their own set of
optimized parameters. This is required to compensate for light shifts,
as the embedded qubit gates introduce undesirable phase shifts on
the levels that are not being targeted.

The scheme can be investigated using different combinations of
ground and excited states for encoding qudits, interleaved with local
operations to allow for a wider range of possible gate unitaries. Such
an expanded set of unitaries would benefit the compilation of qudit
circuits by expanding the building blocks available.

During the work with this experimental apparatus described in
this thesis several points have been identified that can be improved,
some of which will be included in the next generation experimental
apparatus that is currently being assembled. Several lessons have been
learned during the operation of our cryostat which will be elaborated
on in the following: Closed-cycle cryostats with low vibrations [155,
156] are offered commercially, and promise continuous operation with
no swapping of storage Dewars while requiring less maintenance
compared to running a Helium liquefaction plant.

The assembly and disassembly method for the cryostat proved itself
very inflexible, where each step required needs to be performed in
a specific order. Crucially, exchanging the trap is last point in this
chain of steps, requiring an almost full tear-down of the system to be
accessed. Being able to access the trap instead without dismantling a
significant part of the cryostat will decrease wear on the mechanical
components due to disassembly and minimize the chance of damage
to threads, screws and wiring in the process. It also may allow for
easier inspection and troubleshooting of the apparatus. Relocating the
DC filters directly on the outside of the copper shield limits the pickup
of noise between filter and the trap due to reduced trace lengths as
well as blocking Johnson noise caused by finite wire resistance. The
resistance of the ground path can be further reduced as heat transfer
over the wires between filter and trap is no longer a concern, which
reduces distortions of waveforms by the filters.

The thick copper enclosure has proved itself as an effective shield
against fast noise magnetic field noise. However the copper shield
cannot suppress slow noise, and we were unable to remove the slow
drifts in magnetic field strength which we attributed to the stability
of the current running through the bias coils. Superconducting coils
could be used instead, or sets of permanent magnets.

The high NA lens used was chosen for maximizing collection ef-
ficiency. While it could also be used to focus light for single ion ad-
dressing, it was not designed to accommodate a steerable addressing
setup that can drive pair-wise entangling gates [59] due to aberrations.
Such an addressing unit offers full connectivity inside a crystal, and
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can limit the amount of splitting and merging operations required in
an algorithm. This can be especially advantageous in the context of
error corrections, where the majority of operations is applied within a
logical qubit. By using a fully connected subregister to encode a logical
qubit, the splitting and merging operations would only be required
for performing entangling gates between different logical qubits.

One necessary ingredient to be investigated for scalable ion traps
with many interaction zones is integrating the light delivery into the
trap itself. This reduces or even eliminates the need for optical access,
and the optics require no alignment, with the geometry fixed by the
design of the trap [157, 158]. In the longer term one also wants to
integrate the photo-detection electronics directly into the trap [159],
removing all needs for external optics.

Such integration does require more complex trap designs than have
been used here, with the fabrication technique limited to a single layer.
Future traps will require more complex routing using multiple layers
to deliver all the required voltages. While there exists a variety of
micro-fabrication technologies to produce such structures, preserving
low noise and correspondingly low heating rates is crucial for the
performance of the trap [65].

Solving these challenges can pave the way for scaling ion-based
quantum computers. Combined with improved gate fidelities, algorith-
mic advances and improvements in quantum error correction codes
could drastically increase the size of problems that can be solved on
future quantum computers.



A
M A N UA L G AT E T U N E U P

One of the desiderata of an optimisation routine is having a fast
convergence rate to the desired parameter accuracy. In other words we
would like to minimize the number of times the experiment has to be
queried since each measurement incurs by far the largest operational
time overhead. Since we do not claim to have the optimal strategy, we
want to confirm the claim that our Bayesian optimisation is fast relative
to what might be considered a traditional or manual optimisation.

In practice, each experimentalist might have their own slightly id-
iosyncratic way of optimising the gate parameters and will also have
different amounts of prior knowledge about the parameter values.
There is no set prescription that is followed by a majority consen-
sus in the ion trap literature. However, reference [136] provides an
algorithmic approach that iteratively performs one dimensional pa-
rameter scans to optimize the gate performance. We find this method
closely mirrors what we would perform in our lab in the absence of the
Bayesian optimisation routine and hence we will use it as a benchmark.
In summary, the algorithm can be reduced to the following:

1. Roughly find the sideband detuning for desired gate time

2. Scan the center line detuning at 2x gate time and maximize the
population in pee

3. Scan the sideband detuning at the presumed gate time and
balance the populations pee and pgg, so that pee ≈ pgg

4. Scan the gate time and minimize the populations of peg + pge

5. Repeat steps 3 and 4

6. Final repeat of step 3

7. Repeat step 2

8. Scan the Phase after two gates

9. Repeat steps 7 and 8

To estimate the parameters from the 1D scans we employ standard
least square fitting. For the center line scan a Gaussian fit function is

125



126 manual gate tuneup

used on the pee population, the sideband detuning scan the difference
pee − pgg is fitted with a linear slope to balance the populations. For
the gate time scan the dip in the unwanted populations peg + pge is
fitted with an offset Gaussian. Lastly in the phase scan the population
difference pee − pgg is fitted with a fixed-frequency cosine function.

For each scan, both the number of points and the range of the scan
are free parameters that can be altered. To find reasonable combina-
tions of scan width and points we numerically simulate scans with
only a single mis-set parameter for combinations of ranges and points,
and fit the simulated data. We then choose the range with the smallest
distance between 13th and 87th percentile of the distribution of fitted
parameter values.

To estimate the performance of the entire routine, we simulate
100 executions of the algorithm described previously for different
numbers of points per scan (see Tab. A.1), for a gate with ideal values
of tg = 100µs, ωcl = 0kHz, ∆φ = 0. Each data point consists of 50

measurements. Results with extreme parameter values are discarded
(tg < 0µs, tg > 200µs, |2πωcl | > 10kHz, 2πδ > 20kHz, 2πδ < 0kHz),
which occurs in 21(2)% of times in all cases considered here. For the
remainder we determine the fidelity of the gate given the parameter
estimates in the same manner the Bayesian parameter estimates were
evaluated (see Fig. 5.16), except that the true value set in the simulation
can be substituted for the mean. The results for the different settings
can be seen in Fig. A.1.

It should be noted that the robustness of this algorithm could
be increased by introducing sanity checks to discard poor fits and
adaptively choosing if a parameter should be remeasured. However,
doing so will increase the number of measurements further.

We find that for all settings considered here the experimental results
obtained using the Bayesian algorithm outperform the simulations of
iterative parameter scans both in terms of median infidelity achieved
and measurements required even in the ideal case of a noise-free
system. Possible reasons for this include that the fit functions are only
approximations to the true shape and only part of the measurement
data is used for the fit. Furthermore corrections are always applied to

Table A.1: Number of points used in the scans for the different cases for a
1D parameter scan tuneup being considered here.

Case 1 Case 2 Case 3 Case 4

Points tg 4 8 16 16

Points δ 4 8 8 10

Points ωcl 4 6 8 12

Points ∆φ 4 6 8 10

Total Measurements 2000 3500 4800 5900
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Figure A.1: Simulation of manual tuneups using 1D scans for four different
measurement budgets compared to the data obtained using the
Bayesian method. The distribution of infidelities is shown as a
violine plot (shaded area), with median, quartiles and 5-95 per-
centiles indicated. For all four settings under consideration, the
method has a 21(2)% rate of failure. For all settings the median
simulated parameter infidelities are larger than the infidelities
obtained from the Bayesian method.

a single variable per scan, leading to correlated effects needing to be
corrected by a successive approximation.

In conclusion, the Bayesian algorithm outperforms a 1D manual
parameter scan even granting for the most optimistic outcome, and
in typical operation it is several times more efficient in the number of
required experimental shots.





B
Q U D I T G AT E N O I S E M O D E L

To better understand the limitations on the performance of the qudit
light-shift gate, we preform a simulation of the experiment to extract
the expected gate error given the known sources of noise in the system.

The gate error analysis is based on numerically integrating the Lind-
blad master equation with collapse operators that describe motional
heating and motional dephasing. All other noise sources (with the
exception of the local gate laser) are assumed to be slow on the time
scale of one experimental shot and thus are treated as static offsets
sampled from a normal distribution with standard deviations listed
in Table B.1 and averaged over 100 runs of the numerical integra-
tion. All input values are measured independently using the ions as
probes with appropriate techniques (e.g. sideband thermometry, Ram-
sey spectroscopy, Rabi spectroscopy, Stark shift measurements etc.).
When analysing the 729 laser intensity noise, we discovered further
pulse area variations between subsequent π pulses on timescales com-
parable to those presented during the gate operation. We thus include
an additional fast noise parameter that samples a new Rabi frequency
for each subsequent local pulse during a single gate simulation run.
The frequency noise for the local operations contains a contribution
from both the finite 729 nm laser linewidth and magnetic field noise.
Since each level in our qudit has a different magnetic field sensitivity,
we scale the value in Table B.1 by empirically measured coherence
times on the different transitions.

Since the action of these slow noise components is non-Markovian
we will observe a different error per gate depending on how many
gates we apply in succession as errors may build up coherently. To be
consistent with the decay fit method that we use to correct for SPAM

and extract the fidelity from the experimental data, all simulation
fidelities are extracted using an exponential fit to an 11 gate fidelity
decay curve.

The intrinsic two-qubit gate fidelity due to scattering and state decay
can be calculated analytically following the analysis in [138]. We addi-
tionally extend the D5/2 state error to be determined not just by the
gate length, but also the total time spent applying our generalised spin
echo local operations. Extending this analysis to higher dimensions
can be significantly simplified since the contributions to the scattering
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Error source Error Infidelity

d = 2 d = 3 d = 4 d = 5

Motional heating rate 15 ph/s 1.3× 10−4 2.3× 10−4 4× 10−4 7× 10−4

Motional coherence 16 ms 1.2× 10−3 2.2× 10−3 4× 10−3 5× 10−3

Motional mode occupation 0.1 ph 3× 10−4 2× 10−4 3× 10−4 1.2× 10−3

Gate Rabi frequency 1 % 3× 10−4 2× 10−3 5× 10−3 5× 10−3

Slow local Rabi frequency 0.6 % 6× 10−4 3× 10−4 8× 10−4 2× 10−3

Fast local Rabi frequency 0.7 % 3× 10−4 1× 10−3 1.3× 10−3 1.6× 10−3

Local Rabi imbalance 1 % 7× 10−4 5× 10−4 1.7× 10−3 7× 10−3

Gate laser freq. noise 2π × 200 rad/s 7× 10−4 9× 10−4 2× 10−3 3× 10−3

Local operation freq. noise 2π × 20 rad/s 1.5× 10−6 2× 10−3 6× 10−3 2× 10−2

Elastic & inelastic scattering 1.6× 10−4 2× 10−4 3× 10−4 3× 10−4

D5/2 state decay 1 s 8× 10−5 2× 10−4 5× 10−4 9× 10−4

Total 4.5× 10−3 1× 10−2 2.2× 10−2 4.7× 10−2

Table B.1: Error sources and the corresponding simulated infidelity for the
gate in qudit dimension d = 2, 3, 4, 5 based on measured noise
parameters.

error arising from scattering (both elastic and inelastic) from the D5/2
states are negligible. We thus obtain the d > 2 errors by scaling the
qubit error linearly by the appropriate gate time and laser intensity
and correct for the fraction of the initial superposition state present in
the S state for d > 2 relative to the qubit.
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Figure C.1: Temperature dependence of the frequency difference between the
TEM00 mode of the 674nm high-finesse cavity and the S1/2 ↔
D5/2 transition in 88Sr+. The error bars are smaller than the
marker size. The fit indicates a minimum of the frequency at a
temperature of −2.49± 0.16◦C.

The high-finesse cavities used for stabilizing the frequency of the
lasers driving the quadrupole transitions are constructed out of two
mirrors separated by a spacer made of ultra low expansion glass (ULE).
As the resonance frequency depends on the length of the cavity, it
is important to keep the length stable. The glass used is especially
designed to have a low coefficient of thermal expansion compared to
regular glass. Additionally, the spacer has a specific temperature called
the zero-crossing temperature (ZCT) where the density is maximal, and
the cavity thus shortest. This ZCT is targeted as the operating tempera-
ture for the cavity, as at this point the cavity length becomes first-order
insensitive to temperature fluctuations, increasing the stability of the
system.

The manufacturing process is aimed to produce a ZCT matching
room temperature to keep the requirements on the temperature sta-
bilization equipment simple, but it cannot be predicted exactly due
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to slight differences created during production of the glass, and the
mirrors and their coatings introducing an additional temperature
dependence, leading to differences between cavities.

For the 729nm cavity the ZCT was already known from previous
measurements[114], but the cavity for the 674nm laser had not been
evaluated. The frequency difference between ion and a TEM00 cavity
mode was recorded as a function of temperature (see Fig. C.1). The
measurements are then fitted with a quadratic curve, from which an
optimal value of −2.49± 0.16◦C was determined.



D
S O F T WA R E

For controlling and managing the experiment, we utilize several pieces
of custom software. More information about the control software TrICS

and the sequencer can be found on the UIBK git repository and the
thesis of Daniel Heinrich[100] We also employ small programs to
control individual subsystems, which are described for reference in
the following:

d.1 cryologger

The cryologger software is used to combine all the electronic instru-
ments related to the cryostat system, allowing us to display their status
and control them with a single GUI (Appendix D.1). The peripherals
are connected via COM-ports to the PC. The monitoring function
includes combining the temperature readings, pressure gauge reading,
and the data of the floor scale, and sending them to the InfluxDB
time-series database. The two heaters can be programmed, and their
status is displayed.

The dewar pressure controller regulates the set voltage of the elec-
tronic pressure valve on the exhaust of the storage dewar. A slow PID
adjusts the pressure depending on the measured temperature of the
coldfinger. As the possible output range is limited to 0− 150mbar,
the integrator value stops increasing/decreasing if it would move the
control out of range to prevent integrator windup. When changing
the set point an experimentally determined offset value is applied as
a feed-forward to increase the responsiveness.

The pressure controller allows scheduling events in advance, where
the set point is changed at predetermined times to initiate a cool down.

d.2 bertha server

For interfacing the voltage generation hardware with our control
software we developed BerthaServer. This python-based software
communicates over ethernet with the voltage generation hardware
provided by our collaborators from Mainz.

It offers a user interface for setting parameters corresponding to the
position and shape of the desired potential, which are the translated to
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Figure D.1: User Interface of the Cryologger software for controlling the
cryostat.

voltage sets to be applied to the individual electrodes. For debugging
purposes, voltage offsets can be applied to arbitrary electrodes.

It also offers to define voltage ramps, which can either be precom-
puted lists of voltage sets, or alternatively the voltage sequences can
be defined in code as parametrized functions. These sequences are
then parsed to a sequence of voltage sets to be applied, which are then
sent to the hardware.

The software can receive remote instructions from trics to update
its parameters, making it possible to take measurements as function
of these parameters.

d.3 wavemeter lock

The wavemeter lock consists of 3 parts. The wavemeter itself1 is linked
to a computer on which the manufacturer-provided control software
is running. To accept external commands, we run a small server on
this computer that accepts incoming commands, and executes them
via the exposed functions of the library wlmData.dll on that machine
(Appendix D.3). It can also connect to an additional 4-channel fiber
switch2 we use to expand the number of ports available, as the switch

1 High Finesse Wavemeter WS-8
2 Leoni Fiber Optical Switch mol 1x4 - SI50/125

Figure D.2: Schematic of the wavemeter lock.
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with the wavemeter has only 8 channels. On the main control computer
a GUI is available that can enable measurement channels as well as
their associated lock, and the desired target frequency can be set. It can
also trigger the calibration of the wavemeter via the stable reference
provided by the 729nm laser and switch the channels of the additional
fiber switch. With this setup, we can lock 6 lasers (3 per species),
monitor the frequencies of the 2 photo-ionization lasers, the Raman
laser, and the 674nm laser using the additional switch, with the last
port on the wavementer used for the stable reference.

d.4 raspbudi

The Raspbudi is a raspberry-pi based controller for the parallel bus
system[101] that is used to control DDS frequency and DAC voltage
sources. These devices are mounted in a 3HE high subrack that can
be installed in a 19” rack.

The raspberry-pi is mounted on a Eurocard format PCB to interface
it with the back plane of the 3HE subrack. The GPIO pins are used
to drive the bus, controlled by the server running on the raspberry-pi
that accepts commands from clients via ethernet. The raspberry-pi is
powered directly from the 5V rail of the bus.

As clients it can be either integrated into TrICS by extending it via
the UserAPI interface, or a standalone Flask web app can be used.
Other clients can easily be implemented, with only a socket connection
being required.





E
AT O M I C P R O P E RT I E S

In the table E.1 the relevant transition frequencies for the ion trapping
experiments with 40Ca+and 88Sr+are shown. Table E.2 shows the state
lifetimes and their decay channels. This data has been taken from the
NIST Atomic Spectra Database[160].

Transition wavelength in air (nm)

40Ca+

4S1/2 ↔ 4P1/2 396.8469 [161]

4S1/2 ↔ 4P3/2 393.3663 [161]

4S1/2 ↔ 3D3/2 732.389 [161]

4S1/2 ↔ 3D5/2 729.147 [161]*

4P1/2 ↔ 3D3/2 866.214 [161]

4P3/2 ↔ 3D3/2 849.802 [161]

4P3/2 ↔ 3D5/2 854.209 [161]
40Ca 4s1S0 ↔ 4p1P1 422.6728 [162]

88Sr+

5S1/2 ↔ 5P1/2 421.55193 [163]

5S1/2 ↔ 5P3/2 407.77094 [163]

5S1/2 ↔ 4D3/2 686.8171 [164]†

5S1/2 ↔ 4D5/2 673.8392 [165]‡†

5P1/2 ↔ 4D3/2 1091.4874 [163, 166]

5P3/2 ↔ 4D3/2 1003.6654 [163, 166]

5P3/2 ↔ 4D5/2 1032.7309 [163, 166]
88Sr 5s1S0 ↔ 5p1P1 460.7331 [163]

Table E.1: Transition frequencies of the relevant optical transitions in
40Ca+and 88Sr+for this work.

* The transition frequency has been measured as 411042129776401.7(1.1)Hz[167]
† Calculated Ritz wavelength from upper and lower state
‡ The transition frequency has been measured as 444779044095484.6(1.5)Hz[168]
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State Lifetime Decay channel

40Ca+

4P1/2 7.10(2)ns [169] 4S1/2 0.93565(7) [170]

3D3/2 0.06435(7) [170]

4P3/2 6.92(2)ns [169] 4S1/2 0.9347(3) [171]

3D3/2 0.00661(4) [171]

3D5/2 0.0587(2) [171]

3D3/2 1.20(1)s [172]

3D5/2 1.168(7)s [172]

88Sr+

5P1/2 7.90(10)ns [173] 5S1/2 0.9449(5) [174]

4D3/2 0.0551(5) [174]

5P3/2 6.32(10)ns [173] 5S1/2 0.9406(2) [175]

4D3/2 0.0063(3) [175]

4D5/2 0.0531(2) [175]

4D3/2 0.435(4)s [176]

4D5/2 0.3908(16)s [165]

Table E.2: State Lifetimes and branching ratios for different decay channels
for the states utilized in 40Ca+and 88Sr+.
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