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Introduction

Light can transfer momentum to a mechanical oscillator via the radiation pressure force. Conversely, the

mechanical oscillator can act back on the reflected light field, modifying its frequency and amplitude. This

dynamical back-action can be enhanced by the use of an optical cavity, where the optical interaction is

enhanced by every round-trip performed by the photons inside the cavity [1]. This light-matter interaction

is at the heart of the field of cavity optomechanics.

Cavity optomechanics has been implemented in a large variety of physical systems, including interferometer’s

suspended mirrors for gravitational wave detection [2], micromechanical membrane in a superconducting mi-

crowave circuit [3], photonic crystal nano beam [4] and cold atoms coupled to an optical cavity [5].

From this plethora of systems, several interesting applications arise, among which quantum control of meso-

scopic systems is of particular interest, as well as quantum control of optical fields via mechanics.

To achieve this quantum control, it is necessary to bring the mechanical oscillator to the quantum regime.

Then, one must be able to engineer the required quantum interaction. Finally, one must ensure that the

mechanical oscillator does not decohere too fast, such that the environment erases the quantum features of

the system.

Among the various optomechanical systems that aim at maximizing the decoupling from the thermal envi-

ronment (decoherence), levitated systems provide superior performance due to the complete suppression of

clamping losses. They are therefore ideal candidates to engineer long-lived quantum states [6].

In this thesis research, I took part in setting up from scratch the first levitated optomechanics experi-

ment at the University of Innsbruck, which has the ambitious long-term goal to prepare the center-of-mass

position of a nanosphere in a non-classical state of motion.

The system will be formed by a high-finesse optical cavity dispersively coupled to a glass nanosphere trapped

in an electrodynamic Paul trap. Moreover, the cavity light field will couple as well to a single calcium ion,

whose role will be to engineer non-linear interactions with the motion of the nanosphere [7]. This bold



assumption, however, relies on the feasibility of confining both the nanoparticle and the ion within the same

trap.

Paul traps are based on the ponderomotive mean force felt by a charged particle in a quadrupolar time-

oscillating electric potential, whose strength is weighted by the charge-to-mass ratio of the trapped particle.

As a result, a good trap for an ion will not provide good confinement for a nanosphere, which has a typical

charge-to-mass ratio ∼ 107 times larger than that of an ion.

My work has consisted of investigating a novel proposal [8] to use a Paul trap driven by two frequencies

in order to confine two species with a very large charge-to-mass difference.

To assess the viability of this approach, we have re-scaled the system, as the relevant quantity is only on

the charge-to-mass ratios. We thus used nanometer- and micrometer-size silica spheres instead of ions and

nanospheres.

First, a test Paul trap for working in air was designed and built, together with an optical detection system

based on interferometric detection of particle motion. Afterwards, the single-particle behavior of both a

nano-and a microsphere has been individually characterized, in order to determine the best trap parameters

for each particle. Finally, both micro- and nanospheres were successfully trapped with a two-frequencies

field.

From a careful analysis of the trap parameters space, however, it resulted that air damping reduced the

two frequencies trapping efficiency. In the next future, the same investigations have thus to be carried in a

vacuum environment.

The manuscript is divided into four chapters, organized as follows:

• Chapter 1 Here I introduce the basic concepts of the optomechanical interaction and how this can

be used to cool down the center of mass of a mechanical oscillator in the semiclassical regime. Some

theoretical elements regarding the role played by the ion (here treated as a two level system, for

simplicity) will also be elucidated.

• Chapter 2 Here the theory of the functioning of a Paul trap is described. In the first section of the

chapter, the well-established theory about single-frequency trapping will be shown, while the second

section will cover the novel proposal of using two frequencies to optimize the co-trapping of different

species with a large charge-to-mass ratio mismatch. Afterwards, the use of a Paul trap as a mass

spectrometer will be briefly explained.

• Chapter 3 This chapter is dedicated to the description of the experimental apparatus used during my



thesis research. Each section describes part of the set-up, namely, the Paul trap, the various loading

methods used, and the detection system implemented, together with the data acquisition tools utilized

to store and analyze data from the experiment.

• Chapter 4 This last chapter is devoted to presenting the experimental results that I have obtained in

the laboratory. In the first part, a characterization of nano- and microparticles will be given in terms of

charge-to-mass measurements and stability performance of the trap. Afterwards, a spectrum analysis

of the particles’ motion will shed light on the effects of air damping on the trapping mechanism. To

conclude, the first results on trapping two species of particles will be presented and discussed.





Chapter 1

Cavity optomechanics with levitated

nanoparticles

This chapter will provide a basic theoretical introduction to the field of cavity optomechanics, by means of

a system composed of a levitating dielectric nanoparticle dispersively coupled to an optical cavity.

In the first part of this chapter, the optomechanical coupling between a levitated nanosphere and a single

cavity mode will be shown.

Afterwards, the total Hamiltonian of the system will be modified by adding a two-level system (a single ion)

interacting with the same cavity mode, which will allow the implementation of the nonlinear interactions

required to prepare non-Gaussian states.

1.1 The optomechanical coupling

Optical cavity

The simplest picture of an optical cavity consists of two highly reflective mirrors separated by a distance

L. This geometrical configuration supports a series of longitudinal electromagnetic resonances, equally

separated in frequency by the so-called free spectral range ∆ωFSR = πc
L , where c is the speed of light in

vacuum. The intracavity field frequency ωc has to be an integer multiple of ∆ωFSR, namely,

ωc = m
πc

L
(1.1.1)

with m an integer.

In order for the cavity to be driven with an external field, one of the two mirrors has to be able to transmit
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some light and thus has to be not perfectly reflective, leading to transmission losses of the confined electro-

magnetic field at a rate κext. Moreover, additional losses such as absorption, diffraction and scattering will

limit the average lifetime of the photons circulating inside the cavity [9]. These losses are taken into account

as an additional contribution (κ0) to the total decay rate κ = κext + κ0.

Cavity equation of motion

A quantum mechanical treatment of the cavity dynamics can be implemented by means of the input-output

formalism [10]. Here, the intracavity field oscillating at the cavity frequency wc is described by the creation

and annihilation operators â† and â.

The equation of motion for a cavity driven by external laser light at frequency ωL, rotating at the driving

laser frequency, is [11]

˙̂a = −κ
2
â+ i∆â+

√
κextâin +

√
κ0f̂in. (1.1.2)

Here, ∆ = ωL − ωc is the laser detuning, and âin represents the creation operator for the field of the input

driving laser, which is related to the incoming laser power Pin = ~ωL〈â†inâin〉, such that 〈â†inâin〉 is the rate

at which photons enter the cavity.

The cavity amplitude decays at rate κ/2, and vacuum fluctuations f̂in drive the cavity from the additional

input ports.

The output cavity field (here we are considering only one mirror as the input-output interface of the cavity,

see Fig. (1.1)) consists of the reflected driving field interfering with the losses from the intracavity field,

fulfilling the boundary condition

âout = âin −
√
κextâ. (1.1.3)

Since a typical optomechanics experiment works with a large number of photons inside the cavity, it is worth

to consider the steady-state evolution for the classical amplitude 〈â〉. For this purpose, by setting ˙̂a = 0 in

Eq. (1.1.2), we obtain

〈â〉 =

√
κext〈âin〉
κ
2 − i∆

(1.1.4)

from which we can calculate the mean intracavity photon number

n̄ = |〈â〉|2 =
κext

∆2 + (κ/2)2

Pin
~ωL

. (1.1.5)

Eq. (1.1.5) tells us that the average number of circulating photons and thus the intracavity power depends

on the detuning between the cavity and driving laser frequencies ∆ = ωL − ωc.
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Figure 1.1: Schematic representation of a nanosphere oscillating in its trapping potential at frequency ωm coupled

with the strength g (see text) to an optical cavity. Both the input (âin) and the output (âout) light field use the same

semi-transparent mirror as coupling interface, which has a loss rate κext. Other internal losses, such as scattering as

well as diffraction, are grouped together in κ0.

Coupling of a dielectric and a cavity field

We now consider a system composed of a levitating dielectric particle oscillating in a harmonic potential

inside an optical cavity, as sketched in Fig. (1.1). This particle confinement can be realized for example

by optical tweezers [12] or by a Paul trap [13], provided the presence of a net charge on the sphere (cf.

Chap. 2). At this stage, though, we are only interested in the particle motion as a harmonic oscillator whose

center-of-mass position x obeys the classical equation of motion

mẍ+mΓmẋ+mω2
mx = Fext, (1.1.6)

where ωm is the mechanical oscillation frequency and Γm its energy dissipation rate, and Fext stands for

any other external applied force on the oscillator, like thermal fluctuations or an additional optical force (cf.

Chap. 4.3.1).

Eq. (1.1.6) can be solved in the frequency space: by introducing the Fourier transform x(ω) =
∫∞
−∞ dt eiωtx(t),

the response x(ω) to the applied external force Fext(ω) is given by

x(ω) = χ(ω)Fext(ω) (1.1.7)

where the susceptibility χ is defined as

χ(ω) =
1

m(ω2
m − ω2)− imΓmω

. (1.1.8)

At this point, we have described how these two independent harmonic oscillators, one mechanical and one

optical, evolve independently. Now, we want to see how, via a dispersive interaction, an optomechanical
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coupling arises.

First, we consider the action of the particle on the light field.

When a dielectric object such a SiO2 glass sphere is placed inside an optical cavity, it increases the effective

cavity length due to the higher refractive index of the dielectric medium. As result, the cavity resonance

frequency ωc experiences a shift δωc (so that ωc → ωc0 + δωc, where ωc0 is the unperturbed cavity resonance

frequency, i.e., in the absence of the particle) that can be calculated with the Bethe-Schwinger formula [14,15]

as

δωc
ωc0

= −1

2

∫
d3rδP (r) ·E(r)∫
d3rε0E

2(r)
≈ − 3V

4Vc

(ε− 1)

(ε+ 2)
cos(2kx− 2φ), (1.1.9)

where δP (r) is the variation of the permittivity caused by the presence of the dielectric particle, E ∝

cos(kr− φ) is the bare cavity mode profile (k being the wave vector with modulus k = 2π/λ, where λ is the

laser wavelength), Vc the cavity volume, and ε and V being the electric permittivity and the volume of the

of silica sphere, respectively.

Assuming that the particle size is much smaller than the laser wavelength allows us to describe the particle

as a simple dipole P (r′) ≈ αindE(r)δ(r− r′), where r is the center of mass position of the nanosphere (here

we are considering the motion along the cavity axis only, so that r = xx̂) and αind its polarizability.

For a nanosphere oscillating near x ≈ 0, and assuming a cavity field phase of φ = π/2 (for maximizing the

intensity field gradient at particle equilibrium position), the frequency shift becomes linear in x

δωlinc ≈ − 3V

4Vc

(ε− 1)

(ε+ 2)
2kxωc0, (1.1.10)

provided the amplitude of nanosphere motion is smaller than the laser wavelength (k
√
〈x2〉 � 1).

Eq. (1.1.10) tell us that the detuning ∆ = ωL − ωc − δωlinc changes linearly with the particle’s position on

the cavity axis. Combining (1.1.10) with (1.1.5) we see that the cavity frequency shift caused by particle

motion induces a change in the photon number and thus a change in the intracavity light intensity.

Next, we want to show the effect of the radiation pressure force of the cavity field on the particle motion.

For this purpose, we expand the Hamiltonian of the cavity field in a Taylor series for a small displacement

(compared to the laser wavelength) of the nanosphere motion x:

Ĥcav = ~ωcâ†â = ~(ωc0 + δωc)â
†â = ~ωc0â†â+ ~

dωc
dx

∣∣∣∣
x=0

xâ†â+ ...

≈ ~ωc0â†â︸ ︷︷ ︸
Bare cavity

− 2kx~Gâ†â︸ ︷︷ ︸
Interaction

,
(1.1.11)
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where G = 3V
4Vc

(ε−1)
(ε+2)ωc0. The nanosphere feel thus a radiation pressure mean force coming from the interac-

tion part of Eq. (1.1.11) (Ĥint = −2kx~Gâ†â)

Frad = −dĤint

dx
= 2k~Gâ†â (1.1.12)

that has to be integrated in its equation of motion.

To summarize, the trapped particle oscillations shift the cavity resonance frequency, modifying the intracav-

ity field as described by Eq. (1.1.2). Afterwards, the light field acts back on particle motion via radiation

pressure force (1.1.12), so that the particle motion is fed back on itself with a phase delay. This process is

known in the literature as dynamical back-action [15], and it is the basis of every experimental optomechan-

ical realization [11].

Optomechanics equations of motion

The evolution of the composite system cavity+nanosphere is obtained by solving the coupled equations of

motion for the complex cavity amplitude a (1.1.2) and the particle position x (1.1.6). Here we consider a

semiclassical regime, following [16]:

mẍ = −mΓmẋ−mω2
mx+ 2k~Gâ†â+ Fext (1.1.13)

˙̂a = −κ
2
â+ i(∆ + 2kGx)â. (1.1.14)

The solution of this system is obtained by first linearizing both the cavity amplitude around a classical

steady state solution (see Eq. (1.1.4)) â = ᾱ + δa, and the nanosphere center of mass position x = x̄+ δx,

obtaining

mδẍ = −mΓmδẋ−mω2
mδx+ 2k~G

(
ᾱ∗δa+ ᾱδa∗

)
+ Fext (1.1.15)

δȧ = (i∆− κ

2
)δa+ i2kGδxᾱ. (1.1.16)

Then we compute their Fourier transforms

−mω2δx(ω) = −iωmΓmδx(ω)−mω2
mδx(ω) + 2k~G

(
ᾱ∗δa(ω) + ᾱδa∗(ω)

)
+ Fext(ω) (1.1.17)

iωδa(ω) =
(
i∆̄− κ

2

)
δa(ω) + i2kGᾱδx(ω), (1.1.18)

where ∆̄ = ∆ + 2kGx̄ is the new effective detuning caused by the displaced center of the nanosphere

oscillation due to the constant radiation pressure force.

Finally, by substituting the expression for δa(ω) as given by (1.1.18) in (1.1.17) we obtain a modified

susceptibility χ

χ(ω) =
1

m(ω2
m − ω2 − iωΓm) + S(ω)

, (1.1.19)
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where

S(ω) = −2imωmg
2

(
1

−i∆̄− iω + κ/2
− 1

i∆̄ + iω + κ/2

)
(1.1.20)

and we have also introduced the so-called optomechanical coupling strength g = 2
√

~
2mωm

kG|ᾱ|.

By separating the imaginary and real part of the susceptibility, one can see that the optomechanical coupling

manifests itself by effectively changing both the spring constant and the mechanical dissipation rate of the

nanosphere center-of-mass motion by the amount Γopt and δωm, respectively, which, when evaluated at

ω = ωm, are given by

δωm =
1

m
Re[S(ωm)] = 2ωmg

2

(
ωm + ∆̄

(ωm + ∆̄)2 + (κ/2)2
− ωm − ∆̄

(ωm − ∆̄)2 + (κ/2)2

)
(1.1.21)

and

Γopt = − 1

mωm
Im[S(ωm)] = g2κ

(
1

(ωm + ∆̄)2 + (κ/2)2
− 1

(ωm − ∆̄)2 + (κ/2)2

)
. (1.1.22)

Eq. (1.1.22) shows that in the red-detuned regime, when ∆̄ < 0, the dissipation of the nanosphere’s motion

Γtot = Γm + Γopt increases, leading to cooling of the mechanical motion. Conversely, in the blue-detuned

regime, when ∆̄ < 0, the dissipation decreases, with a subsequent increase in the particle fluctuations.

The optomechanically induced frequency shift (1.1.21) and the optomechanical damping (1.1.22) have both

=

Figure 1.2: Optomechanical damping rate Γopt as function of the detuning ∆̄ for different cavity decay rate κ.

been experimentally demonstrated in the framework of levitated nanosphere experiments [17,18].
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In comparison with the coupling to the thermal environment at 300 K (room temperature) via Γm, this

optical dissipation couples to a photon thermal bath that is effectively at Teff = 0. Thus, in this case, the

dissipation does not add thermal fluctuations to the system as it would in a conventional thermal bath.

This allows us to define an effective steady state temperature

T = Tbath
Γm

Γm + Γopt
(1.1.23)

that can be related to a mean phonon number through the expression

〈n〉 =
kBT

~ωm
(1.1.24)

where kB is the Boltzmann constant.

No research group, however, has yet been able to demonstrate cooling rates high enough to enter into the

quantum regime, i.e., reaching a phonon occupation number 〈n〉 < 1 [19].

Within our semiclassical derivation, one needs to work in the resolved sideband-regime ωm � κ to reach

the minimum temperature, which is achieved for a red detuning of ∆̄ = −ωm, and yields

Γopt ≈ 4
g2

κ
. (1.1.25)

The full quantum treatment provides similar quantitative results [11], as the linearization of the cavity field

carries away all the non-linear interactions that would result in the generation of non-classical states.

1.2 Cavity optomechanics assisted by a qubit

Novel cooling schemes and enhanced optomechanical coupling can arise as soon as a nonlinear element

such a two-level quantum system (qubit) is introduced in an optomechanical setup. Pirkkalainen et al. [20]

have coupled a Josephson junction qubit to their optomechanical system based on a microwave-regime

superconducting cavity, showing an increase by six order of magnitude in the radiation pressure interaction,

and nonlinear phenomena at single-photon energies scales. Moreover, a theoretical proposal suggests that

non-classical states of the mechanical oscillator can be prepared by engineering the environment of a tripartite

system consisting of the cavity, the mechanical oscillator and the qubit [7].

In our levitated optomechanics experiment, an interacting two level system can be engineered by coupling a

single ion to the same cavity mode as the nanosphere [21], exploiting the well established protocols used in

the field of cavity quantum electrodynamics [22].
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ωm

g

 
ℏωi

g

e g
i

+

Figure 1.3: Schematic representation of the system composed by an optical cavity coupled to both a qubit and

a nanosphere with coupling strength gi and g, respectively. The nanosphere is oscillating within its trap at the

frequency ωm, and the internal energy states separation of the qubit is ~ωi.

The planned system is depicted in Fig. (1.3). A single calcium ion is harmonically trapped in a Paul trap

and coupled to the cavity field via the Jaynes–Cummings Hamiltonian [23], so that the total Hamiltonian is

given by

Ĥtot = Ĥnano + Ĥion + Ĥcavity + Ĥnano−cav
int + Ĥion−cav

int + Ĥdrive. (1.2.1)

The first term on the right-hand side represents the Hamiltonian of the bare mechanical oscillations of the

nanosphere Ĥnano = ~ωmb̂†b̂ with b̂ and b̂† being the annihilation and creation operators of a phonon.

The second term is Ĥion = ~ωiσ̂z, where ~ωi is the energy separation between the excited state |e〉 and

ground state |g〉 of the qubit and σ̂z is the z Pauli matrix. The third term Ĥcavity = ~ωc0â†â is the bare

cavity Hamiltonian. The optomechanical interaction Hamiltonian is derived in Eq. (1.1.11) as Ĥnano−cav
int =

−2k~GxZPM (b̂+ b̂†)â†â , where we have replaced x with its quantum mechanical operator x̂ = xZPM (b̂+ b̂†)

with xZPM =
√

~/2mωm being the mechanical zero-point motion of the nanosphere. The interaction

Hamiltonian between the ion and the cavity field is

Ĥion−cav
int = ~gi(âσ̂+ + â†σ̂−), (1.2.2)

where σ̂− = |g〉〈e| and σ̂+ = |e〉〈g| are the respectively lowering and raising operators that connect the

excited and ground states of the qubit, and gi is the atom-cavity coupling strength [24]. Finally, the laser

drive is taken into account by the term Ĥdrvive = ξ(âeiωLt+ â†e−iωLt), where ξ is the strength of the driving

field oscillating at the frequency ωL.

Pflanzer et al. [7] have suggested that in the regime where gi/|∆ − δ| � 1, g/|∆ − ωm| � 1, the cavity

mediates an effective interaction between nanosphere and ion [7]. Here δ = ωi − ωL is the detuning of the

qubit from the laser frequency. In this regime, the cavity degree of freedom can be eliminated from the
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description of the system (see [7] for the derivation), leading to the new effective Hamiltonian

Ĥeff =
~δ̃
2
σ̂z + ~ω̃mb̂†b̂− ~gi−m(σ̂+b̂+ σ̂−b̂†), (1.2.3)

where δ̃ = δ−2g2
i /(∆− δ), ω̃m = ωm−2g2/(∆−ωm), and the coupling rate between the nanosphere motion

and the ion is gi−m = gig(2∆− ωm − δ)/[(∆− δ)(∆− ωm)].

Eq. (1.2.3) is in the form of a Jaynes-Cummings interaction Hamiltonian (1.2.2), with the cavity light field

replaced by the amplitude of quantum oscillation of the nanosphere. In this regime, it thus appears possible

to prepare non-classical states like, for example, arbitrary Fock states [25].

Discussion

In this chapter, a basic introduction to the optomechanical coupling of an oscillating dielectric nanosphere

with a cavity field have been presented. Then we have derived the equations of motion for both the mechanical

oscillator and the cavity field. In the last part, we have written down the effective Hamiltonian that describes

the system when a qubit is incorporated into the system, and how this can be engineered to prepare non-

classical states of motion of the nanoparticle center of mass.

This thesis, however, will be focused on studying the trapping environment necessary to harmonically confine

the nanosphere and the single ion.

Since it carries electrical charges, the ion can be confined by an electrodynamic Paul trap. The next chapter

will provide therefore a basic introduction to Paul trap theory, along with a novel proposal to use the trap

for trapping both species together, the nanosphere and the ion.
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Chapter 2

Paul trap theory

The main requirements of building a levitated cavity optomechanics system are to implement a levitated

mechanical oscillator and to isolate it from the various sources of decoherence due to the surrounding

environment. The state of the art in current experiments is to use an optical tweezers or a Paul traps in

order to provide a trapping field for confine the nanoparticle inside a vacuum chamber. Since the planned

experiment in Innsbruck require the presence of a single calcium ion to assist the optomechanical coupling

(see Sec. 1.2), it is convenient for us to use a Paul trap for simultaneously confine both the nanosphere and

the ion.

Electrodynamic Paul traps [26] are based on the ponderomotive mean force felt by a charged particle in a

quadrupolar time-oscillating electric potential. The strength of the trapping potential is weighted by the

charge-to-mass ratio of the trapped particle. As a result, a good trap (that is, a deep trap) for a single

calcium ion could be at the same time a very shallow well for a massive object like a 100 nm diameter

silica nanosphere, which has a mass of Mnano ∼ 107M40Ca+ . Charging methods for levitating dielectric

spheres, that includes ion or electron bombardment [27], electrospray ionization (see Chap. 3.2.1) and

corona discharge [27], can provide a typical charge of Qnano ∼ 100 [28], that is not enough to solve the high

mismatch of the charge-to-mass ratios with the single calcium ion, that is assumed to have a single charge.

Therefore, the difference between the charge-to-mass ratios prevents stable trapping of both particles. To

circumvent this problem, a recent theoretical proposal [8] (endorsed by preliminary experimental results [29]

that show the effects of the second frequency field on the stability of a trapped calcium ion) suggests that

using a Paul trap driven by two frequency sources can effectively trap two ion species even if their charge-

to-mass ratios are very different.

In the first part of this chapter, the basic principle of ion trapping in a Paul trap will be introduced.
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Afterwards, the two-frequency approach will be studied with more detail in order to give a theoretical

estimation regarding possible sets of parameters, both for the goal of trapping a single calcium ion together

with a silica nanosphere and for a first experimental test within the framework of a rescaled system for a

preliminary assessment.

Finally, the operation of the Paul trap as a charge-to-mass spectrometer will be briefly explained.

2.1 The linear Paul trap theory
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Figure 2.1: Equipotential lines of a two-

dimensional quadrupole electric potential.

When the voltage of two diametrically op-

posed electrodes oscillates sinusoidally in

time, the resulting ponderomotive force

can trap ions, regardless of the sign of their

charge.

A Paul trap consists of an arrangement of electrodes combined to form a non-vanishing quadrupole

moment (see Fig. (2.1)) of the electric potential ϕ. The ideal situation can be achieved for any geometry

that satisfies the Laplace equation

∇2ϕ(x, y, z) = 0 (2.1.1)

with

ϕ(x, y, z) = U
1

2
(αx2 + βy2 + γz2), (2.1.2)

where x, y and z are the three orthogonal spatial coordinates, U is the applied voltage and α, β and γ are

real geometrical constants characterizing profile and relative distances of the electrodes.

Since Eq. (2.1.1) imposes that

α+ β + γ = 0, (2.1.3)

at least one of the coefficients has to be negative. This means that an applied electrostatic potential can

not provide a restoring force in every spatial direction1. A dynamical equilibrium is reached, though, if a

1This fact is also known as Earnshaw’s theorem, after the British mathematician Samuel Earnshaw who first prove it in

1842.
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sinusoidally oscillating part is added to the static potential [26]:

ϕ(x, y, z, t) = U
1

2
(αx2 + βy2 + γz2) + URF cos(Ωt)

1

2
(α′x2 + β′y2 + γ′z2), (2.1.4)

where URF is the amplitude of the AC field oscillating at the rf frequency Ω, and α′, β′ and γ′ are geometrical

factors that satisfy the same relation of Eq. (2.1.3), namely,

α′ + β′ + γ′ = 0. (2.1.5)

We will see below how a particular choice of U , URF and Ω will lead to an effective restoring force in all

three spatial dimensions.

For a linear trap, the geometrical coefficients are chosen to be [30]

−(α+ β) = −2α = γ =
1

z2
0

α′ = −β′ =
1

r2
0

,

(2.1.6)

where 2r0 and 2z0 are the distances between the radial and the axial electrodes (the latter are usually

referred as endcap electrodes), respectively (see Fig. 2.2 (b)).

In this fashion, dynamical confinement is used to trap on the xy-plane, and a static field along ẑ provides

axial trapping for charged particles.
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Figure 2.2: Typical realizations of a Paul trap: (a) ring Paul trap. The ideal geometrical coefficients for this

configuration are α = β = γ = 0 and α′ + β′ = −γ′, which give a full three-dimensional symmetric potential useful

for trapping a single particles. (b) Linear trap. The ideal geometrical coefficients for this configuration are given

in Eq. (2.1.6). By substituting the hyperbolic profile of an ideal trap with electrodes with a circular cross section,

the effective volume of the trap is reduced (see simulations in Fig. 3.3). In the four cylinders linear trap, two

diametrically opposite rods are driven with an oscillating voltage URF cos(Ωt) plus a DC offset Uoff , while the other

two are grounded. The axial electrodes (endcaps) are held at the static voltage Uend. To note that in the linear trap

geometry the zero of the RF field is along the whole ẑ axis while in the ring trap is only the single point located at

the center of the trap.

Equation of motion

The equation of motion along the x̂ axis for a particle of mass m and electric charge Q subject to the

potential (2.1.4) with the ansatz (2.1.6) is

mẍ = −Q∂ϕ
∂x

= −Q
(
− Uend

z2
0

− Uoff
r2
0

− URF
r2
0

cos(Ωt)
)
x, (2.1.7)

where Uend is the static field produced by the endcap axial electrodes, and Uoff accounts for a possible DC

offset of the oscillating potential. For the moment, we have also neglected every source of damping.

Following [31], Eq. (2.1.7) can be recast in the form of a Mathieu equation [32]:

d2x

dt21
+ (ax − 2qx cos(2t1))x = 0, (2.1.8)
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where we have used the following substitutions:

ax = − 4Q

mΩ2

(
κ
Uend
z2

0

+
Uoff
r2
0

)
, (2.1.9)

qx =
2QURF
mr2

0Ω2
, (2.1.10)

t1 =
Ωt

2
. (2.1.11)

Eq. (2.1.8) is indeed an approximation valid near the axis of a real linear Paul trap. Moreover, the non-

ideal shape of the axial electrodes is taken into account with the dimensionless factor κ, which assumes its

maximum value κ = 1 for hyperbolic endcap electrodes.

The equations of motion on the ŷ and ẑ axes are of the same form as Eq. (2.1.8) with the parameters

y
)

ay = − 4Q

mΩ2

(
κ
Uend
z2

0

− Uoff
r2
0

)
, qy = −qx (2.1.12)

z
)

az = κ
8QUend
mz2

0Ω2
, qz = 0. (2.1.13)

The Mathieu equation of motion (2.1.8) is an ordinary differential equation (ODE) with periodic coefficients.

Floquet theory [32] can be used to express the solution of Eq. (2.1.8) in the form of an infinite series

x(t1) = Ae±iβxt1
∞∑

r=−∞
C2re

2irt1 +Be∓iβxt1
∞∑

r=−∞
C2re

−2irt1 , (2.1.14)

where A and B are constants to be determined by the initial conditions of a particular problem, and βx is

a parameter that depends on the coefficients ax and qx.

The value of βx governs the behavior of the solutions: the trap is stable (i.e., the motion is spatially bounded)

if βx is real and not an integer; the trap is unstable instead if the value of βx is purely imaginary. The case

for which βx is an integer represents the boundary between stable and unstable motion.

By substituting Eq. (2.1.14) into the equation of motion (2.1.8), we obtain a recursive implicit equation for

βx:

C2r +D2r

[
C2r+2 + C2r−2

]
= 0, (2.1.15)

with D2r = [qx/(2r + βx)2 − ax]. Therefore, the stability boundaries can be numerically calculated as the

integer isoline values of βx within the domain of the axqx-plane.

An analogous treatment can be done for the y component of the equation of motion, with the parameters

ay, qy and βy.

Fig. (2.3) shows the stability diagram of motion along x obtained with the code included in Appendix A.

In order to have stable confined motion along all three spatial axes of the trap, all members of the set of

parameters ai and qi with i = {x, y, z} must lie within their respective stability zones. For a linear trap, this



26 2.1. The linear Paul trap theory

0 2 4 6 6 10
q

-2

0

2

4

6

8

10

a

Figure 2.3: Stability diagram of the Mathieu equation, corresponding to the normalized dimensionless equation of

motion along the x̂ axis for a charged particle in a linear Paul trap (see text). At fixed operating trap’s frequency

and without any applied DC offset on the RF electrodes (Uoff = 0), q is proportional to the voltage of the RF field

URF while a is proportional to the endcap voltage Uend. Stable (unstable) solution are obtained for a and q lying in

the light (dark) area.

means that the system has to be in the intersection of the stable zone of just the x and y branches, since

the axial electric field is always confining (az > 0, qz = 0).

The radially defocusing DC field induced by Uend is typically less strong than the radial confinement, for

two reasons: first, the axial endcap electrode separation 2z0 is always larger than the radial distance 2r0

between the rods; second, the non-ideal axial quadrupolar field, quantified by the coefficient κ < 1, reduces

the effect of the endcaps on the radial confinement. For these reasons, we can assume ax ≈ −ay, meaning

that the stability diagrams of the x and y motion are mirror images of each other, as depicted in Fig. (2.4)

(B).

The region delimited by the intersection of the first stable branches of x and y (i.e., the common area between

the curves βx = {0, 1} and βy = {0, 1}) is typically referred to as the first stability zone. As comparison,

the second stability zone (i.e., the common area between the curves βx = {0, 1} and βy = {1, 2}) is shown
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Figure 2.4: (A): first and second stability regions (purple) of the linear Paul trap. (B): zoom of the first stability

region of the linear Paul trap. The maximum stable q value is qmax ∼ 0.9.

in Fig. (2.4) (A). Due to the higher accessible parameters (namely, voltages and frequencies) suitable for

stable trapping, the first stability zone is preferred. Moreover, in the limit βx,y � 1, the motion inside the

trap becomes nearly harmonic, with frequencies ωx,y = βx,yΩ/2 along x and y respectively. This can be

demonstrated by the so called pseudopotential approximation.

The pseudopotential approximation

Since in the typical experimental realization of a linear Paul trap, the ax parameter is always kept close to

zero, in the following calculations we will neglect it. This will also make the calculations easier.

With this in mind, the equation of motion (2.1.7) can been seen as a harmonic oscillator with a time

modulated frequency ω(t) such that

ω(t)2 =
QURF
mr2

0

cos(Ωt) =
qxΩ2

2
cos Ωt (2.1.16)

The system has thus two characteristic frequencies: Ω, the one at which the field changes polarity, and the

static part of ω(t). The pseudo-potential approximation is based on a large separation between these two

frequencies, namely Ω �
√

qx
2 Ω, i.e., qx � 1. The two very different time scales suggest a subdivision of

the motion into a smooth, slow time varying path plus a fast oscillating amplitude [33]

x(t) = X(t) + ξ(X, t). (2.1.17)
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Here X represents the mean displacement of the particle in a period T = 2π/Ω of the fast oscillation,

meaning that for the fast varying term, 〈ξ〉T = 1
T

∫ T
0
ξ(t)dt = 0.

Another assumption that will be verified in the end of the calculation is that

ξ � X. (2.1.18)

For these reasons X is called the secular motion and ξ the micromotion.

Following [34] we insert (2.1.17) into Eq. (2.1.7) (always neglecting static terms involving ax):

m(Ẍ + ξ̈) = −qxΩ2

2
cos(Ωt)(X + ξ). (2.1.19)

This equation contains both smooth and fast oscillating parts that have to be independently equal.

The fast term is

mξ̈ = −qxΩ2

2
cos(Ωt)X, (2.1.20)

where we have neglected the smallest term proportional to ξ because ξ̈ ∼ Ω2ξ is a large quantity.

From Eq. (2.1.20) we obtain for the amplitude of micromotion

ξ =
qxX

2
cos(Ωt). (2.1.21)

Putting this value for the amplitude back inside Eq. (2.1.19) and averaging over one period of the fast

oscillation, we get the equation for the slow secular motion

mẌ = −m
2

(qxΩ

2

)2

X (2.1.22)

which corresponds to a harmonic oscillator with the secular frequency

ωx =
qxΩ

2
√

2
. (2.1.23)

Thus the complete equation of motion now can be written as

x(t) = X + ξ = A cos(ωxt)
(
1 +

qx
2

cos(Ωt)
)

(2.1.24)

where the fast micromotion oscillations at the driving frequency Ω are over imposed on a slow secular

harmonic oscillation at frequency ωx, with an amplitude A which depends on the initial conditions.

Since we work with qx � 1, the amplitude of micromotion is low, and this is consistent with the initial

assumption (2.1.18). Eq. (2.1.22) could be rewritten in terms of an effective potential

mẌ = −∂ϕeff
∂X

, (2.1.25)
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Figure 2.5: Secular motion and micromotion inside a Paul trap obtained thanks to the pseudopotential approxi-

mation valid in the q � 1 regime.

with

ϕeff =
1

2
mω2

xX
2. (2.1.26)

Finally, we can calculate the pseudopotential depth Dx of our trap, within the approximations made so far,

as

Dx =

∫ X=r0

X=0

∂ϕeff
∂X

dX =
mΩ2r2

0

16
q2
x =

QU2
RF

4mr2
0Ω2

(2.1.27)

An analogous treatment can be done with the y component of the equation of motion. Since in the linear

trap qx = −qy, the oscillatory motion along ŷ occurs at the same frequency ωx = ωy, and thus the effective

potential is radially symmetric.

For the axial motion along ẑ, the presence of a DC field alone implies

z̈ = κ
2QUend
mz2

0

z, (2.1.28)

that is, a harmonic oscillator with frequency ωz =
√

κ2QUend
mz20

.

Discussion

We have shown how a linear Paul trap can lead to a stable or unstable motion depending on the particular

choice of the driving voltages and frequencies of the electrodes. We have also demonstrated that within

the first stability zone and with a ∼ 0, q � 1, the trapped charged particle oscillates harmonically along

each spatial axis at the secular frequencies ωx, ωy and ωz, with small residual motion called micromotion
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superimposed at the drive frequency Ω.

In experiments with single or a few trapped atomic ions [35,36], typical parameters used to confine the ions

harmonically are a = 0 and q / 0.4. In this regime, one is sure not to induce parametric resonances [37]

that could heat up the trapped ions.

2.1.1 The effect of damping on the stability diagrams
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Figure 2.6: (A): stable solutions (colors) of the Mathieu equation in the presence of various damping strength. (B):

first and second stability regions for stable trapping in the linear trap with different value of the damping strength.

While the damping increases, the stable trapping zone get larger and shifted compared to the b = 0 case. Moreover,

after the value b = 1.5 the second stability region become incorporated with the first one.

Mean viscous drag force resulting from collisions with background gas can be taken into account in the

equation of motion of a trapped particle by means of a damping term. Moreover, a damping term can also

effectively describe, for example, laser [38] and buffer gas cooling [39] of the ion, and feedback and cavity

cooling of the center-of-mass motion of a silica nanosphere (cf. Chap (1.1)) [18,40,41].

Thus, it is worth rewriting the x component of the equation of motion (2.1.7) to include a viscous friction-like

term proportional to the particle’s velocity [42]:

mẍ = −γẋ+
(QUend

z2
0

+
QUoff
r2
0

+
QURF
r2
0

cos(Ωt)
)
x, (2.1.29)

where γ is the coefficient describing a characteristic damping mechanism.

Even if γ 6= 0, Eq. (2.1.29) can be recast in the form of a Mathieu equation: we first perform the usual
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substitution (2.1.9), obtaining

d2x

dt21
+ 2b

dx

dt1
+ (ax − 2qx cos(2t1))x = 0, (2.1.30)

where we have set

b =
γ

mΩ
. (2.1.31)

Then, using the transformation x = u exp(−bt1) we get

d2u

dt21
+ (ax − b2 − 2qx cos(2t))u = 0, (2.1.32)

that is, a Mathieu equation with the parameter ax replaced by ax − b2.

The same formalism of Sec. (2.1) can thus be applied, and the new stability diagrams can be calculated

with the code presented in Appendix A.

Fig. (2.6) shows what happens for different increasing values of b. As one would expect, higher damping

means larger stable regions. At the same time, however, stable zones are shifted in position [43], potentially

giving unstable character to an otherwise stable point of operation with b = 0.

2.2 Paul trap driven by two frequencies

Paul traps have been typically used to investigate the properties of trapped objects such as a cloud of ions.

For a system like an ion cloud with many degrees of freedom, an additional quadrupole field with lower

amplitude than the primary one can be scanned while fluorescence of the ions is registered, leading to the

appearance of various mechanical resonances. These resonances are mostly due to parametric excitations of

the secular frequencies, higher-order modes of oscillation and nonlinearities of the trap potential. Thus, in

these kinds of measurements, the second oscillating field is used to probe the system.

To understand the effect of this second field, we rewrite Eq. (2.1.29) taking into account a second driving

with a different frequency and amplitude but with the same field geometry.

The equation of motion is now given by:

mẍ = −γẋ+
(QUend

z2
0

+
QUoff
z2

0

+
QU1

r2
0

cos(Ω1t) +
QU2

r2
0

cos(Ω2t)
)
x, (2.2.1)

where γ is the damping constant, m and Q are the mass and the charge of the trapped particle and Ui, Ωi for

i = {1, 2} are the amplitude and the frequency of the first and the second oscillating potential, respectively.

In order to simplify the calculations, we consider the second frequency Ω2 to be a harmonic of the first one,

so that Ω2 = nΩ1 with n an integer. For this reason, Ω1 and Ω2 will be called the slow frequency and the
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fast frequency, respectively.

With the same transformation used in Eq. (2.1.9), we can recast the above equation of motion (2.2.1) as

d2x

dt21
+ 2b1

dx

dt1
+ (ax − 2qx cos(2t1)− 2px cos(2nt1))x = 0, (2.2.2)

where we have additionally used

px =
2QU2

mr2
0Ω2

1

, (2.2.3)

Ω2 = nΩ1, (2.2.4)

and where the index in b1 emphasize that we have rescaled the time with respect to the slow frequency such

that b1 = γ/(mΩ1) (cf. Eq. (2.1.9)).

Eq. (2.2.2) is a second-order linear ordinary differential equation with periodic coefficients, generally known

in the literature as the Hill equation [32], of which the Mathieu equation (2.1.8) is just one particular case

involving a single frequency.

As was done for the Mathieu equation (cf. Chap. (2.1)), we use Floquet theory to find an analytic solution

to Eq. (2.2.2) in terms of an infinite series expansion: by substituting the ansatz (2.1.14) in (2.2.2) we get

a recursive relation for find the βx parameter, namely

C2r +D2r

[
C2r+2 + C2r−2

]
+ F2r

[
C2r+2n + C2r−2n

]
= 0, (2.2.5)

where D2r = [qx/(2r + βx)2 − axb21] and F2r = [px/(2r + βx)2 − ax + b21].

Eq. (2.2.2) has bounded and unbounded solutions in time, just as its single-frequency counterpart does, and

these solutions depend on the particular values assumed by its βx parameter. The boundary between stable

and unstable motion is represented (for a fixed value of damping) by the isosurfaces at integer values of βx

in the three-dimensional parameter space spanned by
(
ax, qx, px

)
.

A slice in the ax = 0 plane (that is, when no DC offset is applied to the trap electrodes) for different values

of the frequency ratio n = Ω2/Ω1 is depicted in Fig. (2.7). The βx parameter was evaluated with the code

found in Appendix (A). Fig. (2.7) shows how the fast frequency Ω2 induces n− 1 tongues of subharmonic

resonances that cut the stability zone down to the q = 0 axis.

For high value of n, these instabilities become denser and narrower. However, the finite resolution of the

numeric code acts as an effective damping [44], limiting the visibility of the resonances near the horizontal

axis.
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Figure 2.7: Stability diagrams for a two-frequency-driven Paul trap along the a = 0 plane. At a fixed operating

frequencies, p is proportional to the strength of the field oscillating at the fast frequency Ω2 while q is proportional

to the strength of the field oscillating at the slow frequency Ω1 = Ω2/n. The slow field induced n − 1 parametric

resonances which makes the trap unstable. The width of instability exponentially decay in reaching the q = 0

axis [44], making them difficult to resolve.
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Discussion

The motional instabilities inside a Paul trap arising from parametric resonances induced by a second fre-

quency have been studied in various experimental and theoretical works [45–47]. Recently, the two-frequency

scheme was applied to the completely different task of stably trapping two ion species with a very large dif-

ference in their charge-to-mass ratios [8]. This theoretical proposal is gaining the attention of experimental

groups that work with multiple ion species or larger charged objects in a Paul trap [29, 48]. The following

section will provide a basic theoretical treatment for our case of interest: trapping a calcium ion together

with a charged silica nanosphere.
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2.2.1 Trapping two particles with one frequency

If one is interested in seeing some kind of local interaction between two different trapped species inside a

Paul trap, it is desirable to put the the two objects as close together as possible. This situation arises for

example in sympathetic cooling of atomic ions [49], or of even larger systems such as proteins [50].

Here, we are interested in trapping (A) a charged silica nanosphere and (B) a single 40Ca+ ion. Their

respective typical charge and mass values are shown in the following table.

Species Mass (u) Charge (e)

A) 100 nm silica sphere 6× 108 100

B) 40Ca+ single ion 40 1

We assume the silica sphere to have a diameter of 100 nm, with an electrical charge of2 100 e [28]. Hence,

we obtain
QB
mB
≈ 105QA

mA
. (2.2.6)

The main disadvantage of working with a single-frequency-driven Paul trap is that the resultant secular

frequency (cf. Eq. (2.1.23)) felt by both particles is directly proportional to their charge-to-mass ratio:

ωi ∝
Qi
mi

, (2.2.7)

where i = {A,B}. This leads to species-dependent spring constants κi = miω
2
i ∝ Q2

i /mi. In other words,

the particle with the lowest Q/m value will experience a lower restoring force. Therefore, assuming thermal

equilibrium at temperature T between the two species

kBT = κi〈x2
i 〉, (2.2.8)

where kB is the Boltzmann constant, the nanosphere position fluctuations xA =
√
〈x2
A〉 will be

xA = xB

√
mA

mB

QB
QA
≈ 103xB . (2.2.9)

Thus, a Paul trap driven with parameters (namely, voltage and frequency) optimized only for a single ion

would lead to very large fluctuations in the nanosphere displacement, which would lead to the latter escaping

the trap.

2As we will see later in the experimental part of the thesis (cf. Chap. (4.1.1)), this value of the charge for the nanosphere is

larger than what we can achieve with the current loading techniques of our setup. In future work, it is planned to investigate

adaptations of the loading technique as well as separate charging methods.



36 2.2. Paul trap driven by two frequencies

2.2.2 Trapping two particles with two frequencies

Ω1 Ω2

Q
m

Nanosphere
Q

m
Calcium ion

Trap's drive
 frequencies

Figure 2.8: Due to the large charge-to-mass

ratios separation between the calcium ion and

a typical charged nanosphere, the fast fre-

quency Ω1 is used for trap the calcium ion

while the slow frequency Ω2 is used to trap the

nanosphere.

If we now drive the Paul trap with two frequencies at two differ-

ent voltages optimized for individually trapping the nanosphere

and the ion, the spring constant ratio no longer depends only

on the charge-to-mass ratio, but also on the frequency and volt-

age used to obtain independent stable trapping of both species,

namely

kA
kB
≈ mAω

2
A

mBω2
B

≈
(UA

Ω2

Ω1

UB

)2 Q2
A/mA

Q2
B/mB

, (2.2.10)

where we are supposing that the nanosphere is affected mainly

by the field oscillating at Ω2 with amplitude UA, while the ion

is confined by the Ω1 frequency with amplitude UB .

Thus, even if the charge-to-mass ratio of each species is fixed,

it is possible to balance the spring constants κA/κB ∼ 1 by

tuning the two sets of frequencies and voltages.

Choosing the right voltage for the right frequency

We consider the fast driving frequency Ω1 as a harmonic of the

slow frequency Ω2, namely

Ω1 = nΩ2 (2.2.11)

with n an integer. The values of the two voltages and frequencies that make the spring constant ratio in Eq.

(2.2.10) equal to one are not arbitrary. We impose on them two requirements:

• Each individual particle must be stably confined inside the trap;

• Parametric resonances induced by the slow trap frequency must be avoided.

First, in order to obtain a stable trapping inside the trap, we have to ensure that the q parameter for both

species is

qA,B . 0.4. (2.2.12)

This requirement together with Eq. (2.2.10) fixes the drive frequency ratio, since

kA
kB

=
mAω

2
A

mBω2
B

=
mA

(
0.4Ω2

)2
mB

(
0.4Ω1

)2 = 1, (2.2.13)
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where we have used Eq. (2.1.23) to express the secular frequency ω as a function of q. Substituting the

values for the masses of the species, and using a typical fast frequency for the calcium ion confinement of

Ω1 ∼ 1 MHz, we get n ∼ 103.

Second, once we have chosen the driving frequency ratio n, the voltage ratio has to be chosen in order to

avoid parametric instabilities, like those shown in Fig. (2.7).

With such a high frequency ratio (n ∼ 103), it becomes very difficult to resolve all n − 1 parametric

resonances. However, we have seen in Chap. (2.1.1) how damping enlarges the stable region of operation

of the trap. Thus, adding a damping mechanism such as the damping force arising from Doppler cooling

cause the bottom tips of the instability tongues to lift up from the horizontal axis. Foot et al. [29] have

shown how the threshold voltage of the slow field U2 that can excite a parametric resonance is related to

the dimensionless damping coefficient b1 (cf. Eq. (2.1.9)) and to the fast field voltage U1. They found that

U2 = ρ
QB

mBn2Ω2
2r

2
0

U2
1 (πb1)

1/m, (2.2.14)

where ρ = 0.54 is a constant, r0 is the separation between the particle and the radial electrode in a linear

trap (see Fig. (2.2) (b)), and the order number m is

m =
2ωB
Ω1
≈ nqB√

2
≈ 0.28n, (2.2.15)

where in the last equality we have used qB = 0.4.

Thus, a suitable damping force on the ion, arising from a Doppler cooling mechanism or the pressure of the

residual gas in the vacuum chamber, is sufficient to avoid instabilities that could limit the lifetime of the ion

in the trap.

2.3 Paul trap as a mass spectrometer

Finally, we want to provide a basic introduction to the operation of a linear Paul trap as a charge-to-

mass spectrometer, which will be a useful tool for understanding the nanosphere loading mechanism with

the electrospray ionization technique (cf. Chap 3.2.1), the latter being known to generate a broad charge

distribution among the launched particles (cf. Chap 4.1.1).

Let us consider in this regard a linear Paul trap, with frequency Ω and voltage URF . Then we know from

Chap. (2.1) that confinement of charged particles occurs only within certain zones of the aq-plane, called

stability regions.

Let us zoom into the first stability zone shown in Fig. (2.4) (B). Limiting our attention to the a = 0 axis, the

highest reachable q-value is located at qmax = 0.9. On the other hand, in the limit q � 1 the pseudopotential
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approximation (cf. Chap. (2.1)) applies, and a trapped particle here oscillates in a potential well of depth

shown in Eq. (2.1.27).

Assuming that the particle is in thermal equilibrium with the environment at temperature T , the trap depth

D should be at least [51] D ≥ 10kBT . Combining the thermal and equilibrium requirements, we find

10kBT
4r2

0Ω2

U2
RF

≤ Q

m
≤ r2

0Ω2

2URF
0.9, (2.3.1)

where Q/m is the charge-to-mass ratio of a confined particle.

The trap thus acts like a band-pass filter for the charge-to-mass ratio of the particles launched through the

trap volume.

By scanning the voltage and/or the driving frequency, we can modify the acceptance criteria of the trap.

Furthermore, if we know the exact damping factor associated with the environment and its relation with

qmax [52], the absolute value of Q/m of a trapped object can be experimentally evaluated by increasing URF

or decreasing Ω until qmax is reached, at which point the particles will be driven out of the trap by motional

instability.

This method has been successfully used to estimate the charge-to-mass ratio of nanospheres in different

configurations [53,54].

Discussion

In this chapter we have derived the basic working principle of a Paul trap driven with one frequency. Then

we have extended the derivation to the case of two frequencies in order to optimize the confinement for two

different species with a charge-to-mass ratios that differ by six orders of magnitude.

The goal of the experiment consists of a silica nanosphere trapped together with a single calcium ion within

the same Paul trap. Next, the addition of an optical cavity, with the trapped particles aligned along its axis,

will form the optomechanical system (cf. Chap. (1)).

At the beginning of this project, however, I started with an empty laboratory with no equipment.

Taking into account the complexity and the expected time to realize a typical ion-trap experiment(see for

example [55]), we decided that the fastest way to verify the two-frequency trapping scheme would be to

use a simpler, rescaled physical system composed of a nanosphere and a microsphere, instead of a single

atomic ion and a nanosphere, as the physics described above just depends on charge-to-mass ratios and not

on actual masses.

The following chapters will thus be devoted to showing how stable trapping in a Paul trap of both a

nanosphere and a microsphere have been obtained in an air environment.



Chapter 3

Experimental apparatus

A theoretical framework on ion trapping has been presented in the last section. In this chapter, the experi-

mental apparatus will be introduced.

First, the design, fabrication and assembly of the Paul trap are presented. Second, a description of the

silica nano- and microspheres used as samples in our experiment will be given. Third, the different methods

to load particles into the trap will be presented. The last part of the chapter will be devoted to particle

detection, using both an interferometric scheme and direct imaging of the scattered light.

3.1 The linear Paul trap realization

3.1.1 Design and fabrication

R

R' Figure 3.1: Section view of the four-

rod Paul trap. Two diametrically opposed

cylindrical electrodes (with radius R′ sep-

arated by a distance 2R) are connected to

the RF source, while the remaining two are

grounded through the optical table.

In Fig. (3.1) the general idea of the trap is sketched based on a simple quadrupole mass filter: two

dielectric holders support four cylindrical electrodes for radial confinement and two additional smaller rods

placed as end caps for axial confinement.
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Three additional rods are included, to which DC voltages can be applied in order to compensate for stray

electric fields that can displace the particle from the RF minimum, causing excess micromotion. These rods

are known as compensation electrodes.

Holders

All of the trap’ electrodes are fitted in the dielectric holders, which the only parts that required custom

design and fabrication.

The holder is a dielectric slab with holes that match the electrodes’ diameters. It keeps the electrodes parallel

while ensuring the stability of the trap and providing a clamping mechanism for the system.

The design of the holder is shown in Fig. (3.2). Given the fixed radius of the rods (R′), the separation of

4x
4

3x 0.80

30

4

A

A

3.8
8

0.4
0

7

Figure 3.2: CAD drawing of one of the two identical holders for the Paul trap. All lengths are expressed in mm.

The holes are: four 4 mm diameter holes for RF/ground electrodes; one 0.4 mm diameter center hole for the endcap

electrode; two M4 threaded holes to accommodate screw connections with a post; three additional 0.8 mm diameter

holes for compensation electrodes.

the electrodes (R) was chosen according to reference [56] and is shown in Fig (3.1)

R′ = 1.03R. (3.1.1)
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The electric field profile arising from this geometrical arrangement of electrodes has been studied through

finite element simulations1. For these simulations, the pseudopotential ϕpseudo(x, y) can be written as [57]

ϕpseudo(x, y) =
Q

4mΩ2
drive

|E(x, y)|2 (3.1.2)

where Q and m are respectively the charge and the mass of the trapped particle and Ωdrive is the drive

frequency of the trap. The confining potential will be harmonic only within the region where the square of

the electric field depends quadratically on the radial coordinates x and y. This occurs for distances from

the center of the trap less then ∼ 0.4 mm, as determined from the simulations shown in Fig. (3.3). A ratio

(V/m)²

u

x

(a)
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/m
)²
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(b)

Figure 3.3: Electrostatic simulations of |E|2 arising from the geometrical configuration of Eq. (3.1.1), with 1 V

applied on the two RF rods. The resulting pesudopotential can obtained with the help of Eq. (3.1.2). Figure (a)

shows a contour plot of |E|2 on the z=0 plane. It can be seen how the radial symmetry manifests itself just near

the center of the trap. Figure (b) shows that radial symmetry is achieved within a radius of ∼ 0.2 mm from the

center. Below that distance, a multipole expansion fit showed that anharmonic terms became smaller than ∼ 1% of

the quadratic term.

of R′/R = 1.147 would have led to a larger area of harmonicity of the trap [58]. However, this would have

implied a shorter distance between the cylindrical electrodes, compromising the fabrication process for the

holder holes, and the optical access for imaging detection.

The holders have been fabricated with a precision of ±0.02 mm by the mechanical workshop of the University

of Innsbruck’s Institute for Experimental Physics.

The holders are made of polyoxymethylene (POM). POM is a polymer able to sustain up to 15 kV mm−1

DC fields before dielectric breakdown [59]. We have never encountered breakdown problems while working

between DC and 30 kHz and voltages applied to the rods (minimum separation of 1.5 mm) up to 1 kV.

1Comsol Multiphysics
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Electrodes

The electrodes were made from commercially available components.

The four RF electrodes (RF and ground, see Fig. (2.2)) are stainless steel assembly rods of a commercial

cage system2, 4 mm in diameter and 50 mm in length.

The endcap electrodes are dialysis needles made of stainless, chromium-nickel steel3, 0.4 mm in diameter

and 25 mm in length. Three additional needles, 0.8 mm in diameter and 120 mm in length, were used as

compensation electrodes.

Position of endcaps and compensation electrodes

The endcaps are placed in the center of the RF and ground electrode holes.

In order to minimize the distortion of the quadrupole field potential, the compensation electrodes are smaller

than the RF and ground rods and they are positioned further from the center.

Trap assembly

Fig. (3.4) shows the final form of the trap.

Figure 3.4: The trap assembled in ver-

tical configuration. The bottom holder is

clamped via an M4 screw to a post and

is 25 mm away from the top holder. The

endcap separation is 8.22 mm.

An M4 threaded hole was machined on the holder in order to clamp the assembled trap to its mount and

align the trap on the optical table using standard optomechanical components.

The electrodes are tightly fit into the holder by pressure, allowing the separation of the endcaps to be

regulated manually. This also makes it easier to unmount and remount the trap for cleaning. After several

particles’ loading sessions, in fact, the electrodes became dirt with the particle’s solution (a detailed loading

mechanisms description is given in Sec. 3.2).

Each electrode is connected to its power source via cables directly soldered onto it. The trap is mounted

via a post to a one-axis translation stage can be finely adjusted (see Fig. (3.5)) so that its lateral position

2 ThorLabs SR2
3Braun
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Figure 3.5: Trap mounted on the optical table. The electrical connections of the electrodes are a) for the top

endcap (green wire) and b) for the bottom one (green wire) as well as the rods (red wires for the RF and black for

GND). The bottom holder is fixed via an M4 screw to a post c), which is clamped to a linear translation stage d)

for alignment of the trap with respect to the detection laser beam.

with respect the detection laser beam (cf. Chap. (3.3)). A Plexiglas box covers the whole trap, protecting

it from air flow.

3.1.2 Driving the trap

As described in Chap. (2), the Paul trap needs to be driven by a combination of AC and DC fields.

DC source

The endcaps and compensation electrodes are driven by DC fields. This static voltage is generated by a

high precision HV module4(Iseg box) which can provide up to ±6 kV with low current (a fraction of a

4EHS 60x from Iseg



44 3.2. Particle preparation and loading methods

microampere).

AC source

As shown in Fig. (3.1), the RF rods across from one another are driven with the same AC voltage. The

ground electrodes are grounded to the table.

The RF field is generated by an arbitrary waveform generator (AWG)5 and then amplified by a voltage

amplifier6. The AWG has two independent outputs that give a maximum of 5 Vpp per channel when both

are switched on and 10 Vpp if just one is used.

The amplifier can reach a maximum amplitude of 1.4 kV DC or AC, with an output current range from

0 to ±50 mA. The maximum output voltage depends on the capacitive coupling obtained with the trap.

The gain of the amplifier is tunable with a knob up to 300. The input channel supports up to 20 Vpp AC.

To match the load impedance of the trap, the dynamic adjustment knob located on the front panel of the

amplifier is used.

The output is monitored with a voltage divider that gives 1/200th of the output signal.

A power splitter was used in order to feed the amplifier (which has just one input) with the sum of two RF

fields, allowing us to investigate the behavior of the trap driven by two frequencies.

Remote control system

Due to the number of control knobs in the experiment and the fact that high voltage is involved, it is useful

to control the experiment hardware remotely. In our experiment, this is done with the Trapped Ion Control

Software (TrICS).

TrICS is developed by the Quantum Optics and Spectroscopy Group of the University of Innsbruck, and

allows users to control different hardware devices via their specific libraries or through an user API.

3.2 Particle preparation and loading methods

The measurements reported here have been carried with two different sphere sizes. Hereafter we will refer

to the largest ones (21.8± 0.9 µm from Micro particles GmbH) as microparticles, and to the smallest ones

(0.10± 0.03 µm from Polysciences Inc.) as nanoparticles.

Both are stored as a solution (5% mass concentration) of nonporous SiO2 in NaOH-enriched water.

The stated densities are 1.85 g/cm3 for the microparticles and 2 g/cm3 for the nanoparticles. With these

values, the average mass of a nanoparticle and of a microparticle are estimated to be ∼ 1× 10−18 kg and ∼
5AFG3000C from Tektronix
6Trek PZD700A
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Taylor cone

Capillary

Counter electrode

Figure 3.6: Electrospray working principle. A static voltage is applied between a capillary filled with the liquid

solution and a counter electrode. When pressure is maintained on the plunger, the capillary will eject a spray of

ionized particles grouped inside droplets of solvent. After the solvent has evaporated, the charged particles escape

from the droplets, as they are accelerated by the electric field towards the counter electrode

1.0× 10−11 kg, respectively.

In order to be trapped in a Paul trap, the particles need to be electrically charged and launched inside

the trap’s volume. For these first tests, setting up an apparatus without a vacuum chamber provides two

important advantages: first, the possibility to test, in a relatively short time, several of the various trapping

methods proposed in the literature, and second, the viscous damping of air, which slows the particle velocities

and makes them easier to trap.

Among the schemes tested, the electrospray ionization technique turns out to be the most efficient and

reproducible way of launching and charging the nanospheres. For the microspheres, a different approach is

required. In the following, I will outline the basic theory behind the two methods and then explain how they

have been implemented in practice.

3.2.1 Electrospray ionization of nanoparticles

Electrospary ionization (ESI) is a technique used to obtain charged particles from a liquid solution. Fig.

(3.6) is depicted how ESI works. Solution is pumped through a metallic capillary needle, which is subjected

to a high potential difference with respect to a counter electrode. The dissolved particles become charged via
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the triboelectric effect arising from the friction between the particles and both the walls and the polarized

solvent1. Once a certain threshold voltage is reached, the pressurized liquid exits from the needle and forms

the so-called Taylor cone, named after the theoretical work of G. I. Taylor [62,63].

A spray of droplets is observed beyond the Taylor cone. These droplets are charged, and thus they are

accelerated by the electric field toward the counter electrode. In the meanwhile, part of the solvent in the

droplets evaporates. This leads to a decrease in the droplets’ volume and a subsequent increase of surface

charge density. When the electrostatic pressure exceed the surface tension, the droplets break into smaller

ones, with a cascade effect that stops with droplets containing a single charged nanoparticle.

Implementation in the lab

Taylor cone

Figure 3.7: Our elec-

trospray at work. A

Taylor cone appears

just after a threshold

voltage of 3 kV is ap-

plied to the syringe

needle.

A basic ESI system has been built for loading the nanospheres into the Paul trap.

A medical syringe is fixed on a post and placed near the trap, pointing between the

rods. The syringe’s needle is connected via an alligator cable to the Iseg voltage

source. The counter electrode is one of the two grounded rods of the trap itself. The

syringe is filled with 10 µL of nanoparticle solution diluted with 0.5 mL of ethanol

(this is a quite standard trick, used to obtain a faster evaporation of the solvent).

Applying little pressure by hand (enough to feed the small droplet at the tip of the

syringe) and a voltage of 3 kV to the needle, a Taylor cone starts to appear (see Fig.

(3.7)). Illuminating the trapping region with a collimated laser beam (λ = 650 nm),

we can observe the trapped particles with naked eye (see Fig. (3.8)) and register

their motion with a camera.

3.2.2 Charging and launching of microparticles

After several tests, we figured out that the method used for the nanospheres does not

work with the microparticles. Therefore we decided to follow a different approach.

A small volume of the microparticle solution diluted with ethanol is applied on a

thin flat electrode connected to a Van de Graaff generator. The thin electrode is

clamped on a post and placed close to the trap.

Once switched on, the Van de Graaff generator produces a voltage difference of hun-

dreds of volts by accumulating charges on the thin electrode. Some of these charges become attached to

1It remain an open question and topic of both physics and chemistry research how ion formation actually takes place.

Rayleigh discharge [60] and field-induced droplet ionization [61] are the most investigated techniques.
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the surface of the dielectric spheres, which in turn are expelled from the electrode surface via electrostatic

repulsion.

The difference between this method and the one used to charge the nanospheres is that the charging of mi-

croparticles is based only on the triboelectric effect, and does not involve evaporation of the solvent. Indeed,

we also trapped from a dry powder of microspheres initially deposited on the tip electrode, demonstrating

that friction with the electrodes is sufficient to charge the particles.

It should be noted that the presence of residual ethanol in this case is unavoidable since the microparticle

solution takes a long time to dry completely (∼ 1 h). This turns out to be an advantage as it seems easier

for the particles to become charged and expelled in a liquid emulsion than in a dry surface.

3.3 Detection schemes

Figure 3.8: Photograph of scattered light from a trapped microsphere. A red laser beam (λ ∼ 650 nm) is focused

on the particle’s position inside the trap. The scattered light from the particle can be seen even with naked eyes.

Even a simple LED torch is able to reveal the particles’ position inside the trap. Nevertheless, we require

a more accurate detection technique to obtain quantitative information about the particle motion. In our

case, we are interested in the amplitude and frequency of the motion of the trapped particles. For this

purpose, we have chosen to use back-focal-plane interferometry, which is characterized by high temporal and

spatial resolution [64]. Moreover, we use standard imaging to detect the relative position of the particles

inside the trap. The aim of this section is to present the theory and implementation of these detection

schemes.
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3.3.1 Laser and spatial filter

(a) (b)

Figure 3.9: Transverse laser mode at the input a) and output b) of the spatial filter imaged on a beam profiler.

A symmetric mode is important to guarantee equal efficiency in the detection of the lateral motion of the trapped

particle in both transverse directions.

The laser used to illuminate the particles is a red diode laser at 650 nm. The intensity profile at the

output of the laser head is spatially multimode (see Fig. (3.9)). In order to obtain a Gaussian profile, we

assembled an optical spatial filter: this consists of two lenses (f=30 mm and f=200 mm) set in a confocal

configuration. At the beam focus we place a 15µm pinhole. After the spatial filter, the laser output power

is reduced from ∼ 5 mW to ∼ 2 mW.

3.3.2 Back-focal-plane interferometry detection

Scattered light Unscattered
light

Condenser lens

PD

BFP

a)

b)

Objective lens

Incoming 
collimated light

Trapped particle

Figure 3.10: Laser light is focused on the

trapped nanosphere. a) The unscattered

light (in red) leaving the focus is shifted in

phase by the Gouy phase (see text) with

respect to the scattered light from the par-

ticle (in blue). b) The interference of the

scattered and unscattered light fields is an-

alyzed with a photodiode (PD) at the back

focal plane (BFP) of a condenser lens.

Back-focal-plane (BFP) interferometry is widely used for the detection of levitating particles ranging



3.3. Detection schemes 49

from nanometers to micrometers in size. This technique offers high resolution both in the time domain and

spatial domain, allowing extremely precise measurements. In the optical tweezers community, for instance,

it permits forces to be determined down to the piconewton scale [65] in all three dimensions [66]. This

techique relies on the scattering of part of the light field illuminating the object we want to measure, and the

subsequent detection of the interference pattern between scattered and unscattered light in the back focal

plane of a condenser lens. A quadrant detector [67] or a position-sensitive photodiode [68] determines the

intensity change of the pattern and converts it into an electric signal that is then recorded and analyzed.

The goal of this section is to give a simplified theoretical explanation of the resulting interference pattern

and to show how useful information about the trapped particle’s motion can be extracted from it.

The imaging beam is focused in the middle of the Paul trap, where the particle is trapped. We use a lens

with a focal length of 40 mm. A fine adjustment of the focal spot is achieved by maximizing the visibility of

the interference fringes in the back focal plane (see the inset in Fig. (3.10) (b)).

Interference and lateral displacement detection

BFP detection is based on the interference pattern created by a Gaussian beam and a scatterer placed at its

focus. In the following, we will develop the basic tools to show the dependence of the detected signal on the

particle displacement. We will first derive the equation for lateral displacement (i.e., for the case in which

particle remains in the focal plane), and then for an axial displacement. The present derivation follows the

work of Gittes et al. [69]. The starting point is the description of both the incoming and the scattered light

field. We assume that:

1. λ � d = 2a, where λ is the wavelength of the laser, d is the diameter of the particle, and a is the

radius of the particle.

This is the so-called Rayleigh or electrostatic approximation, as we consider the incoming field as

constant within the volume occupied by the sphere. This allows us to calculate the polarizability of

the sphere within the approximation of a uniform field (see Eq. (3.3.3)).

In our case, λ = 650 nm. It follows that the relation λ � d is only valid for the nanosphere. The

case of the microsphere, where λ� d, requires a different approach and will be discussed later in Sec.

3.3.2.

2. The laser beam is well described as a paraxial Gaussian beam.

The measured beam waist after the spatial filter is win = 2 mm. Since the beam is focused by a f =

40 mm lens, the half angle at the focus is ∼ 2◦: thus, the small-angle approximations sin θ ≈ tan θ ≈ θ

is reasonable.



50 3.3. Detection schemes
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Figure 3.11: a) Coordinate systems used in the text for the far electric field (photograph of the trap plus a

representation of the focused beam): r is the distance from the focus, θ is the polar angle with respect to the optical

axis z, and φ is the azimuth angle. b) Coordinate systems used for the particle lateral position: d is the particle

diameter, a its radius, x its lateral displacement from the optical axis z, and w0 is the beam waist.

Taking the beam focus as the origin of the coordinates system (see Fig. (3.11) for the definitions of the

light’s and the particle’s coordinates), the amplitude of the unscattered beam in the far field (r � w0) can

be written as [9]:

E(r) ≈ −ikw0I
1/2

r(πε0c)1/2
exp
(
ikr − k2w2

0θ
2/4
)
, (3.3.1)

Here k = 2π/λ; ε0 and c are the permittivity and the speed of light in vacuum; I is the intensity of the input

beam and w0 is the beam waist. The −i factor appears due to the Gouy phase that adds an overall phase

−π/2. This phase is absent in the scattered field, which is crucial for the emergence of interference.

The scattered field in the far field corresponds to a conventional dipole radiation pattern. For a small lateral

displacement x, the electric field at the particle position is:

E(x) =
2I1/2

w0(πε0c)1/2
exp
(
−x2/w2

0

)
. (3.3.2)

This field induces a dipole moment P = 4πε0αE of the particle, where α is the polarizability of the sphere

calculated in the static field approximation [70]

α = a3n
2
s − 1

n2
s + 2

, (3.3.3)

where ns is the refractive index of the sphere. The induced dipole oscillates at the laser frequency, emitting

a dipole radiation pattern that can be approximated in the far field as:

E′ ≈ k2α

r
E(x) exp(ik|r− rs|) ≈

k2α

r
E(x) exp[ik(r − x sin θ cosφ)], (3.3.4)
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where we are using the spherical coordinate system depicted in Fig. (3.11) (a).

The condenser lens collects the scattered and unscattered fields. The interference of these two fields produces

an intensity difference, when compared with the unscattered field only:

δI =
ε0c

2
[|E + E′|2 − |E|2] ≈ εcRe[EE′∗], (3.3.5)

where the term |E′|2 is neglected (|E′| � |E|).

By substituting Eq. ((3.3.1)), Eq. ((3.3.2)) and Eq. ((3.3.4)) into Eq. ((3.3.5)) and considering small angle

θ, we obtain the relative intensity change in the back focal plane:

δI(x)

I
≈ 2k4α

πr2
xe−x

2/w2
0 θ cosφ e−k

2w2
0θ

2/4. (3.3.6)

Equation ((3.3.6)) describes the interference pattern of the reference laser beam and the scattered light of

the particle in the beam’s focus and displaced by x from the optical axis, observed at angles (θ, φ). In the

limit of small displacements (x � w0), the intensity of the outgoing light is proportional to the particle

motion along x.

A photodiode is used to traduce the light intensity in a voltage signal. The detector response is obtained

integrating equation ((3.3.6)) on the sensor area. Because of the cosφ dependency, the contribution from

angles −π/2 < φ < π/2 cancels with the contribution from π/2 < φ < −π/2. Therefore is convenient to

split the integrated intensity into δI = δI+ + δI−, with

δI±
I

= r2

∫ ±π/2
∓π/2

dφ

∫ θmax

0

δI(x) sin θdθ. (3.3.7)

Experimentally this is achieved by placing a D-shaped mirror after the condenser lens, oriented in such

a way that the beam is divided in two halves, each of which will be detected by an identical photodiode.

Then, subtracting the signal of one photodiode from the other (balanced configuration) we obtain the signal

corresponding to δI+− δI−. In this way, when x > 0 (Fig. (3.12) left) one photodiode measures the positive

lobe of the interference, while the other measures the negative one. The situation is inverted when x < 0

(Fig. (3.12) right). Fig. (3.13) shows the relationship between the coordinates used in this chapter and the

ones of the Chap. 2 used for describing the motion in the Paul trap.

Thanks to the simplifications made so far, it is possible to get an explicit analytic solution [67] for the

response of the photodiode. For condenser optics with a low numerical aperture, the paraxial approximation

gives
δI+ − δI−

I
∼=

16√
π

kα

w2
0

G

(
x

w0

)
(3.3.8)

where G(u) = e−2u2 ∫ u
0
e−y

2

dy. The quantity (δI+ − δI−)/I is plotted in the left part of Fig. (3.14) as a

function of the lateral displacement x. The difference in voltage between the photodiodes exhibits a linear
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Φ
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δI >0+

δI <0-
δI >0-
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Photodiode
sensible areas

∝x

Figure 3.12: When the nanosphere is displaced by x > 0 (left figure), the scattered light intensity relative to the

incoming laser beam on the upper half δI+ is positive, while is negative for the lower half. The situation is inverted

when the particle is displaced by x < 0 (right figure). The difference between the upper and lower intensity patterns

can be converted into a voltage signal by a vertical split photodiode (dashed line) aligned with the optical axis, giving

a direct measure of the lateral nanosphere displacement.

behavior near x = 0 with a slope proportional to ∼ d3

λw3
0
.

This linear regime holds for lateral displacements up to approximately
√

2w0. For larger lateral displace-

ments, the intensity of the field scattered by the particle decreases as E ∼ e−(x/w0)2 .

Axial displacement detection

When the particle moves along the optical axis z, it will experience a field [9]

E(rs) = E(z) =
2I1/2

w(z)(πε0c)1/2
exp(−ikz + iζ(z)), (3.3.9)

where z0 = πw2
0/λ is the Rayleigh length, w(z) = w0

√
1 + (z/z0)2 and ζ(z) = arctan(z/z0). We proceed

now as we did for the lateral displacement, substituting Eq. (3.3.9) both in the expression for the induced

dipole moment and for the scattered field Eq. ((3.3.4)), always in the far-field regime.

We thus obtain a relative intensity change in the back focal plane due to the presence of a particle [71]:

δI(z)

I
=

2k3α

4π2ε0r2
sin(kz + arctan(ζ)) cos θ exp

(
−k2w2

0θ
2/4
)
≈ 2k4αz

4π2ε0r2
cos θ exp

(
−k2w2

0θ
2/4
)
, (3.3.10)

where the last linear approximation holds for z ≈ 0. Note that δI(z) here no longer depends on the azimuthal

angle φ.

The right part of Fig. (3.14) shows the relative detector response versus the axial displacement z.

For the parameters chosen in the experiment, w0 ≈ 4 µm and z0 ≈ 80 µm, the sensitivity of the lateral

displacement is ∼ one order of magnitude higher than the sensitivity of the axial displacement.
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Figure 3.13: Relationship between the orthogonal coordinates {x′, y′, z′} used for describing particle motion in the

Paul trap as used in Chap. 2, and the particle detection system coordinates {x, y, z}. a) A section view;b) a lateral

view of the relative position of the detection beam and the Paul trap.
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Figure 3.14: Relative detector response for lateral (A) and axial (B) particle displacements obtained within the

paraxial approximation. The plots were obtained for a 100 nm diameter particle in a 650 nm laser beam with an

incoming beam waist of w0 = 2 mm focused with a f = 40 mm lens.
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Back focal plane detection of microparticle motion

As the microsphere has a diameter of d = 21 µm � λ, it cannot be considered under the Rayleigh ap-

proximation, and to find an expression for the scattered fields, one should find the Mie scattering term [15].

Fortunately, this regime (d � λ) allow us to use a simple ray optics picture [51, 72] in order to see how

the incoming rays focused by the lens are deflected by the microsphere and how the photodiode’s response

relates to the particle movement. For a positive lateral displacement of the microparticle (Fig. (3.15)), the

-

x
Objective lens

Condenser Lens

D-shaped mirror

PD1

PD2

Figure 3.15: When the microsphere is

laterally displaced from the optical axis, it

deflects the incoming laser beam. A D-

shaped mirror can distribute the deflected

light to a pair of photodiodes (PD1 and

PD2). The difference of the signals de-

tected at the photodiodes gives a direct

measurement of the lateral particle dis-

placement x.

incoming light is mostly deflected towards the first photodiode (PD1). On the other hand, when the particle

moves to the left of the optical axis, the majority of the light follows a straight path to the second photodiode

(PD2). Therefore, the difference of the signals PD1-PD2 encodes the lateral motion x of the microsphere.

z>0
z<0

Iris

a) b)

z=0

Figure 3.16: Axial displacements of the

microsphere shift the detection beam fo-

cus, changing the outgoing beam collima-

tion. The figure shows positive (a) and

negative (b) displacement of the particle

in the axial (z) direction. An iris placed

after the condenser lens filters the amount

of light detected by the photodiode, which

gives a signal proportional to the particle

axial position along.

Fig. (3.16) depicts the case of displacement along the optical axis. The focus in the absence of the

particle lies on the plane z = 0. When the particle moves below it (z > 0, Fig. (3.16) (a)), the focus is
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shifted in the same direction and light emerges out of the particle with a smaller divergence. As consequence,

the collimated beam after the condenser lens gets smaller in diameter. In a similar way, for displacements

in the opposite direction (z < 0, Fig. (3.16) (b)) we obtain a collimated beam with a larger diameter. An

iris placed after the condenser lens blocks part of the collimated beam. In this way, the intensity of the light

reaching the photodiode is larger when the particle is at z > 0 and lower for z < 0. Therefore, the total

intensity of the light at the photodiode in Fig. (3.16) is proportional to the particle’s displacement along

the optical axis.

Since axial detection is based on the blockade of the outer part of the collimated beam, the more the

aperture of the iris is reduced, the higher the sensitivity. Conversely, lateral detection takes advantage of

the outermost part of the beam. As a result, for large particles it can also be convenient to split the signal

into different detectors.

3.3.3 Camera detection

Top endcap

Bottom endcap 

Microsphere

1 mm

Figure 3.17: Image of a trapped micro-

sphere taken with the CMOS camera with

a resolution of 1024x1024 pixels.

In addition to interferometric measurements, we used a CMOS camera7 to detect the position of the

particles inside the trap. A typical image of a trapped particle taken with the camera is shown in Fig.

(3.17). The camera is able to detect both nanospheres and microspheres. A nanosphere’s image typically

extends for ∼ 3 pixels, a microsphere is ∼ 18 pixels in diameter instead (see Fig. (3.18)). In order to optimize

the image quality, various settings of the sensor, including pixel rate (up to 41 MHz), exposure time and

frames per second (up to 250 fps), are adjusted via the software of the camera.

7DCC1545M from Thorlabs
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(a) (b)

Figure 3.18: Nanosphere (a) and microsphere (b) scattered light recorded with the camera. For a comparison of

their effective sizes, these images were taken with the same camera settings (exposure time, pixel rate, intensity gain,

resolution).

Since the trap is mounted in the vertical position, the two orthogonal directions for optical access both

lie on the table’s plane. The camera was thus placed in the direction perpendicular to the laser beam (Fig.

(3.19)), given that the principal axis is used for interferometric measurements with the photodiodes.
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Camera
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L2L1

Iris
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Figure 3.19: Schematic of the entire setup. The 650 nm laser for imaging enters in the spatial filter that select the

TEM00 mode only. Then, the light is focused by the objective lens (L1) into the trapped particle. The scattered

light from the particle is collected by the camera, which is placed at right angle with respect to the optical axis at the

same altitude of the Paul trap. The sum of the scattered and the unscattered light is collimated by the condenser

lens (L2), and then equally splitted by a D-shaped mirror. Each of the two beams leaving the D-shaped mirror goes

to a pair of photodiodes (PD1 and PD2), which work in balanced configuration. An iris placed before the D-shaped

mirror reduce the beam’s diameter, ensuring the axial motion detection of microsphere (see Sec. 3.3.2).

Distance calibration

After a proper calibration, camera detection allow us to infer the absolute equilibrium position of the

trapped particle within the electric field of the Paul trap, which in turn provides useful information about

the charge state of the particle (cf. Chap (4.1.1)). Fig. (3.20) shows a pixel intensity profile along the

vertical axis of the trap that intersects the endcap electrodes and the trapped microsphere. The distance

calibration is made possible by the known size of the endcap electrodes (diameter of 0.4 mm). In this way,

we can calculate the conversion factor between pixels and millimeters C:

C =
endcap diameter in (mm)

endcap diameter in (pixels)
= 0.0106± 0.0001 mm/pixel (3.3.11)

3.4 Data analysis tool

The electric signals coming from the photodiodes of the imaging system are connected to a Field Pro-

grammable Gate Array (FPGA) board8. The two inputs of the board sample the analog inputs at a rate

8Red Pitaya STEMlab 125-10 board



58 3.4. Data analysis tool

Bottom endcap

Top endcpap

Trapped particle

Vertical pixels intensity scan

Figure 3.20: This plot shows the pixel intensity (au) as a function of the pixel position along a vertical line passing

on the two endcaps. The graph is taken from the camera software.

of 125 Msps with a resolution of 14 bit; the maximum input voltage is 20 V. The card is equipped with

an open-source software package that provides an oscilloscope and a spectrum analyzer [73] that we use to

compute the power spectral density of the trapped particle motion.



Chapter 4

Experimental results

Once different species of charged particles can be loaded into the ion trap systematically, it becomes possible

to study their motion and relate their behavior to the stability parameters.

This chapter will be devoted to showing how the quite different sizes and charges of the nanospheres and

microspheres lead to a substantial difference in their motion inside the trap. Finally, an implementation of

a trap driven by two different RF fields to trap the different species will be presented.

4.1 Characterization of the trap and loading methods

We first want to identify the parameters that influence the number of charges on the particles. This will

allow us to find a protocol to load particles in a reproducible and systematic way.

Nanospheres are loaded using electrospray (cf. Chap. (3.2.1)). Both the electrospray launch and capture by

the Paul trap act as charge filters. Particles launched by electrospray are loaded with a variable number of

elementary charges depending on various factors, mainly:

• Needle voltage

• Distance between needle and trap

• Initial concentration of the solution

• Shape and dimension of the particle

After launching, a broad distribution of charged particles is accelerated toward the trap by the electric field

of the needle. However, not every particle gets trapped since Eq. (2.3.1) requires that 10kBT
4r20Ω2

U2
RF
≤ Q

m ≤
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r20Ω2

2URF
0.9 (for particle stability and minimum trap depth). Thus, the trap works as a charge-to-mass filter.

Since it is possible to modify the trap acceptance by varying the RF field parameters, one can reconstruct

the initial charge distribution of the electrospray source in terms of the trap parameters.

4.1.1 Charge over mass measurements

After loading the trap with a single species, we measure its charge-to-mass ratio by scanning the endcap

voltage while monitoring the axial position of the particle with the camera. Due to its charge, the trapped

particle acts as a sensor of the static electric field produced by the electrodes, positioning itself where the

electric force balances the gravitational pull:

mg = QE(zeq) (4.1.1)

where g is the gravitational acceleration constant and E(zeq) is the value of the static electric field produced

by the endcap evaluated at the trap equilibrium position zeq. The electric field generated within the trap has
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Figure 4.1: Computer simulation of the axial electric field of the trap with an endcaps voltage of 15 V.

been calculated from computer simulation1, and it is shown in Fig. (4.1). If zeq is subsequently determined

from camera imaging (cf. Chap.(3.3.3)), the charge-to-mass value of single particle can be extrapolated from

Eq. (4.1.1).

Charge of the microsphere

We find that our charging and launching technique (cf. Chap. (3.2.2)) can provide microparticles with

1Comsol Multiphysics
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Figure 4.2: Microsphere charge-to-mass ratio distribution obtained with the Paul trap operating at the drive

frequency fd = 290 Hz.

a charge-to-mass ratio distributed around the value of 0.04 C kg−1 (see Fig. (4.2)), corresponding to∼ 106

positive elementary charges (cf. Chap (3.2) for particle volume), where the sign of the charge is manifested

by the fact that particles are trapped when positive voltages are applied on the endcap electrodes.

Charge of the nanosphere

In contrast to the case of the microsphere, two distinct charge populations of nanosphere have been found

from the electrospray launching technique. As depicted in Fig. (4.3), one peak of loading is observed for

particles with a charge-to-mass value of ∼ 10 C kg−1 for trap parameters Ω′ = 2π × 2 kHz and U ′RF ∼ 800 V.

The second peak arises at the charge-to-mass value of ∼ 30 C kg−1 for trap parameters Ω′′ = 2π × 10 kHz

and U ′′RF ∼ 500 V. Both nanosphere populations are positively charged.

To summarize, it has been found that our experimental apparatus can trap at least three well defined

charge-to-mass species: one microsphere with Q/m|µ ∼ 0.04 C kg−1 and two nanospheres with respectively

Q/m|n,1 ∼ 10 C kg−1 and Q/m|n,2 ∼ 30 C kg−1.

These charge-to-mass values are comparable with those determined from other experiments results [74,75].
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Figure 4.3: Nanosphere charge-to-mass distributions. Different drive frequencies fd of the trap produce different

populations.

4.2 Stability diagrams

To trace the boundaries of the stability diagram of our system, we study the particle motion using camera

imaging (cf. Chap (3.3.3)). Fig. (4.4) shows two camera frames of a particle trapped with a different RF field

in each case. As soon as the parameters of the trap (voltages URF and frequency Ω) exceed specific threshold

values, a transition occurs that causes the amplitude of motion of the particle to increase. The system is said

to be unstable whenever its elongated orbit start to slowly drift out of the trap. Several trapping sessions

showed that after this point is reached, the chances of losing the particle increase substantially. The set of

all the observed points in the parameter space that give rise to instability form the stability boundary. The

nanospheres and microspheres elongated orbit’s extensions close to their respectively stability boundaries is

not constant in pixels number, so that the error associated with a single point in the stability diagram is

estimated on a case by case basis.

The stability boundary from the URF −Ω space can be mapped into the more familiar a−q space (see Chap.
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(a) (b)

Figure 4.4: Unstable (a) vs. stable (b) motion of a microsphere inside the trap captured by the camera. The

measures of voltage and frequency that label an unstable point is taken whenever the camera shows an increased

orbit in pixel of about 10 times the stable case.

2) via the linear trap equations of motion. Here a and q stand for

a = − 4Q

mΩ

(
Uoff
r2
0

+
Uend
z2

0

)
,

q =
2QURF
mr2

0Ω

(4.2.1)

where URF is the AC voltage that drives the rod electrodes, which oscillates at frequency Ω; Uend and

Uoff are, respectively, the endcap voltage and the DC offset voltage applied to the rods; r0 and z0 are geo-

metric parameters of the trap; and Q and m are the charge and the mass of the trapped particle, respectively.

In order to determine the stability diagram, the following procedure has been adopted for both nanospheres

and microspheres:

1. A single particle is loaded into the trap.

2. The charge-to-mass ratio of the trapped particle is measured.

3. Starting from a stable configuration, the offset voltage of the rod electrodes Uoff is increased until an

instability is reached.

4. The offset voltage Uoff is then lowered towards the next unstable boundary.

5. Points 3 and 4 are repeated with several different values of the driving voltage URF .
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The stability diagram is then obtained by transforming the set of all the instability coordinates in the plane

URF − Uoff to the aq-plane via (4.2.1).

The reason why the scanning is performed for Uoff instead of Uend is that a is proportional to ∼ Uoff/r2
0 +

Uend/z
2
0 : Since the endcap separation z0 is larger than the distance r0 between rods, a larger range of a

can be covered by scanning the offset voltage rather than the axial field of the endcaps. Moreover, it has

been found that the amplitude of the driving voltage accessible with our experimental setup cannot entirely

cover the first stability zone (see Sec. 3.1.2 for the voltage amplifier characteristics). This problem was

circumvented by adjusting the drive frequency of the trap: because of the 1/Ω2 dependency of both a and

q, lowering the frequency allows us to reach higher a and q values.

4.2.1 Stability diagram of the microparticle
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Figure 4.5: Measured stability diagram of a single 21.8± 0.9 µm microsphere trapped in air at a fixed frequency

Ω = 2π × 290 Hz. Here the experimental data Uoff and URF corresponding to unstable behavior were rescaled via

Eq. (4.2.1) to their dimensionless parameters a and q in a way such that the charge-to-mass value of the microsphere

(Q/m)µ fits the theoretically calculated stability boundary (red solid line) for the case of trapping in air (b is obtained

from Eq. (4.2.2)). For each point in the diagram, the error bar is estimated individually by observing whenever the

trapped particle starts to slowly drift out of the trap. Precedent trapping sessions showed that after reaching this

point the particle escapes from the trap.

The stability diagram of a trapped microsphere is depicted in Fig. (4.5). This microsphere has a

measured charge-to-mass ratio of Q/m|simulation
µ

= 0.021± 0.001 C kg−1 and was loaded and driven into
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the Paul trap at the drive frequency of Ω = 2π × 290 Hz. The shown data are obtained from the values

of Uoff and URF corresponding to unstable behavior of the particle, then rescaled via Eq. (4.2.1) to their

dimensionless parameters a and q in a way such that the charge-to-mass value of the microsphere Q/m|µ fits

the theoretically calculated stability case of trapping in air. For this purpose, the dimensionless damping

factor bµ (cf. Chap (2.1.1)) used for calculating the theoretical stability boundary has been calculated from

the Stokes formula

bmicro =
6πηrp
mµΩ

= 0.23± 0.02 (4.2.2)

where rp is the radius of the particle, η = 1.8× 10−5 kg m−1 s−1 is the dynamic viscosity of air at ambient

pressure, and the error has been calculated from the uncertainty of the particle radius (see Sec. 3.2 for

a detailed description of the physical properties of the particles). A good matching between data and

theoretical prediction is reached with Q/m|µ = 0.028 C kg−1, confirming the goodness of the independent

estimate upon the electric field simulation inside the trap.

The diagram shows the typical shape of the first region of stability, due to the overlap of the stable operation

parameters in both the x and y directions (cf. Chap. 2.1). The symmetry with respect to reflection across

the a = 0 line suggests that the same instabilities occur if we either change the polarity of Uoff or if we

apply the offset voltage to the other diagonal pair of rod electrodes. The latter is a consequence of the linear

trap symmetry (cf. Chap. 2.1).

The maximum q value belonging to the stable region of air trapping in Fig.(4.5) is larger than its vacuum

counterpart qvacuummax ∼ 0.9. This is indeed a consequence of the air damping, which causes the enlargement

of the stable region of the trap (Chap. 2.1.1).

4.2.2 Stability diagram of the nanoparticle

The stability diagram of a nanosphere with charge-to-mass ratio of Q/m|simulationn = 10± 1 C kg−1 trapped

at Ω′′ = 2π × 10 kHz is shown in Fig (4.6). The nanosphere has a larger charge-to-mass value than the

microsphere, which leads to the possibility to explore higher values of q. In fact, the plot never shows a

closed path to a maximum q value.

Since the size of the nanospheres (radius of 50 nm) is comparable with the mean free path of air molecules

at ambient pressure, lmfp = 68 nm, kinetic theory corrections to the Stokes damping formula (4.2.2) have

to be used.

According to the results of Beresnev et al. [76], the dimensionless damping parameter is given by,

bnano =
6πηrp
mnΩ

0.619

0.619 +Kn
(1 + cK) = 89± 53 (4.2.3)
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Figure 4.6: Measured stability diagram of a trapped nanosphere at frequency ω′′ = 2π × 10 kHz. The red solid line

represents a theoretical stability boundary calculated with a dimensionless damping factor b = 89. The experimental

values of Uoff and URF have been rescaled to their dimensionless counterparts a and q via Eq. (4.2.1), obtaining a

match with the theoretical prediction by using Q/m|n = 0.4 C kg−1.

where Kn = lmfp/rp is the Knudsen number, cK = (0.31Kn)/(0.785 + 1.152Kn+Kn2) is a small positive

function of Kn, and m and rp are the mass and the radius of the nanosphere, respectively. The very large

uncertainty in bnano reflects the factory declared uncertainty in nanosphere’s diameter 2rp = 0.10± 0.03 µm.

As it was done for the microsphere case, the experimental points shown in Fig. (4.6) are rescaled in a

way such that the data are superimposed with the theoretically predicted stability boundary for the case of

bn = 89. The match was obtained with Q/m|n = 0.4 C kg−1, in strong disagreement with the charge-to-mass

ratio calculated upon the axial electric field simulation, which doesn’t need a measurement of the particle

radius in order to be performed, and thus results more precise.

4.3 Power spectral density of particle motion

Secular trap frequencies can be measured through evaluation of the power spectral density (PSD) of the

particle motion.

We have seen how air drag is responsible for enlarging the stability domain of the trapped particles, partic-

ularly for the nanosphere. Another effect of damping is to suppress the harmonic secular oscillations. The
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dynamics of a trapped particle is therefore driven by thermal fluctuations, superimposed with the effect of

the driving field, which forces the charged particle to oscillates at its frequency (micromotion).

4.3.1 Overdamped regime of the equation of motion

The equation of motion for a trapped particle in air is derived here in terms of a Langevin equation, where the

surrounding thermal environment is taken into account as a source of stochastic white noise [77]. The particle

therefore experiences Brownian motion in the presence of a confining potential. For a simpler derivation,

we consider only the harmonic regime of the external applied potential (pseudo-potential approximation,

cf. Chap (2.1)), neglecting the time-varying driving force of the trap that would lead to the ineradicable

presence of micromotion [68,78].

The equation of motion of a trapped particle along the x axis of the trap is

mẍ(t) + γẋ(t) + κxx(t) = F (t), (4.3.1)

where γ = 2mΩb is the damping coefficient, κx is the spring constant of the trap related to its secular

frequency ωx by κ = mω2
x, and F (t) is the Gaussian random force associated with the thermal environment

(analogous equations for the y and z axes are obtained by replacing their secular frequency respectively).

The background here has a double role: It provides damping, coming from a fluid description of the medium

surrounding the particle; and it acts as a source of chaotic motion, due to the kicks that air molecules

randomly give to the particle. These two aspects are linked by the fluctuation-dissipation theorem [79].

The random force F (t) has moments

〈F (t)〉 = 0,

〈F (t)F (t′)〉 = 2γkBTδ(t− t′),
(4.3.2)

where T is the room temperature and kB is the Boltzmann constant. The average 〈...〉 is taken over the

distribution of all possible realizations of the stochastic variable F (t). Since the mean effect of air drag is

already considered in the term γẋ, F (t) has zero average, and its strength is related to the environment

temperature T by the equipartition theorem. The delta distribution in the second moment of F (t) means

that thermal fluctuations have no memory, i.e., that there is no correlation between impacts of air molecules

and trapped particle at different times t and t′ (Markov process).

In the case of ambient pressure, the small Reynolds number allows us to neglect the inertial term in Eq.

(4.3.1). In this regime, the equation of motion becomes

γẋ(t) + κxx(t) = F (t). (4.3.3)
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Taking the Fourier transform of Eq. (4.3.3)

2πγ
(
if +

κx
2πγ

)
x̃(f) = F̃ (f), (4.3.4)

and using the second relation of equations (4.3.2), we find the PSD of the particle motion

|x̃(f)|2 =
kBT

2π2γ
(
f2
c + f2

) . (4.3.5)

Eq. (4.3.5) is an overdamped Lorentzian with cut off frequency fc = κx/(2πγ).

Therefore, the secular frequency of the trap along the x axis is given by

ωs =

√
2πγfc
m

. (4.3.6)

4.3.2 PSD of microparticle
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Figure 4.7: (a) Experimental long-time trace of microparticle motion along the z direction (obtained with the

photodiode detection, see Chap. 3.3.2) and its histogram (b) unveiling its Brownian particle nature. The signal from

the photodiode is not calibrated for give the real particle’s displacement in µm.

Interferometric back-focal-plane detection (cf. Chap.(3.3.2)) is used to obtain the PSD of nanospheres

and microspheres. Fig. (4.7) (a) shows the time trace of the scattered light from a trapped microsphere

reaching the photodiode. The trap is driven with a voltage of URF = 355 Vpp at a drive frequency of

fd = 290 Hz. The trapped microsphere has a charge-to-mass ratio (extracted from z equilibrium position,

cf. Chap. (4.1.1)) of Q/m|µ = 0.021 C kg−1. With these parameters, the theoretically predicted secular

frequency along the radial plane of the trap is ωtheos = 2π × 56 Hz.

The power spectral density extracted from the time trace of Fig. (4.7) (a) is plotted in blue dots in Fig.
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Figure 4.8: PSD of the microsphere motion (blue dots). Air drag is responsible for the disappearance of a secular

frequency peak. Instead, the peaks related to the driving field frequency fd = 290 Hz and its first harmonic at 2fd

are still present, suggesting the presence of micromotion. An overdamped Lorentzian fit (red solid line) with cutoff

frequency fc = 6 Hz is superimposed on the data. The fit range doesn’t take into account the data set belonging to

the micromotion peaks.

(4.8). The first sharp peak at fd = 290 Hz is due to the driving field frequency. The secular frequency

peak is completely absent, confirming that the motion is in the overdamped regime. Furthermore, the

overdamped Lorentzian shape is almost entirely hidden by 1/f noise. A second harmonic is also visible at

frequency 2fd = 580 Hz. The appearance of this peak is most likely related with the detection scheme (cf.

Chap.(3.3)): Fig. (4.9) shows how frequency artifacts could arise in the spectrum whenever the amplitude

of the particle oscillations become larger than the beam transversal size, or when the beam direction itself is

not well centered on the particle mean position. In fact, with a laser waist of w0 ∼ 10 µm (cf Chap. (3.3.2))

at the focus of the beam, even a little air movement in the neighborhood of the trap can easily push the

trapped particle out of the beam, altering the computed PSD. Moreover, there are other small contributions

to the second and higher harmonics of the microsphere motion from the non-ideal paraboloid shape of the

pseudopotential (cf. Chap. (3.1.1)), as well as from harmonics of the carrier frequency fd supplied by the

function generator and the amplifier (the characteristics of the function generator and the amplifier will be

discussed in the next section 4.4).

The limiting factor in acquiring a spectrum with sufficiently high resolution at low frequencies came from



70 4.3. Power spectral density of particle motion

R
eal am

plitude

D
et

ec
te

d 
am

pl
itu

de

Laser beam

Figure 4.9: Experimental time trace of
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sketch of the laser beam lateral profile

(red). Whenever the particle motion am-
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the large amount of memory needed to take a long time trace. Moreover, even small air currents present in

the room can substantially affect the motion of the trapped microsphere during a long measure. In order to

mitigate this problem, a plexiglas box defends the trap from the larger air flows present in the room. The

red line in Fig. (4.8) is an overdamped Lorentzian fit with a cutoff frequency of fc = 6 Hz. The range of

frequency values used for the fit goes from 1 Hz to 200 Hz, cutting the data set related with the trap driving

frequency. Substituting the found value of fc into Eq. (4.3.6), we estimate the radial secular frequency to be

ωmeass = 2π × 20 Hz, less than one half of ωtheos . It is common among ion trap experimentalists to treat this

discrepancy between the measured and the calculated secular frequency by means of a geometrical correction

factor η included in the q parameter [56,80,81], that now reads

q = η
2QVrod
Mr2

0Ω2
(4.3.7)

This correction factor incorporates deviations from the ideal hyperbolic electrodes used in deriving the

equation of motion for the trapped microsphere.

We thus obtain η = ωmeass /ωtheos = 0.36. However, given the problems just described above, conclusive

results about trap frequencies cannot be obtained, and a more isolated environment from air seems necessary.

4.3.3 PSD of nanoparticle

The PSD of the nanosphere is plotted in Fig. (4.10). As for the case of the microsphere, the relevant

peaks on the graph are due to micromotion at the drive frequency and higher harmonics. The nanosphere

is trapped with a voltage of URF = 500 Vpp at the drive frequency of fd = 2 kHz.

Whenever the amplitude oscillations of the nanosphere are larger than the wavelength λ of the laser (λ ∼

650 nm), the sensitivity of the photodiode to the axial motion goes out of the linear regime (see Fig. (3.14)
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Figure 4.10: PSD of the nanosphere. The high damping of air suppresses the secular frequency of oscillation inside

the Paul trap. Moreover, higher harmonics of the trapping drive frequency are present.

(b)). This leads to the appearance of higher harmonics in the axial spectrum, even if the motion is fully

confined within the laser spot.
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4.4 Two-particle results

The stability diagrams found in Sec. 4.2 give us the upper bounds on the voltages we can utilize in driving

the trap (at fixed frequency) for confining the single species. Now it will be described how we tried to confine

both species together, with the trap working with two drive frequencies. We are interested in working with

just one particle per species (one nanosphere plus one microsphere), in order to work with as few degrees of

freedom as possible.

Table (4.1) shows the voltages and frequencies used to individually trapping particles, and that are thus

being used to drive the two frequency field.

Species Voltage (Vpp) Frequency (Hz)

Microsphere 264 330

Nanosphere 800 3000

Table 4.1: Set of parameters used to trap nanosphere and microspheres together

4.4.1 Second particle loading

The following is the procedure used for loading both the microsphere and the nanosphere inside the trap:

1. A single microsphere is loaded at f1 = 330 Hz, and the value of Q/m|µ is measured;

2. The second field at f2 = 3 kHz is slowly switched on and ramped up to its target value;

3. The electrospray is turned on, and one or more nanospheres are trapped.

A camera shot of both species trapped together is shown in Fig. (4.11). We decided to trap the microsphere

first since it behaves more stably inside the trap, and thus it can resist the flow of nanospheres coming from

the electrospray (the latter is aimed as far as possible from the trapped microsphere).

Several nanoparticles are typically trapped from the loading mechanism. In order to reduce this only to one,

a DC offset voltage is added to the RF rod electrodes such that some particles reach an unstable parameter

zone and then leave the trap. Once the trap is populated with just a microsphere and a nanosphere, the value

of Q/m|n of the latter can be estimated given the axial electric field distribution Ez(z) from simulations

(Fig. (4.1)) and the distance d between the nanosphere and the microsphere from camera imaging. The

axial equation of motion for the nanosphere at its equilibrium position zeq is

Mng = QnEz(zeq) +
QµQn
4πε0d2

, (4.4.1)
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Microsphere

Nanospheres

Figure 4.11: Camera image of a microsphere trapped together with multiple nanospheres. Here the Paul trap is

driven with two frequencies.

where g is the gravitational acceleration, Qµ is the charge of the microsphere obtained knowing the micro-

sphere mass (cf. Chap. (3.2)) and ε0 is the vacuum permittivity.

Solving Eq. (4.4.1) for Q/mn, we get

Q/mn =
g(

Ez(zeq) +
Qµ

4πε0d2

) , (4.4.2)
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4.4.2 PSDs of particle motion

In order to obtain a PSD analysis for each species, the objective lens and the laser beam height (cf.

Chap.(3.3)) are moved in such a way to address only a single particle.

Fig. (4.12) (A) shows the power spectral density of the nanosphere motion along the radial direction of the

trap. The two peaks at the driving frequencies are clearly resolved. Since the PSD at f1 is higher at f2 than
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Figure 4.12: A: Nanosphere motion spectrum in the presence of two driving frequencies. A new feature of the

graph with respect to the PSD taken with just one drive frequency (Fig. (4.10)) is the appearance of new peaks

at frequencies fh = f2 ± hf1, with h an integer. B: Driving field spectrum measured from the voltage divider of

the amplifier (see Sec. 3.1.2 for the voltage amplifier characteristics). The spectrum shows sidebands and other

harmonics of f1 and f2. The suppression of the highest harmonic is f1 − 2f1 = 70 dBm/Hz).

at f1, we can infer that the motion of the nanoparticle is mostly driven by the same low frequency originally

meant to confine the heavier microsphere. In fact, after measured the PSD we switched off the fast field f2

and observed that the nanosphere remained stably trapped, together with the microsphere. This is indeed

another proof of the significant role played by air damping in the dynamics of nanosphere motion.
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Figure 4.13: Calculated region of stability for a nanoparticle with Q/M = 1 C kg−1 with Uoff = 0 and trap drive

frequencies f1 and f2. The fast frequency f2 is set as an integer multiple of the slow frequency (f2 = 10f1 = 3.3 kHz)

for an easier evaluation of the plots. The plot in A is obtained with no air drag contribution (b1 = 0 in Eq. (2.2.2)),

while the one in B is calculated taking into account the presence of a background gas at air pressure (b1 = 269,

see Eq. (4.2.3) for the frequency dependence of b). The effect of the pressure increase leads to an enlargement of

the stable operating zone of the trap. As a result, the range of voltage parameters achievable by our setup (C) is

completely absorbed in the stable regime, where no parametric resonances can be excited.

Fig. (4.13) shows how the parametric resonance branches induced by a second frequency field are com-

pletely canceled with the high damping factor of the nanosphere at ambient pressure (cf. Chap (4.2.2)).

Moreover, we have not been able to load high charged nanospheres (see Fig. (4.3)) at f2 = 10 kHz. This is

probably due to the fact that the slow background field already filters the flow of particles from the electro-

spray, resulting in an environment that is more stable for nanosphere with a low charge-to-mass ratio (see

Chap 2.3 for a description on how the trap works as a charge filter).

Therefore, within the accessible range of trap parameters (cf. Chap (3.1.2)), the second frequency field is

not necessary in order to stably confine the lighter particle.

The microsphere PSD is shown in Fig. (4.14). The fast field peak at f2 = 3 kHz is suppressed by−40 dBm/Hz

relative to the slow field peak at f1 = 330 Hz, confirming that adding a second fast field has little effect on

the particle motion.
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Conclusions and outlook

Summary

We have presented the realization and tests of a setup for levitating nanospheres and microspheres, based

on an electrodynamic Paul trap. This setup will be the basis for a future optomechanics experiment. This

work aimed to demonstrate the feasibility of trapping two particles with a very large charge-to-mass ratio

difference, by means of a two-frequency electric field.

We have first illustrated how a test linear Paul trap was designed and fabricated. Then, the methods used

to charge and load the different particles inside the trap were shown.

We then proceeded to characterize the working trap. Two main procedures were used to measure the charge-

to-mass ratio of trapped particles: one direct, by means of measuring the particle equilibrium position within

the electric fields of the trap and extracting the ratio from computer simulations, and one indirect, by fitting

the measured stable regions of the trap operation to the theoretical prediction. With these methods, we

were able to reconstruct the charge-to-mass distribution resulting from two different launching techniques,

and to find a main difference between nanosphere and microsphere of (Q/m)n/(Q/m)µ ∼ 103. Afterwards,

we have shown how the interferometric detection system measurements revealed the overdamped regime of

the trapped particles.

Finally, we tried to use the two frequency approach to simultaneously trap nano and microsphere. Here,

however, we came up against the limits of our system, namely, both the high air damping felt by the

nanosphere and the limitations of our voltage and frequency supplies with regards to the accessible parameter

space. As a result, within our accessible experiment regimes, the second field was found to be unnecessary

for trapping both species. Further investigations will have to remove the effects of air drag by inserting the

whole system in a vacuum environment.



Next step: loading nanospheres in vacuum

Figure 4.15: Scanning electron

microscope image of nanospheres

deposited on the aluminum foil.

During the period of my thesis research, other work was being carried our

in parallel in the optomechanics laboratory.

A crucial requirement that the new system will have to fulfill is to allow the

launching and trapping of nanospheres at the ultra-high vacuum (UHV)

level, that is, at ∼ 10−10 mbar. This is the threshold pressure level that

ensures stable operation of a Paul trap with a single trapped calcium

ion [82]. Thus, I had the great opportunity to assist in the design and the

assembly of the vacuum chamber for testing UHV loading of nanoparticles.

Currently, the group is testing laser adsorption loading of nanospheres.

This technique consists of a layer of nanosphere solution evaporated on

one side of a substrate (a thin metal foil, with thickness from 10 µm to

300 µm), which is placed in vacuum and irradiated by a pulsed laser. The laser can induce an acoustic wave

in the substrate, which travels through the material and desorbs the nanospheres on the other side. In this

way, a beam of nanospheres is expected to be formed.

This system is now mounted in the vacuum chamber, and as a first preliminary result, we were able to trap

Figure 4.16: Vacuum chamber for testing the ablation loading of nanospheres.

particles down to pressure of ∼ 10−5 mbar.
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Appendix A

Numerical code for the stability

diagrams

A numerical code for the evaluation of the stability diagrams shown in the main text was written using the

software Matlab.

function beta = beta p(a, p, q)

n = 3;

h = 10;

d = 2 ∗ h+ 2 ∗ (n− 2) + 5;

r = (d− 1)/2;

A = eye(d) − q. ∗ diag(1./(a − (2 ∗ (−r : r − 1)).2), 1) − q. ∗ diag(1./(a − (2 ∗ (−r + 1 : r)).2),−1) − p. ∗

diag(1./(a− (2 ∗ (−r : r − n)).2), n)− p. ∗ diag(1./(a− (2 ∗ (−r + n : r)).2),−n);

detA = det(A);

if(mod(sqrt(abs(a)), 2) == 0)

beta = 1/pi∗acos(2∗det(eye(d)−q.∗diag(1./(a−(1+2∗(−r : r−1)).2), 1)−q.∗diag(1./(a−(1+2∗(−r+1 :

r)).2),−1)−p.∗diag(1./(a− (1 + 2∗ (−r : r−n)).2), n)−p.∗diag(1./(a− (1 + 2∗ (−r+n : r)).2),−n))−1);

else

beta = 2/pi ∗ asin(sqrt(detA ∗ (sin(pi/2. ∗ sqrt(a))2)));

end

end

x =
[
0 : 0.05 : 50

]
; %arange
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y =
[
0 : 0.05 : 25

]
; %qrange

forh = 1 : length(x)

forj = 1 : length(y)

mat(j, h) = beta p(x(h), 0, y(j));

end

end[
X,Y

]
= meshgrid(y, x);

figure;[
C, r

]
= contour(X,Y, real(mat′),′ k′);

w = r.LevelList;

r.LevelList =
[
1, 0.001

]
;

holdon



82



Bibliography

[1] V. Braginski and A. Manukin, “Ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP,

vol. 25, no. 4, pp. 653–655, 1967.

[2] B. Abbott et al, “Observation of a kilogram-scale oscillator near its quantum ground state,” New Journal

of Physics, vol. 11, no. 7, p. 073032, 2009.

[3] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state

transfer between itinerant microwave fields and a mechanical oscillator,” Nature, vol. 495, p. 210, Mar

2013.

[4] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer,
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