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Abstract

In this thesis a feed-forward compensation system for magnetic field noise at
quantum experiments with trapped ions is presented. This compensation system
is realised at two experimental set-ups, one for quantum simulations and the other
for precision spectroscopy. In both experiments, the qubit is encoded in a pair
of electronic levels of a trapped 40Ca+ ion. The compensation system is used to
suppress the ambient magnetic field noise in the laboratories induced by the 50Hz
power line. A simple technical approach is used for the feed-forward system based
on magnetic field coils and a function generator to create a modulated magnetic
field. The feed-forward compensation system works by applying an out-of-phase
magnetic field to destructively superpose the magnetic field noise at the location
of the ions. For the function generator, a programmable RedPitaya board is used.
For this board a controlling software was developed within this work, which al-
lows a fast operation of the compensation system. Furthermore an experimental
sequence where the ion qubits are used as sensor for quantifying the magnetic field
noise is developed. This experiment relies on the CPMG π-pulse sequence.

3



Zusammenfassung

In dieser Arbeit wird ein Feed-forward Kompensationssystem zur Unterdrück-
ung von Magnetfeldstörungen bei quantenphysikalischen Experimenten mit ge-
fangenen Ionen vorgestellt. Das System wurde erfolgreich an zwei unterschied-
lichen experimentellen Aufbauten realisiert. Ein Aufbau wird für die Durchführung
von Quantensimulationsexperimenten genutzt, wohingegen der andere der Präzi-
sionsspektroskopie dient. In beiden Experimenten wird das Qubit in einem Paar
elektronischer Zuständen eines 40Ca+ Ions realisiert. Das Feed-forward System
wird verwendet, um die durch die 50Hz Netzspannung erzeugten Magnetfeld-
störungen im Labor zu unterdrücken. Das System basiert auf Magnetfeldspulen
und einem Funktionsgenerator zur Erzeugung eines modulierten Magnetfeldes. Die
Kompensation wird dadurch erreicht, dass ein gegenphasiges Magnetfeld im Zen-
trum der Falle erzeugt wird und destruktiv mit der Magnetfeldstörung interferiert.
Als Funktionsgenerator wird ein programmierbares RedPitaya Board verwendet.
Zur einfacheren Bedienung des Kompensationssystems wurde eine Software en-
twickelt. Des Weiteren wurde eine Experimentsequenz entwickelt, die es ermög-
licht die Magnetfeldstörung mit den Ionenqubit zu messen. Diese Sequenz basiert
auf der CPMG π-Pulssequenz.
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1. Introduction

”
And I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum mechanical, and
by golly it’s a wonderful problem, because it doesn’t look so easy.”

With these words Richard Feynman ended his famous seminal lecture
”
Simu-

lating Physics with Computers” in 1981 and introduced the idea of a quantum
simulator [1]. In a quantum simulator, the quantum system of interest is simu-
lated by another quantum system. The quantum system used for simulation has
to be well-known and controllable. Following this concept, experiments based on
different quantum systems have been developed to perform such simulations [2]:
Trapped ions [3], cold atoms in optical lattices [4], superconducting circuits [5] and
more, with all of them having different strengths and weaknesses. For quantum
simulators two approaches can be distinguished: Analogue and digital quantum
simulator. In the analogue approach the system of interest is directly mapped to
the controllable simulation system. This limits the usage of an analogue quantum
simulator to a particular set of problems [6]. The digital quantum simulator is a
quantum system with a set of universal quantum operations (gates). In this ap-
proach the state of the system of interest is encoded in the quantum information
carrier and the dynamics are simulated with sequence of quantum operations. This
simulator can, to some extent, simulate any local quantum system, which makes
the digital quantum simulator an universal simulator and similar to a quantum
computer [7]. Ignacio Cirac and Peter Zoller theoretically proposed trapped ions
as a platform for quantum computing [8]. In this system the ions serve as carrier
for the quantum information and laser beams are used for manipulating and read
out of the quantum information. Shortly afterwards the first quantum gate has
been performed on a single ion [9]. Laser cooling allows the crystallisation of ions
in the harmonic potential of the trap [10]. In such an ion crystal the internal en-
ergy levels as well as the vibrational modes can be exploit. In the group of Rainer
Blatt in Innsbruck, the implementation of a quantum gate operation between two
individual ions was realized in 2003 by coupling the ions through their quantized
vibrational motion [11], and soon after three-qubit entangled states with ions have
been created [12]. One advantage of using trapped ions is the possibility of con-
trolling and measuring individual ions. In Innsbruck, the individual ion addressing
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1. Introduction

has been recently realised in a quantum experiment with a long ion string with 51
ions [13]. Such a long ion string extends across a length of 200− 300µm.
An ideal quantum experiment would be perfectly isolated from the environment

and controlled with very high precision. Unwanted influences from the environ-
ment lead to disturbance of the experiment. To achieve an unperturbed quantum
system, it is one goal of quantum physicists to either design a setup providing an
excellent isolation from the environment, or to introduce feedback or feed-forward
mechanisms capable of compensating the disturbances. One of such disturbances
is the ambient magnetic field in the laboratory. The ambient magnetic field is
among others induced by electrical devices and power supplies. Especially the
50Hz electricity mains (AC power line), powering the laboratory devices, pro-
duces an alternating magnetic field. Nonlinear loads lead to the occurrence of
higher harmonics of 50Hz. One example of such a nonlinear load are DC power
supplies (single-phase diode bridge rectifier) commonly used in powering PCs and
screens. These electrical devices disturb the harmonic signal and give rise to the
odd higher harmonics of 50Hz (150Hz, 250Hz, ...)[14]. For qubits whose trans-
ition frequency depends to first order on the strength of the magnetic field, the
field leads to a shift of the transition frequencies of the ion. Magnetic field noise
further leads to decoherence of the qubit [15]. Hence ion qubit experiments require
an environment with low magnetic field noise.
In this master project, a feed-forward compensation system was developed to

suppress magnetic field noise induced by the AC power line. On the technical
side, the magnetic field noise compensation system is comprised of a pair of mag-
netic field coils and a function generator to generate a magnetic field in the center
between the two coils. As a function generator, a RedPitaya STEMLab board is
used. A software was developed to control the compensation system. It includes a
graphic interface, which allows the user to operate the system manually as well as
in a semi-automatic way. Furthermore experimental laser pulse sequences were de-
veloped to measure the magnetic field by sensing the modulation of the transition
frequency of the ions. The sensing protocol makes use of CPMG sequences (after
Carr, Purcell, Meiboom and Gill)[16], which are generalizations of the spin echo
technique. With this sequence it is possible to measure noise with fixed frequen-
cies. The compensation system was successfully implemented in two experiments:
The quantum simulation experiment (QSIM) and the precision spectroscopy ex-
periment (Precision).
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2. Theoretical background

In this first theoretical section, the basic concepts of quantum experiments with
trapped ions are introduced, starting with the principle of Paul traps. The second
part focuses on quantum physics, especially quantum optics. Later the properties
of Ca+, the ion species used in the experiment, are summarized. In the end of this
section cooling of the ion is described in more detail.

2.1. The Paul trap

In order to trap charged particles, the confinement in all three directions has to
be achieved. Because of the Laplace equation △Φ = 0, confinement in all three
directions with a purely static electric field is not possible. To fulfill the equation,
the curvature in at least one direction has to be negative. One solution to create
confinement in all three directions consists in using an oscillating field, which is
the operating principle of a Paul trap. [17]
Linear Paul traps and the classical dynamics of ions in the trap have been dis-

cussed in a couple of theses describing the QSIM setup and quantum experiments
carried out with this setup (see [18, 19] or more at the QSIM page of quantu-
moptics.at). In the following, the key principles are briefly summarized. The
potential in the center of the trap can be approximated by an electric quadrupole
field [20]

Φ(x, y, z, t) = URF cos (ΩRF t)
α̃x2 + β̃y2 + γ̃z2

2r20
+ UDC

αx2 + βy2 + γz2

2r20
(2.1)

with the RF-potential frequency ΩRF , the amplitude URF and the static amplitude
UDC . The characteristic length scale r0 is on the order of the distance between
the ion and the trap electrodes. The dimensionless geometric factors α, β, γ and
α̃, β̃, γ̃ account for geometric differences between the electrodes of a real trap
and ideal hyperbolic electrodes [18]. The geometric factors have to satisfy the
Laplace equation. In the linear trap configuration a static field is applied to the
tip electrodes, as drawn in figure 2.1 (a), and the oscillating field to a pair of blade
electrodes. This yields the condition for the geometric factors −(α + β) = γ > 0,
α̃ = −β̃ and γ̃ = 0, to trap positive ions in an ideal linear Paul trap. The classical
equation of motion of a particle with charge Q and mass m is obtained by the
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2. Theoretical background

differential equation m¨⃗r = −∇QΦ(r⃗, t). The motion of an ion governed by this
equation is given by three uncoupled differential equations for the ion’s coordinates,
with the formula for the x direction

d2x

dζ2
+ (ax − 2qx cos(2ζ))x = 0, (2.2)

where the other coordinates can be treated analogously. The equation has the
form of the Mathieu differential equation with the dimensionless parameters q, a
and ζ [21]

ζ =
ΩRF t

2
, qx =

4α̃QURF

mΩ2
RF r

2
0

= −qy, ax =
2αQUDC

mΩ2
RF r

2
0

= ay = −az
2
. (2.3)

This equation can be solved with the Floquet theorem with a general solution
x(t) = e−iβxζu(ζ) including a periodic function u(ζ) and the characteristic exponent
βx(ax, bx), which is a function of the parameters a and b. In the case βx is real,
the trajectory is stable (blue/red shaded areas in graph 2.1(b)) and for a complex
βx the trajectory is unstable. For the lowest stability zone shown in figure 2.1(d),
the ion’s trajectory can be approximated for ax, qx ≪ 1 by

x(t) ≈ A cos (ωxt)
(
1− qx

2
cos (ΩRF t)

)
(2.4)

with an amplitude A [20]. The ion performs a harmonic motion with the frequency

ωx = ΩRF

2

√
q2x
2
+ ax, which is called secular motion. On top of that the ion oscil-

lates with the RF-potential frequency, this is called micro motion. In order that
the secular frequency does not become imaginary and the ion does not follow an

unstable trajectory, the lower bound for the ax parameter is q2x
2
> −ax. This is

shown in the first stability zone in figure 2.1(d) by the lowest blue curve. Similar,

an upper bound for ay can be found by using the relation (2.3)
q2y
2
> ay, which is

the upper red curve in figure 2.1 (d). To confine the ion in both directions the
trapping parameters have to be chosen such that a and q lay in the region between
the two curves.
The equation of motion (2.4) is obtained by carrying out the secular approx-

imation, where the location of the ion x(t) = x(t) + ξ(t) is split in a slow vary-
ing part x and a fast one ξ. This allows to separate the differential equation to
mξ̈(t) = −∂xQΦ(x, t) and for the slow varying part mẍ(t) = ⟨−∂xQΦ(x, t)⟩ with
the time average of the force. Therefore the secular frequency ωx ≪ ΩRF has to
be smaller than the driven frequency, which is comparable to the condition for
equation (2.4).
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Figure 2.1.: Linear Paul trap
Graphic (a) illustrates the geometry of a linear Paul trap. The radial blades create a
RF-potential in the x-y plane (rad). The tips create a static potential along the z-axis
(ax). The photo in (b) shows the trap used in the QSIM experiment. Here the two tip
electrodes and two of the four blade electrodes can be seen. In front of the trapping
electrodes are the electrodes for compensating the micro motion (see text to equation
(2.4)). The photo is taken from [18]. The lower graphs show the stability diagram for the
solution of the Mathieu equation (2.2). The stability diagrams are created by calculating
the characteristic parameters with the python functions mathieu a and mathieu b from
the library scipy.special [22]. The ion trajectory is stable for values of the parameters a,
q in the shadowed area (red for y confinement and blue for x confinement). Confinement
in both directions is achieved by choosing parameters in the cross section of the red and
blue graphs. The graphic (d) shows a zoom in the lowest stability region. Close to the
origin (i.e. ax, qx ≪ 1) the trajectory can be approximated by equation (2.4).

2.2. Quantum bits

The basic building block for classical computing is the bit. Analogous to this clas-
sical bit one can introduce the quantum bit, or short qubit. A qubit is comprised
of two states, |0⟩ and |1⟩ of a quantum mechanical two-level system or also called
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2. Theoretical background

spin-1
2
system.1 Compared to the classical bit state, which can be either 0 or 1,

the qubit can also be in a superposition state |ψ⟩ = α |↓⟩ + β |↑⟩. The complex
coefficients of the linear combination α and β are called the probability amplitude.
They provide information of the probability to find the state in |↑⟩ with a probabil-
ity |β|2, or in |↓⟩ with a probability |α|2 after a measurement. Due to the fact that
the coefficients represent a probability they are normalized such that the equation
|α|2 + |β|2 = 1 holds. Using these properties the state of a qubit can be repres-
ented as a vector in a two-dimensional complex vector space. This vector space

is spanned by the computational basis vectors |↓⟩ =

(
0
1

)
and |↑⟩ =

(
1
0

)
. This

geometrical representation of the qubit state can be achieved by using spherical
coordinates

|ψ⟩ = eiγ
(
cos

(
θ

2

)
|↑⟩+ eiφ sin

(
θ

2

)
|↓⟩
)

(2.5)

with the azimuthal angle φ and the polar angle θ. The global phase γ can be
neglected, because in general we are interested in measurement outcomes, which
are calculated by the absolute square of the state projected to the measurement
basis P↑ = | ⟨↑|ψ⟩ |2. Hence the global phase is not measurable by measuring the
probability in a two-level system. In the case of a multi level system, e.g. 3-level-
system, the phase γ of the two states matters. Figure 2.2 shows this representation
on the so called Bloch sphere. The basis vectors are set to the poles of the sphere
and the superposition states |±⟩x = 1/

√
2(|↑⟩ ± |↓⟩) and |±⟩y = 1/

√
2(|↑⟩ ± i |↓⟩)

are set to the x- and y-axis. [23]
The qubit itself is not sufficient for computing, operations, or more precisely

the manipulation of the qubit by gates is needed. Single qubit operations can be
described by rotations of the state vector on the Bloch sphere. Treating the qubit
as a (pseudo) spin-1

2
system, the cartesian components of the spin observable are

described by the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.6)

with the eigenvectors |↑⟩ and |↓⟩ for σz, |±⟩x for σz and |±⟩y for σy. A rotation
around the z-axis by an angle θ is then mathematically described by the rotation
operator using σx

Uz(θ) = e−i θ
2
σz = cos

(
θ

2

)
1− i sin

(
θ

2

)
σz =

(
e−i θ

2 0

0 ei
θ
2

)
. (2.7)

1In this work the convention |0⟩ = |↓⟩ (|1⟩ = |↑⟩), referred to the spin-1/2 system, is used in
order to not confuse with the Fock states |0⟩ , ... |n⟩.
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|↑⟩

|↓⟩

|+⟩y

|+⟩x
φ
θ

Figure 2.2.: Bloch sphere
The Bloch sphere is a way to illustrate the quantum mechanical two-level system. The
eigenstates |↑⟩ and |↓⟩ are set to the poles of the sphere and the superposition states to
the x-,y-axis. The state vector is presented in red with its spherical coordinates θ and
φ.

Here Euler’s formular (see C) is used. A rotation around an axis in the x-y-plane
is described by the rotation operator

Uφ(θ, φ) = e−i θ
2
σφ = cos

(
θ

2

)
1− i sin

(
θ

2

)
σφ

=

(
cos
(
θ
2

)
−ie−iφ sin

(
θ
2

)
−ieiφ sin

(
θ
2

)
cos
(
θ
2

) )
(2.8)

with σφ = cos(φ)σx +sin(φ)σy. For example, a rotation by an angle θ = π around
|+⟩y performs a spin flip from |↓⟩ to |↑⟩ as illustrated in 2.3(a)

Uφ

(
π,
π

2

)
|↓⟩ =

[
cos
(π
2

)
1− i sin

(π
2

)
σy

]
|↓⟩ = − |↑⟩ .

A rotation by θ = π
2
around |x⟩+ rotates the state |↓⟩ into the equatorial plane as

illustrated in 2.3(b)

Uφ

(π
2
, 0
)
|↓⟩ =

[
cos
(π
4

)
1− i sin

(π
4

)
σx

]
|↓⟩ = −i 1√

2
(|↑⟩+ i |↓⟩) ≡ |+⟩y .

As described previously the global phase i or −1 can be neglected.
In the real experiment, measurement results are obtained by averaging over

n quantum projection measurements. The standard deviation of the obtained
outcome ⟨P↑⟩ is

∆P↑ =

√
P↑(1− P↑)

n
, (2.9)

which is called quantum projection noise [24].
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(a)
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Figure 2.3.: Rotation on the Bloch sphere
The first Bloch sphere (a) illustrates a spin flip, where the state vector in red is rotated
around the y-axis from |↓⟩ to |↑⟩. In the second Bloch sphere (b) a quarter rotation of
the state vector to the state |+⟩y is shown.

2.3. Two-level ion interacting with laser beam

In this section the interaction of a trapped ion with a laser beam is introduced.
Here, the ion is treated as two-level system assuming that only two levels of the
ion are coupled by the laser.
The ion’s motion in the trapping potential is represented as a quantized one-

dimensional harmonic oscillator. Similar to the classical case, the energy of a
particle in a harmonic potential is the sum of the kinetic energy Ekin = p̂2/2m and
the potential energy V = 1/2mν2x̂2 of the harmonic potential with the momentum
operator p̂ and the space operator x̂. Using the ladder operators, which were first
introduced by Dirac [25], we can rewrite the operators

x̂ =

√
ℏ

2mν︸ ︷︷ ︸
x0

(
a† + a

)
and p̂ = i

√
ℏmν
2

(
a† − a

)
. (2.10)

With these operators, the Hamiltonian of the harmonic oscillator can be expressed
as

HT = ℏν
(
a†a+ 1/2

)
, (2.11)

where the product of the ladder operators N = a†a is called number operator.
The eigenvectors of the number operator N |n⟩ = n |n⟩ are the Fock states. Due
to the fact that the Hamiltonian is linear dependent on N the Fock states are also
eigenstates of the harmonic oscillators. These states describe the discrete motional
states of the ion in the trap with an energy separation of ℏν. Their eigenvalues
n ∈ N correspond to the number of excitation in the harmonic oscillator, also
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2. Theoretical background

called number of motional quanta or phonons. As illustrated in figure 2.4(a), the
annihilation operator a destroys a phonon, whereas the creation operator a† creates
a phonon.
The internal degrees of freedom of the ion are described by the Hamiltonian

HA =
ℏω0

2
σz, (2.12)

where the basis vectors of σz are the ground state |↓⟩ and the excited state |↑⟩ of
the system and ℏω0 is the energy difference between the states. This definition
assumes that the zero point of the energy is set half-way between the energy of
the two states. A laser beam changes the state of the ion. This can be described
by the Hamiltonian

Hl = ℏΩcos(kx− ωlt+ φl)σx (2.13)

with the laser properties given by the wave vector k, the laser frequency ωl and the
laser phase φl. The coupling strength between the laser and the ion is described
by the Rabi frequency Ω. To illustrate the interaction between the ion and the
laser, a transformation to the interaction picture with respect to H0 = HA + HT

with U0 = exp(−i/ℏH0t) is performed:

HI = U †
0 HAFU0

=
ℏΩ
2
eiνta

†a
(
eiη(a

†+a)e−i(ωlt−φl) + c.c.
)
e−iνta†ae

iωt
2

σzσxe
− iωt

2
σz . (2.14)

The space component is rewritten as x = x0
(
a+ a†

)
, introducing the Lamb-Dicke

parameter2

η = k

√
ℏ

2mν
. (2.15)

This parameter describes the ratio between the size of the ground state wave packet
of the harmonic oscillator and the wavelength of the laser. It is a measure for the
comparison of the laser length scale with the ion wave packet. Using the properties
of the Pauli matrices and the ladder operators, the interaction Hamiltonian (see
Appendix C) can be further simplified

HI =
ℏΩ
2

(
eiη(â

†+â)e−i(ωlt−φl) + c.c.
)
(cos(ω0t)σx − sin(ω0t)σy) , (2.16)

where â† = a†eiνt is the time-dependent creation operator. Introducing the detun-
ing ∆ = ωl −ω0 of the laser frequency from the frequency of the atomic transition

2In more dimensions the overlap between the axis i of the harmonic oscillator and the wave
vector has to be calculated η = k⃗ · êi

√
ℏ/2mνi
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2. Theoretical background

the rotating wave approximation, where the rapidly oscillating terms ωl + ω0 are
neglected, simplifies the Hamiltonian to

HI =
ℏΩ
2

(
eiη(â

†+â)e−i(∆t−φl)σ+ + e−iη(â†+â)ei(∆t−φl)σ−

)
. (2.17)

Here the ladder operators for the two-level system σ± = 1/2(σx±iσy) are used. The
laser couples the motion of the ion in the trap with the internal state of the ion, if
the detuning corresponds to ∆ = mν, the motional transition |↓, n⟩ ⇐⇒ |↑, n+m⟩
takes place. In the Lamb-Dicke regime, defined by k2σ2(x̂) = η2(2n+ 1) ≪ 1, the
wave packet of the ion in the trap is smaller than the laser wavelength.3 In this
case the exponential function can be Taylor-expanded into

eiη(â
†+â) = 1+ iη(â† + â)− η2

2
(â† + â)2 + ... (2.18)

and truncated after a few terms. Due to the fact that in the Lamb-Dicke regime
the transitions, which change the motional quanta by ∆n > 1, are suppressed
[26], terms which include â†â† or ââ are neglected. Using the Taylor expansion
in formula (2.17) there are three transitions that can be excited by choosing the
corresponding detuning ∆.

• The carrier transition, where the detuning is ∆ = 0, does not change the
motinonal quanta |↓, n⟩ ↔ |↑, n⟩. The corresponding interaction Hamilto-
nian is HI = ℏΩc/2 (e

−iφl |↑, n⟩ ⟨↓, n|+ eiφl |↓, n⟩ ⟨↑, n|) with the effective
coupling strength Ωc = Ω(1− η2n).

• In the case that the detuning ∆ = ν corresponds to the trap frequency
the motional quanta is changed by ∆n = +1 and the transition |↓, n⟩ ↔
|↑, n+ 1⟩ takes place. This is also called blue-sideband transition, with its re-
duced Hamiltonian HI = iℏΩb/2(e

−iφl |↑, n+ 1⟩ ⟨↓, n|− eiφl |↓, n⟩ ⟨↑, n+ 1|).
The coupling strength is modified to Ωb = η

√
n+ 1Ω.

• For the detuning ∆ = −ν a transition |↓, n⟩ ↔ |↑, n− 1⟩ takes place. This is
the so called red-sideband transition with an interaction Hamiltonian of the
form HI = iℏΩr/2(e

−iφl |↑, n− 1⟩ ⟨↓, n| − eiφl |↓, n⟩ ⟨↑, n− 1|). The effective
coupling strength for this transition is Ωr = η

√
nΩ.

The interaction between an ion and a laser pulse is described by the unitary time
evolution operator U (θ, φl) = exp

(−iHI t
ℏ

)
. For the case of the carrier transition,

the time evolution operator has the form

U (θ, φl) = cos

(
θ

2

)
1− i sin

(
θ

2

)(
e−iφlσ+ + eiφlσ−

)
(2.19)

3The size of the wave packet is calculated σ2(x̂) = ⟨x̂2⟩ − ⟨x̂⟩2 with ⟨x̂⟩ = ⟨ψ| x̂ |ψ⟩
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2. Theoretical background

(a)

|↓⟩

|↑⟩

ω0

ωl

∆

⊗
V

|0⟩

|1⟩

|2⟩
ν

â†â

(b)

|↓, n− 1⟩

|↑, n− 1⟩

|↓, n⟩

|↑, n⟩

|↓, n+ 1⟩

|↑, n+ 1⟩

ω0ω0 − ν
ω0 − ν

Figure 2.4.: Level diagram of two-level system and QM harmonic oscillator
The illustration (a) shows the internal states and the motional states. The energy levels
of the two-level system with ground state |↑⟩ and excited state |↓⟩ are separated by the
energy ℏω0. Additionally the laser frequency ωl with the detuning ∆ from the energy
level is drawn. The second part shows the levels of the harmonic oscillator separated by
ℏν and the Fock states |0⟩,... |n⟩. The creation (annihilation) of a phonon by application
of the ladder operators â† (â) are shown with arrows. The combined energy levels of the
two-level system and the harmonic oscillator and the transitions are presented in (b).
The carrier transition between the states |↓, n⟩ ↔ |↑, n⟩, drawn in black, is separated
by ω0. The two sidebands separated by ω0 ± ν, which correspond to the transition
|↓, n⟩ ↔ |↑, n± 1⟩, are drawn in their corresponding color between the states.
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2. Theoretical background

with the pulse area θ = Ωt. This corresponds to a rotation on the Bloch sphere
with a rotation axis set by the laser phase ϕ and the rotation angle by the pulse
area θ as described in the section before. From this we get two important classes
of laser pulses.

• The π-pulse, where the pulse area is Ωt = π, transfers the ion from the
ground to the excited state |↓⟩ → |↑⟩ (or vice versa).

• The pulse, which transfers the ion from the ground to the superposition
state, is called π

2
-pulse because the pulse area equals Ωt = π

2
.

2.4. Atomic structure of Ca+

In this experiment the cation of the earth alkali atom calcium Ca+ is used. The
most common isotopes with abundance 97% and 2% [27] are 40Ca and 44Ca. Both
ions have zero nuclear spin, therefore no hyperfine splitting, which simplifies the
level scheme of the ions. As the ion has one valence electron, it has a level structure
similar to the one of alkali atoms. A two-step photoionization of neutral calcium
atoms enables isotope-selective loading of ions into the trap. Thereby a tuneable
422 nm laser, which is tuned to the frequency of which selects the isotope to be
loaded, is used to excite one electron from the ground state 4s2 2S0 of neutral
calcium to the state 4s4p2P1. In the second step the atom is ionized using a
375 nm laser. The level scheme of 40Ca+ is shown in figure 2.5. An external
magnetic field B(t) gives rise to a splitting of the fine structure-levels into 2j + 1
Zeeman sublevels. For the low magnetic fields used in the experiments, this so
called Zeeman-effect shifts the energy of a transition by

∆(t) =
µB

ℏ

(
g′jm

′
j − gjmj

)
︸ ︷︷ ︸

γ

B(t) (2.20)

with the Bohr magneton µB, the Landé g-factors gj and the magnetic quantum
numbers mj,m

′
j of each state.4 In this master thesis two different approaches

for encoding a qubit in a Ca+ ion were employed, where the qubit is encoded
in different states. The first system, called the optical qubit, uses the quadrupole
transition between the ground state |↓⟩ ≡

∣∣42S1/2,m = 1/2
〉
and

∣∣32D5/2,m = 5/2
〉

as excited state |↑⟩. Using the above formula with gj(S1/2) ≈ 2 and gj(S5/2) ≈ 1.2
gives a magnetic field sensitivity γ = 2 for this transition. The second system,
called ground state qubit, uses a Raman transition and the qubit is encoded in∣∣42S1/2,m = −1/2

〉
≡ |↓⟩ and

∣∣42S1/2,m = 1/2
〉
≡ |↑⟩. The magnetic field sensit-

ivity is basically the same to the value for the quadrupole transition.
4useful value µB/ℏ ≈ 2π · 1.399MHz/G
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mj = −5/2
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732 nm

729 nm

393 nm

397 nm

854 nm

866 nm

Figure 2.5.: Level diagram of Ca+

The diagram shows the relevant levels and transition wavelengths of 40Ca+. The qubit
is encoded in the Zeeman sublevels of 42S1/2 and 32D5/2. The values for the transition
wavelengths are taken from [27].

2.5. Laser cooling

To work with ion qubits, the ions should ideally be in the motional ground state.
To cool hot ions, two cases can be distinguished. In the first case the hot ions
have a linewidth Γ broader than the trap frequency ν, i.e. ν ≪ Γ. In this case
the linewidth is broader than the spacing of the oscillator levels, which results in
unresolved sidebands. The cooling process used in this state is Doppler cooling. In
the latter case the ion linewidth is smaller than the trap frequency ν ≥ Γ and the
sidebands become resolved. This property enables cooling of the ions by selective
excitation of the red sideband; accordingly, the cooling process has been named
sideband cooling.[20, 28]
The absorption of a photon gives the ion a momentum kick in the direction of the

laser k vector. The spontaneous emission does not change the ion’s momentum on
average, because it takes place in a random direction. The avarage kinetic energy
change Erec = ℏ2k2/2m given by this recoil can be related to the trap frequency ν
via

η2 =
Erec

ℏν
=

ℏk2

2mν
(2.21)

the Lamb-Dicke parameter (2.15). In the Lamb-Dicke limit η ≪ 1 the energy
change caused by the photon is way smaller than the energy of a motional quanta,
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2. Theoretical background

which is then the case for resolved and unresolved sidebands. In this limit the effect
of cooling (and heating) can not be explained by the classical picture of Doppler
cooling, as used for atomic gases, but with cooling via the sidebands by changing
the motional quanta. For ions at room temperature the mean motional quantum
number is n ≈ 106, which is not in the Lamb-Dicke regime, and transitions, which
change the motional quanta by ∆n < 1, are more likely [26]. While in the regime of
unresolved sidebands, the direct addressing of particular sidebands with the laser
is not possible (see figure 2.6(a)), which is possible in the resolved sideband regime
ν ≥ Γ (see figure 2.6(b)), the underlining mechanism is the same. In the following
the cooling dynamics (in the Lamb-Dicke regime) are described by a rate equation
model that considers transitions between neighboring motional states. The photon
scattering rate

R = Γρee = Γ

(
Ω

Γ

)2
1

1 +
(
2∆
Γ

)︸ ︷︷ ︸
W (∆)

(2.22)

is given by the decay rate Γ of the excited state and the excited state probability
ρee with the line profile W (∆) in the small intensity limit Ω ≪ Γ. There are two
ways, to get from the state |↓, n⟩ → |↓, n− 1⟩ shown in figure 2.6(c). The first is
absorption on the carrier transition with a probability (Ω/Γ)2W (∆) and emission
on the sideband with the rate (n2ηΓ). The second way is absorbing on the red
sideband with probability (n

√
ηΩ/Γ)2W (∆−ν) followed by emission on the carrier

transition with the rate Γ. The rates of both processes can be added up to the
cooling rate

R− = nη2
Ω2

Γ
(W (∆− ν) +W (∆)) . (2.23)

The heating rate R+ can be derived analogously. The rate coefficient A+ = (n +
1)R+ and A− = nR− are

A± =
η2Ω2

Γ
(W (∆∓ ν) +W (∆)) . (2.24)

The steady state solution n = A+/(A− + A+) for the mean vibrational number is
reached when heating and cooling processes are balanced. To reach a small phonon
number n the ratio A−

A+
between the cooling rate and heating rate coefficient should

be maximum. In the regime of unresolved sidebands, the maximum is reached
for a laser detuning ∆ = −Γ

2
independent of the trap frequency. The minimal

motional quantum n ≈ Γ
2ν

number is then similar to the Doppler cooling limit of
atomic gases. In the case of resolved sidebands, the laser can directly address the
sideband with the detuning ∆ = −ν. In the regime ν ≫ Γ the motional quantum
number n ≈ Γ2

ν2
can be reached.[29]
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(a)

∆

W (∆)

0

Γ

−Γ
2

(b)

∆

W (∆)

0

Γ

−ν

(c)

|↓, n− 1⟩

|↑, n− 1⟩

|↓, n⟩

|↑, n⟩

|↓, n+ 1⟩

|↑, n+ 1⟩

(n+ 1)A+nA−

Figure 2.6.: Mechanism of laser cooling
Figure (a) and (b) show the line profileW (∆) for weak confinement ν ≪ Γ (a) and strong
confinement ν ≥ Γ. The black arrows donate the carrier absorption for the optimum
laser detuning ∆ = −Γ

2ν (∆ = −ν). The red arrows assign the red sideband absorption,
which is stronger than the carrier and blue sideband absorption (blue arrows). The level
diagram (c) shows the relevant transition for the cooling (heating) process. For details
see text.
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(a)
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P1/2

P3/2
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(b)

S1/2

P1/2

P3/2

D3/2

D5/2

Figure 2.7.: Laser cooling of Ca+

Diagram (a) shows the relevant levels for Doppler cooling and (b) the levels for sideband
cooling.

Doppler cooling of the Ca+ ion is performed on the S1/2 ↔ P1/2 transition
(see figure 2.7(a)). In order that the ion does not get pumped into one of the D
states, an additional laser exciting the D3/2 ↔ P1/2 transitions returns population
from the D3/2 state into the cooling cycle. Similarly, another laser exciting the
D5/2 ↔ P3/2transition is available for pumping out population from the D5/2 level.
With a linewidth Γ = (2π) 23MHz of the P1/2 state and a trap frequency of
ν = (2π) 1MHz a mean motional quantum number n ≈ 10 is expected at the
Doppler limit. With a Lamb-Dicke parameter η397 = 0.19 for the S1/2 ↔ P1/2

transition the Lamb-Dicke regime η2397n < 1 is reached [26].
Resolved sideband cooling is performed on the S1/2 ↔ D5/2 transition (see figure

2.7(b)). Due to the long natural lifetime τ ≈ 1 s of the D5/2 state, the lifetime
is artificially shortened by driving the D5/2 ↔ P3/2 transition. Additional the
D3/2 ↔ P1/2 is driven, so the ion does not get pumped in to the D3/2 state.[18]
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3. Theory of measuring power line
induced transition frequency
shifts with a qubit

In this section we take a look at the influence of dephasing noise on the quantum
states of a two-level system. For the QSIM experiment, the noise is mostly created
by the ambient magnetic field in the laboratory. The 50Hz AC mains powering
the laboratory devices produces an alternating magnetic field. Nonlinearities in
the electrical loads can lead to noise components of higher harmonics of 50Hz.
Here two cases can be distinguished: synchronous and asynchronous noise. Noise
at multiples of 50Hz can be turned into a deterministic variation of transition
frequency shift by synchronising the experiment with the AC mains frequency.
This is treated in the first two chapters. In the second chapter a way of quantifying
these noise components with the help of a sequence of multiple π laser pulses (π-
pulse train) applied to the two-level system is shown. The case of asynchronous
noise is discussed in the last chapter.

3.1. Dephasing noise and Ramsey experiments

Assuming the Hamiltonian

HN(t) =
ℏ
2
∆(t)σz (3.1)

with ∆(t) representing the time-dependent noise. In this case the noise is given by
a magnetic field B(t), which leads to a shift in the energy levels due to the Zeeman
effect described by formula (2.20)
To evaluate the influence of the noise on a qubit, the time evolution operator in

the interaction picture is calculated as described in the previous chapter. Due to
the condition that the Hamiltonian is time-dependent and commutes with itself at
different times [H (t1),H (t2)] = 0 for ∀t1, t2 the unitary operator is calculated in
the following way [25];

Ut(t0, t0 + τ) = exp

{
− i

ℏ

∫ t0+τ

t0

H (t)dt

}
(3.2)
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3. Theory of measuring power line induced transition frequency shifts with a qubit

with the initial time t0 and the period of time evolution τ . Using the properties of
Pauli-matrices the operator is given by

Ut(t0, t0 + τ) =

(
exp

{
− i

2
ϕ
}

0
0 exp

{
i
2
ϕ
}) , (3.3)

which corresponds to a rotation around σz on the Bloch sphere with a rotation
angle equal to the accumulated phase ϕ =

∫ t0+τ

t0
∆(t)dt.

To show how the magnetic field noise affects the qubit state, a superposition
state is considered. Because the initial phase of the superposition state can be
arbitrary, the chosen state is |+⟩y = |↑⟩+i|↓⟩√

2
. The noise changes the phase of the

state by the accumulated phase ϕ during the time evolution

|+⟩y =
1√
2
(|↑⟩+ i |↓⟩) Ut−→ 1√

2

(
|↑⟩+ ieiϕ |↓⟩

)
, (3.4)

hence the name dephasing noise.
In order to observe this behavior in an experiment, where the qubit is measured

being in the excited state |↑⟩ or in the ground state, the superposition state is
created by applying a π

2
-pulse on the ground state |↓⟩. During the time evolution

τ the state precesses in the equatorial plane for a non zero noise ∆(t) ̸= 0 and
dephases if ∆(t) contains random fluctuations. The second π

2
-pulse maps the

state back to the measurement basis. This is the so called Ramsey experiment.
The corresponding pulse sequence is illustrated in figure 3.1. The probability of
measuring the qubit in the excited state, when the ion is initially in the ground
state, is

P↑ = | ⟨↑|UR

(π
2
, φl

)
Ut(t0, t0 + τ)UR

(π
2
, 0
)
|↓⟩ |2

=
1

2
+

1

2
cos (ϕ+ φl) (3.5)

The phase ωt0 + β can now be seen as a relative phase between the noise and the
Ramsey experiment. The probability oscillates with varying period τ or starting
time t0. In our experiment we are able to shift the pulse sequence with respect
to the noise. This is possible, because the experiment is line-triggered by the AC
mains and the experiment start can be delayed from the trigger point. The noise
is created by the AC mains so delaying the experiment start referred to the trigger
corresponds to delaying the experiment start to the noise. In the formula this is
reflected in a change of the starting time t0. Performing Ramsey experiments by
delaying the starting time t0 with respect to the line-trigger over one total cycle of
the 50Hz AC mains (20ms) is what we call a line cycle measurement. By setting
the laser phase of the second π

2
-pulse to φl =

π
2
, the outer function of formula (3.5)
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3. Theory of measuring power line induced transition frequency shifts with a qubit

becomes a sine function. The sine function is more sensitive to small variations of
the argument ϕ compared to the cos function, due to its linear behavior around 0.
For small variations max (ϕ(t)) < π

4
the sine function can be linearly approximated

by sin(ϕ) ≈ ϕ and the excitation

P↑(t0) ≈
1

2
+
ϕ(t0)

2

max (P↑) ≈
1

2
+

∆

ω
sin
(ωτ

2

)
becomes a linear function of the magnetic field as ∆ ∼ B.
To give an example, the case of a noise created by an oscillating magnetic field

with a single frequency ω of the form ∆(t) = ∆ sin(ωt+ β) is discussed. For this
function, the accumulated phase is derived as

ϕ =

∫ t0+τ

t0

∆(t)dt =
∆

ω

(
cos(ωt0 + β)− cos(ωt0 + β + ωτ)

)
=

2∆

ω
sin
(ωτ

2

)
sin
(
ωt0 + β +

ωτ

2

)
. (3.6)

The accumulated phase reaches its maximum if the product of the noise frequency
with the period of time evolution is an odd multiple of π (τω = kπ with k =
1, 3, 5...) for a given value of ωt0 + β.
As we do not directly measure the accumulated phase ϕ(t0) but sin (ϕ(t0)) (cf.

eq. (3.5)), a large noise amplitude leads to the effect of over flopping as illustrated
in figure 3.2(a). In this case, the amplitude factor 2∆

ω
sin(ωτ/2) of the accumu-

lated phase in equation (3.6) is greater than π
2
. The probability P↑ is not only

oscillating with the noise frequency ω but also with a component having three
times the fundamental frequency shown in figure 3.2 (b) and (c). In the Bloch
sphere representation the state vector is passing the x-axis during the free evolu-
tion (see figure 3.1) before the vector is mapped back to the measurement basis.
This behavior makes it hard to quantify the noise with this experiment, because
it is hard to distinguish between a single component noise with a high amplitude
or noise with a threefold frequency component. Since the noise is produced by the
ambient magnetic field in the laboratory, noise components with higher harmonics
of 50Hz also appear. Simulations of this behavior are shown in figure 3.2 (c) and
(d). The formula used for the simulations is

P↑ =
1

2
− 1

2
sin

 ∑
j∈{50,150}

2∆j

ωj

sin
(ωjτ

2

)
sin
(
ωjt0 + βj +

ωjτ

2

) (3.7)

with the parameters for the 50Hz and 150Hz component as described in the cap-
tion of figure 3.2. As example for the parameters used in figure 3.2(c) the equation
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(c)

|↑⟩

|↓⟩
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(d)

|↑⟩

|↓⟩

|+⟩x

Figure 3.1.: Pulse sequence of a Ramsey experiment and state evolution on
a Bloch sphere
The figure illustrates the pulse sequence (a) and the evolution of the state vector on the
Bloch sphere of the Ramsey experiment. The first π

2 laser pulse rotates the state around
x from the ground state |↓⟩ to the |+⟩y state (b). The noise leads to a dephasing of the
superposition state during the free evolution time τ (c). The second π

2 pulse with laser
phase φl =

π
2 rotates the state around y back to the measurement basis (d).

get the simplified form

P↑ =
1

2
− 1

2
sin
(
π sin

(
2π50Hz · t0 +

π

2

))
. (3.8)

Due to the effect of over flopping, the graph presenting a strong 50Hz compon-
ent (b) and the graph presenting two components 50Hz and 150Hz can only be
distinguished by their curvature. Noise and measurement imperfection in the real
experiment make it harder to distinguish between these two cases. A technique, de-
scribed in the next section, is used that predominately senses noise of a particular
frequency to overcome this problem.
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Figure 3.2.: Simulation of line cycle measurement
Panel (a) illustrates the composition of two sinusoidal functions. The inner function ϕ
(orange and blue curve), which accounts for the accumulated phase during the Ramsey
time, depends on the time t. The outer function P↑ (black curve), which measures the
Ramsey excitation, depends on the image of the inner function ϕ. One way to see the
composition is, that the argument of the outer function does not change linear (left
graph in (a)), but is oscillating between the maxima and minima of the inner function
(blue or orange dashed lines). In the orange case the amplitude of the inner function is
smaller than π/2. The corresponding outer function is not reaching its maximum, but is
oscillating between the orange points. This leads to a composite function P↑(t), drawn
in orange in the right graph of (a), with reduced amplitude. In case the amplitude of the
inner function is bigger than π/2, which is drawn in blue, the outer function is passing
its maximum and oscillates between the two blue points. The corresponding composite
function P↑(t) in the right graph of (a) is reaching its maximum and folds back in.
This effect is called over flopping in this work. The lower graphs show simulations of
the line cycle measurement based on equation (3.7) to illustrate the mechanism of over
flopping. In all three graphs, a noise frequency of 50Hz is present with amplitudes of
∆50 = 0.8 · ω50π/4 (b), ∆50 = 2 · ω50π/4 (c) and ∆50 = 0.5 · ω50π/4 (d). In graph (d) a
noise component with threefold the frequency 150Hz and amplitude ∆150 = 0.5 ·ω150π/4
is added. The period τ is chosen to τ = π/ω50 = 10ms.
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3. Theory of measuring power line induced transition frequency shifts with a qubit

3.2. π-pulse train and the CPMG sequence

Imperfectly isolated quantum systems couple to the environment, which can lead to
decoherence and dephasing. In nuclear magnetic resonance experiments, sequences
with multiple π-pulses were used for fighting decoherence [30]. These sequences
are generalizations of spin-echo experiments (also called Hahn echo) [31]. The
method of applying periodic pulses to decouple the qubit from the environment to
suppress decoherence, is called Dynamical Decoupling [32, 33]. In reference [34, 35],
the usage of multipulse sequences was extended to analyse the noise spectrum.

δ1τ δ2τ δNτ

t0

t

π
2

φl = 0

π π π
φl = π

2

π
2

Figure 3.3.: π-pulse train
The diagram illustrates the pulse sequence of a π-pulse train with N π-pulses embedded
in a Ramsey sequence. The overall duration of the sequence is τ . The normalized
position δj of the j

th π-pulse is a real number between δ0 = 0 and δN+1 = 1. The center
of the jth π-pulse occurs at the time δjτ . Similar to the case of the Ramsey experiment,
t0 describes the time delay from the line-trigger of the sequence.

Similar to the description in the section before the accumulated phase is

ϕ =

∫ t0+τ

t0

F (t)∆(t)dt, (3.9)

where a filter function F (t) is mathematically representing the π-pulse sequence at
the starting point t0 of the experiment [35]. In the time domain, the filter function
can be written as a function

F (t) =


0, t < 0

(−1)j, δjτ ≤ t < δj+1τ between π-pulses

0, t ≥ τ

(3.10)

alternating between ±1 between the interpulse free evolution periods. In the fre-
quency domain, the filter function has the form

F̃ (ω) =
1√
2πiω

[
1 + (−1)N+1eiωτ + 2

N∑
j=1

(−1)jeiωτδj

]
(3.11)
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3. Theory of measuring power line induced transition frequency shifts with a qubit

with the overall sequence duration τ , the number of pulses N and, as shown in
figure 3.3, the occurrence of the jth pulse at time δjτ [36]. In this formula the
length of π-pulses is negligible, which approximates the situation in our experiment,
where the length of a π-pulse is in the order of ≈ 5µs compared to the sequence
length τ = 20ms. The individual phases of the π-pulses do not influence the filter
function, but add a phase to the accumulated phase ϕ. For more details on the
influence of the phase of the π-pulses and a precise derivation of the filter function
see Appendix A.
A special case of the spin echo sequence, where the pulses are all equidistant, is

the CPMG sequence (after Carr, Purcell, Meiboom and Gill)[16]. As illustrated
in figure 3.4(a) the time distance to the embedding π

2
-pulses is half the interpulse

distance. This pulse spacing is mathematically written as δj =
j− 1

2

N
in formula

(3.11). The filter function for different numbers of π-pulses is plotted in figure 3.5.
From the graphs one can see that the maximum of the filter function - or in other
words the frequency component where the CPMG sequence is most sensitive to -
occurs at a frequency fmax ≈ N

2τ
. Smaller local maxima occur for odd multiples of

fmax. Signals with frequencies f = k
τ
for even numbers of pulses and f = k

τ
+ 1

2τ

for odd numbers of pulses are suppressed, except fmax and its odd multiples. The
accumulated phase (3.9) can be written in the frequency domain

ϕ =

∫ ∞

−∞
F̃ (ω)∆̃⋆(ω)eiωt0dω, (3.12)

for details see appendix A. The noise with discrete frequency components fj is
represented by delta functions in the frequency domain

∆(t) =
∑
j

∆j sin(ωjt+ βj)

∆̃(ω) =
∑
j

√
2π

2i
∆j

(
eiβjδ(ω − ωj)− e−iβjδ(ω + ωj)

)
.

Substituting this in equation (3.12) and carrying out the integration gives the
phase

ϕ =
∑
j

√
2π∆j|F̃ (ωj)| sin

(
ωjt0 + βj + arg(F̃ (ωj))

)
(3.13)

with the absolute value of the filter function |F̃ (ωj)| and the phase of the filter

function arg(F̃ (ωj)). A precise derivation is presented in appendix A. Similar to
the line cycle measurement, the CPMG sequence is delayed with respect to the
line-trigger, in order to quantify the noise parameters ∆j and bj. The number N
of pulses and the sequence length are chosen in such a way that the measurement
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3. Theory of measuring power line induced transition frequency shifts with a qubit
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Figure 3.4.: CPMG sequence
The CPMG sequence with N pulses and an overall sequence length τ is illustrated in (a).
The π-pulses with alternating laser phase φl = ±π

2 are equidistant with τ
N . The distance

to the embedding π
2 -pulses is half of the interpulse distance. The effect of a π-pulse to the

state vector is illustrated on the Bloch sphere in (b). The π-pulse rotates the state vector
half around the y-axis. The right diagram (c) illustrates the mechanism of the CPMG
sequence in another way of seeing the effect of π-pulses. The π-pulse flips the sign of the
oscillating noise, which is drawn as red sinusoidal curve (compared to the dashed red
line). The accumulated phase ϕ is the integral over the curve, illustrated as gray areas.
For the frequency f1 =

N
2τ = 1

τ the accumulated phase is maximum (upper left graph in
(c)) or zero (upper right graph in (c)), depending on the phase relation between the noise
and the CPMG sequence. For a noise with twice the frequency f2 = 2f1 the accumulated
phase is zero, independent of the phase relation between noise and sequence. Depending
on the phase relation a threefold frequency f3 = 3f1 noise (lower graphs in (c)) can have
a non zero accumulated phase, which is, however, smaller than the accumulated phase
of the fundamental frequency.

is most sensitive to the frequency of interest. In order to sense the AC mains
magnetic field with the main component of 50Hz, a sequence length of τ = 20ms
with two π-pulses is chosen. The corresponding filter function is shown in figure
3.5(a). Even numbers of π-pulses are then used to measure the higher harmonics
of 50Hz, for example N = 6 pulses to measure 150Hz. Using even numbers
of pulses allows us to apply pulses with alternating laser phases φl = ±π

2
, so
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3. Theory of measuring power line induced transition frequency shifts with a qubit

that the state vector on the Bloch sphere 3.4(b) is rotating around the same axis
back and forth. This method overcomes the problem of imperfect π-pulses, where
the vector is not fully rotated back into the x-y-plane. By rotating back by the
same amount, the second pulse places the state vector back into the x-y-plane.
In order to get the probability P↑ the accumulated phase (3.13) is substituted
into formula (3.5). Simulations of CPMG scans with frequency components 50Hz
and 150Hz are shown in figure 3.6. For strong magnetic fields, the measured
probability exhibits the same over flopping features as the Ramsey experiment.
In the simulated measurement, to sense the 50Hz component 3.6(b), the 150Hz
component is still present, which leads to a shift of the over flopping dips. In the
simulation sensing the higher frequency component 3.6(c) the 50Hz component is
suppressed (see also filter function 3.5 (b) and (c)), which allows a more precise
analysis of this component.
Assuming a CPMG sequence with N = 0 pulses (Ramsey experiment) the ab-

solute value of the filter function (3.11) is |F̃ | = 2√
2πω

sin
(
ωτ
2

)
and the argument

is arg(F̃ ) = ωτ
2
.1 In this way, equation (3.13) can be linked to equation (3.6).

1Precisely the absolute value is |F̃ | = | 2√
2πω

sin
(
ωτ
2

)
| and the argument is arg(F̃ ) = ωτ

2 (+π)

with additional π shift for all values with sin
(
ωτ
2

)
< 0. This alternating π shift leads to a

sign change of the sin function in eq. (3.13), which gives the same result as setting |F̃ | =
2√
2πω

sin
(
ωτ
2

)
without an alternating π shift.
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Figure 3.5.: Filter function
The graphs show the absolute value and the argument of the filter function (3.11) of
CPMG sequences with various numbers of pulses depending on the frequency. For a
fixed length τ = 20ms graph (a) shows the filter function with N = 2 pulses, (b) with
N = 6 and (c) N = 10.
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Figure 3.6.: Simulation of a CPMG scan
The left graph (a) shows the time trace of the noise with a 50Hz and 150Hz modulation.
The parameters are ∆50 = 287 s−1, β50 = 0 and ∆150 = 35 s−1, β150 = 50◦. The right
graphs show the CPMG scans with N = 2 (b) and N = 6 (c) pulses and a length
τ = 20ms based on formula (3.5) and (3.13).
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3. Theory of measuring power line induced transition frequency shifts with a qubit

3.3. Asynchronous noise

Whereas the two previous sections dealt with experiments that are synchronised
to the fundamental frequency at which noise occurs, this section discusses the case
of an asynchronous noise. In other words the CPMG sequence and the noise are
not synchronous and the phase relation ωjt0 + βj is arbitrary. Because each point
of a measurement is the average of multiple quantum projection measurements,
the equation for the excitation (3.5) becomes

⟨P↑⟩ =
1

2
+

1

2
⟨cos (ϕ+ φl)⟩, (3.14)

where the probability is averaged over the varying starting time t0 [35]. With the
help of the angle-sum identity for trigonometric functions the probability is

⟨P↑⟩ =
1

2
+

⟨cos (ϕ)⟩
2

cos (φl) . (3.15)

The sin part is neglected in the formula, because the symmetry of the sin function
and the periodicity of the accumulated phase ϕ leads to an average of ⟨sin (ϕ)⟩ = 0.
As illustrated in figure 3.7 varying the laser phase φl leads to contrast fringes with
an amplitude C = ⟨cos (ϕ)⟩.2 The average over the starting time t0 with the period
T is

⟨cos (ϕ)⟩ = 1

T

∫ T

0

cos(ϕ(t0))dt0

=
1

T

∫ T

0

cos

(∑
j

√
2π∆j|F̃ (ωj)| sin

(
ωjt0 + βj + arg(F̃ (ωj))

))
dt0

(3.16)

with the accumulated phase ϕ(t0) from equation (3.13). This equation can only
be solved analytically for a single noise component.
In the Bloch sphere picture the non-synchronicity leads to multiple different

dephased states as illustrated in figure 3.7 (b). Averaging over these multiple states
corresponds to a state vector with reduced length. The maximum and minimum
of the contrast fringes are equal to the length of the averaged state vector.

2In this work a positive amplitude C = |⟨cos (ϕ)⟩| is used. Because the contrast can also have
negative values, an additional phase parameter b in cos (φl + b) is used for the analysis.

33



3. Theory of measuring power line induced transition frequency shifts with a qubit
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Figure 3.7.: Contrast fringes
The graph illustrates the contrast fringes by scanning over the laser phase φl. The
measurement is performed by averaging over multiple quantum projection measurements
⟨P↑⟩. Asynchronous noise leads to a decrease of the contrast C. Figure (b) and (c)
illustrate the loss of contrast on the Bloch sphere. Multiple dephased state vectors are
drawn with red dashed arrows. Averaging over these states leads to a state vector with
reduced length, which is drawn as black line. The reduced state is then mapped back to
the measurement basis.
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4. Experimental setup

The first part of this chapter gives an overview of the experimental setup of the
QSIM experiment and the Precision experiment and additionally presents the
already existing components for suppressing the magnetic field noise in the ex-
periments. After that, the components of the feed-forward compensation system
are described.

4.1. Ion trap setup

A drawing of the vacuum chamber of the QSIM experimental setup is presented
in figure 5.8. The illustration shows the geometry of directions that are available
for sending laser beams into the vacuum chamber. The magnetic field for the
quantization axis is created by permanent magnets. The permanent magnets are
made of Sm2Co17. The two pairs of magnetic field coils, which are used for fine
tuning of the magnetic field and compensating the magnetic field gradient as well
as for the magnetic field noise compensation, are drawn in orange. The setup of
the precision experiment is shown in figure 4.2(a). There are magnetic field coils
on the top and bottom ports, the left and right ports as well as the back and
front of the chamber in figure 4.2. In the Precision setup the magnetic field of the
quantization axis is also created by permanent magnets.
In both experimental setups, there are already components available for sup-

pressing magnetic field noise: A mu-metal shielding surrounding the vacuum cham-
ber and a line trigger for synchronizing the experiment cycle with the AC mains
phase. There are several small holes in the shielding (see the backside and right
in figure 4.2(a) and the right in figure 4.2(b)) to provide access to the chamber
for optical fibers and electronic cables [18, 37]. Due to power cables running into
the shielding the AC magnetic field noise is still present in the vacuum chamber.
Using the line trigger, the ions experience the same magnetic field modulation in
every experimental cycle. As a result, the AC mains induced magnetic field noise
is not a random fluctuation of the ions transition frequency anymore but a con-
stant modulation of the transition frequency (refer to section 3.3). But during one
period of the AC mains the transition frequency is modulated depending on the
strength of the magnetic field. To suppress this modulation and even be able to
not use the line trigger anymore, a feed-forward compensation system is installed
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4. Experimental setup

Figure 4.1.: QSIM chamber with laser directions
The illustrations show a top and side view of the vacuum chamber and the ion trap
drawn in the center. The arrows show the access of the different laser beams into the
chamber. The orange rectangle illustrates the magnetic field coils. The laser beams used
for the Raman transition are not shown in the drawing. In the side view they access the
chamber from the top right port. The read out is done via the photo multiplier (PMT)
and the camera (EMCCD).

at both experiments.
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(a) (b)

Figure 4.2.: Photos of QSIM and Precision setup
Figure (a) shows a picture of the vacuum chamber of the Precision experiment inside
the mu-metal shielding. Figure (b) shows the mu-metal shielding covering the vacuum
chamber of the QSIM experiment. Photo (b) is taken from [18].

4.2. Feed-forward system for noise cancellation

The compensating system contains the magnetic field coils of the trap and a func-
tion generator to modulate the magnetic field at the coils. As function generator
a programmable RedPitaya STEMLab board, which is described in detail in the
second subsection, is used.

4.2.1. Characterisation of the coil system

There are two sets of magnetic field coils attached to the chamber (see figure
4.1). The inner coils are used in DC for compensating the remaining magnetic
field gradient from the permanent magnets. The outer coil set is used for the
magnetic field noise compensation system. The geometry of the magnetic field
coils is shown in figure 4.3 and the physical parameters of the coils are presented
in table 4.1. The DC magnetic field created by the coils is shown in figure 4.4. The
magnetic strength is measured by applying a I = 180mA DC current to the coils
and scanning the magnetic field at different points between the coil pairs with a
fluxgate magnetometer. From this figure it can be extracted that a current of I =
180mA changes the magnetic field half-way between the coils by approximately
B ≈ 180mG. It is necessary to mention that the measurement was taken with
the coils alone and not attached to the chamber, hence this value does not give a
precise magnetic field at the ions in the trap. But this is not a big problem because
a precise magnetic field is not needed for the compensation routine described in
chapter 5.1.1 and the value can be used as orientation and starting point.
The coil system of the Precision experiment is different. Only a single pair of
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Table 4.1.: Coil properties of the magnetic field coils in the QSIM experiment

Winding per coil N 130
Resistance per coil R/Ω 1.3

Inductance two coils connected L/mH 3

Figure 4.3.: Magnetic field coils geometry
The illustration shows the geometric structure of the magnet field coils. The inner coils
are used for the magnetic field gradient compensation and the outer ones for the magnetic
field noise compensation.

magnetic field coils is attached to the chamber. The coils deliver a magnetic field
strength of B ≈ 5mG for a DC current of I = 1mA. This value is also used as
starting point for the compensation routine. In both experiments the coils along
the quantization axis are used.
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Figure 4.4.: B-field of coils The graphs show the magnetic field of the two coil pairs
for an applied DC of I = 180mA. Graph (b) shows a closer look.

4.2.2. Function generator system

As programmable function generator a RedPitaya STEMLab board 125-14 is used.
It has two fast analogue outputs with a sample rate of 125MS/s and a digital-to-
analog converter resolution of 14 bit. The output voltage range is limited to ±1V
with an output load 50Ω. The communication between the laboratory PC and the
RedPitaya is done via LAN connection and the local network of the laboratory.
The user interface of the operating system of the RedPitaya (see figure 4.6(a)) can
then be accessed via the PCs browser. The board is programmed by the RedPitaya
SCPI (Standard Commands for Programmable Instrumentation) commands.1 For
a simple operation of the system a controlling software, a stand-alone program
based on a python program, including an user interface (see figure 4.6(b)), was
developed. The software translates the actions on the user interface into a string of
SCPI commands and sends it to the RedPitaya. The controlling software includes
a manual operation mode and automated fit mode. The manual mode allows to
set the parameters frequencies (in Hz), amplitudes (in mV) and phases (in deg),
as well as the DC offset of multiple sinusoidal signals, whose superposition is then
applied with the RedPitaya. Additionally it is possible to choose the trigger of the
signal between internal (INT) and an external source (EXT PE or EXT NE). The
parameters can be saved in a txt file or loaded from that one. For more details
of the programming of the controlling software and the automated fit mode see
appendix B. On the hardware side the RedPitaya board is connected to the line
trigger via a voltage divider as shown in figure 4.6(c). This is necessary, so that the

1For details on the connection of the RedPitaya SCPI server see the Labblogs.quantumoptics
QuQIS or [38]
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Figure 4.5.: Hardware of feed-forward system for noise cancellation
The illustration shows the connections to the RedPitaya board. The magnetic field coils
are connected to the first fast analogue output of the board. The second analogue output
is used for observing the compensation signal on an oscilloscope. The board is connected
to the line trigger with a voltage divider placed in front. It is connected to the local
network of the laboratory, where it can be operated from the laboratory PC.

compensation signal is synchronised to the AC mains and its phase position does
not drift to the magnetic field noise. The RedPitaya requires a 3.3V trigger signal.
Therefore the 5V trigger signal from the line trigger is converted to a 3.3V signal
with a voltage divider. For the voltage divider one resistor of 3.3 kΩ is connected in
parallel with the line trigger output and a 2.7 kΩ resistor is connected in series. The
first analogue output is connected to the magnetic field coils including a resistor
in series. This resistor is used for termination and also as gain factor. In the
QSIM experiment a resistor of 4.7 kΩ is used and in the Precision experiment a
resistor of 11.2 kΩ. An applied amplitude of 100mV DC then leads to a magnetic
field of B ≈ 21µG in the QSIM setup or B ≈ 45µG in the Precision setup. The
second analogue output is used to monitor the applied compensation signal at an
oscilloscope.
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(a)

(b)

Figure 4.6.: Software of feed-forward system for noise cancellation
Picture (a) shows the user interface of the RedPitaya operating system. The second
picture (b) shows the graphical user interface for the control software of the feed-forward
compensation system. For details of the control software see appendix B.
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5. Experimental compensation of
magnetic field noise

This chapter presents the experimental results of the compensation of line syn-
chronous modulation of the transition frequency with the feed-forward system
described in the section before. The chapter is separated in two parts, first the
results from the work at the QSIM experiment is presented and in the second part
the compensation at the Precision experiment is shown.

5.1. Compensation of magnetic field noise at the
QSIM experiment

The section presenting the results from the QSIM experiment is structured in the
following way: At first, the results of noise analysis and compensation using the
Raman transition with a semi-automatic iterative routine, which was developed in
the later stage of the master project, are presented. Additionally the day to day
variations of the noise parameters are shown. The second part shows the analysis
and compensation using the 729-transition.

5.1.1. Characterisation of noise components with the Raman
transition

As described in chapter 3.2 the noise is characterised with the help of a CPMG
sequence scanned over a line cycle by increasing the duration of the Doppler cool-
ing stage, which precedes the CPMG sequence pulses from 3ms to 23ms. The
temporal sequence of laser pulses used in the experimental sequence is shown in
figure 5.1. The time delay from the start of the experiment (including laser cooling
and state preparation) to the actual start of the CPMG sequence is called t0. For
a total CPMG sequence length of τ = 20ms, the number of π-pulses N is then
chosen to be most sensitive to the modulation with f = 50Hz (N = 2) and higher
odd harmonics f = 150Hz (N = 6) and f = 250Hz (N = 10). The even higher
harmonics were also measured, but not actively cancelled, because the compon-
ent are already very small (see 5.3). In the following, a semi-automatic iterative
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routine is presented by taking the example of analysis and compensation of the
f = 250Hz noise component, using a CPMG sequence with length τ = 20ms and
N =10 π-pulses.

(1) (2) (3) (4) (5) (6) (7)

t

CCD

PMT

729 nm

854 nm

866 nm

397 nm

393 nm

trigger

t0

trigger20ms trigger

Figure 5.1.: Raman experiment sequence
The diagram shows the laser sequence for an experiment using the Raman transition.
The single steps and their length are: (1) Intensity stabilisation (∼ 0.5ms), (2) Doppler
cooling (3ms to 23ms), (3) state preparation (∼ 0.1ms), (4) measurement sequence
(20ms), (5) state mapping (∼ 5µs), (6) state detection (5ms), (7) next measurement.
t0 is the delay from the line trigger to the start of the measurement sequence. The state
mapping maps the

∣∣42S1/2,m = 1/2
〉
state to the

∣∣32D5/2,m = 5/2
〉
, so that the state

detection is similar to the one used in experiments with the optical qubit.

The noise parameters A (in s−1) and ϕnoise are obtained from fitting the meas-
urement data with the modified version of formula (3.13) and (3.5)

P↑ =
1

2
+
C

2
sin

(
|F̃ (f ;N, τ)| · A sin

(
2πft0 + ϕnoise + arg(F̃ (f ;N, τ))

))
(5.1)

with an overall contrast C of the signal. For simplification only one frequency f is
fitted, assuming the higher frequency components are small. The contributions of
250Hz and 150Hz are not fully suppressed by the CPMG sequence detecting the
50Hz component (see filter function 3.5). To make sure that these components do
not distort the measurement of the 50Hz component, the higher noise frequencies
250Hz and 150Hz have to be compensated first. Because the overall contrast C
in equation (5.1) has an influence on the fit parameter A, the contrast is obtained
by scanning over the laser phase of the last π

2
-pulse of the CPMG sequence and

fitting these contrast fringes with equation

P↑ =
1

2
+
C

2
cos (φl) (5.2)
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(refer to the contrast fringe in section 3.3). The corresponding measurement result
for the noise component of 250Hz is shown in figure 5.2(a). This overall contrast
reduction can be explained by line-asynchronous noise as described in section 3.3.
In the experiments with the Raman transition, the contrast does not show an
dependence on the number of π-pulses. So is the contrast of a measurement with
N = 2 pulses C = 0.93(2), for a measurement with N = 6 pulses C = 0.92(2) and
for N = 10 pulses C = 0.93(2). After having determined the contrast, the first
CPMG scan to analyse the noise parameters is performed and fitted with equation
(5.1). The results are shown in figure 5.2(b). The amplitude, which can be applied
with the RedPitaya, is calculated from the amplitude we get from the fit by

A[V] =
A[s−1]

γ · 2π · 1.399 s−1/µG
k (5.3)

with the magnetic sensitivity γ of the used transition and the scaling factor k.
The scaling factor is the ratio between the termination resistor and the ratio
between the coil current and the magnetic field. The factor for the QSIM setup is
k = 4700V/G. The obtained amplitude and phase are applied to the feed-forward
system. The reaming modulation is shown in figure 5.2. The electronic filter
behavior of the feed-forward system can lead to a reduction of the amplitude as
well as to an additional phase shift ϕshift of the applied signal. This amplitude
reduction can be denoted by a scaling factor a. If the noise and the applied com-
pensation signal do not perfectly cancel each other out, their superposition leads
to a remaining part

Anoise sin (2πft+ ϕnoise) + a · Aapplied︸ ︷︷ ︸
Ameasured

sin
(
2πft+ ϕapplied + ϕshift︸ ︷︷ ︸

ϕmeasured

)
=

Arem sin (2πft+ ϕrem) , (5.4)

which is denoted with Arem and ϕrem. The signal (Ameasured and ϕmeasured), which
the ions actually experience, can be recalculated by rearranging equation (5.4) and
with the help of the harmonic addition formula (see appendix C),

Ameasured =
√
A2

noise + A2
rem − 2AnoiseArem cos (ϕnoise − ϕrem) (5.5)

ϕmeasured =atan 2[Anoise sin(ϕnoise)− Afit sin(ϕrem),

Arem cos(ϕnoise)− Arem cos(ϕrem)]. (5.6)

The parameters Anoise and ϕnoise are found by fitting the initial uncompensated
signal, this is shown in figure 5.2(b) and the parameters Arem and ϕrem are obtained
from fitting the remaining part shown in 5.2(c). The two parameters Ameasured

and ϕmeasured are then calculated with formula (5.6). The amplitude reduction
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factor a can now be obtained by dividing the calculated parameter Ameasured by
the parameter Aapplied, which is the known amplitude of the compensation signal
applied with the RedPitaya. Analogously, the phase shift ϕshift is obtained by
subtracting the phase of the compensation signal ϕapplied from the calculated value
of ϕmeasured. A new amplitude for the compensation signal is calculated by dividing
the measured noise amplitude by the amplitude reduction factor Anoise/a. The
phase for the compensation signal is also updated by subtracting the phase shift
ϕshift from the measured phase of the noise ϕphase. The updated parameters are
used for generating a corrected compensation signal. The remaining part can be
remeasured and the procedure repeated, to get more precise values for a and ϕshift.
The recalculated values of the amplitude Ameasured can be fitted as a function of the
applied amplitude Aapplied. The slope of the linear fit gives the amplitude reduction
factor a as shown in the upper graph of figure 5.2(e). The calculated values for
ϕshift are averaged, which can be seen in the lower graph of figure 5.2(e). The
final compensated signal is shown in figure 5.2(d). The variation of the amplitude
and phase of the magnetic field components (see next section) makes a perfect
suppression of the noise component impossible. Figure 5.3 shows measurements
of the other relevant noise components at 50, 150, and 200Hz. Because of the
already small amplitude the even higher harmonics of 50Hz, 100Hz and 200Hz
are not compensated. The observed magnetic strengths of the noise amplitude,
using the initially fit amplitude, are B50Hz = 28.1(2)µG, B150Hz = 13.1(3)µG and
B250Hz = 20.4(4)µG. The final remaining parts are B50Hz = 1.6(3)µG, B150Hz =
0.85(22)µG and B250Hz = 0.56(20)µG.
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Figure 5.2.: Compensation routine
The graphs show different plots of the characterisation and compensation routine based
on the example of the 250Hz noise component. The first measurement (a) shows a
scan over the laser phase of the last π/2-pulse using a CPMG sequence with 10 π-
pulses. This is used to calculate the overall contrast. The second measurement (b) is
a scan of the starting time of the CPMG sequence with respect to the line cycle (short
CPMG scan); this scan is used to characterize the noise parameters using formula (5.1).
The gained parameters from the first fit are used for a first compensation of the noise
component. Afterwards the remaining part of the noise is remeasured with the CPMG
scan (c). Using the phasor addition formula (5.6) the amplitude reduction factor a and
phase shift are calculated (e) and the updated parameters are used for generating a
magnetic field correction B(t). Repeating this procedure the amplitude factor can be
calculated by linear fitting, for details see text. Graph (d) shows the compensated signal.
The data points in graphs (a)-(d) are the excitation averaged over 8 ions and the error
bars illustrate the corresponding standard deviations. The red bands show one sigma
confidence interval of the fit parameters.
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Figure 5.3.: Noise components before and after compensation by magnetic
field sensing using CPMG sequences on the Raman transition
The graphs show CPMG scans over the line cycle with N = 6 (a), N = 2 (b) and
N = 8 (c) π-pulses. The red data and fits are before compensation and the blue after
compensation. The data points are the excitation averaged over 8 ions and the error bars
the corresponding standard deviations. The bands show one sigma confidence interval
of the fit parameters.
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5.1.2. Noise parameter fluctuation

In order to observe the variation of the magnetic field amplitude and phase, CPMG
scans from different dates and times are collected. The observed day-to-day
changes of the fit amplitude and phase are shown in figure 5.4. The maximum
difference in amplitude for the 50Hz component from figure 5.4(a) is ∆A ≈ 50 s−1,
which corresponds to a relative fluctuation of ∆B/B ≈ 10%. The absolute vari-
ation of the phase is ∆ϕ ≈ 5 deg. For the 150Hz (figure 5.4(a)) signal a amp-
litude fluctuation of ∆A ≈ 40 s−1 and a phase fluctuation of ∆ϕ ≈ 7 deg is ob-
served. The amplitude of the 250Hz signal fluctuates around ∆A ≈ 30 s−1 and
the phase ∆ϕ ≈ 5 deg. In summary, the amplitude of the noise fluctuates around
∆B/B ≈ 10% and the phase 5 deg, except of the 150Hz signal, which has a bigger
fluctuation of ∆B/B ≈ 17% and 7 deg.
To observe the short term fluctuation the excitation of the CPMG sequence for

the compensated 50Hz signal is observed at fixed delay times over time. This can
be seen in figure 5.5. The fixed delay times are set to t0 = 4ms and t0 = 9ms,
which corresponds to the starting point and the maximum of the compensated
signal in figure 5.3(b). The jumps and fluctuations in the signals of figure 5.5 can
be explained by the amplitude fluctuation of the 50Hz noise. As described before
the amplitude fluctuates by ∆A ≈ 50 s−1, using the harmonic additions formula,
this is reflected in a similar amplitude fluctuation for the remaining part. The
amplitude variation leads to the fluctuation of the probability at the maximum
point t0 = 9ms between ∼ 0.3 and ∼ 0.8 and at the starting point t0 = 4ms
between ∼ 0.2 and ∼ 0.7.

48



5. Experimental compensation of magnetic field noise

(a)

131 132 133 134 135 136

500

520

540

ϕ/deg

A
/s

−
1

(b)

78 80 82 84 86 88

210

220

230

240

ϕ/deg
A
/s

−
1

(c)

276 278 280

330

340

350

360

ϕ/deg

A
/s

−
1

Figure 5.4.: Noise parameter fluctuation
The graphs show the noise parameters Amp and ϕ for the three components 50Hz (a),
150Hz (b) and 250Hz (c). The parameters are extracted from fitting the CPMG scans
(see figure 5.3). The scans were taken on different consecutive days (different colors and
markers), as well as on the same day in the morning and afternoon (same color and
marker). The error bars show the fit parameter errors.
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Figure 5.5.: Noise signal fluctuation
The graph shows the excitation of the CPMG sequence detecting the compensated 50Hz
noise at a delay from line trigger of t0 = 4ms in blue and t0 = 9ms in orange scanned
over the time. The jumps of the excitation at the maximum point t0 = 9ms between
∼ 0.3 and ∼ 0.8 and at the starting point t0 = 4ms between ∼ 0.2 and ∼ 0.7 correspond
to a fluctuation of the amplitude of the 50Hz noise of ∆A = 50 s−1 ( ∆B = 2.8µG). The
excitation is alternately measured every 2 s for a time span of 10min. The data points
show the mean over the ions and the error bars the standard deviations.
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5.1.3. Characterisation and compensation of noise components
using the 729-transition

The first trials of compensating and analysing the magnetic field noise were done
with the optical qubit. The corresponding experiment sequence is illustrated in
figure 5.6. Here the compensation was not performed with the iterative approach
described in the chapter 5.1.1, but with trial and error. The strength of the noise
is obtained by fitting the CPMG signal with equation (5.1). The RedPitaya is
used to apply an out-of-phase signal based on the fitted amplitude and phase
to the magnetic field coils. The fine tuning is performed by trial-and-error and
remeasuring the remaining signal. The measurement data are shown in figure 5.7.
The difference in amplitude and phase of the noise components measured with
the ground state qubit ( figure 5.3) can be explained by the fact that during this
measurement the mu-metal shielding was not fully closed. Hence stronger magnetic
field amplitudes for the 50Hz and 250Hz component of B50Hz = 37.2(5)µG and
B250Hz = 23.3(6)µG are measured. For the 150Hz a smaller noise amplitude of
B150Hz = 9.3(8)µG is measured. The smaller overall contrast C compared to
the measurements using the Raman transition is attributed to laser phase noise
introduced by the 729 nm laser. The contrast also shows a dependence on the
number of π-pulses. The contrast of the CPMG measurement with N = 6 pulses
(5.7(b)) C = 0.54 is smaller than the contrast of the measurements with N = 10
(C = 0.77) and N = 2 (C = 0.6) pulses. It means that the CPMG measurements
pick up additional line-asynchronous noise with frequency components, where they
are sensitive to.

(1) (2) (3) (2) (4) (5) (6)

t

CCD

PMT

729 nm

854 nm

866 nm

397 nm

trigger

t0

trigger20ms trigger

Figure 5.6.: Experiment sequence
The diagram shows the laser sequence for an experiment using the 729-transition. The
steps are (1) Doppler cooling from 3ms to 23ms, (2) state preparation (0.1ms), (3)
sideband cooling (6ms), (4) sequence (20ms), (5) detection (5ms) and (6) next meas-
urement. t0 is the time it takes from the trigger to the start of the pulse sequence.
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Figure 5.7.: Noise components before and after compensation using the 729-
transition
The graphs show CPMG scans for the three noise components 250Hz (a), 150Hz (b)
and 50Hz (c). The red fit curves and data points show the magnetic field noise and the
blue points and fit curves the remaining noise after compensating. The data points are
the excitation averaged over the ions and the errorbars show the standard deviations.
The blue and red band show one sigma confidence interval of the fit parameter errors.

5.1.4. Ramsey contrast with and without compensation

In order to observe if the compensation system adds noise, a Ramsey measurement
by scanning the laser phase of the second π

2
-pulse is performed. The Ramsey

contrast for a free evolution time of 4.5ms is shown in figure 5.8. Using neither
the compensation nor the line trigger (see blue curve in figure 5.8) results in a
strongly reduced fringe contrast and also π phase shifted contrast fringe. For
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the measurement using only the compensation system (green) the contrast is not
reduced compared to the measurement with line trigger and compensation (red).
This indicates that the compensation system does not add extra noise to the
system. Based on this, it is not necessary anymore to use the line trigger for
measurements. As a result the measurements directly start after each other and
do not have to be paused until the next line trigger signal happens. This leads
to a faster repetition rate of measurements. However, it has to be noted that the
CCD camera relies on the trigger signal and does not work without line trigger.
Taking a look at equation (3.16) the contrast can also become negative for strong
magnetic field amplitudes, therefore the π phase shift in the measurement without
compensation and line trigger. Using this equation a theoretical value of the
reduced contrast (blue curve) can be calculated. Therefore the noise parameters
of figure 5.7 are used and numerically integrating equation (3.16) gives a value
of C = −0.13, which is approximately half the measured value of C = −0.25(3).
The difference between the simulated value and the measured one comes from the
fact that only the line induced magnetic field noises are taken into account for the
simulation. All other kinds of noises, which lead to the reduction of the Ramsey
contrast are not included.
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Figure 5.8.: Ramsey contrast with and without compensation
The data points show Ramsey measurements with a waiting time of 4.5ms. The red
data points are taken with the line trigger and the compensation on whereas the green
data points are taken with the compensation on but the line trigger off. The blue data
points show the measurement with the compensation as well as the line trigger off. The
contrast is taken from the fit with formula (5.2). The data points, which are taken
with the line trigger, are the average over 8 ions and the error bars are the standard
deviations. For the measurements without line trigger the error bars are showing the
quantum projection noise (2.9).

5.2. Compensation of magnetic field noise at the
Precision experiment

After successfully implementing the compensation system at the QSIM experiment,
the same system was also added to the Precision experiment. The first section
discusses the measurements for the noise analysis and compensation. The second
section presents the coherence time measurement with and without compensation
system, whereby the Ramsey contrast is observed for different free evolution times.

5.2.1. Characterisation and compensation of noise components

The noise analysis and compensation was performed with the characterisation
routine, described in chapter 5.1.1. Here only the differences to the measure-
ments in the QSIM experiment are mentioned. The measurements are preformed
with a single ion using the 729-transition as compared to 8 ions, which are used
in the QSIM experiment. The scaling factor for the Precision experiment is
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k = 11200/5V/G in the amplitude equation (5.3). Measurements of the noise
components before and after compensation are shown in figure 5.9. The observed
magnetic strengths of the noise before compensation are B50Hz = 17.1(4)µG,
B150Hz = 9.8(7)µG and B250Hz = 6.2(6)µG. The final remaining parts are B50Hz =
0.7(3)µG, B150Hz = 2.1(34)µG and B250Hz = 1.5(3)µG. The magnetic field
strengths of the noise components are smaller than in the QSIM experimental
setup. Also the higher harmonic components decrease in amplitude, whereas at
the QSIM setup the 250Hz component is second strongest. The best compensa-
tion is achieved for the 50Hz component, see figure 5.9(f), whereas for the other
components a compensation to ∼ 1/4 of the amplitude is achieved.
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Figure 5.9.: Noise components before and after compensation at the Precision
experiment
The graphs show the CPMG scans taken at the Precision experiment. (a) and (b)
show the signal for 250Hz before and after compensation. The 150Hz signal before
compensation is presented in (c) and after compensation in (d). The 50Hz signal is
shown in (e) and compensated in (f). For analysis of the noise parameters the data
are fitted with formula (5.1) (red curves). The error bars are calculated from quantum
projection noise (2.9).
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5.2.2. Coherence measurement with Ramsey contrast

For analysing the coherence of the ion qubit at the Precision experiment with
and without noise compensation, Ramsey experiments with different free evolu-
tion times are taken. The loss of contrast is then observed as a function of the
Ramsey free evolution time, as shown in figure 5.10. The Ramsey measurements
were performed between the states D5/2,m = −3/2 ↔ D5/2,m = 5/2. This
transition has a twice as big magnetic sensitivity γ ≈ 4.8 than the Raman or the
729-transition. The Ramsey measurements are done by applying a π-pulse from
S1/2,m = 1/2 → D5/2,m = −3/2 after the first π/2-pulse and another one imme-
diately before the last π/2-pulse. The measurements are taken without line trigger.
The loss of contrast without compensation is shown in figure 5.10 (a). The data
points are obtained by fitting single Ramsey experiments with equation (3.16).1

The black curve shows simulated data by numerical integration of equation (3.16)
with the measured noise parameter from figure 5.9. The loss of contrast with the
compensation system on is shown in figure 5.10(b). Here the simulation is done
using the parameters of the remaining part of the noise components (see figure
5.9). In both cases the simulations do not fully fit the data points but matches
the structure of the contrast loss. As described earlier, also other sources of noise,
which are not covered by the simulation, are leading to a contrast loss.

1In this fit the contrast parameter is fixed to be positive with an additional phase parameter
in the fitting function.
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Figure 5.10.: Ramsey contrast for different Ramsey times
Figure (a) shows the contrast loss as a function of Ramsey time without compensation.
The black curve shows a numerical simulation of formula (3.16) with the known noise
parameters from figure 5.9. The loss of contrast with compensation is shown in figure
(b). For the simulated black curve, the parameters of the remaining signal in figure 5.9
are used. The errorbars are the fit parameter errors.
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The goal of this thesis was to develop a feed-forward magnetic field noise cancella-
tion system for a trapped-ion quantum simulation experiment. The compensation
system is used to suppress the ambient magnetic field noise in the laboratory.
This magnetic field noise is induced by the 50Hz power line. Magnetic field os-
cillations with higher harmonics of 50Hz (especially odd multiples 150Hz, 250Hz
..) are also present in the lab. At first, a method to use the ion qubit as sensor
to measure temporal magnetic field variations was introduced. Towards this end,
a π-pulse sequence (CPMG sequence) is shifted over one cycle of the 50Hz mains
signal (period of 20ms) by delaying the sequence from the trigger induced by the
AC mains. Thereby the magnetic field oscillation is mapped to the ion’s excit-
ation and the amplitude and phase of the different frequency components of the
magnetic field variation can be extracted. Depending on the number of π-pulses
and the overall sequence length, the sequence can be engineered to be sensitive
to a particular frequency component of the magnetic field noise. This experi-
ment was performed on two different qubits: The ground state qubit of the Ca+

ion (Raman transition) and the optical qubit (729-transition). On the technical
side, the feed-forward compensation system contains magnetic-field coils, which
are already installed at the vacuum chamber of the trap, and a programmable
RedPitaya board to drive the coils. For an easier operation of the RedPitaya, a
control software with a user interface was developed. Additionally, the software
includes a semi-automatic mode, where the magnetic field parameters are analysed
by fitting the data of the π-pulse scan and the corresponding out-of phase signal
to destructively superpose the magnetic noise and suppress the very same. With
this compensation system it was possible to suppress the strength of the strongest
noise component (the 50Hz component) from B = 28.1(2)µG to B = 1.6(3)µG.
In the measurement with a not fully closed mu-metal enclosure a magnetic field
strength of the 50Hz component of B = 37.2(5)µG was measured, which is ap-
proximately 9µG higher. To put these values in a context, the quantum optic
experiment in [15] measured a magnetic field strength of the 50Hz component of
B = 262(5)µG. In another quantum optic experiment with trapped ions [39] they
measured an attenuation, given by their two-layer mu-metal shield, of the magnetic
field noise by 20− 30 dB for the 50− 100Hz frequency components. Furthermore
they measured remaining AC induced magnetic field noise at the ions in a similar
measurement as we did. They compared the strengths of the remaining noise for
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four different situations: The quantization axis generated by magnetic field coils
and generated by Sm2Co17 permanent magnets as well as with a closed and open
mu-metal shield respectively. In the case of using permanent magnets the remain-
ing noise was B = 8.9(2)µG (closed shield) and B = 500(36)µG (open shield).
The remaining noise for generating the quantization field with magnetic field coils
was B = 107(18)µG (closed shield) and B = 893(72)µG (open shield). After the
successful installation of the compensation system at the QSIM experiment, the
same system was installed in the Precision experiment.
The next possible step would be to develop a fully-automated compensation

routine. Until now the CPMG scan measurements to quantify the noise compon-
ents have to be done manually. The idea would be that the RedPitaya commu-
nicates with the laboratory control computer, starts a CPMG measurement by
itself and analyses the measurement data in the way described in this thesis. This
process would have to be repeated to find the optimal compensation parameters
and after successfully suppressing the magnetic field noise it would continue with
the compensation of the next frequency component.
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A. Derivation of the filter function

The π-pulse train with N π-pulses and sequence duration τ , assuming no time
evolution during the π-pulse is represented by the operator

M = UR

(π
2
,
π

2

)
Ut (δN , δN+1τ)

∏
j∈{1,..,N}

[UR (π, φl,j)Ut (δj−1τ, δjτ)]UR

(π
2
, 0
)

with the operator Ut(δj−1τ, δjτ) = exp
(
−i/2σz

∫ δjτ

δj−1τ
∆(t)dt

)
describing the free

evolution between the jth pulse and the (j − 1)th pulse and the rotation operator
UR(π, φl,j) = −i (e−iφl,jσ+ + eiφl,jσ−) = −iσφl,j

representing the jth π-pulse with
a laser phase φl,j. The center of the jth π-pulse occurs at time τj = δjτ , therefore
δN+1 = 1 and δ0 = 0. The operator is then

M = UR

(π
2
,
π

2

)
e
−i/2σz

∫ δN+1τ

δNτ ∆(t)dt

·(−i)N
∏

j∈{1,..,N}

[
σφl,j

e
−i/2σz

∫ δjτ

δj−1τ
∆(t)dt

]
UR

(π
2
, 0
)
,

where (−i)N can be neglected as global phase. For simplification the factor of the
product is rewritten

σφl,j
e
−i/2σz

∫ δjτ

δj−1τ
∆(t)dt

=
(
e−iφl,jσ+ + eiφl,jσ−

) (
e−i/2ϕj |↑⟩ ⟨↑|+ ei/2ϕj |↓⟩ ⟨↓|

)
=
(
e−iφl,j |↑⟩ ⟨↓|+ eiφl,j |↓⟩ ⟨↑|

) (
e−i/2ϕj |↑⟩ ⟨↑|+ ei/2ϕj |↓⟩ ⟨↓|

)
= e−iφl,j+i/2ϕj |↑⟩ ⟨↓|+ eiφl,j−i/2ϕj |↓⟩ ⟨↑|

with the phase ϕj =
∫ δjτ

δj−1τ
∆(t)dt and the operators σ+ = |↑⟩ ⟨↓| and σ− = |↓⟩ ⟨↑|.

Multiplying the jth and (j + 1)th factor results in

σφl,j+1
e−i/2ϕj+1σzσφl,j

e−i/2ϕjσz =
(
e−iφl,j+1+i/2ϕj+1 |↑⟩ ⟨↓|+ eiφl,j+1−i/2ϕj+1 |↓⟩ ⟨↑|

)
·
(
e−iφl,j+i/2ϕj |↑⟩ ⟨↓|+ eiφl,j−i/2ϕj |↓⟩ ⟨↑|

)
= ei/2(ϕj+1−ϕj)−i(φl,j+1−φlj

) |↑⟩ ⟨↑|
+e−i/2(ϕj+1−ϕj)+i(−φl,j+1−φlj

) |↓⟩ ⟨↓| .
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Using the already calculated factors the product is

∏
j∈{1,..,N}

σφl,j
e−i/2ϕjσz =



ei/2
∑N

j (−1)jϕje−i
∑N

j (−1)jφl,j |↑⟩ ⟨↑|

+e−i/2
∑N

j (−1)jϕjei
∑N

j (−1)jφl,j |↓⟩ ⟨↓|

}
for N even

ei/2
∑N

j (−1)jϕje−i
∑N

j (−1)jφl,j |↓⟩ ⟨↑|

−e−i/2
∑N

j (−1)jϕjei
∑N

j (−1)jφl,j |↑⟩ ⟨↓|

}
for N odd.

Rewriting the product with the accumulated phase ϕ =
∑N+1

j=1 (−1)jϕj and the

accumulated laser phase φl =
∑N

j=1(−1)jφl,j gives

e−i/2ϕN+1σz
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{
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ei/2ϕ−iφl |↓⟩ ⟨↑| − e−i/2ϕ+iφl |↑⟩ ⟨↓| , for N odd
.

Including the embedding operators, which represent the action of the two π/2-
pulses, gives the matrix M for even values of N

M =
1

2
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.

The probability P↑ from the transition element ⟨↑|M |↓⟩, which can be extracted
from the formula above, is

P↑ = | ⟨↑|M |↓⟩ |2 = 1

4

(
iei/2ϕ−iφl + e−i/2ϕ+iφl

) (
ei/2ϕ−iφl − ie−i/2ϕ+iφl

)
=

1

4

(
1 + 1− ie−iϕ+2iφl + ieiϕ−2iφl

)
=

1

2
− 1

2
sin(ϕ− 2φl).

The case of N odd gives the same transition element and the same formula for P↑.
The probability also depends on the accumulated laser phase φl. Fixing the phase
of the individual π-pulses φl,j to the same value leads to a zero accumulated laser
phase φl = 0. In the experiment described in this work, alternating laser phases
φl,j = ±π

2
were used. In the case of general alternating laser phases, which are
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A. Derivation of the filter function

chosen the way that |φl,j+1 − φl,j| = π, the accumulate laser phase is |φl| = Nπ.
Both cases deliver the simplified formula

P↑ =
1

2
− 1

2
sin(ϕ).

For more complicated variations of laser phases the accumulated laser phase has
to be calculated.
The accumulated phase

ϕ =

∫ τ

0

F (t)∆(t)dt

can be written with a filter function, which is defined in the time domain

F (t) =


0, t < 0

(−1)j, δjτ ≤ t < δj+1τ between π-pulses

0, t ≥ τ

(A.1)

and in the frequency domain

ϕ =

∫ τ

0

F (t)∆(t)dt =

∫ ∞

−∞
F (t)∆(t)dt

=

∫ ∞

−∞
∆(t)

1√
2π

∫ ∞

−∞
F̃ (ω)eiωtdω dt

=

∫ ∞

−∞
F̃ (ω)

1√
2π

∫ ∞

−∞
∆(t)eiωtdt dω

=

∫ ∞

−∞
F̃ (ω)

1√
2π

[∫ ∞

−∞
∆(t)e−iωtdt

]⋆
dω

=

∫ ∞

−∞
F̃ (ω)∆̃⋆(ω)dω.

If the experiment does not start at a time t0 = 0 the time translation F (t + t0)
has to be modified to ∫ ∞

−∞
F̃ (ω)∆̃⋆(ω)eiωt0dω.

Assuming noise made up of discrete components in the frequency domain

∆(t) =
∑
j

∆j sin(ωjt+ bj)

∆̃(ω) =
∑
j

√
2π

2i
∆j

(
eibjδ(ω − ωj)− e−ibjδ(ω + ωj)

)

63



A. Derivation of the filter function

and using the filter function in frequency domain,

F̃ (ω) =
1√
2π

[
− 1

iω

(
eiωδ1τ − 1

)
+

1

iω

(
eiωδ2τ − eiωδ1τ

)
+ ...− (−1)N

iω

(
eiωδN+1τ − eiωδN τ

)]
=

1√
2πiω

[
1− 2eiωδ1τ + 2eiωδ2τ ...+ (−1)NeiωδN τ + (−1)N+1eiωδN+1τ

]
=

1√
2πiω

[
1 + (−1)N+1eiωτ + 2

N∑
j=1

(−1)jeiωτδj

]
,

the accumulated phase can be finally expressed as

ϕ =

∫ ∞

−∞
F̃ (ω)∆̃⋆(ω)e−iωt0dω

=
∑
j

√
2π

2i
∆j

(
eibj
∫ ∞

−∞
F̃ (ω)δ(ω − ωj)e

iωt0dω − e−ibj

∫ ∞

−∞
F̃ (ω)δ(ω + ωj)e

iωt0dω

)

=
∑
j

√
2π

2i
∆j

(
eibjF̃ (ωj)e

iωjt0 − e−ibjF̃ (−ωj)e
−iωt0

)
=
∑
j

√
2π

2i
∆j

(
F̃ (ωj)e

i(ωjt0+bj) − c.c.
)

=
∑
j

√
2π

2i
∆j|F̃ (ωj)|

(
ei(ωjt0+bj+arg(F̃ (ωj))) − c.c.

)
=
∑
j

√
2π∆j|F̃ (ωj)| sin

(
ωjt0 + bj + arg(F̃ (ωj))

)
.
in this derivation, the Fourier transformation

f̃(ω) =
1√
2π

∫ ∞

−∞
e−iωtf(t)dt

is used and the condition for the filter function,

F̃ (−ω) = F̃ ⋆(ω).

64



B. Controlling software for the Red
Pitaya

The controlling software of the RedPitaya board is programmed in python. The
graphic user interface (GUI) is created using theTkinter binding. In the back end,
the library redpitaya scpi is used to communicate with the RedPitaya board and
to send the strings including the SCPI commands to the RedPitaya board. The
GUI includes three main windows: The interface for operating in manual mode
(see figure B.1), the interface for automated fit (see figure B.2) and the window
showing the parameters (see figure B.2). In order to be able to run the control
software on any laboratory Windows PC, independent of the pre-installed python
versions and libraries, a standalone program (executable file) is build out of the
python program. Therefore the open-source module cx Freeze is used to create
the standalone program.

B.1. Controlling software: Manual mode

In the manual operation the parameters frequency (in Hz), amplitude (in mV),
phase (in deg) of multiple sinusoidal functions and a general offset (in mV) can
be set manually. By pressing the Start button the program sends a data string
to the RedPitaya and the corresponding signal is applied at both outputs. The
Stop button stops the operation. With the Save parameters button the entered
values are saved in a txt file from which the values can also be loaded with the
Reset parameters button. One can choose between an internal trigger (INT)
and external trigger (EXT PE for the positive edge of the external trigger signal
and EXT NE for the negative edge) on which the RedPitaya generates the signal.
The very right panel shows the RedPitaya IP address, which can be manually

adjusted, in case the RedPitaya board is exchanged by another board with a
different IP address. The panel also includes a message box. The messages include
error information, for example if the connection to the RedPitaya failed or if the
applied amplitude is bigger/smaller than ±1V.
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B. Controlling software for the Red Pitaya

Figure B.1.: Controlling software: Manual window
The picture shows the interface of the RedPitaya controlling software in manual opera-
tion mode. For details see text.

B.2. Controlling software: Automated fit

In the automated fit mode (see picture B.2) it is possible to fit CPMG scan data.
The data are loaded by setting the date and the filename (which is the time
when the data was taken in the QSIM and Precision experiment). Then the fixed
parameters, the noise frequency f and number of π-pulses as well as the fit con-
trast C are selected. The fit contrast can be selected between the two values for
measurements taken with the Raman transition (refer to chapter 5.1.1) or the
729-transition (refer to chapter 5.1.3). Additionally a time off-set and the CPMG
sequence length τ can be selected. By pressing the Fit button the data set is fitted
with equation (5.1) using the selected fixed parameters. The fit result is shown in
a pop-up window including a graph as shown in figure B.2(b). The graph includes
the data points with error bars in blue, in case of measurements with multiple
ions one data point is the average over the ions and the error bar the standard
deviation, in measurements with a single ion the error bar shows the quantum
projection noise. Also shown in the graph are the orange dashed curve the initial
guess and the final fit in red. The legend presents the fit parameters amplitude
Amp and phase ϕ and the fixed parameters number of π-pulses N , frequency f
and the contrast as well as the goodness of the fit the reduced chi-squared χred.
The button Apply applies the corresponding signal with the parameters gained
from the fit at the RedPitaya. With the button Measure the compensation of the
selected frequency component is shut down whereas the compensations of the other
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B. Controlling software for the Red Pitaya

frequency components are still running. This allows a CPMG measurement of one
frequency component, where the other frequency components are suppressed. The
buttons Start, Save and Reset parameters as well as the very right panel are
the same as in the manual mode.
Because of the complicated structure of the fit function (5.1) the success of the

fit strongly depends on the initial guess. As the modification and the adding of
electrical devices in the laboratory leads to random change of the magnetic field
noise, the initial guess of the parameters can not be based on the already known
parameters. To overcome this problem the initial guesses for the fit parameters are
randomly chosen and the data are fitted. Based on the goodness of the fit, the fit
is accepted or new random parameters are chosen and the fit repeated. This whole
routine is automated. As value for the goodness of the fit the reduced chi-squared

χred =
∑
i

(fiti − datai)
2

err2i
(B.1)

is calculated. Here the fit value is donated with fiti and the corresponding data
point datai with its error erri. Experience shows that values of χred < 6 are good
for accepting the fit. If the data set is not successfully fitted, the fit routine stops
after 400 iterations.
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(a)

(b)

Figure B.2.: Controlling software: Automated Fit window
The pictures show the user interface of the Automated fit mode. Picture (b) shows the
pop-up window including an example graph. For details see text.
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B.3. Controlling software: Parameter window

The Parameter window presents the fixed parameters, which are used for the auto-
mated fit mode. It lists the fit contrast C for the Raman and 729-transition for the
different frequencies. It also includes the amp factor a and the phase shift ϕshift

(refer to compensation routine presented in chapter 5.1.1). The parameters can
be manipulated and saved to a txt file, as well as loaded from the very same.

Figure B.3.: Controlling software: Parameter window
The picture shows the interface of the Parameter window. For details see text.
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C. Useful Formulas

C.1. Trigonometric functions

Harmonic addition theorem [40]:∑
i

ai sin(ωt+ ϕi) = a sin(ωt+ ϕ)

with

a2 =
∑
i,j

aiaj cos(ϕi − ϕj)

ϕ = atan 2

(∑
i ai sin(ϕi)∑
i ai cos(ϕi)

)

C.2. Pauli matrices

Eigenvectors:

|↓⟩ =
(
0
1

)
, |↑⟩ =

(
1
0

)
|+⟩x =

1√
2

(
1
1

)
=

|↑⟩+ |↓⟩√
2

, |−⟩x =
1√
2

(
1
−1

)
=

|↑⟩ − |↓⟩√
2

|+⟩y =
1√
2

(
1
i

)
0 =

|↑⟩+ i |↓⟩√
2

, |−⟩y =
1√
2

(
1
−i

)
=

|↑⟩ − i |↓⟩√
2

Rotation operator:

Uφ

(π
2
, 0
)
=

1√
2
(I− iσx)

Uφ

(π
2
,
π

2

)
=

1√
2
(I− iσy)

Uφ

(π
2
, π
)
=

1√
2
(I+ iσx)

Uφ

(
π

2
,
3π

2

)
=

1√
2
(I+ iσy)
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ei
θ
2
σiσje

−i θ
2
σi = cos(θ)σj +

i

2
sin(θ)[σi, σj]

ei
θ
2
σiσ±e

−i θ
2
σi = e±iθσ±

Euler’s Formula
eia(n̂·σ⃗) = I cos(a) + i(n̂ · σ⃗) sin(a) (C.1)

[σi, σj] = 2iϵijkσk (C.2)

Baker-Campbell-Hausdorff-formula

eAeB = eA+Be[A,B]/2 (C.3)

valid if [A,B] commute with A,B.

C.3. Annihilation and creation operator

eiθa
†aae−iθa†a = e−iθa (C.4)

eiθa
†aa†e−iθa†a = eiθa† (C.5)

eiθa
†aeiη(a+a†)e−iθa†a = eiη(ae

−iθ+a†eiθ) (C.6)

eiη(a+a†) = e−η2/2eiηa
†
eiηa (C.7)
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Harty, and D. M. Lucas. Magnetic field stabilization system for atomic physics
experiments. Review of Scientific Instruments, 90(4):044702, 2019.

[16] S. Meiboom and D. Gill. Modified Spin-Echo Method for Measuring Nuclear
Relaxation Times. Review of Scientific Instruments, 29(8):688–691, 1958.

[17] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Rev.
Mod. Phys., 62:531–540, Jul 1990.

[18] C. Hempel. Digital quantum simulation, Schrödinger cat state spectroscopy
and setting up a linear ion trap. PhD thesis, Universität Innsbruck, Available
at https://quantumoptics.at, 2014.

[19] P. Jurcevic. Quantum Computation and Many-Body Physics with
Trapped Ions. PhD thesis, Universität Innsbruck, Available at https:

//quantumoptics.at, 2017.

[20] Dietrich Leibfried, Rainer Blatt, Christopher Monroe, and David Wineland.
Quantum dynamics of single trapped ions. Reviews of Modern Physics,
75(1):281, 2003.

[21] Pradip K. Ghosh. Ion traps. Oxford University Press, 1995.

[22] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weck-
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