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Abstract

Quantum computers are believed to revolutionize the way of solving problems classical
computers aren’t able to. Related to the universal quantum computer, which can be
programmed as wished, is the quantum simulator, which can be initialized with a
certain problem or also only a single task of a greater problem. The problem is solved
by evolving and measuring the state of the used qubits.
My work deals with a quantum simulator using linear chains of 40Ca+ ions in a
Paul trap. An optical setup was designed using the ZEMAX software to obtain an
addressing range of more than 230 µm along with a spot size on the order of 2 µm
for a 729 nm laser. This is achieved using an acousto-optical deflector (AOD) and
an optical setup, which projects the output of the AOD on the focussing objective,
while enlarging the laser beam at the same time. The system was characterized first
in a test setup by putting a small-pixelsized CCD camera in the focal plane of the
objective. Then, the old addressing system was replaced by the new one, allowing
the addressability of 51 ions with comparable spot size of the 729 nm laser relative to
the old setup. In the quantum simulation approach taken in this experiment, the ion
transitions are addressed off-resonantly, in which case the beam spot was almost free
of optical aberrations and the crosstalk of the center ion in a 51-ion chain was about
0.4 %.

Kurzfassung

Es wird erwartet, dass Quantencomputer die Art Probleme zu lösen, an denen klassische
Computer scheitern, revolutionieren werden. Verwandt mit dem universellen Quanten-
computer, welcher beliebig programmiert werden kann, ist der Quantensimulator, auf
welchem ein gewisses Problem oder auch nur eine einzelne Aufgabe eines größeren
Problems initialisiert werden können. Besagtes Problem wird dann durch Zeitentwicklung
und Zustandsbestimmung der verwendeten Qubits gelöst.
Meine Arbeit handelt von einem Quantensimulator, unter Verwendung von linearen
Ketten von 40Ca+ Ionen in einer Paulfalle. Es wurde ein optischer Aufbau mit Hilfe
der Software ZEMAX entworfen, um einen Addressierbereich von 230 µm zusammen
mit einer Fokusgröße von 2 µm für einen 729 nm Laser zu erreichen. Dies wird mit
Hilfe eines akusto-optischen Deflektors (AOD) und eines optischen Aufbaus erreicht,
welcher den Ausgang des AODs auf das fokussierende Objektiv projeziert, während
er zugleich den Laserstrahl aufweitet. Zunächst wurde ein Testaufbau mittels einer
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CCD mit kleiner Pixelgröße charakterisiert, indem der Laserstrahl in der Brennebene
des Objektivs analysiert wurde. Anschließend wurde der alte Addressierungsaufbau
durch den neuen ersetzt, welcher die Addressierung von 51 Ionen mit vergleichbarer
Fokusgröße des Laserstrahls, gemessen am alten Aufbau, erlaubte. Die Übergänge in
den Ionen werden bei dieser Art der Quantensimulation dabei nicht resonant getrieben,
welches einen Strahlfokus nahezu frei von optischen Aberrationen zur Folge hat, wobei
das Übersprechen mit den Nachbarionen etwa 0.4 % oder geringer war.

Abbreviations

AC alternating current
AMP amplifier
AOD acousto-optic deflector
AOM acousto-optic modulator
CCD charge-coupled device
eq. equation
f.l.t.r from left to right
fig. figure
FWHM full width half maximum
h.c. Hermitian conjugate
PBS polarizing beam splitter
resp. respectively
RF radio frequency
sec. section
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1. Introduction

Science and technology never developed as fast as in the last decades. Nevertheless,
many developments and discoveries made centuries ago are still of fundamental importance
not only for the field of physics, but science in general.
Almost every time a physical experiment is performed, some theory or simulation is
about to be proved or disproved. In ancient times the required calculations for these
theories were mostly made by hand or with the help of simple but quite efficient tools
like the abacus. With the introduction of differential and integral calculus by Newton
and Leibniz, the complexity of calculation increased drastically and for a long time
scientists could describe phenomena mathematically, but couldn’t solve the regarding
equations. This changed with the development of the computer in the middle of the
last century, as proposed by Alan Turing [1]. With increasing speed and memory of
the computers, more and more problems became solvable.
At the same time, there were also major developments in the field of quantum theory,
introduced Heisenberg [2] and Schrödinger [3]. Soon it became clear, that problems in
quantum mechanics could be simulated exactly with a classical computer only up to a
certain limit, which means in most cases up to a certain number of quantum particles
in the system. In 1981, Richard Feynman proposed in his famous lecture [4] to use
devices on the basis of quantum mechanics to solve quantum mechanical problems,
which inspired a variety of research groups to work towards the goal of a quantum
computer. In 1996 resp. 1997, Lov Groover and Peter Shor showed in their work [5]
resp. [6], that quantum computers (quantum processors) were not only useful for the
simulation and solution of quantum mechanical problems, but also for computationally
hard classical problems, that are of more general interest for the public. It didn’t take
much time after the first announcement of the Shor algorithm in 1994 before Cirac
and Zoller [7] showed in their theoretical work a possible experimental realization
of a quantum computer using trapped ions. A few years later, there was the first
experimental realization of the Cirac-Zoller CNOT-gate (CZ-gate) in the group led
by Rainer Blatt in Innsbruck [8]. The quantum CNOT operation is a quantum gate
that is the quantum analogue of a controlled-not operation on a classical computer.
It is one of the quantum gates on whose basis one can construct a universal quantum
computer.
Shor’s algorithm was realized the first time in 2001 [9] to factorize 15 in its prime
factors 3 and 5 using ensembles of 7 spin 1/2 nuclei in a molecule, whose states were
controlled using magnetic resonance techniques. In trapped-ion implementations of
quantum computing, the first quantum byte, containing 8 entangled 40Ca+ quantum
bits [10], was realized in 2005, before enlarging this number to 14 in 2011 [11].
The use of a computer based on qubits, quantum bits in the form of e.g. a two-level
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1. Introduction

atom, permits for some computational tasks the storage and processing of information
with exponential advantage in comparison to a classical computer. In a classical
computer, the information is built up by storing it as zeros and ones in the basic unit
of information, the bit, whereby a qubit can take a variety of different states, a so-
called superposition of the two basis states |g〉 and |e〉. On the trapped-ion platform,
the qubit is encoded in electrical levels of a suitable ion. At the moment, there is still
a long way to go towards an universal quantum computer, still experiments show the
possibility of such a device being constructed in the near future.
In this thesis an optical system for the addressing of a chain of 50 40Ca+ ions is
described. In chapter 2, an introduction to the theoretical background is given, from
ion traps over optics to quantum simulation. The simulations for the addressing setup
and the setup itself are described in chapter 3, along with the characterization of the
acousto-optical deflector (AOD) used in the setup and a test system. At the end, in
chapter 4, the addressing system is characterized in terms of beam shape and crosstalk
in the actual experiment by using the best sensors, namely the ions themselves. As a
conclusion, the main results of the thesis are summarized and an outlook is given in
chapter 5.
In the appendix A, one can find plots for the specification of a 10-ion chain as well as
the data sheet of the AOD used in the setup in appendix B.
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2. Theoretical concepts

Different physical systems have been identified as suitable as a basis for performing
quantum simulations. Besides ions that are held in traps and manipulated and measured
with laser light, which will be treated further in the following section, one can also
think of quantum simulators using superconducting qubits, as used by most of the
big players on the field, like Google, IBM or Intel [12], or ultracold atoms in optical
lattices[13, 14]. In order to generalize some important requirements fro performing
quantum computation, in 2000 David DiVicenzo [15] famously formulated five (plus
two) criteria required for doing universal quantum computation. These were:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation times

4. A universal set of quantum gates

5. A qubit-specific measurement capability

6. The ability to interconvert stationary and flying qubits

7. The ability faithfully to transmit flying qubits between specified locations

The latter two criteria are important for doing quantum communication, which is not
so important for the purpose of quantum simulation. In the case of trapped ions, the
first five criteria are mostly fulfilled: ions can be addressed with high fidelity and the
coherence time is on a much longer then the gate operation time [16]. There also exist
gates for trapped ions, like the Cirac-Zoller gate [7] and the Mølmer-Sørensen gate
[17], which allow for universal gate operations. In our case of 40Ca+, the state of the
qubit can be determined quite easily exciting transitions and collecting fluorescence
light. The only problem trapped ions face is the scalability. Whereas one can e.g.
industrially produce large number of superconducting qubits using microfabrication
techniques or trap thousands of atoms in optical lattices, the number of trappable and
individually controllable ions is limited so far to a few tens [18]. To understand why,
one has to get a deeper insight into the physics of ion traps, in this case the Paul trap.
In this section, I will try to give this insight, before I will discuss properties of the
calcium ion, which acts as a qubit, give a brief introduction to ray optics and ion-light
interaction and come to the application for quantum simulation.
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2. Theoretical concepts

2.1. Paul traps

When conducting experiments with ions, one can choose between a few frequently
used and well known trapping solutions. There is the possibility to trap ions using
magnetic and electric fields, as in the Penning trap [19], or just electric fields, as in
the Paul trap [20]. These types of ion traps are very often used not only in the field of
quantum physics, but also in a variety of different fields, where their purpose is mostly
the one of mass filters in mass spectrum analysers [21].
I will first describe the theoretical framework of a Paul trap, before I will shortly
describe the trap used in the quantum simulation experiment.

2.1.1. Theory

The usual way of trapping something in real life is keeping it confined in every direction.
If we consider for example a bowl filled with water, the bowl confines the water on the
bottom and the sides, whereas gravity prevents the water from pouring out at the top.
The same principle works also for ions, which can be trapped in a stable way only by
using potentials with a positive curvature, e.g. caused by an electrostatic potential.
Gravity doesn’t qualify as trapping potential, since the Coulomb force (e.g. between
two ions) is many orders of magnitude stronger than gravity. Therefore gravity can
be neglected (and therefore not used as a means of trapping) in this case. So lets
consider electrostatic potentials: If one puts an electrical potential barrier φ(x, y, z) in
all three spatial directions x, y and z, the ion should be unable to escape. But there is
a fundamental problem, which arises in the form of the Earnshaw theorem[22], which
has in this case the form of the Laplace equation

∆φ(x, y, z) =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (2.1)

Figure 2.1.: Mechanical
analogue of a Paul trapping
potential, taken from [23].

This means, that in at least one spatial direction,
the curvature of the electrostatic potential has to be
negative, which indicates, that the trapping in this
spatial direction is unstable. Paul solved this problem
using dynamic electric fields. In his Nobel lecture
[23], Paul explained the effect using a rotating saddle
surface and a ball: Whenever the ball is about to roll
down the negatively part of the surface, it is pushed
back to the saddle point by the positively curved part
of the surface, which has in the meantime rotated in
the place of the negatively curved one. A look to fig.
2.1 may clarify this analogy further.
The following paragraphs follow the argument (and
the notation) given in the Nobel lecture of Paul [23].
In the first approximation, the force F , confining an
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2.1. Paul traps

ion, increases linearly with the distance |~r| = r at the location ~r from the trap center,
so as to say

F = −ar (2.2)

with a > 0. The force is hereby a restoring force, since it is pushing the ion back.
Integrating this equation leads to a potential φ of the form

φ(x, y, z) ∝ (αx2 + βy2 + γz2) (2.3)

with α, β and γ constants. It is very often, like for us, the case, that there are electric
quadrupoles used to generate a potential φquad like in eq. 2.3, which then has the form

φquad =
φ0

2r2
(αx2 + βy2 + γz2) (2.4)

with φ0 a constant and r the distance from the symmetry axis. In order to fulfil
the Laplace equation 2.1, one can either choose trivially α = 1, β = 0 and γ = −1,
which corresponds to a 2-dimensional confinement in x and z direction, or a three-
dimensional confinement, which can be achieved choosing α = 1, β = 1 and γ = −2.
Considering the former case, corresponding to a mass filter, one obtains a potential of
the form

φ(x, y, z) =
φ0

2r2
0

(
x2 − z2

)
(2.5)

Such a potential can be achieved approximately using 4 parallel metal rods, the exact
potential can be achieved using hyperbolically formed metal plates. The problem
with this configuration is, as already explained above, that if now some ions enter the
configuration on the center axis, they are unstable in either the x or the z direction,
depending on their charge, since 2 opposite electrodes will attract them. If the ions
move a tiny bit out of the center axis, they get accelerated towards the electrode they
are closer to, and are lost. One can overcome this problem, in analogy to fig. 2.1, by
applying an additional periodic potential of the form

φ0 = U + V cos(ΩRF t) (2.6)

with amplitude V , frequency ΩRF and time t, besides the static potential U . By taking
the gradient of the potential and multiplying with the charge e of the ion, one gets
the equations of motion of the form

ẍ+
e

mr2
0

(U + V cos(ΩRF t))x = 0

z̈ − e

mr2
0

(U + V cos(ΩRF t)) z = 0
(2.7)

with m the mass of the ion. Taking a closer look on the time-varying term, one may
come to the conclusion, that the resulting force averages out with time. However,
this is not the case, since the force is not only dependent on time, but also on space,
meaning that the repelling force is smaller when the particle closer to the center than
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2. Theoretical concepts

the restoring force when it is farther away from the center. One can show this using
the so-called secular approximation. Considering only the x-direction, this amounts
to splitting the variable describing the position of the ion x(t) into a slowly varying
part x̄(t) and a fast oscillating part χ(t), meaning x(t) = x̄(t) + χ(t). One can now
first solve the fast oscillating part of the equation of motion

mχ̈ = F (x̄, t) (2.8)

at the location x̄, since x̄ changes much slower than χ and can therefore be considered
as constant. The force is in this case the Coulomb force FC = e∇φ0, taking into
consideration the oscillating part of eq. 2.6, this leads to

χ(t) =
eV

mr2
0Ω2

RF

x̄ cos(ΩRF t) (2.9)

Now, the force for the slowly-varying part at the position x̄(t) corresponds to the
average force over time, so as to say m¨̄x(t) = 〈F (x, t)〉. Substituting x by x̄(t) + χ(t),
one obtains

〈F (x, t)〉 = − e2V 2

2mr4
0Ω2

RF

x̄. (2.10)

So what we obtain in total is a restoring force pushing the ion to the center when
averaged over one period of the oscillating signal. This approximation is valid if the
resulting harmonic motion has a frequency much smaller than the drive frequency.
The difference from taking only into consideration the RF-potential in eq. 2.6 to the
term with the applied DC potential is, that the confining potential is lowered in one
trapping direction and raised in another. By tuning the amplitudes U and V , one can
achieve, that only ions with a certain charge-to-mass ratio make it through the mass
filter. If one applies now also a static potential of the form of eq. 2.4 with α = β = 1
and γ = −1, one can trap ions in a linear string.
Coming back to eq. 2.7, one may see that those equations have the form of the so-called
Mathieu equations [24], which are often written as

d2x

dτ 2
= − (a+ 2q sin(2τ))x

d2z

dτ 2
= (a+ 2q sin(2τ)) y

(2.11)

with

τ =
ΩRF

2
t, q =

2eV

mr2
0Ω2

RF

and a =
4eU

mr2
0Ω2

RF

(2.12)

Solving eq. 2.11, one obtains oscillations with frequencies

ωx =
ΩRF

2

√
q2

2
+ a and ωz =

ΩRF

2

√
q2

2
− a, (2.13)

which means that stable solutions can be only obtained if a > − q2

2
in the case of ωx

and a < q2

2
in the case of ωz, resulting in a region of stability shown in fig. 2.2. The

behaviour for large q is hereby not covered, since the secular approximation doesn’t
hold in that case.

12



2.1. Paul traps
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Figure 2.2.: Stability diagram for the Mathieu equations 2.11 as function of the a and
q-parameter. The stable region is marked in yellow, the unstable in blue.

2.1.2. Ion in the linear string

This section is based on the 1998 paper by D.F.V James [25]. Ions in a linear Paul trap
underlay two main forces: The restoring Coulomb force, generated by the trapping
potential, confining in all three dimensions, and the repelling Coulomb force, caused
other ions in the trap and acting along the longitudinal dimension of the trap (if the
ions form a linear string). Since the potential in the longitudinal direction is very weak

100 50 0 50 100
distance ( m)

Figure 2.3.: Camera picture of a 50 ion chain overlaid with the calculated theoretical
position (green dots). The scale was converted from pixel to µm, whereby the picture was
taken with an applied tip voltage of 12 V at the Paul trap.

in comparison to the one in the radial direction, one can neglect the motion along this
directions. The potential Vtrap one obtains is therefore

Vtrap =
N∑
m=1

1

2
mω2xm(t)2 +

N∑
n,m=1
m 6=n

e2

8πε0

1

|xn(t)− xm(t)|
(2.14)

with N the total number of ions in the ion chain, ω the longitudinal trap frequency,
xm(t) the position of the mth ion and ε0 the permittivity of free space.
In fig. 2.3 the camera image of an actual 50 ion chain, which was generated with a code
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2. Theoretical concepts

written by Christine Maier out of the raw camera data, is overlaid with the calculated
theoretical values using eq. 2.14. As one can see, the actual position matches well
with the calculated one.

2.1.3. Paul trap design

Figure 2.4.: Second generation Paul
trap at the IQOQI Lab 1. It consists
of 2 tip electrodes (A), surrounded by 4
RF blade electrodes (C). The connection
between the opposite electrodes can be
seen at the bottom right corner (B). The
picture (modified) was taken from [26].

The current trap used in the experiment is
from the second generation of linear Paul
traps at the University of Innsbruck/IQOQI,
designed and manufactured by Stefan Haslwan-
ter [26]. A picture of the trap is shown in fig.
2.4. It consists of two tip electrodes, confining
the ions in the longitudinal direction. Those
electrodes have holes in their center, allowing
for a beam to target the ion chain.
The tip electrodes are surrounded by four
RF blade electrodes, which confine the
ions transversally. Furthermore, there are
compensation electrodes built into the trap,
to compensate for electrical stray fields. The
trap sits in a UHV chamber with pressures
below 10−10mbar. The trap and the whole chamber are also actively magnetically
stabilized with large coils surrounding the chamber.

2.2. The 40Ca+ ion

After having discussed the Paul trap, I will present some properties of the ion species
used in the experiments, i.e. 40Ca+.
Calcium is part of the group of alkali earth metals, the second main group in the
periodic table. Therefore, it has two valence electrons in its outermost shell. For
encoding a qubit, it is convenient to use an ion species with a single valence electron
as such ions have comparatively simple level schemes with transition wavelength in
a wavelength range that can be conveniently accessed by lasers. In the experiment,
the neutral calcium atom is vaporized by applying current to a solid piece of it. The
problem is hereby, that the calcium isotope used in this experiment (40Ca) has a
natural abundance of 96.6 % [27]. This means, that within a chain of 50 ions, there
would be 2 ions with different mass. This difference in mass shifts the transitions
within the ion frequency-wise. This problem is solved by using an isotope-sensitive
ionisation process. First, one valence electron is pushed to the 4s4p 1P1 level, using
a 423 nm laser, before being punched out of the atom using a 375 nm laser [26]. For
the other isotopes, the first ionization step is not resonant to any energy level, which
prevents an excitation of the atom. Also, the second step doesn’t provide enough
energy to ionize a calcium isotope. That way, one creates a pure string of 40Ca+ ions
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2.3. Interactions between ions and light

out of the ionization process.

42S1/2

42P1/2

42P3/2

32D3/2

32D5/2

396.847 nm
92.5 %

393.366 nm
93.5 %

854.209 nm
5.7 %

866.214 nm
7.5 %

729.147 nm

τ = 1.17 s

τ = 1.2 s

τ = 6.9 ns

τ = 7.1 ns

−1/2
1/2

−5/2
−3/2

−1/2
1/2

3/2
5/2

Figure 2.5.: Wavelengths and lifetimes of the relevant transitions and energy levels in the
40Ca+ ion. The remaining 0.8 % from the 42P3/2 level go to the 32D3/2 level. Adapted from
[28]

The ground state of the 40Ca+ ion is the 42S1/2 state. The two most important
transitions are on the one hand the qubit transition to the 32D5/2 state, due to its
long lifetime of 1.17 s, and on the other hand the dipole transition to the 42P1/2 level,
used for Doppler cooling and imaging. It is suitable for Doppler cooling, since it has a
quite broad linewidth of about 22.4 MHz [26], allowing for a rapid cooling of the ion.
The imaging is done by shining resonant 397 nm light on the ions, exciting the 42S1/2

to 42P1/2 transition. If the ion is in its ground state, it will emit 397 nm fluorescence
light, which is detected by a CCD camera. If the ion is in the exited 32D5/2 state,
no excitation will happen and therefore no fluorescence light be shone to the CCD;
therefore, when the ion is in the excited state, it remains dark. Repumping from the
32D5/2 level and the 32D5/2 level to the ground state is done with lasers emitting at
866 nm and 854 nm, respectively. A full scheme with all relevant transitions, their
according wavelengths and lifetimes is shown in fig. 2.5.

2.3. Interactions between ions and light

The easiest and most efficient way to manipulate ion states is by lasers. In this section,
a theoretical framework on the basis of quantum mechanics will be described. This
section is based upon chapter 3 in [29].
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2. Theoretical concepts

The ion is assumed to be trapped in a three dimensional harmonic potential, which
has the form 1

2
mω2

i x
2
i in every dimension i, which is approximately the case for not

too large displacements. In the longitudinal direction, the trap frequency is of course
different from the transversal direction. The Hamiltonian of the ion, regarding just
one spatial dimension, has then the form

H0 =
p2

2m
+

1

2
mω2x2 +

1

2
h̄νσz. (2.15)

Here, the first two terms represent the kinetic and potential energy of the particle with
p the momentum of the ion. The last term accounts for the energy stored in the two
energy levels comprising the qubit with h̄ the reduced Planck constant, h̄ν the energy
difference between the two levels in the ion and σz the Pauli Spin-z-matrix.
Now the interaction with the laser filed comes into play. It can be expressed as

H1 =
1

2
h̄Ω(σ+ + σ−)

(
ei(kx−νLt+φ) + e−i(kx−νLt+φ)

)
(2.16)

with σ+ and σ− the atomic raising and lowering operators, Ω the Rabi frequency resp.
coupling strength, k = 2πνL

c
the laser wave number, νL the frequency of the laser field

and φ its phase. The constant c describes hereby the speed of light. An applied atomic
raising operator pushes the ion’s valence electron to the excited level |e〉, the atomic
lowering operator kicks it down to the ground state |g〉. They raising and lowering
operators are defined as

σ+ = |e〉〈g| and σ− = |g〉〈e| (2.17)

The sum

H = H0 +H1 (2.18)

is then the total Hamiltonian describing the system. Making use of the creation and
annihilation operators â and â† introduced by Dirac [30] and defined as

â =

√
mν

2h̄

(
x̂+

i

mν
p̂

)
and â† =

√
mν

2h̄

(
x̂− i

mν
p̂

)
(2.19)

with x̂ and p̂ the position and momentum operators, one can rewrite eq. 2.15 and eq.
2.16 as

H0 = h̄ω

(
â†â+

1

2

)
+

1

2
h̄νσz (2.20)

H1 =
1

2
h̄Ω
(
eiη(â+â†)σ+e−iνLt + e−iη(â+â†)σ−eiνLt

)
(2.21)

with the Lamb-Dickie parameter

η = kx0 = k

√
h̄

2mω
(2.22)

16



2.3. Interactions between ions and light

and x̂ = x0(â+ â†).
Here the Lamb-Dickie parameter is a means to compare the laser wavelength λ = 2π

k

to the ground state size x0 =
√

h̄
2mω

of the ion. In its squared form, the Lamb-Dickie

parameter can also be seen as a comparison between recoil energy Erec = (h̄k)2

2m
and the

harmonic oscillator level spacing h̄ω in the trapping potential, saying η2 = (kx0)2 =
Erec
h̄ω

.
In the case of eq. 2.21, the rotating wave approximation was applied, omitting the
fast oscillating terms, which average out quickly to 0. Going to the interaction picture
HI = U †HU with U = eiH0t/h̄, the total Hamiltonian 2.18 becomes

HI =
h̄Ω

2

(
σ+e−i∆t · e(iη(âe−iωt+â†eiωt)) + h.c.

)
(2.23)

with ∆ the detuning of the laser frequency from the transition frequency from the
ground to the excited state ν

∆ = νL − ν (2.24)

For small η, one can approximate

e(iη(âe
−iωt+â†eiωt)) ≈ 1 + iη

(
âe−iωt + â†eiωt

)
+O(η2) (2.25)

Inserting eq. 2.25 into eq. 2.23, one gets three different terms: Where ∆ = 0, resonant
excitation occurs, the Hamiltonian has the form

Hcar =
h̄Ω

2

(
σ+ + σ−

)
(2.26)

This type of interaction is said to be on the carrier transition. This means, the ion
is excited without changing the motional quantum state n in the trap. The quantum
number n is hereby the expectation value of the so called phononic number operator
n̂ = â†â, which gives the number of energy quanta h̄ω the ion has in the trap.
For ∆ 6= 0, there are two important cases: One can either go to the so called blue or

red sideband by setting the detuning to either ∆ = ω or ∆ = −ω, as depicted in fig.
2.6. For this kind of excitation, the coupling strength changes, for the red sideband
to Ωred = η

√
nΩ and for the blue sideband to Ωblue = η

√
n+ 1Ω. The Hamiltonians

have the form

Hred =
ih̄η
√
nΩ

2

(
âσ+ − â†σ−

)
(2.27)

Hblue =
ih̄η
√
n+ 1Ω

2

(
â†σ+ − âσ−

)
(2.28)

On the red sideband, one can either lower the phononic quantum number by 1 and
excite the ion, or deexcite the ion while enhancing the phononic quntum number by
1. On the blue sideband, one can either excite the ion and enhance the phononic
quantum number by 1 or deexcite the ion and decrease the phononic quantum number
by 1.
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2. Theoretical concepts

|n− 2, g〉
|n− 1, g〉

|n, g〉
|n+ 1, g〉

|n+ 2, g〉

|n− 2, e〉
|n− 1, e〉

|n, e〉
|n+ 1, e〉

|n+ 2, e〉

h̄(ν − ω)

h̄ν

h̄(ν + ω)

Figure 2.6.: Scheme of the energy structure of a 2-level ion in a harmonic potential. The
first quantum number of the states is the phononic quantum number, the second quantum
number is the quantum number describing the inner state of the ion. Hereby g describes
the ground state and e the excited state. An example for a carrier transition is depicted in
black, one for the red sideband transition in red and one for the blue sideband in blue.

On narrow transitions one always realizes maximum one of those three transitions.
As one may see, the red sideband can be used to cool the ion to its motional ground
state. To achieve this, the excited state has to decay fast to the ground state, like it
is the case for the 397 nm transition (see fig. 2.5).
When running resonant excitations at n = 0, the population of the ground state resp.
the excited state exhibit so-called Rabi oscillations as a function of the length of the
exciting pulse. Those oscillations can be derived solving the optical Bloch equations
[31] for a 2-level system. For a ground state population pg = 1 at time t = 0, one gets
a time-dependent population of ground (pg) and excited state (pe)

pg(t) = cos2

(
Ωt

2

)
and pe(t) = sin2

(
Ωt

2

)
(2.29)

where the Rabi frequency Ω is

Ω =
~dge ~E

h̄
(2.30)

with ~dge the dipole matrix element of the transition from ground to excited state and
~E the electric field caused by the laser.
In reality, there is often more than just one motional mode occupied, which leads to
a decay of the Rabi oscillations. This decay process can be approximately described
(see derivation in [29]) for the excited state population via

pe(t) ≈
1

2

(
1− cos(2Ωt) + 2Ωtη2(n̄+ 1) sin(2Ωt)

1 + (2Ωtη2(n̄+ 1))2

)
(2.31)

with n̄ the mean phonon number.
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2.4. Basic optics

2.3.1. AC-Stark shift

Up to now, the laser beam has been described to be more or less in resonance with the
transition in the ion. To get maximum efficiency, usually one tries to get as close to
the transition frequency as possible. Now there is an effect [32] described, which tunes
the laser frequency far off (for the used qubit transition it is on the order of a few tens
of Megahertz) the transition in the ion. Far off means hereby, that the transition is
still excited, but with a lower probability. The following argument is based on [29].
Considering a laser beam coupling off-resonantly to a carrier transition, the transition
is shifted energetically by an amount

δAC = −Ω2

2∆
(2.32)

with ∆ = νL− ν the detuning of the laser. This means, if one shines in a red-detuned
laser beam, meaning a laser beam with a lower frequency than the transition frequency,
to the carrier transition, the transition is spaced further apart and vice versa. Hereby,
the spacing splits up equally on both levels. In the red-detuned case, the upper level
is shifted upwards by Ω2

4∆
and the lower level downwards by Ω2

4∆
. Also, the coupling is

affected by the detuning. The occupation of the excited state can be described as [33]

pe(t) =
Ω2

Ω2 + ∆2
sin2

(√
Ω2 + ∆2t

2

)
(2.33)

This means, that the population doesn’t go all the way to 1 any longer, whereby the
oscillation period becomes shorter. The effective Rabi frequency Ω̃ changes to

Ω̃ =
√

Ω2 + ∆2 (2.34)

The biggest advantage is, that the coupling is now proportional to the square of the
Rabi frequency, which also means proportional to the square of the electric field. For
the purpose of addressing single ions positioned very closely to each other, this is a
major advantage, since the beam diameter the ions see, reduces by a factor of

√
2 with

respect to resonant excitations. Also, in this case, one doesn’t have to worry about
the right phase of the laser beam any longer.

2.4. Basic optics

Optical know-how is needed to allow for precise addressing of single ions with tiny
spot-sized laser beams. If a laser beam is focussed with very small spot size on a
well-located ion, one doesn’t need high laser powers to manipulate the state of the ion
in a reasonable time. Also, when going to longer chains of ions, the distance between
them becomes smaller and smaller, which makes a small laser spot size necessary in
order to not affect neighbouring ions when shooting at one ion.
First of all, ray optics are introduced, before going to Gaussian optics, whose description
contains some important definitions for the determination of the spot size of a focussed
laser beam.
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2. Theoretical concepts

2.4.1. Ray optics

Ray optics are the most basic description of light propagation. Nevertheless, for the
purpose of designing an optical setup, ray optics is the first step of getting an idea
how the setup should look like. This section is based on chapter 1 in [34].
If light propagates through a medium or through an object, whose size is much bigger
than the light’s wavelength, the light can be described in good approximation as a ray.
These rays obey some quite simple geometrical rules.
First of all, light travels through a medium with a certain index of refraction n(r). For
vacuum, the index of refraction is n = 1, for other media n ≥ 1. Also, the propagation
speed of light c is dependent on the index of refraction

c =
cvac
n

(2.35)

where cvac is the speed of light in the vacuum. A very important point, when it comes
to the design of an optical setup, is, that the spatial and optical pathlength of light
are different. Considering a spatial distance d, the optical distance the light travels
corresponds to n · d. The path the light takes in a medium with index of refraction
n(~r) from a point A to a point B is determined by Fermat’s principle

δ

∫ B

A

n(~r)ds = 0 (2.36)

meaning that the light takes the path through the medium for which the optical
pathlength is minimized. Using eq. 2.36, one can deduce the law of reflection and
Snell’s law. The law of reflection states, that if a light ray is reflected from a surface,
its angle of incidence θi and angle of reflection θr are the same

θi = θr (2.37)

and that the reflected rays lay in the plane of the incident rays. Snell’s law comes into
play, whenever light propagates at the boundary between two materials with different
index of refraction n1 and n2. For an angle of incidence θ1, the angle of refraction θ2

obeys

n1 sin(θ1) = n2 sin(θ2) (2.38)

Making use of a mirror or a lens, light beams can be focussed or expanded. The
distance, at which the beam is focussed, is the so called focal length f . When positive,
a collimated beam is focused at a distance f from the lens, when negative, a collimated
beam is expanded after the lens, as if it was expanding from a focus at a distance −f
behind the lens. Here, collimation means that the rays the beam consists of, are
oriented approximately parallel and barely diverge.
Rays that are not far away from the optical axis, i.e. the axis the optical components
are centred around, are called paraxial rays. For paraxial rays and when propagating
through a focussing element with focal length f , a point P1 a distance z1 away from
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2.4. Basic optics

the optical axis, is imaged to a point P2, which is separated by a distance z2 from the
optical axis. Hereby, the so-called imaging equation

1

z1

+
1

z2

=
1

f
(2.39)

holds.

2.4.2. Gaussian beams

Whenever a beam is focussed, the behaviour in and around the focus can’t be treated
any longer using ray optics, since in the latter case the size of a paraxially incoming
beam would be infinitesimally small in the focus. Since this is not the case, one has
to come up with an extended theory. In this section, the concept of Gaussian beams
is introduced together with some important properties and definitions. This section is
based upon chapter 3 in [34].
The Gaussian beam is not only a very common case of light propagation, like for
example for the output of a laser, but also the solution of the paraxial Helmholtz
equation

∇2
TA− 2ik

∂A

∂z
= 0 (2.40)

with A the complex envelope, ∇2
T = ∂2

∂x2
+ ∂2

∂y2
the transverse Laplacian operator and

k the wave vector.
A general Gaussian beam U(%, z) has the form

U(%, z) = A0
w0

w(z)
exp

(
− %2

w2(z)

)
exp

(
−ikz − ik %2

2R(z)
+ iζ(z)

)
(2.41)

with beam waist

w(z) = w0

√
1 +

(
z

z0

)2

, (2.42)

the wavefront radius of curvature

R(z) = z

(
1 +

(z0

z

)2
)
, (2.43)

the Gouy phase

ζ(z) = arctan

(
z

z0

)
, (2.44)

and the waist at the focus

w0 =

√
λz0

π
. (2.45)

The double of the waist is known as the spot size of the beam. The wavelength is
described by λ, the direction of propagation is z with

z0 =
πω2

0

λ
(2.46)
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2. Theoretical concepts

the Rayleigh range and %2 = x2 + y2 the distance squared perpendicular to the optical
axis. The Rayleigh range is defined as the distance from the focus, at which the cross
section of the beam is doubled. Therefore, at the distance z0 away from the focus,
the beam has a size increased by factor

√
2 and an intensity at the optical axis halved

with respact to the intensity at the focus.
When going far away from the focus, the laser beam diverges almost linear, since the
1 under the square root in eq. 2.42 can be omitted. If now a collimated laser beam is
focussed down by a lens, the focus can be seen as a point source in comparison with
the lens diameter D. Using those two approximations, the angular width θtot of the
diverging beam can be approximated by

θtot ≈ tan(θtot) =
D

f
(2.47)

using the approximation tan(θtot) = θtot for small angles θtot. Considering the same
geometrical argument of small angles, the angular width near the focus can be expressed
as

θtot = 2
w0

z0

=
2λ

πw0

(2.48)

Equating eq. 2.47 and eq. 2.48 leads to

w0 =
2fλ

πD
(2.49)

meaning the waist and therefore the spot size of the beam is the smaller the bigger
the incoming beam diameter on the focussing lens is.
As seen in the section before, off-resonant excitation is proportional to the square
of the electrical field. For laser beams, this corresponds to the intensity of the laser
beam. Considering again a Gaussian shape, the intensity I(%, z) can be expressed as
the absolute square of the Gaussian beam

I(%, z) = |U(%, z)|2 = I0

(
ω0

ω(z)

)2

e
− 2%2

ω2(z) (2.50)

with I0 = |A0|2.

2.5. Quantum simulation

In one of his famous talks in 1981, Richard Feynman [4] proposed using a computer
on the basis of quantum mechanics instead of a computer on the basis of classical
mechanics to simulate and solve problems in quantum physics. Since the Hilbert [35]
space grows exponentially with the number of particles in the problem, the time a
classical computer needs to solve such a problem also grows exponentially. In the
following years, works like the 1996 paper of Seth Lloyd [36] paved the way for the
modern research in the field of (digital) quantum simulation.
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2.5. Quantum simulation

One can distinguish two different types of quantum simulation [37, 38]: analogue and
digital quantum simulation. In the analogue case, the desired Hamiltonian is directly
prepared on the available system and the reaction of the system is studied. In the
digital case, the Hamiltonian is prepared and simulated with the help of quantum
gates, which allows to simulate basically any Hamiltonian, if the size of the system
is large enough. For both types, the quantum simulator can be used not to simulate
the total Hamiltonian, but more as a co-processor [39], which simulates only a few
properties of the Hamiltonian the classical computer is overburdened with.

2.5.1. Basics

In classical informatics, the bit is the basic unit of information. It can take the
values of 0 or 1, True or False, encoding every piece of communication, calculation
and information. When talking about quantum bits, qubits, one has basically also a
system with two different levels, which can be measured to be either in one or the
other state, the ground state |g〉 or excited state |e〉. The main difference is, that the
qubit can also be in a superposition state |ψ〉 of the two states [26]

|ψ〉 = cg|g〉+ ce|e〉 (2.51)

where |cg|2 + |ce|2 = 1 has to be fulfilled due to normalization. When measuring the
state of a qubit in a single measurement, the result has to be the qubit being either in
|g〉 or |e〉. Also, cg and ce are complex in general, where a classical measurement can
only give one the probabilities |cg|2 resp. |ce|2. Therefore, one has to make a number
of measurements to be able to do statistics and determine |cg|2 and |ce|2. The error
that is made when determining the probabilities p is the so-called quantum projection
noise [40]

∆p =

√
p(1− p)

N
(2.52)

where N is the number of measurements made. In the future discussions, the quantum
projection noise will be calculated as

∆p =
1√
N

(2.53)

which corresponds to the error of a Poissonian process, containing all kind of projection
and detection errors and allowing for a more equal weighting of the data points than
eq. 2.52. The most correct method would be doing a so called jackknife [41] for each
data point. This method works by first taking the mean value x̄ of a set of data values
{x} and then calculating the deviation of the mean value with one data point missing
x̄i relative to the mean of the total dataset. The resulting error can be calculated via

∆p =

√
N

N − 1

∑
i

(x̄i − x̄)2 (2.54)
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2. Theoretical concepts

A useful means of visualizing the state of the qubit is the so-called Bloch sphere. The
poles of the sphere correspond to |g〉 and |e〉, whereas all the other, impure states are
located in between. A picture of the Bloch sphere is shown in fig. 2.7.
Making use of the angles φ of its projection relative to the x-axis and of the angle θ

|ψ〉

|e〉

|g〉

z

x

yφ

θ

Figure 2.7.: Bloch sphere. The ground and excited state |g〉 and |e〉 are located on the
poles along the z-axis of the sphere. A general state |ψ〉 is determined via the angle φ of its
projection on the x-y-plane relative to the x-axis and the angle θ relative to the z-axis.

relative to the z-axis, the state |ψ〉 can be expressed as [26]

|ψ〉 = eiγ
(

cos

(
θ

2

)
|e〉+ eiφ sin

(
θ

2

)
|g〉
)

(2.55)

with γ a global phase.
When manipulating the state of a qubit, a rotation along the Bloch sphere is executed.
The rotation can be expressed by making use of the Pauli matrices σx, σy and σz defined
as

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.56)

along with the identity matrix. In the experiment, one can basically go everywhere
on the Bloch sphere by using suitable laser pulses for changing the state of the qubit.
E.g., when exciting the qubit by shooting at it with a laser at resonant frequency, one
performs a rotation from pole to pole. Resonant rotations Rφ(θ) can be expressed as

Rφ(θ) = e−iθSφ/2 (2.57)
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with Sφ =
∑N

i=0

(
σ

(i)
x cos(φ) + σ

(i)
y sin(φ)

)
the sum over all Pauli matrices acting on

ion i with N the number of qubits. When the time the laser is exciting the qubit is
just right to bring it from one pole to the other, the operation is called a π pulse.
Correspondingly, the rotation from one pole to the x-y-plane is called a π

2
pulse.

Applying off-resonant light causes the vector of the state to rotate along the z-axis
[42]. Here the rotation is not dependent on the phase of the laser, meaning AC-Stark

shifted light is suitable for this type of operation. The operation S
(j)
z (θ) on the jth

qubit can be expressed as
S(j)
z (θ) = e−iθσz/2 (2.58)

with the angle θ = δACt dependent on the AC-Stark shift eq. 2.32.
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3. Addressing setup

Figure 3.1.: Old addressing setup. A
laser beam is coupled into an AOD
and expanded using a Galilean beam
expander. The beam is guided to the
upper level of the setup by a common
and a dichroic mirror and then focussed
to the ion string using a custom made
objective. This objective is also used for
imaging purposes. The picture was taken
from [26].

In the IQOQI’s trapped-ion quantum simulation
experiment, the quantum state is prepared
rotating the state of each individual qubit
in the corresponding state using a tightly
focussed laser beam. In order to be able
to prepare the state of each ion, the focal
spot has to be movable over the whole ion
string. Before the beginning of the work for
this master thesis, the ions were addressed
using an optical setup built by Ben Lanyon,
which was actually designed to address a
few ions and limited to the addressing of 20
ions, corresponding to an addressing range of
about 100 µm. A scheme of this setup can be
found in fig. 3.1. It basically consisted of an
AOD, in which the laser beam was coupled,
and a Galilean beam expander. The main
problem was, that out of a certain frequency
range, the laser beam started clipping on the objective, leading to less or no laser
power at all being led to the ions. The main task of this thesis was to come up with
an optical setup, which allows for the addressing of 50 ions, which corresponds to an
addressing range of roughly 230 µm due to technical constraints.
In this chapter I will first motivate why an AOD is the right choice to steer a beam over
an ion string, then present the simulations made and the setup constructed to solve the
presented problem along with data gathered from a test setup and the characterization
of the AOD.

3.1. AODs

When it comes to the deflection of laser beams, the use of non-linear effects in optical
crystals is a commonly used technique. These effects can be caused for example by
electrical fields, as it is the case for electro-optical modulators, or by acoustic waves,
as it is the case for acousto-optical modulators and deflectors. In the latter case, by
changing the index of diffraction periodically, a sinusoidal grating is generated in the
crystal, leading to the diffraction of an incoming laser beam into several orders. In
another picture, the momentum of the acoustic phonon of frequency ΩRF is absorbed
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3.2. Simulation

by the incoming photon of frequency ν, resulting in an exiting photon with different
direction and frequency ν + ΩRF .
The diffraction angle θ is dependent on the velocity of sound of the material v via

θ =
λΩRF

v
(3.1)

with λ the wavelength of the input laser beam. The main difference between an AOD
and an AOM is that the material AODs are made of have a far lower velocity of
sound compared to the one AOMs are made of, leading to a bigger diffraction angle.
Therefore, AODs are the first choice whenever a beam has to be steared over a large
angle.
The downside of a small velocity of sound is, that the time the sound wave needs to
reach the laser beam in the crystal is bigger in comparison to an AOM, which means
the laser beam can’t be steered with an AOD as fast as with an AOM.
Besides the difference in the material, i.e. velocity of sound, the working principle of
an AOD and an AOM are the same.

3.2. Simulation

The first step of designing a new setup are always simulations. For this purpose, the
software ZEMAX was used, which allows for simulating a system using not only ray
optics, but also Gaussian beam propagation. This enables the designer to see where
on the beam path optical aberrations arise and how to fix them. Also, for most lenses
available from manufacturer side, ZEMAX lens files exist, which makes it quite easy
to insert a certain lens into the simulation.
The simulations made for this thesis were based on an approach made by Christoph
Steinlechner, the master student working on the project before myself. It consisted
of five lenses, where two of them were stock lenses, and had a total length of roughly
80 cm. The working principle of his setup is very similar to mine, whereby the total
length of the setup was reduced to match the available roughly 60 cm of linear beam
path. Also, all the lenses were selected to be stock lenses, which reduced cost and
shipping time, but not the performance of the setup.

3.2.1. ZEMAX software

When opening ZEMAX for the first time, the ’Lens Data’ tab opens automatically.
In this tab, one can either define ones own lenses or load already existing lens files,
e.g. ones provided by the manufacturers. A variety of characteristics of the lens can
be determined, such as radius of curvature, thickness, material and coating. If not
specifically put somewhere else, all the optical components are centred around the
optical axis of the system.
A very useful tool of the software is the ’3D Layout’ tab. Here, the optical system
can be viewed as a 3D model, whereby ray optics is used to calculate the paths of
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3. Addressing setup

the displayed rays. That way, clipping effects can be seen already in this model. A
screenshot of this tool is shown in fig. 3.2. The rays can be defined at the ’Fields’

Figure 3.2.: Screenshot of the ’3D Layout’ tab in the ZEMAX software. The lenses of the
setup are centred around the optical axis of the system, the distance between them can be
changed in the ’Lens Data’ tab. The rays coming out of the object plane span an angle of
2.7◦, as the output range of the AOD is specified. The center ray is coloured in blue, the two
rays at the edges of the range are coloured in red and green. The surface marked in orange
is the one selected in the ’Lens Data’ tab.

option in the ’System Explorer’ tab. This option was used to define three beams at
the edges and the center of the angular output range of the AOD. When looking at the
edge beams at the focal plane in the ’3D Layout’ tab, one can measure the achievable
addressing range. What one may notice looking at fig. 3.2 is, that the third lens from
the left (labelled L3 in fig. 3.5) is different from the one specified in section 3.3. This
is due to the fact, that the simulations were made using a 1/2 inch lens, which was
changed to a 1 inch lens when mounting the setup into the experiment due to clipping
and accuracy concerns. The optical properties (focal length) of the lens in the actual
setup are the same as the ones of the lens in the simulations.
The third very useful tab was the ’Physical Optics Propagation’ tab, which calculates
the beam profile at a desired surface along the beam path using scalar diffraction
theory. Hereby, the wavefronts are propagated through the setup using transfer
functions on an array of sampled points [43], whereby the user can choose the amount
of points and thereby the resolution of the simulation. Using this functionality, one
is able to take a look at the beam and its profile also close to and at the focus of the
beam, where ray optics breaks down. Also, optical aberrations are calculated more
precisely and are visualized better than for the ray optics. A picture of the beam
profile at the focus is shown in fig. 3.3.
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A very useful tool when doing simulations was the ’Quick Adjust’ Option in the

Figure 3.3.: Screenshot of the ’Physical Optics Propagation’ tab. In the plot, the irradiance
is plotted as a function of the spatial expansion of the beam.

’Optimization’ menu. This allows the optimization of a certain distance between two
surfaces or the radius of curvature of a surface in the setup, in order to get the focus
at the image plane.
Of course, the possibilities in ZEMAX are much larger than the ones quickly presented
above, but as a start, those options turned out to be quite useful.

3.2.2. Simulation results

From the simulation, a spot size of the beam of 2.4 µm was obtained for an addressing
range of 200µm. This waist was slightly larger than the spot size obtained in the
old setup, which was about 2.0 µm. The differences can be explained with the larger
addressing range, since the spot size and the addressing range are correlated. At the
same time, concerns arose, whether the objective in the simulation really represented
the one actually built into the experiment. This was the case, since in the simulation
it was not possible to reach diffraction limited spot sizes as specified in [26]. On the
other hand, the focal length of the objective matched with the distance from the last
lens of the objective to the ions of 5.8 cm, as specified in [44].
The only option to reach spot sizes in that region is to increase the beam size entering
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3. Addressing setup

the objective, resulting in a smaller spot in the focus. But this can’t be simply be
achieved by expanding the beam more, since this would at the same time decrease
the addressing range, but rather by increasing the beam size going through the AOD,
i.e. using a fibre coupler with a bigger output diameter and an AOD with a bigger
aperture. Doing this, one has to take into account the larger response time due to the
larger distance the sound wave has to walk until the whole laser beam is deflected.
Also, the risk of optical aberration rises, since the diffraction of the lenses gets more
and more imperfect the further one moves out of the center.
Simulated results for both effects, which were described in the paragraphs above, can
be found in fig. 3.4.
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Figure 3.4.: Correlations important for the simulations: in (a), the addressing range ∆r
is plotted as a function of the spot size at the focus 2w. The calculations were made for
two different lens configurations to make sure the limitation is not coming from a specific
design. There was also made a linear fit ∆r = a1 · 2w in order to show the observed linear
correlation. The parameter a1 was found to be a1 = 74.3(1), where the error comes from
the fit error. In (b), the spot size of the laser beam at the focus is plotted as function of the
input diameter D of the laser beam at the AOD. Also here, a fit was made as expected by
eq. 2.49 of the form 2w = a2/D, where a2 was found to be a2 = 1.90 with negligible error
arising from the fitting. In both cases, the values didn’t have errors, since ZEMAX doesn’t
give errors on its output values.

3.3. Setup

In this section, the developed setup and its specifications are presented. The setup
consists of the AOD, 5 lenses and the objective. There are additional components like
a polarizing beam splitter and mirrors, which are also part of the setup, but are not
important for the main task of the setup, which is allowing us the precise addressing
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3.3. Setup

of single ions spaced over a certain distance range from the optical axis. A sketch of
the setup can be seen in fig. 3.5, where a few (not all, for a better overview) of these
additional components can also be seen.

mirror 2

L4 L3
PBS

L2 L1 AOD

L5

dichroic

objective

trap

x1x2x3x4

x5

x6

mirror 1

FC

lower level

upper level

Figure 3.5.: Sketch of the setup. The 5 lenses in the setup are described with L1...L5,
whereby L5 can be moved in x,y and z with piezo actuators. The distances between the
lenses (surface to surface) are described with x1,...,6. PBS denotes a polarizing beam splitter,
AOD the acousto-optical deflector and FC the fibre coupler.

The 729 nm laser light is coupled from a polarization maintaining fibre with a
Schäfter + Kirchhoff A8 fibre collimator [45] and directed with a 1 inch mirror (mirror
1) to the aperture of the AOD. These components, the lenses L1 to L4, a polarizing
beam splitter and the mirror directing the beam to the upper level of the setup (mirror
2) are located below the vacuum chamber. Besides the mirrors, the fibre coupler,
a polariser and a λ/2 plate, both located between fibre coupler and mirror 1, all
components are mounted on a breadbord, custom made by the mechanical workshop
of the IQOQI. This allows the positioning and aligning of the components without
having to crawl underneath the vacuum chamber. The purposes of the additional
components like the λ/2 plate and the PBS are the aligning of the polarization of the
laser light and the filtering of unwanted back-reflected light.
Lens L5 is located between the two levels and can be moved in x, y and z direction
in order to get the focus of the laser beam to the right position of the ion chain in
the trap. This is achieved using Newport piezo actuators [46]. Between L2 and L3,
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3. Addressing setup

Table 3.1.: Porperties of the lenses used in the setup. The abbreviation ’foc.l.’ stands for
the focal length, ’dia.’ for the diameter and ’th.’ for the thickness. The thickness is hereby
the center thickness.

lens part number foc.l. (mm) dia. (inch) th. (mm) material manufacturer
L1 LA1131-B 50.0 1 5.3 N-BK7 Thorlabs
L2 LA1422-B 40.0 1 6.4 N-BK7 Thorlabs
L3 KPC043AR.16 -25.0 1 2.5 N-BK7 Newport
L4 LC1715-B -50.0 1 3.5 N-BK7 Thorlabs
L5 LA1256-B 300.0 2 5.1 N-BK7 Thorlabs

Table 3.2.: Spatial distances in the setup.

distance value (mm)
x1 10.0
x2 122.5
x3 31.0
x4 35.0
x5 191.2
x6 250.0

there is a cubic polarizing beam splitter with a diameter of 1.5 cm. The lenses L3 and
L4 act as a Galileian beam expander, together with the collimating lens L5. There
were two lenses used for the expansion, since there was no single suitable stock lens
available. The lenses L1 and L2 are there in order to project the output of the AOD
on the objective, which means that by changing the drive frequency of the AOD, the
expanded laser beam always hits the same area of the input lens of the objective (and
more or less also of the collimating lens). In the old setup, clipping of the beam on
the collimating lens was a major problem limiting the addressability of more than 20
ions.
The objective and the vacuum vessel are located on the upper level. The light is guided
there via two 3-inch mirrors, one of which is mounted on the lower level and the other
on the upper one. The mirror on the top level is a dichroic mirror, which means
that it acts as reflector for light in a certain wavelength range and as transmitter for
light in another range. This is necessary, since the objective is also used for imaging
purposes and therefore transmits the 397 nm light emitted by the ions when driven on
the 42S1/2 − 42P1/2 transition.
The objective is located inside a reentrant viewport. With this arrangement, the last
lens of the objective is only roughly 6 cm away from the ion without the need of
putting the objective inside the vacuum system.
In table 3.1, one can find the specifications of the lenses. All the lenses are anti-
reflectance-coated for 729 nm light. The reflectance is lower than 0.5 % for both the
Thorlabs and Newport lenses [47, 48]. This helps preventing noise on the ions caused
by reflected beams.
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3.4. Characterization of the AOD

In table 3.2 the surface-to-surface distances x1,...,6 between the surfaces of the lenses
are listed. The distances are always given as the distance from the center of the surface
to the next one. The simulations showed, that the setup is most sensitive to changes
of x3 and x5, whereas variations of 1− 2 mm of x1, x2, x4 and of 1− 2 cm of x6 don’t
change the properties of a setup drastically. Any changes of the focal length of the
total system within the latter variations can be compensated by changing x5 with the
piezo actuators.
An important point is also the placing of the beam splitter in the optical path. With
an edge length of d = 1.5 cm and a refractive index of ncube = 1.7, the effective optical
pathlength within the cube is d · ncube = 2.55 cm. So the pathlength is 1.05 cm longer
with cube than without. This circumstance was taken into account for the distance
x2 in table 3.2, since the simulations were made without a beam splitter in the optical
path.

3.4. Characterization of the AOD

The main component of the optical setup, besides the lens configuration, is the AOD.
An AOD can deflect a laser beam by giving the photons an additional momentum,
using a sound wave in a crystal. This momentum also shifts the laser frequency by
the corresponding value, which can either be compensated via two upstream AOMs
or used for off-resonant addressing.

3.4.1. Diffraction efficiency

For the purpose of addressing a 50 ion string with roughly 2µm spot size, it is crucial
to have a rather big angular range. With the AOD used, an angular range of 2.7◦

can be scanned using a frequency range from 60 MHz to 100 MHz as specified by the
manufacturer (ISOMET, see appendix B). For the addressing, the ions have to be
exposed to a certain power for a certain time, where as a rule of thumb ”the more
power the better” is valid. Therefore, during the scanning as little power as possible
should be lost to the 0th diffracted order as well as higher orders than the 1st order of
the AOD.
The AOD is placed in such a way, that the incident beam hits it at the Bragg angle
of the TeO2 crystal inside, which is about 2.7◦. The center frequency of the AOD is
80 MHz, the frequency with highest diffraction efficiency, i.a. the amount of power in
the 1st order diffracted beam in relation to the total transmitted power, is at about
85 MHz. A comparison with the diffraction efficiency specified by ISOMET and the
measured one is shown in fig. 3.6.
As one can see, the diffraction efficiencies match quite well, small differences of the

location of the drive frequency with the largest diffraction efficiency can be explained
with slightly different optimization angles, since the measured curve was optimized at
the center frequency of 80 MHz.

33



3. Addressing setup

(a) Diffraction efficiency as specified by ISOMET
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(b) Measured diffraction efficiency

Figure 3.6.: Comparison between specified (a) and measured (b) diffraction efficiency

3.4.2. Power dependence

The diffraction efficiency of the AOD is not only dependent on the applied drive
frequency, but also on the applied RF power. The bigger the RF power, the better
the diffraction works, but only up to a certain limit, where the RF power becomes so
high, that it can actually damage the crystal. Therefore one would like to work at
the upper bond of the recommended RF power of <1 W (see appendix B). The rising
diffraction efficiency can also be seen in fig. 3.7.
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Figure 3.7.: Diffraction efficiency as a function of the applied RF power at the AOD. The
RF power was measured before the amplifier, which provides an amplification of 29 dB [49].
The errors are due to fluctuations in the measured laser power.

The amplifier has a gain of 29 dB [49], which means that for an input of 1.25 mW,
the threshold of 1 W output is reached. At about this point, the diffraction efficiency
seems to saturate, which can be explained by the saturating amplifier.
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3.5. Test setup

3.4.3. Response time

Another very important property of the AOD is the time it takes, to move the beam
spot from one place to another one in the ion string. This time is the so called response
time, whose measurement is shown in fig. 3.8. The total time from the rise of the RF
signal until 90 % of the laser power is deflected is 4.6 µs, whereas the time for the rise
of the deflected power from 10 % to 90 % is 2.0 µs and the time from the RF signal
until the photodiode signal starts rising is 2.3 µs. The laser beam input into the AOD
was adjusted in such a way, that it is closest to the RF source in the AOD in order
to decrease the time required for the sound wave to reach the laser beam. This time
is suitable for doing addressing of multiple ions for quantum simulation purposes. A
fast photodiode with a bandwith of 25 MHz was used for this measurement.

50 0 50 100 150
time (µs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

vo
lta

ge
 (V

)

TTL
Photodiode

(a)

4 2 0 2 4 6 8 10
time (µs)

0.0

0.1

0.2

0.3

0.4

0.5

vo
lta

ge
 (V

)

TTL
Photodiode

(b)

Figure 3.8.: TTL signal triggering the RF power and photodiode signal measuring the
output of the AOD in the first diffraction order as a function of time. The left panel (a)
shows the response of the AOD to a rectangular rf-pulse; the right panel (b) shows the rise
of the optical power on a smaller time scale. The time the photodiode signal needs to rise
from 10 % to 90 % is 2.0 µs. The time from the triggering until the photodiode signal starts
rising is roughly 2.3 µs.

3.5. Test setup

In order to make sure that all the properties of the setup behave as expected from
the simulations, a test setup was built and some properties like the beam profile,
multiple frequency input and - most importantly - the addressing range and the spot
size determined. The results are described in the following paragraphs.
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3. Addressing setup

3.5.1. Beam profile

Since there are non-linear effects going on in the AOD, it’s not clear from the beginning,
that the shape of the deflected beam matches the shape of the input beam. Fig. 3.9
shows the beam profile after its path through the AOD, all the lenses and the objective.
The picture was taken far away from the focus in order to see possible non-Gaussian
shapes better. One can say, that the shape of the beam is still radial symmetric, which
also means that there are no major aberrations caused by the lenses or clipping of the
laser beam.

Figure 3.9.: Beam profile of the deflected laser beam after running through all the lenses
and the objective. The picture was taken far away from the focus.

3.5.2. Spot size

A quite time-demanding activity during this thesis was the determination of the spot
size of the laser beam in the focal plane. The first attempt to measure it was by
doing knife-edge scans, using a razor blade mounted on a translation stage, moved by
a piezo actuator with a step size of 10 nm. For a laser coupler that provided an output
beam diameter of 1.44 mm, the simulation predicted spot sizes of about 2.4 µm, but
the best result obtained by these scans was 3µm. In these measurements the spot size
was determined by fitting the data gained from taking the voltage of the photodiode
after every step of the piezo actuator. An exemplary dataset with fit is displayed in
fig. 3.10. Here an error function was used as fit function, since for a Gaussian beam
the signal recorded by the photodiode is the integral of a Gaussian intensity function.
In the example, the spot size is roughly 18 µm. This measurement was not taken in
the focus, but was chosen to be displayed, since the shape of the error function can be
seen better compared to a dataset, where there is almost just a step function visible.

The reason for the broader than expected spot size are thought to be vibrations of
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Figure 3.10.: Exemplary data set of a razor blade scan. The voltage at the photodiode
is plotted as a function of the travelled distance of the piezo actuator. The data was fitted
with an errorfunction, which corresponds to an integrated Gaussian.

the razor blade, caused by the piezo steps, which leads to a broadening of the beam
in the focus.
A second approach was made using a CCD camera with a pixel size of 1.67µm. The
camera was placed on a translational stage and moved to the focal plane. The laser
beam had to be attenuated in order not to saturate or destroy the camera. Here a
gradient attenuator turned out to be quite useful, with whom the power at the CCD
could be adjusted quite precisely to the required value. A two-dimensional fit was
made in order to determine the spot size of the laser beam at the focal plane using
a Mathematica script adapted from a script written by Manoj Joshi. Also, the spot
sizes of the beam were determined when moving it out of the focus. By theory, the
spot size should be twice the size of the waist as given in eq. 2.42 . Measurements
were taken by displacing the CCD camera in steps of 40 µm by using a micrometer
screw. The result is shown in fig. 3.11

One can see from the figure, that fit and measured value do not match quite well in
the focus. The reason for that is, that for this small values of the waist, the Gaussian
in one direction perpendicular to the optical axis is only defined via a few points.
Simulations comparing a Gaussian with a Gaussian reconstructed with three points
gained out of its integral show, that the real Gaussian has a waist up to 10 % smaller
than the reconstructed one. When taking this into consideration, the measured and
fitted waist match quite well. In fig. 3.12 one can see a fit done with Mathematica.

Th fits were made using a fit function similar to eq. 2.50, namely

I(x, y) = A · exp

(
−(x− x0)2

2w2
x

− (y − y0)2

2w2
y

)
+ Co (3.2)
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Figure 3.11.: Spot sizes 2w of the laser along the optical axis around the focus. The
minimum measured value is 2.4 µm, the fitted minimum spot size is 2.0 µm, where the errors
of both values are negligible. The error bars regarding the optical axis are due to uncertainties
when moving the micrometer screw, the error bars regarding the spot size are the errors
obtained when fitting the camera data and can barely be seen. The fit was made without
consideration of the errors regarding the optical axis.

where I describes the intensity of the laser beam, x0 and y0 the position of the beam
on the CCD, wx and wy the waist of the beam in the plane of the CCD and Co a
constant offset caused by background stray light and noise of the CCD. To get the
effective spot sizes, one has to multiply wx and wy with 2 · 1.67 µm = 3.34 µm. The fit
function was chosen that way, to account for possible inequalities in the beam size in
the two dimensions perpendicular to the optical axis.

3.5.3. Multiple frequency input

When doing quantum simulation, at some point it might be necessary not to address
only a single ion at the time, but two or more ions at the same time. In order to
quantify second-order effects caused by frequency addition, two different RF-frequencies
were combined on a 50/50 power splitter, and the resulting signal was amplified and
applied to the AOD. The output of the power splitter was analysed with a spectrum
analyser before and after the amplifier, which showed that the second harmonics of
both applied frequencies were present in the spectrum with powers on the order of
1 % of the total power. But those double frequencies can be ignored, since for all
applicable frequencies to the AOD, they lay out of the used frequency range from
60 MHz to 100 MHz. What cannot be ignored are the difference frequencies of the two
applied frequencies respective to their double frequencies. E.g. for applied frequencies
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3.5. Test setup

(a) (b)

Figure 3.12.: Two examples of the fits done with Mathematica. The red area marks the
camera data, the blue data the fit. The axes describe the two pixel directions on the CCD
camera.

f1 and f2, one receives frequency components of 2 · f1 − f2 and 2 · f2 − f1. Those
additional frequencies can also be seen on camera images of the focal plane, see fig.
3.13. The not-so-Gaussian shape of the two central spots is due to saturation effects
of the camera. The power of the two spots on the side is on the order of 5 % of the
power of the spots in the center and on the order of 2 % of the total power.

Figure 3.13.: Picture of the focal plane with frequencies (f.l.t.r.) 85, 75, 65 and 55 MHz
when applying signals at 65 and 75 MHz simultaneously to the AOD.

3.5.4. Addressing range

The addressing range was determined using again the 1.67µm pixel-sized camera .
Frequencies of 60 and 100 MHz were applied and the pixels between the two appearing
spots were counted. The two overlaid pictures are shown in fig. 3.14. The distance
between the two visible spots is 119 pixels, corresponding to 199 µm. Here, one of
the two main conditions of the whole setup, namely the addressability of a range of
200µm (the exact value is dependent on the applied trap frequency), is fulfilled.
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3. Addressing setup

Figure 3.14.: Overlay of two camera pictures with 100 MHz (left spot) and 60 MHz (right
spot) applied to the AOD. The distance between the two spots is 119 pixels, corresponding
to 199 µm.

3.5.5. Comparison between old and new setup

The value for the spot size of 2.0 µm extracted out of the fit compares well with the
value of 2.0 µm measured in the old setup in a resonant frequency scan. For this
comparison, it was taken into account, that resonant excitations are proportional to
the electric field and not to the intensity (meaning the value was already divided by
a factor of

√
2, which connects resonant and off-resonant spot sizes). That way, the

new setup has a comparable spot size and a far wider addressing range than the old
one, which was about 106µm for 20 ions.
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4. 50 ion addressing

After having characterized the addressing test setup with the measurements described
in the previous chapters, the setup was integrated into the trapped-ion quantum
simulation experiment. In this section, measurements are described that characterize
the addressing setup using the best possible sensors for this purpose, namely ions.

4.1. Building process

The first version of the addressing setup built into the experiment contained a 1/2
inch lens for L3 (see fig. 3.2 and fig. 3.5). The distances x1,...,5 (see fig. 3.5) were
slightly different and were obtained from the simulation of a 200µm addressing range.
First tests, using the ions in the trap as sensors, revealed, that the spot size was in
the right region, but the addressing range was on the order of just 150 µm, allowing
for the addressing of only 37 ions.
Also, in the mean time, further discussions revealed, that the addressing range for 50
ions would have to be roughly 230 µm, since otherwise the confinement of the ions in
the axial direction would have been too strong. Therefore, new simulations were made,
which again resulted in a too small addressing range of 170 µm. By replacing the 1/2
inch lens with a 1 inch lens and doing simulations for a 280µm addressing range, the
addressability of 51 ions was made possible in the end. The parameters x1,...,6 of this
most recent simulation correspond to the ones listed in table 3.2.

4.2. 51 addressed ions

A plot showing that 51 ions can be addressed individually, made soon after reaching
the goal of addressability, is shown in fig. 4.1. For the addressing, an off-resonant laser
beam was used to enable AC-Stark addressing (see sec. 2.3.1). The overall shape is
due to lower diffraction efficiency of the AOD at the edges of the addressing range.
One can also see a noise level affecting all the ions on the order of 2− 4 %, which can
be explained with high frequency noise in the laser beam, which was only fixed a few
months after this measurement was taken. Crosstalk with the neighbouring ion can
be excluded as source of the noise, since the noise is there for all the ions and not only
for the neighbouring ions of the ion the laser beam is directed at.
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Figure 4.1.: Off-resonant frequency scan obtained by sandwiching an addressed AC-Stark
pulse into a global Ramsey excitation (for more details, see main text). The frequency of
the AC-Stark pulse was scanned from 63 to 110 MHz. The excitation of the different ions
is depicted in different colors, error bars due to quantum projection noise were omitted for
better visibility.

4.2.1. Pulse sequence

The sequence usually used for the off-resonant addressing consists of a resonant π
2

pulse, which brings all the ions from the ground state |g〉 to the equator of the Bloch
sphere. Then there is an off-resonant π pulse shone at a certain AOD frequency, which
rotates the state vector around half of the Bloch sphere along the equator (for an ion,
which is fully hit by the laser beam). In the end, another resonant π

2
pulse (the inverse

of the first one) is shone on all the ions, bringing the addressed ions to the excited
state. A scheme of this sequence is sketched in fig. 4.2.
An ion which is not hit by the off-resonant pulse, is transferred to the ground state
|g〉 by the last resonant pulse. If an ion is only partly hit by the off-resonant pulse, its
probability to reach the excited state in the end goes down accordingly. This explains
the rising of the excitation, before reaching its maximum, when the ion is fully hit,
and then falling again.
Not all the ions reach an excitation of 1. On the wings, this behaviour can be
explained by the lower diffraction efficiency of the AOD, meaning that not enough
light is diffracted to accomplish a π pulse. When doing quantum simulation, the
pulse length required to carry out a π pulse for those ions is changed accordingly, to
guarantee equal excitation on the whole ion chain. In the center, the effect of not
reaching an excitation of 1 can be explained by the focal spot hitting some ions more
precisely than others, which means again a different π time for all the ions. This effect
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Figure 4.2.: Scheme of the Pulse sequence for off-resonant addressing. The state vector |ψ〉
of the addressed qubit is depicted in red, the state vector of an unaddressed qubit is depicted
in green. With a resonant π

2 pulse, the state vector is brought from the ground state |g〉
to the equator (the x-y-plane) of the Bloch sphere. By shining an off-resonant π pulse on
the qubit, it evolves 180◦ around the equator. A qubit, which is not addressed, remains in
the same state. A final resonant π

2 pulse carries out an operation which is the inverse of
the operation induced by the first resonant π

2 pulse, transferring the addressed qubit to the
excited state |e〉 and the unaddressed one to the ground state |g〉.

plays of course also a role on the wings, but the effect of the lower diffraction efficiency
is much more prominent there.
The determination of the π times can be done by first locating the exact position
of an ion via a frequency scan and fitting the excitation with a Gaussian, at whose
maximum the ion sits. Then a pulse length scan is done, meaning stepwise increasing
the pulse duration time of the laser pulse shone on the ion. The result of this are
Rabi oscillations. The time when the excitation reaches its maximum the first time,
is then the π time. The π

2
time is naturally half of the π time. Of course, the π times

for resonant and off-resonant excitations are different, since their Rabi frequencies are
different (see eq. 2.34).

4.3. Focal spot

4.3.1. Beam shape

For the purpose of addressing, it is very important for the beam to have an approximately
Gaussian shape. If the shape, due to aberrations, isn’t Gaussian, as the beam comes
out of the fibre coupler, power is transferred from the centre of the beam profile to its
wings, leading to less power being brought on the addressed ion and, in the worst case,
to more power being brought to the neighbouring ions, leading to unwanted crosstalk.
The beam shape was measured via frequency scans for 10 ions and for 51 ions. Also,
there was made a distinction between resonant and off-resonant excitation, since for
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4. 50 ion addressing

off-resonant excitation the aberrations are expected to be less distinct, since the beam
profile is compressed in comparison to the resonant beam profile by a factor of

√
2.

In fig. 4.3 one can see the spatial excitation profile for the ions 1 and 25 of a 51 ion
string when being addressed resonantly.

For short enough pulses, the excitation does not saturate (i.e. it stays well below
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Figure 4.3.: Transversal beam profiles for ions 1 (a) and ion 25 (b) when addressed
resonantly. The excitation is plotted as a function of the AOD scanning frequency.
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Figure 4.4.: Transversal beam profiles for ions 51 (a) and ion 25 (b) when addressed off-
resonantly. The excitation is plotted as a function of the AOD scanning frequency.

1) and in this case, the excitation probability sin(Ωt
2

)2 can be approximated by Ω2t2

4
,

which is proportional to the intensity of the beam. Therefore, since the excitation does
not show an exactly Gaussian shape in this regime, the same is true for the intensity
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4.3. Focal spot

profile.
In the shown case, the profile has some features at the sides. Nevertheless, in the
off-resonant case, they are less significant than in the resonant one. The off-resonant
spatial excitation profile of ion 25 and ion 51 is shown in fig. 4.4. Ion 51 was chosen
instead of ion 1 in order to make the excitation profile visible on both sides on the
addressing range. Also, ion 1 and ion 51 are expected to behave similarly.
The difference in the behaviour on the wings of the excitation profile between resonant
and off-resonant excitation can be seen quite clearly for the centre ions, whereas the
ions at the edge seem to suffer from more aberrations. The reason for the stronger
aberrations are thought to be the different focal lengths for the beams in the centre and
at the edges of the addressing range. For beam spots not too far away from the focus,
the beam profile was observed to be slightly aberrated. Most of these aberrations
disappeared when going to the focus.
Also, for the outer ions, the excitation on the wings is suppressed not exactly as much
as one would expect. The reason for this is that different ions were chosen in order
to show the behaviour on both edges of the addressing range, whereby the behaviour
seems to be slightly different.

4.3.2. Spot size

The most important parameter besides the addressing range is the spot size. The spot
size was measured by analyzing the frequency scans made for 10 and 50 ions obtained
with a resonant and off-resonant laser beam. The results for both resonant and off-
resonant addressing can be seen in fig. 4.5 for 10 ions and fig. 4.6 for 50 ions. Hereby,
in fig. 4.6 there was a 51 ion scan used for the resonant addressing. One may notice
the different frequency axes for the scans. This is due to the fact, that the setup was
slightly changed between the measurements. Amongst other things, the addressing
range of the AOD was changed from 60− 100 MHz to 70− 110 MHz, since there was
a better performance observed there.
As one can see, the spot size is more or less the same over an addressing range of
234µm for 51 ions.
In the centre of fig. 4.6a and fig. 4.6c, the spot size seems to be bigger than on the
edges. This has on the one hand to do with the optimization of the focus. Due to
different lengths of the beam path of the beams at the edges of the addressing range
and the ones in the centre, the focal length is slightly different for them. If the focus
is optimized for ion 51 or ion 1, the focus slightly changes (i.e., the spot size becomes
bigger) for the centre ions. Another reason for this effect is, that the excitation on the
sides doesn’t go all the way up to 1, resulting in Gaussian fits with smaller amplitude
and thus smaller width.
The main results of these plots are summed up in table 4.1. As one can see, the
goal of a spot size of 2µm was reached. The spot size was gained out of the FWHM

by dividing it by
√
−2 · log 1

2
. This factor can be calculated quite easily by solving

e−
x2FWHM

2ω2 = 1
2
, where xFWHM describes the x-value, which yields half of the maximum

45



4. 50 ion addressing

66 68 70 72 74 76 78
AOD frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0
Ex

cit
at

io
n

(a)

2 4 6 8 10
ion #

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

FW
HM

 (M
Hz

)

weighted mean

3.5

4.0

4.5

5.0

5.5

6.0

6.5

FW
HM

 (
m

)

(b)

74 76 78 80 82 84 86
AOD frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
cit

at
io

n

(c)

2 4 6 8 10
ion #

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

FW
HM

 (M
Hz

)

weighted mean

2.0

2.5

3.0

3.5

4.0

4.5

5.0

FW
HM

 (
m

)

(d)

Figure 4.5.: Addressed frequency scans over a 10 ion string used for extracting the spot
size of the addressing laser. A resonant addressing laser scan (a) yields the full-width half
maxima shown in (b). Subpanels (c, d) show a similar experiment performed with an off-
resonant addressing laser. The scans were made using π times of 2 µs for the resonant and
15 µs for the off-resonant excitation. The dots are the measured excitations, which were
fitted using Gaussians. There were no error bars displayed in (a, c) for better visibility, but
the errors were taken into account when fitting. Every point has an error of 1√

50
due to

quantum projection noise. The error bars in (b, d) are due to the fitting errors in (a, c). A
weighted mean was made to extract the mean FWHM, which turned out to be 0.634 MHz,
corresponding to 4.85 µm for (b) and 0.485 MHz, corresponding to 3.66 µm for (d). A trap
frequency of 217 kHz was applied for the measurements.

y-value of a general Gaussian given by y(x) = e−
x2

2ω2 .
The FWHM resp. the spot sizes of a resonant and off-resonant excitation profile are
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Figure 4.6.: Addressed frequency scans over a long ion string used for extracting the spot
size of the addressing laser. A resonant addressing laser scan (a) yields the full-width half
maxima shown in (b). Subpanels (c, d) show a similar experiment performed with an off-
resonant addressing laser. The scans were made using π times of 15 µs for the resonant and
10 µs for the off-resonant excitation. The dots are the measured excitations, which were
fitted using Gaussians. There were no error bars displayed in (a, c) for better visibility, but
the errors were taken into account when fitting. Every point has an error of 1√

50
due to

quantum projection noise. The error bars in (b, d) are due to the fitting errors in (a, c). A
weighted mean was made to extract the mean FWHM, which turned out to be 0.606 MHz,
corresponding to 3.59 µm for (b) and 0.438 MHz corresponding to 2.44 µm for (d). A trap
frequency of 137 kHz was applied.

expected to be connected by a factor of
√

2, since the width of a Gaussian (ideally
corresponding to a resonant excitation profile) is broader by said factor with respect
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4. 50 ion addressing

to the same Gaussian squared (ideally corresponding to an off-resonant excitation
profile). Looking at the corresponding values in table 4.1, one can see, that the
relation differs from

√
2. The reason for this behaviour is that the measurements

were taken on different days and with slightly shifted optics, since the setup was
always optimized for requirements of the different measurements. Also, some effects
appearing during taking measurements could only be solved by putting additional
optics in the beam path, changing the effective focal length of the system, which then
had to be compensated, mostly by moving the collimating lens.

Table 4.1.: Summary of the main results of fig. 4.5 and fig. 4.6. Hereby FWHM describes
the mean FWHM and 2w̄ the mean spot size. The values in units of MHz have no error,
since they arise from taking the mean value of the data shown in fig. 4.5b, fig. 4.5d, fig.
4.6b and fig. 4.6d, weighted with the according errors. The errors for the values in MHz
result from fitting errors of the centres of the Gaussians in fig. 4.5a, fig. 4.5c, fig. 4.6a and
fig. 4.6c when determining the frequency range the ions are spanned over, which is needed
for converting the frequency into a length.

type of excitation FWHM (MHz) FWHM (µm) 2w̄ (MHz) 2w̄ (µm)
10 ions resonant 0.634 4.85(2) 0.542 4.15(2)

10 ions off-resonant 0.485 3.66(2) 0.415 3.13(2)
51 ions resonant 0.606 3.59(3) 0.518 3.07(2)

50 ions off-resonant 0.438 2,44(1) 0.374 2.09(1)

4.4. Crosstalk

When it comes to quantum simulation, the preparation of states is of major importance.
The better the preparation, the better the result is. Therefore, one has to make sure,
that when addressing one ion, the other ions are not affected by this. The main cause
for such addressing errors is crosstalk with the nearest neighbour. This means, that
by shooting a laser pulse at one ion, the ion(s) next to it are also addressed due to a
too large beam profile or a broadened profile due to optical aberrations.
The method used in this thesis for quantifying crosstalk is the use of a resonant laser

beam for the induction of Rabi oscillations on one ion and the observation the effect
on the neighbouring ions. Since the laser intensity at the location of the other ions is
much smaller, the Rabi frequency is smaller. The Rabi frequencies of the addressed
ion and the neighbouring ions were fitted and the π time of the addressed ion was
determined. The crosstalk of the neighbouring ions was defined to be the extent of
excitation of the neighbouring ions at the π time of the addressed one, given in percent
of the full excitation of 1. In fig. 4.8 the Rabi flops of ion 24, 25 and 26 are shown,
when ion 25 is addressed in a 51 ion chain.
The Rabi oscillations were first made using a resonant addressing laser beam due to

the high-frequency noise level of 2 − 4 % for the off-resonant addressing. In the case
of the center ions, the crosstalk for the resonant beam is on the order of 2 % for ion
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Figure 4.7.: Rabi flops of ions 51 (a) and 50 (b) in a 51 ion chain, whereby ion 51 was
addressed resonantly. The excitation curves were fitted using eq. 2.31, whereby for the fit of
(a) only the first 100 data points were used. This was done due to the noise level of the rest
of the data. All data points have an error due to quantum projection noise of 1√

50
, which

was not displayed for better visibility.

24 and of 6 % for ion 26. For ions 23 and 27, the crosstalk is negligible. The exact
numbers of the neighbouring ions can be found in table 4.2.
Of course, the crosstalk is bigger for a resonant beam in comparison to an off-resonant
beam. The calculated values for the off-resonant beam are on the order of 0.37 % for
ion 26 and 0.06 % for ion 24. Once the high-frequency noise was fixed, there was also
actual data taken for off-resonant addressing, showing the crosstalk to be on the order
of 0.45 % resp. 0.41 % for the corresponding ions. The corresponding data is displayed
in fig. 4.10. Also here, all the exact calculated and measured numbers are given in
table 4.2.
The same measurements were done addressing ion 1 resp. ion 51 and measuring Rabi
flops for ion 2, 3, etc. resp. 50, 49, etc., whereby here, hardly any crosstalk was
observed already in the case of resonant addressing. Rabi flops for ions 50 and 51,
while ion 51 was addressed, are shown in fig. 4.7, Rabi flops for ion 1, 2, 3 and 4 in
fig. 4.9. Off-resonant Rabi flops for ion 1, 2, 3 and 4 in a 54 ion chain are displayed
in fig. 4.11.

The calculated values for the off-resonant crosstalk for the next neighbours are
in the region of the calculated ones. The reason for not being the same is, that the
position of the collimating lens was changed between the resonant and the off-resonant
measurements, resulting in a different behaviour of the focal spot. The reason for the
bigger crosstalk of the ions 49 and 48 with respect to ion 50 in the case of ion 51 being
addressed should not be due to the laser beam having features in the focal plane at
the position of these ions, since they are located quite far away (20µm or more), but
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Figure 4.8.: Rabi flops of ions 24, 25 and 26 of a 51 ion chain when ion 25 is addressed.
The Rabi flops of ion 25 are shown in (a), the ones of ion 24 resp. 26 in (b) resp. (c). Fits
were made using eq. 2.31 in order to determine the nearest-neighbour crosstalk. All data
points have an error due to quantum projection noise of 1√

50
, which was not displayed for

better visibility.
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Figure 4.9.: Rabi flops of ion 1, 2, 3 and 4 of a 51 ion chain while ion 1 is addressed
resonantly. The data was fitted using eq. 2.31, the π times and results for the crosstalk can
be found in table 4.2. All the data points have an error due to quantum projection noise of

1√
50

, which was omitted in the plot for better visibility, but taken into consideration for the

fits.

more likely due to detection errors.
As one can see, the Rabi oscillations are decaying with rising addressing pulse length.
This is due to the fact, that the ions weren’t cooled to their ground state of motion.
Out of the fits using eq. 2.31, a Lamb-Dicke factor η on the order of η ≈ 0.05 and a
mean phonon number n̄ of a few hundred phonons were extracted. The exact numbers
can’t be given, since the fitting error was too big, but since the most likely values
were always in the same region for all the nearest-neighbour fits of the Rabi flops, the
meaningfulness of these values can be stated at least to some extent.
The reason for the ions not being cooled to the ground state is, that the corresponding
laser system wasn’t adjusted for a 50 ion chain at the time the measurements were
taken. Also, for the determination of nearest-neighbour crosstalk, the mean phonon
number is not that important, as long as the number is low enough to allow for fitting
of the Rabi oscillation curves.
Again, the same measurements were done for a 10 ion chain, the results can be found
in table 4.3, some exemplary data sets are shown in the appendix A. As one can see,
for a 10 ion chain the nearest-neighbour crosstalk is almost not existent. The reason
for the crosstalk for 10 ions being much smaller with respect to 50 ions is, that the
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Figure 4.10.: Rabi flops of ions 22, 23, 24, 25 and 26 in a 51 ion chain, whereby ion 24 was
addressed off-resonantly. The excitation curves were fitted using eq. 2.31. All data points
have an error due to quantum projection noise of 1√
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Figure 4.11.: Rabi flops of ions 1, 2, 3 and 4 in a 54 ion chain, whereby ion 1 was addressed
off-resonantly. The excitation curves were fitted using eq. 2.31. All data points have an
error due to quantum projection noise of 1√
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, which was not displayed for better visibility.

distance between the ions is much bigger, namely 6.9 µm for 10 ions (and 217 kHz trap
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Table 4.2.: Nearest neighbour crosstalk (CT) of the edge and centre ions in a 51 ion chain.
The errors are due to fitting errors, if there are no errors specified, they are negligible (at least
1 order of magnitude smaller than the last digit of the value). The measured off-resonant
data for ion 1 was taken for a 54 ion chain, the one for ion 25 was taken with ion 24 actually
being the addressed one, meaning the ion number was shifted by 1.

ion # CT resp. (%) CT off-res. (%, calc.) CT off-res. (%, meas.) π time res. (µs)
ion 1 3.38(1)

ion 2 0.527 2.78(2)× 10−3 4.08× 10−2 60.5(2)
ion 3 0.144 2.08(2)× 10−4 0.138 127(1)
ion 4 4.70× 10−2 2.21(2)× 10−5 0.198 162(1)

ion 25 1.74(1)
ion 22 4.37× 10−2 1.91(2)× 10−5 2.7× 10−5 99(1)
ion 23 0.106 1.23(1)× 10−4 1.09× 10−2 62(1)
ion 24 2.36 5.59(5)× 10−2 0.445 13.5(1)
ion 26 6.04 0.365(3) 0.417 8.03(3)
ion 27 3.90× 10−2 1.51(1)× 10−5 1.57× 10−2 109(1)
ion 28 5.96× 10−2 3.55(3)× 10−5 3.56× 10−5 84.4(1)

ion 51 2.46(1)
ion 48 5.46× 10−2 3.0(1)× 10−5 1.04× 10−2 107(2)
ion 49 8.85× 10−2 7.8(3)× 10−5 1.51× 10−2 84(1)
ion 50 1.23 1.51(1)× 10−2 7.20× 10−3 18.3(2)

Table 4.3.: Nearest neighbour crosstalk of the edge and center ions in a 10 ion chain

ion # crosstalk resonant (%) crosstalk off-res. (%, calc.) π time resonant (µs)
ion 1 1.86(1)

ion 2 0.127 1.62(2)× 10−4 69.1(6)
ion 3 1.17× 10−2 1.38(1)× 10−6 163(4)
ion 4 7.05× 10−3 4.98(5)× 10−7 293(9)

ion 5 1.65(1)
ion 2 2.03× 10−2 4.11(4)× 10−6 149(2)
ion 3 7.06× 10−3 4.98(5)× 10−7 252(7)
ion 4 5.64× 10−2 3.19(3)× 10−5 71.0(9)
ion 6 0.282 7.92(8)× 10−4 38.1(3)
ion 7 1.57× 10−2 2.45(2)× 10−6 120(3)
ion 8 3.98× 10−3 1.58(2)× 10−7 294(22)

ion 10 1.52(1)
ion 7 7.22× 10−4 5.21(5)× 10−9 714(133)
ion 8 1.71× 10−2 2.93(3)× 10−6 147(2)
ion 9 0.185 3.41(3)× 10−4 41.4(3)

frequency) compared to 3.7 µm for 51 ions (and 137 kHz trap frequency) for the center
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ions. This means, that for this number of ions, one can program quantum gates of
quite high fidelity, given that the state preparation etc. are also working on a low
noise level.

4.5. Observation of beat signal

In this section, an effect, which was observed while taking measurements, is described.
While resonantly exciting Rabi flops on the center ions of a 51 ion chain, the Rabi flops
appeared to decay, which is not unusual, given that the ions didn’t have 0 temperature.
The decay of the Rabi flops corresponds to a decay of coherence. But after a certain
time, the Rabi flops reappeared, meaning a revival of coherence, which should not be
the case. An exemplary data set of the effect for the central ions of a 51 ion chain is
displayed in fig. 4.12.

By putting a polariser into the setup before the AOD, the beat signal was slightly
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Figure 4.12.: Resonant excitation of ion 50 and 51 in a 51 ion chain as function of the
addressing pulse length, driving the mj = 1/2→ mj = 5/2 transition.

improved, but the problem could only be solved, when changing from the mj = 1/2→
mj = 5/2 transition to the mj = 1/2 → mj = 3/2 transition with mj the quantum
number of the magnetic Zeeman sublevel (see fig. 2.5). Up to the point of finishing
this thesis, no satisfactory explanation of this effect can be given.
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The goal of the thesis was setting up an optical system which allows for the addressing
of a 50-ion chain with a spotsize on the order of 2µm.
The first step towards this goal was the simulation of the optical system, which was
done using the ZEMAX optics design software. By lining up 5 stock lenses before a
custom-made objective, the simulations showed, that the goal stated above should be
within reach.
At the same time, the AOD, which was already chosen and delivered before this project
was started, was characterized, to be able to detect possible issues, which luckily didn’t
show up. The diffraction efficiency turned out to be as good as specified on the data
sheet. The response time was in the region of a few microseconds and therefore good
enough for the purpose of performing quantum simulation and the dependence on the
RF power put into the AOD didn’t show any irregularities.
Knowing this and the simulation results, the next step was the construction of a test
of a test setup. At this stage, quite a bit of time was spent by efforts to measure
the laser spot size by razor blade scans, which in the end didn’t lead to the desired
results, probably due to trembling of the razor blade, which can have quite an effect
when it comes to the measuring of structures on a micrometer scale or even below.
The problem was solved using a CCD camera with a pixel size of 1.67 µm× 1.67 µm.
With the help of this camera and the knowledge of how the waist of a Gaussian beam
evolves around the focus, the focal spot of the laser after running through the test
setup was determined to be as small as 2 µm and therefore as small as it was in the
setup used in the addressing setup previously used in the trapped-ion experiment.
Also, by measuring the separation in pixels of two laser beams deflected, applying the
border frequencies of the specified 60− 100 MHz range, an addressing range of 200 µm
could be proofed.
For possible use in future experiments, the behaviour of the AOD output for multiple
input frequencies, mostly the optical mixing effects, was investigated. For the purpose
of quantum simulation, these effects might be too large, but at the same time they were
visible only at high RF-powers. So by going to lower RF-powers and compensating
the lower diffraction efficiency by a higher laser power, this effect might be reduced.
After mounting the new system in the experiment for the first time, the desired result
of a 200 µm addressing range (as it was achieved in the test setup) was missed by
several tens of microns. Also, discussions revealed, that for a suitable tip voltage of
the trap, the chain length had to be on the order of 230µm for 50 ions. Solving both
problems at the same time, simulations for an addressing range of 280 µm were done,
leading to the required movability of the laser focal spot on the ion chain. The reasons
for this problem are thought to be on the one hand a difference between the objective
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used in the simulations and the actual objective built into the experiment and on the
other hand differences in the distances between collimating lens and objective resp.
objective and ions with respect to the test setup.
In the experiment, the spot size could be determined again to be as small as 2 µm, with
off-resonant crosstalk in the center of a 51 ion chain on the order of 0.4 %, which is a
good basis for performing quantum simulations. On the edges of these long chains and
for chains containing fewer ions, the crosstalk with the nearest neighbouring ions is
vanishing. The measurements for the determination of the off-resonant crosstalk were
first done using a resonant laser beam on the ions, since the obvious determination
of the crosstalk using a off-resonant laser beam was only made possible 3 months
later after fixing high-frequency noise of the laser of the laser on the order of a few
percent, which would have made it impossible to distinguish this noise from the actual
crosstalk.
Summarising, it can be stated, that the goal of being able to address a chain of 50
ions with a laser beam of 2 µm spot size was reached.
At the moment, soft- and hardware issues hinder the preparation of a sequence of
pulses to be performed on the ions, in order to e.g. prepare a Néel state (a sequence of
ions being alternately in the ground and excited state) or, which is the actual purpose
of the experiment, doing quantum simulation.
Nevertheless, this thesis shows, that in principle quantum simulation with single-ion
control is possible on a string of 50 (or even more) ions, which is important for the
scalability not only of quantum simulators, but also for quantum computers based on
cold trapped ions. The research towards a commercially available quantum computer
is, at least in my opinion, as active as never before, since not only the big players
invest in quantum science, but also more and more small startups are dedicating their
work to quantum technology.
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Forme Elliptique. Journal de Mathématiques Pures et Appliquées, 13:137–203,
1868.

[25] D.F.V. James. Quantum dynamics of cold trapped ions with application to
quantum computation. Applied Physics B, 66:181–190, 1998.

58



Bibliography

[26] Cornelius Hempel. Digital quantum simulation, Svhrödinger cat state spectroscopy
and setting up a linear ion trap. PhD thesis, University of Innsbruck/Institut für
Quantenoptik und Quanteninformation, 2014.

[27] NIST Atomic Data for Calcium. https://physics.nist.gov/PhysRefData/

Handbook/Tables/calciumtable1.htm. Accessed:05.07.2019.

[28] Gerhard Kirchmair. Quantum non-demolition measurements and quantum
simulation. PhD thesis, University of Innsbruck, 2010.

[29] Christian Felix Roos. Controlling the quantum state of trapped ions. PhD thesis,
University of Innsbruck, 2000.

[30] Paul Adrien Maurice Dirac. The Principles Of Quantum Mechanics. Oxford
Science Publications, 1939.

[31] Tito Arecchi and Rodolfo Bonifacio. Theory of optical maser amplifiers. IEEE
Journal of Quantum Electronics, 1:169–178, 1965.

[32] Stanley Howard Autler and Charles Hard Townes. Stark Effect in Rapidly Varying
Fields. Physical Review, 100:703–722, 1955.

[33] Manoj Kumar Joshi. Coherent Dynamiccs of Trapped Ions Within and Outside
the Labm-Dickie Regime. PhD thesis, Imperial College London, 2018.

[34] Bahaa E. A. Saleh and Malvin C. Teich. Fundamentals of Photonics. John Wiley
& Sons Inc, Hoboken, New Jersey, second edition, 2007.

[35] David Hilbert, John von Neumann, and Lothar Nordheim. Über die Grundlagen
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A. Rabi flops in a 10 ion chain

Below, addressed Rabi flops on ions 1, 5 and 10 of a 10 ion chain are shown. Hereby,
also the Rabi flops of the neighbouring ions are displayed. The π times, resonant
and off-resonant crosstalks are listed in table 4.3. The fits were made using eq. 2.31,
whereby for all data points an error of 1√

50
due to quantum projection noise was taken

into account. The Lamb-Dicke factor η is on the order of η ≈ 0.1 for the ions shown,
the mean phonon number n̄ is on the order of n̄ ≈ 100.
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Figure A.1.: Rabi flops on ions 1, 2, 3, and 4 of a 10 ion chain while ion 1 was addressed
resonantly. Errors of the data points of 1√

50
due to quantum projection noise were omitted

for better visibility.
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Figure A.2.: Rabi flops on ions 2, 3, 4 and 5 of a 10 ion chain while ion 5 was addressed
resonantly. Errors of the data points of 1√

50
due to quantum projection noise were omitted

for better visibility.

0 20 40 60 80 100
Time (µs)

0.2

0.4

0.6

0.8

1.0

Ex
cit

at
io

n

ion 5
fit ion 5
ion 6
fit ion 6
ion 7
fit ion 7
ion 8
fit ion 8

Figure A.3.: Rabi flops on ions 5, 6, 7 and 8 of a 10 ion chain while ion 5 was addressed
resonantly. Errors of the data points of 1√

50
due to quantum projection noise were omitted

for better visibility.
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A. Rabi flops in a 10 ion chain
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Figure A.4.: Rabi flops on ions 7, 8, 9, and 10 of a 10 ion chain while ion 10 was addressed
resonantly. Errors of the data points of 1√

50
due to quantum projection noise were omitted

for better visibility.
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B. Datasheet AOD

Below, the data sheet of the AOD used in this thesis is shown. As one may see,
the AOD wasn’t specifically made for the usage with 729 nm laser light, nevertheless
the performance was satisfactory. This should also be the case, since the specified
operating wavelength of 750 − 850 nm doesn’t lie far away from the laser wavelength
put into the AOD.
Also, the RF bandwidth was seen to be usable in a broader range than specified on
the datasheet, RF frequencies of 110 MHz and more delivered nice results as well as
frequencies of 50 MHz
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PERFORMANCE vs. WAVELENGTH 
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