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Abstract

This thesis reports on the setup of a new experimental control system for
quantum information experiments with trapped ions. This system is used for
coherent manipulation of an optical qubit in “°Ca™ ions. It is capable to gener-
ate phase coherent radio frequency pulses with arbitrary amplitude envelopes.
The principles of the frequency synthese technique as well as the principle of
operation of the entire system are explained.

The effect of amplitude shaped laser pulses on single qubit quantum oper-
ations is discussed theoretically and experimentally. Finally an improvement
of the fidelity of a controlled not quantum gate due to the use of amplitude

shaped laser pulses is shown.
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1 Introduction

1.1 Quantum information processing

Quantum information processing has been a major field of investigation in the last 10
years. Whilst some initial proof of concept experiments have been carried out, the real-
ization of a quantum computer with computation power comparable to present computers
is in the far future |l]. A classical computer obeys the well understood laws of classical
mechanics whereas a quantum computer utilizes physical processes unique to quantum
mechanics. In quantum mechanics the classical unit of information, the bit, is replaced
by the quantum mechanical analogue called “qubit”. A qubit could, in principle, be any
quantum mechanical two level system. One of the advantages of quantum computation
over classical computation is that for some problems algorithms were found which scale
more favorable with growing size of the problem than known classical algorithms. The
most famous quantum algorithm is Shor’s factorizing algorithm, which is able to factorize
efficiently an integer into prime numbers. This is important because this could be used
for breaking the security of RSA key encryption which is widely used B] Another notable
application for a future quantum computer would be simulation of quantum systems, such
as the appearance of phase transitions in Ising spin chains. The time required for simulat-
ing such quantum systems increases exponentially with the number of qubits on classical
computers, whereas in 1982 Richard Feynman showed that it is possible to implement such
simulations more efficiently with a quantum computer [3]. The number of qubits required
to achieve the same computation power as todays classical computers with Shor’s factor-
izing algorithm lies in the range of 10°, whereas only around 30 qubits are required for
simulating certain many body quantum systems |4, .

The requirements for a physical implementation for quantum information processing
were given by by DiVincenzo E] A system suited for quantum information processing

should fulfil the following requirements:
1. The system should be scalable with well characterized qubits.
2. It should be possible to initialize the qubits in a well defined state.
3. The qubit coherence times should be much longer than the gate time.
4. An universal set of quantum gates should exist.
5. A possibility to measure the state of the qubit should exist.
6. A possibility to inter-convert flying and stationary qubits should exist.
7. A possibility to transmit flying qubits between specified locations should exist.

Most of these criteria have been met in proof of concept experiments but scaling up this
system to many qubits is a difficult and active research area [1|.
There are numerous physical systems proposed as candidates for quantum information

processing, these include: trapped ions, neutral atoms in optical traps, nuclear magnetic
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resonance (NMR) with liquids and various semiconductor approaches H] The most com-
plex experiments achieved so far in quantum information have been realized with an NMR,
approach, however with this approach there are no general accepted proposals for scaling
the concept to many qubits.

Depending on the physical implementations, different approaches for describing a
quantum algorithm are known. In this thesis only the “circuit model” similar to the mod-
eling of classical algorithms with logical gates is discussed. Such a quantum algorithm
consists of a sequence of multiple qubit operations, but it has been shown that it is pos-
sible to implement any quantum algorithm only with single- and two-qubit operations [§].
Therefore a quantum computer is universal if it is able to implement arbitrary one- and
two-qubit operations.

The qubit consisting of the quantum states |0) and |1) may be in the general state
U = a|0) + B |1), where o and 8 are complex numbers and satisfy |a|? + |32 = 1.
Any single qubit operation U mapping a state WU to another state ¥/ = Uv may be
written as a unitary 2x2 matrix U. Analogously a two qubit state may be expressed as
U = oy |00) + a2 |01) 4+ a3 |10) 4+ g [11), therefore any two-qubit operation may be written
as a unitary 4x4 matrix.

It was shown that one universal set of gates is the controlled not gate (CNOT) com-

daig. The CNOT is a two qubit gate which inverts
the value of the target qubit depending on the state of the control qubit. The classical
analogue to the CNOT would be the XOR gate. The CNOT gate is also an entangling

gate, which means it is possible to generate an entangled output state from a product input

bined with arbitrary single qubit rotations

state :

iy onor, 1
V2 V2

The CNOT process matrix written in the basis states [00), |01), [10), [11) is :

(110} +100)) (111) +00))

10 00

0100
U:

0 001

0010

In an experimental implementation imperfections may be quantified by obtaining the
experimental process matrix and comparing it to the ideal process matrix. With quantum
process tomography full information about a quantum process may be retrieved ﬂa] When
the process matrix is known, benchmark values for quantum gates, as the fidelity, may be
calculated easily.

With the concept of quantum error correction it is possible to correct for errors induced
in the implementation of the quantum algorithms. Similar of classical error correction, the

error is detected with the help of auxiliary qubits. For applying quantum error correction
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efficiently the error rate of the quantum gates has to be below 1074 dﬂ, |E|]

1.2 Quantum information processing with trapped ions

Quantum information processors based on trapped ions are one of the most promising
candidates for a future quantum computer. CNOT gates with a fidelity of up to 97% have
already been achieved and first experiments with large scale micro-fabricated ion traps
have been carried out E, |

In an ion trap quantum information processor, the quantum mechanical system used
for storage and manipulation of the quantum information is a set of stable electronic states
of the ion. These states may be either a ground state and some metastable excited state,
or two ground states which are energetically separated, e.g. by hyperfine splitting. Single-
qubit operations are realized with either timed laser or radio frequency pulses depending
on the type of the qubit and the level structure of the ion species used. An additional
demand is the need for addressing the ions individually. In our setup these operations are
realized with a laser which is focused to a spot size smaller than the inter ion distance.
Switching the laser between different ions is realized by deflecting the laser beam along the
axis of the ion crystal.

The ions are confined in a linear Paul trap which consists of four rods, which are
connected either to a radio frequency or a DC voltage, and two end-caps with a DC
voltage applied. To achieve well defined ion positions, the ions are cooled with the help of

Doppler cooling until a linear ion crystal is formed [13].

-
v
GHD
.
A 9_

Figure 1: Schematic drawing of a Paul trap.

The trap potential may be approximated by a three dimensional quantum mechanical
harmonic oscillator which leads to quantized motion of the ions. The motional quanta of
this oscillator are common to all ions and are used to realize multiple qubit interactions

|. In our setup only the axial motional modes are used. The spectrum of the qubit
transition for three ions is shown in Fig. Bl where the center peak corresponds to driving
the qubit transition without changing the phonon number. This transition is denoted as
the “carrier” transition. The other transitions are denoted as “sideband” transitions, where
the phonon count in the common mode is changed while driving one of these transitions.
The transition which increases the phonon count is denoted the “blue sideband” transition,

whereas the “red sideband” transition decreases the phonon number. For two and more
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ions, analogous to a classical oscillator,several motional modes may be excited, however
describing this behaviour is beyond the scope of this thesis. A full description of ion crystals
is given in the PhD thesis of Hanns Christoph Négerl E]
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Figure 2: Excitation spectrum of the axial sidebands on the qubit transition for 3 4°Ca* ions.
The motional modes with positive detuning are blue sideband transitions.

In our research group “°Ca™t and *3Ca™ ions are used for quantum information exper-
iments, where the “°Ca™t qubit is realized with a metastable excited state and the 3Cat
qubit is encoded in the hyperfine structure of the ground state. This thesis will concentrate
on the 4°Ca* experiment, but the results presented in this thesis are also applicable to
other qubit implementations.

A simplified level scheme of *°Cat containing only the transitions used in our exper-
iment is shown in Fig. Bl The qubit transition is the metastable S}/, — D55 quadrupole
transition, which has a lifetime of 7 ~ 1s. As the gate time has to be much shorter than
this coherence time this leads to a maximum gate time of 744 < 10ms. The 866nm |,
397nm and 854nm dipole transition are required for initializing and measuring the qubit.
For state detection, the electron shelving technique on the S5 — Py /5 dipole transition
is used E] The 866nm laser empties the D3y state during readout whereas the 854nm
laser is used to prepare the ion in the ground state at the beginning of an experiment and

for emptying the Ds/, state during sideband cooling.

P3;
854 nm
P2
866 nm D
—_— Dy,
1 Tls
393 nm 397 nm D
— Ui

729 nm

v

s112

Figure 3: Simplified level scheme of the °Ca™ ion. The qubit transition is the 729nm S /5 —
Ds /5 transition. The 397nm S; 5 — P /5 transition is used for Doppler colling, state preparation
and detection whereas the 866nm D3/, — P;/5 and the 854nm Ds,5 — P/, transition are used
for repumping.
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The experimental sequence

The qubit is manipulated with timed laser pulses, where the main components are qubit
initialization, coherent manipulation and state detection. In order to measure the proba-
bility Pp of finding an ion in the Dj/y state each sequence is repeated 100-200 times for
a single data point. In order to perform qubit operations the ion has to be prepared in
a well defined initial state, so the first part of every experimental sequence is cooling the
ion via Doppler cooling and preparing them in a well defined Zeeman sub-level with opti-
cal pumping. Doppler cooling is achieved with a red detuned 397nm beam. The average
phonon number after Doppler cooling is about ten. During Doppler cooling the 866nm
laser is shone on the ions to empty the D35 level. To prepare the system in the motional
ground state, sideband cooling is applied, for which the 729nm light is detuned by the ion
oscillation frequency to the red, which means that a 7 pulse on the red sideband decreases

the phonon numberby one. An intuitive picture of this process is shown in Fig. @l

D.3
oo 12D py 123
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Figure 4: Simplified scheme of sideband cooling. The red sideband S — D transition of the ion
is driven to decrease the phonon number in the harmonic oscillator. The D state decays then back
into the S state with a phonon count decreased by one.

This cooling scheme relies on emission from the Ds/ to the Sy /o level, but since this
transition is metastable the cooling rate would be about 1 phonon per second, which is too
slow. Therefore the Dy, level is pumped to the short-lived Ps 5 level with a 854nm laser.
The probability of finding the ion in the motional ground state after sideband cooling is
98% or higher, depending on the number of ions in the crystal.

After cooling, the qubit is coherently manipulated, where precisely timed laser pulses
are applied on the qubit transition and its sidebands. By applying a resonant pulse on
the carrier transition and varying the pulse length, “Rabi flops”, an oscillation between the
ground and the excited state, are observed. The length of a pulse may be described as a
Rabi phase where a pulse with length 27 corresponds to a full oscillation and leaves the
population unchanged.

For state dependent detection, the electron shelving technique is used, which has an
efficiency of over 99% E] The detection laser at 397nm couples only to the S/, level,
which means that there is no fluorescence light when the ion is in the Dj /5 state. The state

where fluorescent light is observed is denoted as logical one (|1)). The number of repetitions
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1 15 2
Time (ps)

Figure 5: Population oscillations on the S/, — D5 /o carrier transition for varying pulse lengths.
These population oscillations are called Rabi flops.

for the same sequence determines the projection noise of the detection scheme E]

Off-resonant excitations

The goal of this thesis is to quantify and minimize the influence of off-resonant excitations
to the gate fidelity. The main error sources for a CNOT gate in our experiment, as discussed
in the PhD thesis of Mark Riebe, are shown in Tab. [ E]

error source ‘ Contribution ‘
laser frequency noise + magnetic field noise 11%
Residual thermic excitation 2%
addressing error 2%
off-resonant excitations 4%

Table 1: Contributions of different experimental imperfections on the CNOT gate error.

Laser frequency noise is reduced by decreasing the 729nm linewidth, which was ap-
proximately 1kHz. After improving the locking scheme of the laser, a linewidth below 10Hz
in 1s was measured. The magnetic field noise is minimized by constructing a magnetic field
shielding box around the vacuum vessel, suppressing magnetic fields by at least a factor of
ten. Addressing error may be compensated by applying special correction pulses.

The largest remaining error source is then given by off-resonant excitations. Off-
resonant excitations of the carrier transition play a role when a sideband transition is
driven, because the coupling strength of the sideband is much weaker than that of the
carrier transition. Therefore the optical power has to be increased to achieve acceptable
Rabi times on the blue sideband, which on the other hand increases the effect of off-
resonant excitations on the carrier transition. The easiest way to decrease the off-resonant
excitations is to increase the difference between the carrier and the sideband frequency.
However by doing so the inter-ion distance is decreased and therefore the addressing error
is increased and sideband cooling becomes less efficient. Another way of minimizing off-
resonant excitations is to switch the laser pulse on and off adiabatically, which technically
means using amplitude modulated laser pulses. The influence of the pulse form on off-

resonant excitations is discussed in this thesis.
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In this thesis a basic theory of ion laser interaction is derived. From this theory
the influence of amplitude shaped pulses on the behaviour of a single ion is analyzed
in section(@ZIl). A simple method for testing whether a particular pulse suppresses off-
resonant excitations is introduced in section(Z2)). Numerical simulations for various pulse
shapes are presented in section(Z3]). A new experiment control setup and a new source
for RF pulses are introduced in section(@l). The results of the theory are compared with
measured data in section(@l). The effects of pulse shaping on the fidelity of a quantum
gate are demonstrated in section(@dl). The appendix of this thesis consists of technical

documentation for the experiment control system.
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2 Laser lon interaction

In the following chapter the interaction of the ion with a laser beam will be examined the-
oretically. The main emphasize is on quantifying off-resonant excitations and the influence
of amplitude-shaped laser pulses. For this purpose a two-level system is investigated. The
influence of other levels, the quantized motion, and the spatial profile of the laser beam
are neglected. The system is investigated analytically for time-independent interaction
strength. For time dependent interaction strength numerical calculations are performed as
there exists no general analytical solution. The description shown below follows chapter 3

of reference B]

2.1 The optical Bloch equations

To characterize the dynamics of the system, the Schrodinger equation has to be solved.
The Hamiltonian of the system may be decomposed into a time-independent component
H, and a time-dependent interaction component H;. The Hamiltonians for a two-level
system may generally be written as Hermitian 2x2 matrices, and the state of the system
may be expressed as a complex valued two-dimensional vector. When choosing the basis

states as eigenstates of Hy, the matrix Hg will contain no off-diagonal elements.
= By + A1)

2.1.1 The interaction Hamiltonian:

The interaction between the ion and the applied electromagnetic field is described by
coupling the multipole moments of the ion to the external field [17]. The most dominant
interactions are the electric dipole interaction, the magnetic dipole interaction and the
electric quadrupole interaction. Independent of the actual interaction type, the interaction
strength is expressed as the complex valued Rabi frequency ). The dependence of ) on the
amplitude of the driving field F is shown in Tab. ], where p is the electric dipole moment,

q the magnetic quadrupole moment and p,,, the magnetic dipole moment.

Interaction type ‘ Rabi frequency

electric dipole Q= /%
' E
electric quadrupole Q=14
magnetic dipole Q,, = /w_v%B

Table 2: Definition of the Rabi frequency for different interaction types.

When the motion of the ion is neglected this leads to the following interaction Hamil-

tonian:

Hi(t) =

0 hQ(t) sin(wt + ¢) > (1)

( R (t) sin(wt + ¢) 0
For a general amplitude-shaped laser pulse the Rabi frequency €(t) is time-dependent

and complex valued. Depending on the actual type of interaction, the polarization of the
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laser light and the choice of the basis the Rabi frequency and the oscillatory term may
be complex or real valued. In this thesis the laser frequency is constant during a laser
pulse and therefore it is possible to choose a basis such that the Rabi frequency and the

oscillatory term are real valued.

2.1.2 Solution without interaction:

It is assumed that the wave function W fulfils the Schrédinger equation for the time-
independent Hamiltonian Hy. This means the equation HyU = ihd, ¥ is fulfilled. Any
quantum mechanical two-level system may be fully described by a basis of two eigenstates
Wy o of the Hamiltonian with the respective energy eigenvalues F . The transition fre-
quency is then defined as wg = (E2 — E1)/h. Every possible state ¥ may then be written

as

\IJ(I', t) = é’l\lfl(r, t) + égqu(r, t) . (2)

Since the Hamiltonian is time independent, ¥(r,¢) may then be factorized into a

product of a time dependent and a time independent function.

Uy(r,t) = exp(—iEqt/h)(r)
\Ilg(r,t) = eXp(—iEQt/h)l/Jg(r) (3)

In the following derivation the space dependence of W will be neglected as the electric

field amplitude is assumed to be constant in space.

2.1.3 Solution with constant interaction strength:

As described above ¥y 5 are a set of orthogonal basis vectors and therefore the solution
for any Hamiltonian may be written as ¥ = Cy(t)¥;(t) + Co(t)¥s(t). For describing the
interaction between the laser light and the ion, the Hamiltonian which is defined in Eq. [
is used. As the frequency of driving laser field is w, a detuning between the laser frequency
and the transition frequency may be defined as 6 = w — wg. A schematic view of the
involved levels and frequencies is given in Fig. B When inserting this ansatz into the

Schrodinger equation this leads to a set of coupled differential equations for Cf ».

Zhi( C’l(t) ) _ < Eq hQ(t) SiD(u)t-ﬁ-(ﬁ) > ( él(t) >
dt \  Cy(t) RQ(t) sin(wt + ¢) E1 + hwo Cs(t)
The solution is simplified if the equations are expressed in a time-dependent basis with

the same phase evolution as the laser field. This is realized by introducing new coefficients

C1,2(t) which differ from 6’172 by a continuous evolving phase:

Cha(t) = 61,2 (t) e~ im.2(t)
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Wy >

Wo

’\Ijl >J

Figure 6: Level scheme including a detuned driving laser field.

The state vectors in the rotating wave picture are then written as
U =C(8)e”™mOW () + Co(t)e ™D Wy (1) .

The choice of n1(t) = (E1/h — §/2)t and na(t) = n1(t) + wt + ¢ leads to the following

equations:

() s ™) (50)

The particular choice of 712 resembles a frame of reference which rotates with the
laser frequency w. The resulting differential equations now shows diagonal elements with
the small quantity +6/2. The terms oscillating with the laser frequency w may be approx-
imated by their cycle average if § < 2w and 2 < wp. These conditions are generally well
satisfied for optical transitions. As the cycle average of exp(—2i (wt + gb)) is zero this leads

to the following simplified differential equation:

il )*3le %) () ®

As a first step, the Rabi frequency will be assumed to be constant in time for the
following analysis. In section(Z3]) numerical simulations with time varying Q(t) are pre-
sented. EqHl may be solved analytically by replacing the first order differential equation
with the two variables C1 »(t) with a second order differential equation with only one vari-
able. The results are combinations of sines and cosines with the oscillation frequency /2
where Q = Q2 + 62. The amplitudes of the sines and cosines are determined by the initial

conditions

Qt Ot
0172(t) = ALQ COS(?) + BLQ SIH(T) .

If the system is initially in the ground state, the populations Py 5 = |C} 2|? are:
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P(t) = ]%]2sin2(ﬂt)
P(t) = 1-P(t) . (5)

0 — T T T T~ T T T T T T T T T T T
0 01 02 03 04 05 06 07 08 0.9 1
Time

Figure 7: Rabi Oscillations for a rectangular laser pulse at detuning §/€.

The results obtained in Eqll shows oscillations in the population of the two levels,
which are called Rabi oscillations. In Fig. [ these oscillation are shown for different pa-

rameters.

2.1.4 Off-resonant excitations

As described in section(CZ) it is necessary to excite the motional sideband in order to
perform multiple-qubit operations in an ion trap quantum information processor. How-
ever, the coupling strength on the sideband transition is smaller than that on the carrier
transition by the Lamb-Dicke factor which is in our setup about 3% B] Therefore the
sideband transition has to be excited with higher laser power to achieve an acceptable
Rabi frequency. This leads to unwanted changes in the state vector of the carrier transi-
tion during a laser pulse on the sideband transition. These changes vary with the duration
of the interaction and may be divided into phase and population deviations. The changes
in the qubit population are known as off-resonant excitations whereas the phase variations
are described by the AC Stark effect. The AC Stark effect describes a frequency shift of
the carrier transition, which gives rise to a dephasing of the qubit vector. This effect is
discussed separately in section(Z4l) whereas the following paragraphs will concentrate on
the population changes.

From equation () it can be seen that for a rectangular pulse the magnitude of these
population oscillations is Q2 /(02 + §?) when the system was initially in the ground state.
It can also be seen that for a constant Rabi frequency the off-resonant excitations vanish
with large laser detuning. Fig. B shows populations oscillations that occur on the carrier
when driving a sideband pulse. Our usual experimental parameters for driving sideband
transitions are 2 = 27 200kHz and 6 = 27 1 MHz. This leads to population oscillations
with an amplitude of 3.8%. As our CNOT gate fidelity reaches more than 90% these

oscillations have to be minimized or compensated.
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A possible strategy for compensating off-resonant excitations would be to switch off
the laser when the induced population oscillation returns to zero. However, in our experi-
mental implementation this is not practical as the oscillation frequency increases with the
detuning and therefore the calculation and generation of the pulses becomes impractical.
The detuning from the carrier transition is § ~ 271 MHz when driving the blue sideband
transition. As the Rabi frequency is only = 27200kHz the population oscillates with
the effective Rabi frequency Q ~ § = 271 MHz. The length of a typical sideband pulse
is around 100 pus which means that the desired minimum is after 100 oscillation periods.
Therefore using this technique would require a very precise knowledge of the Rabi frequency
as even a 1% error would correspond to a whole oscillation period of these oscillation and
would therefore make the compensation unusable. Furthermore the experimental parame-
ters would need to be stable over a long timescale to ensure proper compensation of these
off-resonant excitations without frequent recalibration. Our approach instead is to switch
on the interaction adiabatically which eliminates off-resonant excitations. This technique

is discussed in section (222)

~ 0.04
o
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Figure 8: Calculated off-resonant excitations on the carrier while driving a sideband pulse. The
parameters are ) = 27 200 kHz and 6 = 27 1 MHz.

2.1.5 Solutions for amplitude-shaped laser pulses

For the results presented above the system was considered to be initially in the ground
state ¥(0) = ¥; and the Rabi frequency was constant over time. In this section the results
are generalized to arbitrary input states and time dependent Rabi frequencies. To calculate
the time evolution for an arbitrary initial state U(0) = v W1+, ¥y , the system is rotated
to basis states of the particular Hamiltonian. These states are known as dressed states

and the corresponding basis is denoted as the dressed basis. The new basis states 1 are

defined as
<<I>+>_<cosﬁ —sinﬁ><\111> (©)
d_ ) \sinfB cosf Wy

The states &1 are orthogonal and may be chosen as a time dependent basis. In this

basis the state vector may be rewritten as

U(t) = A () (1) + A_() (1) (7)
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To facilitate the task of constructing eigenvectors of the Schrodinger equation the

mixing angle (3 is introduced:

0 )
cos(28) = 3 = 7'927—{—52 (8)
sin(28) = @ = M (9)

Q0 V2 + 452

For a time dependent Rabi frequency €)(¢) this transformation is made at every time
t. This leads to a time dependent mixing angle 3(¢) and in consequence the Schrodinger

equation then reads [L1]

d < A4 (1) ) B < O 2i6) ) < A4 (1) )
dt\ A_(t) 2\ —2if(t) —Qt) A_(t) )
The quantities which determine the time evolution of the system are () and ﬂ The

contributions of these may be interpreted as follows:

e ) shifts the energy levels which leads to a continuous phase evolution which is de-
scribed by the AC-Stark effect.

° ﬁ gives rise to population changes between Aywhich are usually referred to as to

off-resonant excitations.

If 3 is small compared to 2 the off diagonal terms in the equation above can be neglected.
This approximation is known as the adiabatic approximation. In the experiment this is
realized by switching the interaction on slowly. The condition for this is 2i8(t) < Q(t)

which may be rewritten as [[L7]:

(t) 8] < [2(1)]° (10)

As the transformed Schrodinger equation now contains only diagonal elements it is

possible to simply integrate the single components. The solutions read then

AL () ~ exp (:F% /Ot dt Q(ﬂ)) AL(0) . (11)

From this result it is clear that |A4(¢)|> = |A+(0)|?. A laser pulse shape which is
typically used in our experiment is shown in Fig.(d). For these shapes, the Rabi frequency
vanishes at the beginning and the end of the pulse. This leads to § = 0 and therefore
the matrix in Eq. B is the unity matrix. This means that the dressed basis is equivalent
to the the original basis if the interaction vanishes and therefore A4 (0) = C2(0) and
Ay (tend) = C1,2(tena)- Therefore, the initial and the final states are identical in the original
basis state |C1 2(tena)|? = |C(0)]* which means that there are no remaining off-resonant

excitations.
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The phase of the state however evolves with the integral over the effective Rabi fre-

quency. This phase oscillation is caused by the AC-Stark effect which is described in

section (Z4)).

rising slope‘ ‘ falling slope
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Figure 9: Typical Laser pulse as used in our experiment. The pulse is split into three parts: the
rising slope, the constant plateau and the falling slope.

2.1.6 The influence of the initial state

The time evolution of a rectangular pulse for an arbitrary initial state can be calculated
analytically. At the leading and the final edge of the pulse the time derivative of the Rabi
frequency and therefore also f3 is not defined. The time evolution may then be calculated

with the following procedure:

1. Transform the initial state at the leading edge to the dressed basis.
2. Calculate the time evolution in the dressed basis.

3. Transform the final state at the final edge back to the original basis.

In contrast to the situation of shaped pulses the Rabi frequency does not vanish at the
edges of the pulse. Therefore the dressed state and the original state are not equal. As
the Rabi frequency is constant during the pulse duration, the time evolution in the dressed
basis consists of a linear phase evolution. Since the dressed basis is not the original basis at
the beginning and the end of the pulse this phase evolution causes population oscillations

in the original basis. Summarizing these steps leads to the following equation:

([ cosB sinf e 2t 0
Vi) = ( sinf3 cos 3 > < 0 e 2 > '
< cos3 sinf3 > ( C1(0) Uy >
sin3 cos C2(0) Uy

With the definition of 5 as shown in Eq. Bl this equation may be simplified to
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_ o cosG +idsin(G il sin(Gy) C1(0) ¥y
W(t) = < _22% Sii(%t) 2 Cos(%t)ﬂ—z'% Szin(%t) > ( )0, > . (13)

For further analyzing the initial state is assumed to be ¥(0) = ®_ = ¥} cos § — Vs siné

with the mixing angle §. The populations |C1 2(¢)|? may then be calculated:

) Ot
IC12(t)” = |C12(0)* + Ay 2 sin®(—) (14)
2

Where the coefficients A; 5 correspond to the magnitude of the population oscillations
and therefore also describe the magnitude of the off-resonant excitations. For example, the

coefficient A1 can be simplified to:

?—22 cos(260) — ¥ sin(20)

Ay =
1+ %

(15)

From this equation it can be seen that the magnitude of the population oscillations is
not constant with varying mixing angle . The excitations are shown in Fig. [0 It can also
be seen that there exist a certain mixing angle where there are no remaining population
oscillations. This situation corresponds to the initial state being the dressed state of the

system.

o
(=)
J

Excitation

7 300kHz
7 400kHz
7 600kHz

Figure 10: Off-resonant excitation depending on the initial state. The initial state was of the
form U = cos(f) |¥y) + sin(9) |Vs) .

2.1.7 Qubit errors

The results presented above show that the magnitude of the population oscillations depends
on the initial state of the qubit. Therefore this magnitude is not a good measure for
characterizing off-resonant excitations. An error on the qubit may be characterized by the

error of the mixing angle. A small error angle € on the qubit vector |¥,;) = cos(6) |¥1) +
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sin(f) |¥s) leads to the vector
|Wepr) = cos(0 +€) |W1) +sin(f +€) [Pa) .

A second order Taylor expansion leads to the following relation for the population of the

ground state:

. 1 )
p=|Werr | ¥y) ’2 ~ (cos(@) —sin(f) e — 3 cos(0) 62) _ »

= cos?(0) — sin(26) e + (1-2 Cos2(9)) € +0() .

If an atomic transition is driven off-resonantly, the state vector oscillates with the
effective Rabi frequency Q which can be seen in Eq. [@ The phase error ¢ also oscillates
with the same frequency.

To generalize the characterization of off-resonant excitations for an arbitrary mixing
angle © the results shown in Eq. are compared to the results derived for a rectangular
pulse as shown in Eq. [[A The derivation for a general qubit error has been made under
the assumption € < 1. In the case of the rectangular pulses this corresponds to a small
Rabi frequency with respect to the detuning (€2 < §). Therefore the result in Eq. [[3 may
be approximated to

0?2 03

Q .
A~ -3 sin(20) + ¥ cos(20) + O(ﬁ) .

For a general qubit error this reads
p1 — cos(f) = —e sin(20) + € cos(20)} .

Therefore it is valid to identify the error angle € with the ratio between the Rabi
frequency and the detuning (€2/J). In the literature off-resonant excitations are usually
characterized by the amplitude of the population oscillations if the system is initially in
the ground state. For a rectangular pulse this amplitude is just 22/6%. To be consistent
with the usual definition of off-resonant excitations it is desirable to describe the error for
an arbitrary mixing angle by €% rather by e. If the amplitude of the population oscillations

is Apop this leads to following expressions for the amount of the off-resonant excitations:

Af,op e .
. if sin(20) >
2 — ) sn’(20) (20) > e (17)

Apop IO =0

2.2 The influence of pulse shapes

In the following section different laser intensity pulse shapes and their influence on off-
resonant excitations are discussed. A suitable shape should minimize off-resonant excita-

tions while keeping the time needed for realizing a certain pulse on the sideband transition
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as close as possible to a rectangular pulse with the same peak Rabi frequency.
10° 3

107" 4

10724 .
3 Fourier transform
Off-resonant excitations

excitation / amplitude

0 20 40 60 80 100 120 140 160 180 200
detuning (arb. units)

Figure 11: Comparison of the spectra of a discrete Fourier transform of a sine with a rectan-
gular windowing function and off-resonant excitations for a rectangular pulse. The off-resonant
excitations are obtained for a laser pulse with constant length and varying detuning.

As a starting point for a pulse shape, windowing functions used in discrete Fourier
transformation are used. The spectra of the Fourier transformation of a sine function
over a finite time interval and the off-resonant excitation of a rectangular laser pulse with
constant length are shown in Fig. [[Il The off-resonant excitations for a pulse with unity
length as a function of the detuning is Q2/(9Q2 + §2) sin?(v/Q2 + 62) whereas for a Fourier
transformation with unity length time window this is sin?(§)/6%. For large detunings
these two functions behave the same when neglecting a constant factor and therefore the
side lobes in the Fourier spectrum are related to off-resonant excitations. Furthermore,
a technique to suppress the side lobes of the Fourier transform is therefore also useful
for minimizing off-resonant excitations. In digital signal processing so called “windowing
functions” are used to suppress these side lobes [[1&]. Windowing functions add weights
to the data points depending on the position in the time window. The side lobes may be
interpreted as edge effects caused by the finite length time window. Therefore windowing
functions generally vanish smoothly at the beginning and the ending of the time window
to minimize these edge effects. Our approach is to use the well known windowing functions
for minimizing off-resonant excitations while driving sideband transitions. In digital signal
processing the windowing function is chosen to match the expected signal form. A general

purpose windowing function is the approximated three-term Blackmanﬂ function:
1
w(z) = 3 (0.84 — cos(xzm) + 0.16 cos(2zm))

As mentioned above, a suitable pulse shape should not only be able to suppress off-
resonant excitations but also preserve the time needed for a certain pulse on the sideband
transition. The peak Rabi frequency of the pulse is limited by thermal effects in the
acousto-optical modulator which generates the laser pulses. Therefore, the pulse area

of the shaped pulse has to be similar to the pulse area of a rectangular pulse with the

'The term “Blackman function” is ambiguously used in the literature. Tn this work the definitions from
reference m] are used. In the following the approximated three-term Blackman windowing function is
always referred to as the Blackman function.
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Figure 12: The segmented Blackman pulse and the full Blackman pulse in comparison. At the
same peak Rabi frequency the pulse area of the segmented Blackman pulse is larger.

same peak Rabi frequency and pulse duration. This means that the relative pulse area
At = 1/(Qmaztpuise) tfgpulse Q(t)dt has to be close to one. The relative pulse area
of the Blackman function as defined above is A,,; = 0.42 . Using this function as an
amplitude shape would double the time required for a full Rabi oscillation as compared to
a rectangular pulse. Our solution to this problem is to split the pulse into a rising slope,
a constant plateau and a falling slope. Such a segmented pulse is compared to a normal
Blackman pulse in Fig. For durations of the rising and falling slopes of each 5% of the
total pulse duration, this leads to a relative pulse area of Aycjiotar = 0.9 + 0.1 - Apep siope-
This approach has the additional advantage that for different pulse lengths the same rising
and falling slopes can be used which simplifies the generation of the pulses. Using such
a segmented pulse as a windowing function leads to larger off-resonant excitations than
using the full windowing function, but the smooth slope of the windowing functions is
preserved. In terms of the Fourier transform this window may be seen as the convolution
of a short Blackman window and a rectangular window, which shows properties of both the
Blackman and a rectangular window. To assess the quality of a pulse shape, different pulse
shapes are compared in this section. The different shapes are defined in Tab. Bl Fig. [3

shows rising slopes of cosine, linear and Blackman shaped pulses.

Name ‘ Expression ‘
cosine Q(t) = Q £(1 — cos(F))
linear Qt) = Qo

Blackman | Q(t) = Qg 5 (0.84 — cos(%) + 0.16 cos Z2t)

Table 3: The three different slope functions used in the simulations. A pulse consists of a rising
slope with the slope duration tg.pe = T', a constant plateau where () = Q and a falling slope
which is symmetric with respect to the rising slope.

The effect of the pulse shape on adiabaticity In this section a method to estimate
whether a pulse shape is in the adiabatic regime without calculating the whole time
evolution is presented. Since the condition for applying the adiabatic approximation is

1Q(t) 5] < |2(t)]*, a measure of the adiabaticity of a shaped laser pulse is given by the
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cosine
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Figure 13: The rising slopes of the cosine, linear and the Blackman pulse shapes as defined in
Tab.

coefficient of adiabaticity:
a = Q) o)/

The criterion for adiabaticity is fulfilled if o < 1. For the pulse shapes presented above,
the coefficient of adiabaticity is determined by the Rabi frequency 2, the detuning § and
the slope duration tgpe. As the Rabi frequency is not constant in time, o also varies with
time. Therefore 4., the maximum value of « over a whole pulse may be used to estimate

the off-resonant excitation of the pulse shape. There are two different interesting regimes
for a:

e The transition regime where 6 ~ €2 .

e The adiabatic regime where 6% > Q2.

Driving a sideband transition with our usual experimental parameters (2 = 2w 200kHz,
§ ~ 1IMHz) leads to 62/9Q2 = 25 which implies that the system is in the adiabatic regime.
However, the off-resonant excitations are too small to be measured directly with these pa-
rameters. Direct measurement of off-resonant excitations is only possible in the transition

regime. In Fig. [ the time dependence of « during a rising slope is shown for the two
regimes.
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Figure 14: Time dependence of the adiabaticity factor « of different shapes. The Rabi frequency
and the slope durations are in both cases @ = 27 200kHz and t4pe = 10pus. The detuning is a)

0 = 2w 200kHz and b) § = 27 1 MHz.

For the system being in the adiabatic regime it is possible to perform a second order
Taylor expansion of « to achieve a simple analytical result for a:
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It is therefore possible to derive simple analytical results for c,q, if 62 > Q2

T Qo
Amaz,cos 242 tsiope

Qo
Amax,lin m

L157m  Q
Qmaz black ™ 2 m

Usual experimental parameters for driving a sideband transition are a detuning of
approximately 6 = 27 1MHz and a Rabi frequency of Q@ = 27200kHz. Using these

parameters and a slope duration of 5us leads to the following values of aunqz :

Q

Amazx,cos 0.010

Qmaz,tin =~ 0.006

Qmag black = 0.012

In Fig. Qmaz 18 shown for varying detuning for Qy = 27463kHz and a slope

duration of ¢4y = 10 us.

cosine
******* linear
***** Blackman

Figure 15: The maximum of the adiabaticity factor .. for different pulse shapes as a function
of the detuning for a Rabi frequency of Qg = 2w 463 kHz and a ramp duration of T'= 10 us .

2.3 Numerical calculations

Numerical simulations are performed with the following algorithm. Time is divided into
discrete steps where the Rabi frequency is assumed to be constant for the duration of
one time step. The state at the end of the time step is calculated by transforming the
previous state from an unperturbed basis into the dressed basis, calculating the phase

evolution and then transforming the state back into the unperturbed basis. Eq.[3ldescribes
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the transforming operation. The resulting state is then used as an input state for the
next iteration. The Matlab script used for calculating the time evolution is shown in
appendix (D). If not stated otherwise the Rabi frequency used for the results presented
below is wy = 2w 463 kHz. This value is chosen to match the experimental data which were

first taken at this Rabi frequency.
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Figure 16: Simulated time evolution for the system initially in the ground state for a Rabi
frequency of 0y = 27463 kHz and a detuning of § = 27 400 kHz

Typical time evolutions of the populations for some pulse shapes are shown in Fig. [6
The remaining off-resonant excitations are quantified by simulating the system multiple
times with different pulse lengths. From each simulation only the excitation at the end
of the pulse is used for further analyzation. This excitation oscillates with varying pulse
length. A squared sine function is fitted to these oscillations and its amplitude is the
magnitude of the off-resonant excitations.

As stated in section(ZID) the system is in a dressed state during the entire pulse
if the pulse is adiabatic and the system is initially in the state g = Wy. Therefore no
population oscillations should occur for an adiabatic pulse shape. The time evolutions
of the Blackman pulses in Fig. show that the oscillations vanish with increasing slope
duration which is an successive approximation to the adiabatic behaviour.

To compare the different shapes, the remaining off-resonant excitations are analyzed
for different parameters. In Fig. [ the off-resonant excitations of the cosine, linear, Black-
man and rectangular shapes are shown as a function of the detuning . The Blackman and
the cosine shapes behave nearly identically. It can also be seen that for small detunings
the linear shape suppresses off-resonant excitations slightly better than the cosine shape.
Nevertheless, the cosine and Blackman shaped pulses suppress residual off-resonant excita-
tions better for large detunings which corresponds to the typical situation our experiment.

Another possibility for characterizing the pulse shape is to look at off-resonant excitations
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Figure 17: Simulated off-resonant excitations as a function of the detuning for a Rabi frequency
of Qp = 27461 kHz . The slope durations are at a) tsope = bus and at b) tsope = 10us

as a function of the slope duration. The results of these calculations are shown in Fig. [8
As expected, the linear shape behaves more favorable at shorter slope durations than the

cosine and the Blackman pulse shapes and vice versa.
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Figure 18: Simulated dependence of off-resonant excitations on the ramp duration. The param-
eters are Qg = 2mr 463 kHz and § = 27 340 kHz.

Previously the coefficient of adiabaticity « was introduced. To test whether this
coefficient provides a good characterization for off-resonant excitations the results of the
numerical simulations are plotted as a function of a.

In Fig. the dependence of « is shown for a cosine pulse shape for the regimes as

defined above. In Fig. the same plot is shown for all three pulse shapes. It can be seen
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Figure 19: Simulated off-resonant excitations for cosine pulse shapes as a function of the inverse
of the maximum adiabatic factor 1/amaz-

that even for small a the off-resonant excitations differ for the different pulse shapes. This
is due to the fact that oy, does not resemble the exact deviation from the ideal adiabatic
time evolution. The linear shape scales less favorable with « than the cosine and Blackman
shapes. This is because « does not vanish at the beginning and the end of the slope for
the linear shape. Furthermore it can be seen that to achieve off-resonant excitations of less
than 1% it is sufficient to chose the slope duration such that o < 1/40.

Excitation

Cosine
Linear
Blackman

1/ mazx

Figure 20: Simulated off resonant excitations for different pulse shapes as a function of the inverse
of the maximum adiabatic factor 1/amaz-

The simulated remaining off-resonant excitations when driving a sideband transition
with a Blackman shaped pulse with a slope duration of 3us, an axial trap frequency of
IMHz and a Rabi frequency of Q = 200kHz are Pp = 3.5-107°. For a linear shaped pulse

with the same parameters the off-resonant excitations have a magnitude of Pp = 10-107°.

Simulation for different initial states

As stated in section(T]), off-resonant excitations change their qualitative behaviour if
the system is not initially in the ground state. The most general single qubit state is
Vo = 71 ¥1 + 722 where 77 2 may be complex valued and the normalization condition has

to be fulfilled. Due to the possibility of complex values for v; 2 it is not easily possible to
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cover this whole space with numerical calculations. To be able to perform simulations in a
reasonable time, only real values of ;2 are used for the simulations. This is sufficient as
the only difference is a constant phase offset which has no effect on off-resonant excitations.

The corresponding parameter is the mixing angle © which is defined by v, = sin © which
leads to 72 = /1 — 2.
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Figure 21: Simulated time evolution for initial state ¥ = 1/4/2(|0) 4 [1)).

In Fig. Bl the time evolution for the initial state ¥ = 1/v/2(|0) + |1)) is shown for
a rectangular and a cosine shaped pulse with 5us slope duration. Generally the initial
state is not a dressed state of the system and therefore the population oscillations do not
vanish during the pulse. Nevertheless, according to the calculations in section(Z2) the off-
resonant excitations vanish at the end of the pulse if the interaction strength is switched
on and off adiabatically.

In Fig. the dependence of the remaining excitations on the mixing angle O is
shown. As shown in section(ZI7) the excitations in dependence of the mixing angle 6
are Pege = cos?(0) —sin(26) e + (1 — 2cos?(#)) €* where € is the error angle on the qubit.
Neglecting the terms with €2 it is possible to derive an expression for the error which is
independent of the mixing angle. The error is expressed in € to preserve consistency with
the results given for the initial state being the ground state. The equation for calculating
¢? from the amplitude of the population excitations is then e? = Ap,,/(4 sin?(26)). One
has to bear in mind that this result is only valid for sin(260) > e. In Fig. B3 the calculated
€2 is shown in dependence of the mixing angle #. It can be seen that the error stays almost
constant for all mixing angle. From this we infer that the chosen measure for off-resonant
excitations is suitable for an arbitrary input state.

From Fig. B2 and Fig. 23 it seems that the cosine pulse shapes behaves more favorable
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Figure 22: Simulation for different initial states for different pulse shapes. The initial state is

U =sinf |Us)+cosf |[¥y). a) compares a rectangular and linear shapes. b) shows different shapes
with tg0pe = 10us
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Figure 23: Calculated error angle €2 for simulated data as a function of the mixing angle . The
parameters for the simulations were Q@ = 27 200kHz, § = 27400 kHz, tgope = 10us.
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than the Blackman shape if the initial state differs from the ground. In Fig. the error
angle €2 is shown in dependence of the slope duration for two different initial states .

can be seen that the cosine shape behaves more favorable for certain parameters, but the

general dependence is similar for cosine and Blackman shaped pulses.
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Figure 24: Calculated error angle €2 for simulated data as a function of the slope duration for
initial state of a) # = ;7 and b)37 . The parameters of the simulations were § = 27 1MHz and

Q = 200kHz.
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2.4 The AC Stark effect

When a transition is driven off-resonantly, population oscillations are not the only undesir-
able side effect. The phase of the qubit evolves linearly with the pulse duration. In section
EI3) the solution for an adiabatic pulse was derived:

AL(t) ~ exp <j:% /O v Q(ﬂ)) AL(0) .

As the dressed basis is the original basis at the beginning and the end of the pulse

this equation may be rewritten as

- t
Cl,Z(tend) = exp <i%/ dt/ Q(t/)> CLZ(O) .
0

To investigate the phase evolution of this state the integral has to be evaluated for
varying pulse lengths. The laser pulse is divided into three sections and therefore also
the integral can be split. As the rising and the falling slopes are the same for different
pulse lengths these lead only to a constant factor Cyjepe. Furthermore the Rabi frequency is
constant in the third part and therefore the resulting phase evolves linearly with increasing

pulse length. With the pulse length being t.,q = tiop + 2t510pe this leads to

01,2(tend) = exp(cslope + Qttop) 01,2(0) .

One has to bear in mind that the phase of the qubit is defined in the frame of reference
which rotates with the transition frequency wg. However, the calculations above have been
made in a frame rotating with the laser frequency w = wp + §. In this frame the state
vector oscillates with the effective Rabi frequency € when applying an off-resonant pulse.

This leads to the following oscillation frequency in the qubit frame:

Quric = Q=0 =/02 + Q2§

For large detunings (62 > Q2) a first order Taylor expansion of € can be used to

[ Q2 0?
Qqubit =0 1+5—2—5%%

The physical reason for this dephasing are frequency shifts on the qubit transitions
which are known as the AC Stark shift. To investigate the Stark shift for our qubit,

the Zeeman structure of the Sy, — D5y transition and the dipole interactions have to be

estimate the effect:

included in the calculation. There is no need to account for the sideband transitions, as the
coupling strength is much weaker. The detuning for the dipole interactions (S; 2 — Pr1ja,
Si/2 — P35 and Dsjy — P39) is in the range of several hundred THz for a laser which
is close to resonance with the quadrupole transition. The Rabi frequency of the dipole
transition is about a factor of thousand bigger than the Rabi frequency of the quadrupole

transition for the same light field. As the Stark shift is inversely proportional to the
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detuning but quadratic with the Rabi frequency, the contributions of the dipole transitions
cannot be neglected with a typical detuning of 1MHz from the quadrupole transition. Each
level is shifted by
02
A; = j:4—5@i
where €; is the Rabi frequency of the applied laser field and ¢§; the detuning for the
particular transition. The sign of the shift depends on whether the applied light is red or
blue detuned. The level shifts for the Zeeman sublevels of the allowed transitions for our

geometric configuration from the Sy, to the D3y are shown in Fig.

-y~

A

w

G ¥ !

i i
Figure 25: AC-stark shifts for the allowed transitions from the Sy /3(m = —1/2) to the D3/,

level. D_j5 refers to the Dg/o(m = —5/2) state. The shifts are shown for a blue detuned laser light
driving a motional sideband.

To calculate the total Stark shift induced by a laser pulse, the contributions of the
different atomic levels are added E, @] This leads to the equation Aac = Q2/4 >, a;/6;
for the Stark effect generated by the Zeeman sublevels. The factors a; are the coupling
strengths of the different Zeeman components relative to the qubit transition and €2 is the
Rabi frequency of the qubit transition. As the dipole levels are generally far detuned with
respect to the light field, they may be included in this calculation by a term which does
not depend on the detuning from the quadrupole transition. The total Stark shift is then

2

Q
AACZZZI(

a;

i 5 +0b)
where the factor b is the sum of the contributions of the dipole interactions to the
Stark shift. In reference [2(] this shift was measured and it was shown that the resulting
Stark shift is negative when applying a blue sideband pulse. Therefore it is possible to
compensate this shift with a second far detuned laser which causes a positive hﬁﬁt shift on

lud, b,

The amplitude of this compensation pulse is adjusted to minimize the AC Stark effect

the dipole transition but only a negligible shift on the quadrupole transition
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and it must have the same length as the manipulating pulse. Since the acousto-optical
modulator that generates the laser pulses operates in a linear regime it is straightforward
to extend this scheme to shaped laser pulses. If the compensation pulse has the same pulse
shape as the manipulation pulse and appropriate peak laser intensity, the Stark shift is

compensated at every time during the pulse.
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3 Experimental setup

3.1 The ion trap

The ion trap used in our experiment was designed by Stephan Gulde and is discussed in
detail in his PhD thesis E] The ion trap is operated with a frequency of approximately
23 MHz. The radio frequency voltages required to create a radial trapping potential are
generated with a high power radio frequency amplifier and a resonant circuit. The DC
end cap voltage required for axial trapping is generated by a digitally controlled multi-
channel power supplyl. The trap is mainly operated with RF powers of around 10W and
end-cap voltages of 1000V which corresponds to a center-of-mass mode frequency in the
axial direction of about 1.2MHz. The inter-ion distance depends on the end-cap voltage
and therefore the parameters of the trap are adjusted to optimize addressing errors and

off-resonant excitations for a given number of ions.

compensation o
electrodes Side view
(cut through diagonally

opposite blades)

'
', Front view
.

30.0 mm

Figure 26: Schematic drawing of the ion trap used in our experiment. The compensation elec-
trodes are used to minimize micro-motion.

3.2 Optical setup

The optical setup is distributed over three optical tables: two laser tables which are used
simultaneously by all “°Ca*t experiments, and an experiment table where the vacuum
apparatus is located. In this thesis only a short overview of the optical setup is given, for
more details see Mark Riebe’s or Stephan Gulde’s PhD thesis m, |.

3.2.1 Lasers

For each transition described in chapter a separate laser is used. Tab. H shows the
types of lasers used. All diode lasers are Toptica DL 100, where the 854nm and 866nm
lasers are frequency stabilized to a temperature stabilized cavity via the Pound-Drever-
Hall method [21]. The Titanium-Sapphire lasers are Coherent 899 ring lasers, which are
optically pumped by Coherent Verdi lasers. The 397nm light for driving the detection
transition is generated via the frequency doubling stage which has as input 794nm light
coming from a Titanium-Sapphire laser. The 729nm laser is locked to a very high finesse

(f = 500000) cavity.
2ISEG EHQF2020p
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‘ Wavelength ‘ Usage Laser type
729 nm Qubit transition / Doppler Cooling Titanium Sapphire
397 nm Detection / Doppler cooling / Optical pumping | Titanium Sapphire
866 nm Detection / Repumping Diode
854 nm Sideband cooling repumping / State initialization Diode
422 nm Photoionization Diode
375 nm Photoionization Diode

Table 4: The lasers used in the experiment. The 866nm , 854nm and 397nm lasers have a linewidth
of around 100kHz. The linewidth of the 729nm laser is around 50Hz. The photoionization lasers
are not stabilized.

The 729nm setup A prerequisite for high fidelity qubit operations and a long qubit
coherence time are small intensity and phase fluctuations of the 729nm laser. The linewidth
of this laser was measured to be 48Hz on a timescale of one minute B], which corresponds
to a decoherence time of about 10ms B] Beat measurements with an identically set-up
laser at the “3Ca™ experiment have shown a combined linewidth of less than 5Hz in 1s.
At the ions position, the laser is focused to a spot size smaller than the inter-ion distance
and it is possible to switch between different ions during an experimental cycle.

Since the laser is placed on a different optical table than the vacuum vessel, the light
is transferred to the experiment table via a mono-mode fiber. Intensity and phase noise
fluctuations induced by the fiber are compensated with an active phase and intensity stabi-
lization circuit M] The light is then coupled into a double pass acousto-optical modulator
(AOM). In this AOM the actual frequency and amplitude of the laser manipulating the
ions is determined. The light is then coupled into another fiber going into a closed box
where the beam is focused and deflected to achieve single ion addressing. To achieve this,
the beam passes a telescope with one lens mounted on a translation stage, the electro opti-
cal deflector (EOD) and a dichroic mirror which reflects 729nm light and transmits 397nm
light. In front of the vacuum chamber is a microscope lensﬁ which focuses the beam to
a width of about 2um which is smaller than the typical inter-ion distance of about 5um.
The path backwards through the objective is used to detect 397nm light with an EMCCD
cameraH. A simplified schematic for the optical setup for ion addressing is shown in Fig. P11

The infrared laser setup The 866nm and 854nm lasers are placed on a separate optical
table. Their light is transmitted to the experiment table with one mono-mode fibre. The
lasers used are Toptica DL100 diode lasers stabilized to a reference cavity with the Pound
Drever Hall method. The linewidth of the locked laser is in the 100kHz regime, which
is much smaller than the linewidth of the used transitions. On the experiment table the
infrared lasers and the 397 laser used for Doppler cooling and detection are coupled into

the same photonic crystal fibre which is mono-mode for both wavelengths.

3Nikon MNH-23150 ED Plan 1.5x
4 Andor iXon DU8SG0AC-BV
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Figure 27: Simplified 729nm laser beam path.

The blue laser setup The 397nm light for optical pumping, detection and Doppler cooling
is generated by a frequency doubled Titanium-Sapphire laser which is stabilized to a cavity
in the same vacuum vessel as the infrared lasers. The laser is also transmitted to the
experiment table with a mono-mode fibre. After the fibre the laser is split into two beams,
one used for Doppler cooling and detection, and another beam for initial state preparation.
The second beam is aligned along the trap axis and has circular polarization. Due to its
polarization this beam is referred as the “sigma” beam. The detection path is fed through
an acousto optical modulator and then coupled in the photonic crystal fibre together with
the infrared light.

3.2.2 The detection system

State detection can be carried out using two different methods, using either a photo multi-
plier tube (PMT) or an intensified CCD camera. The PMT is used for state detection when
loading the trap and for experiments where pulses are generated conditionally depending
on the outcome of a measurement. The CCD camera can be used when state detection of
multiple ions is required.

The PMT and the camera are mounted along the axis on which the 729nm light
is shone into the trap. Stray light is suppressed by using optical filters in front of the
detection devices. The camera is located behind the microscope objective which is used
to focus the 729nm beam. The 729nm and the 397nm beam are separated by a dichroic
mirror. The camera image is evaluated on a dedicated computer. For more information
on state detection see Mark Riebe’s PhD thesis dﬂ]

3.3 Experiment control

In this section the experiment control setup of the °Ca™t experiment is described. The
most important parts of the experiment are directly controlled by the experiment control

computer using a LabView control program. The most notable computer controllable
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experimental parameters are:

e Frequency and intensity of the 397nm, 866nm and 854nm lasers via VCOsH and

variable attenuators, which are controlled by analog voltages.
e End-cap voltages, which are generated by a digitally controlled high voltage supply.

e Position of the lens in the 729nm addressing box via a digitally controlled XYZ

translation stage.

e Voltage on the electro optical deflector in the addressing box generated by an analog

voltage and a high voltage amplifier.

e Frequency and Intensity of the 729nm laser via direct digital synthesis and a variable

gain amplifier.

As mentioned in section([CZ), an experimental cycle consists of an exactly timed sequence
which is repeated around 100 times. The experimental controls are therefore divided into
synchronous and asynchronous controls. The synchronous controls need to be changed
within one of these experimental cycles whereas it is sufficient to change asynchronous
controls between different sequences. The most challenging control parameter is the analog
radio frequency signal driving the AOM for coherent manipulation of the qubit. The two

different setups are named with respect to the method of their radio frequency generation.

Asynchrounous Control

async TTL output

Analog DC output
— ™| Lenscontrol

== EOD control

— HV control

' '

Sync TTL output o

RF generation

ion addressing

Figure 28: The Marconi setup. The synchronous control signals are generated by a DIO64 timer
card. The asynchronous analog and digital signals are generated by a National Instruments NI6703
card.

The Marconi setup An overview of the Marconi setup is shown in Fig. The syn-

chronous controls are generated via a timer card from National InstrumentsH.This card is

>Voltage controlled oscillator
NI DIO64
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Figure 29: Previously used 729nm radio frequency setup. Each RF source shown is realized by
an individual Marconi Synthesizer. (Image from [16])

is able to generate exactly timed digital TTL pulses. It may be triggered by an external
input to synchronize the experiment with the mains line phase. As stated above the most
demanding part of the experiment control is the creation of the radio frequency signals for
qubit manipulation. The required signals are generated by radio frequency synthesizerd.
These synthesizers are not controllable within a sequence and therefore have to be pro-
grammed prior to each sequence and switched with the help of digitally controlled radio
frequency switche@. As multiple frequencies are required within one sequence, the set-up
grew to consist of nine frequency synthesizers connected in a complicated switch network
which is shown in Fig. B Analog and digital channels which don’t change during a se-
quence were controlled asynchronously by a NI6703 output card. The only analog channel
which needs to be changed synchronously during a sequence is the voltage of the EOM
required for ion addressing. This is achieved by writing the sequence of required voltages
in advance into the buffer of the fast NI6713 output card. The card is then triggered by

synchronous digital pulses.

The programmable pulse generator setup Fig. Bllshows the currently used setup, which
uses the programmable pulse generator (PPG) to generate all synchronous signals. The
programmable pulse generator is able to generate exactly timed digital and radio frequency
pulses. It is able to generate radio frequency signals with different frequencies and phases
within one sequence. It was originally designed by Paul Pham and is described in more
detail in the section below. The generation of the asynchronous control signals is unchanged

with respect to the Marconi setup. The ion addressing scheme is generally the same as

"Marconi 2032A
8Mini Circuits ZYSW-2-50DR,
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Figure 30: The programmable pulse generator electronic setup. Asynchronous analog and digital
control voltages are controlled via a National Instruments PCI card. The synchronous digital and
radio frequency outputs are controlled by the programmable pulse generator which is connected
to the experiment control computer via a standard Ethernet interface.

for the Marconi setup, however the digital trigger is now generated by the programmable

pulse generator.

3.4 The programmable pulse generator
3.4.1 Overview

As described in the section above, the experimental sequences are generated by the pro-
grammable pulse generator (PPG). The programmable pulse generator is a device which
is designed to generate exactly timed digital (TTL) and radio frequency (RF) pulses. As
shown in Fig. Bl the programmable pulse generator may be subdivided in four major
blocks:

e Communication via Ethernet with the experiment control computer
e Timing control and program flow control
e Radio frequency pulse generation

e Digital output system

The heart of the programmable pulse generator is a complex programmable logic
chip (field programmable gate array). A field programmable gate array (FPGA) is a
reconfigurable logic device which consists of small logic blocks capable of carrying out
arbitrary logic functions. The FPGA used in the programmable pulse generatorﬁ has over
12 000 logical units, and therefore it is possible to realize complex designs (for example

an entire microprocessor). The programming of the FPGA is accomplished in a hardware

9Altera Cyclone EP1C12
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Figure 31: Logical block diagram of the programmable pulse generator. The communication,
timing control, digital output subsystem is located in a programmable logic chip. The radio
frequency is generated by an external synthesizer.

description language (HDL). The VHSICE hardware description language (VHDL) is used
in this project. The advantage of using a standard hardware description language is the
ability to generate a design independent of the actual type of hardware and independent of
the development environment and ensuring therefore portability. The steps for generating

a design in an FPGA are:

e Hardware description (VHDL)
e Behavioral Simulation

e Synthesis and Optimization

e Timing Simulation

e Device programming

For the complete design flow the freely available web edition of the Quartus II design suite
from the FPGA manufacturer Alter
The hardware block diagram for the programmable pulse generator is shown in Fig. B2

is used.

All logical blocks except the radio frequency generation are integrated in the FPGA. The
hardware for the FPGA was designed by Paul Pham and is described in his Master’s
thesis dﬂ] The communication with the computer is realized over a standard Ethernet
interface via a custom protocol. Therefore no additional hardware on the experiment
control computer is required. A more detailed overview of the programming of the FPGA
is given in section (BZ3]).

The FPGA has only digital outputs and therefore the radio frequency pulses are
generated by a direct digital synthesizer (DDS). Direct digital synthesizing is a technique
of generating an analog radio frequency output from a stable digital clock. Due to its
digital nature the direct digital synthesizer offers better control over the generated output
than analog techniques to generate radio frequency signals (VCOs, PLL, etc). This makes

phase coherent frequency switching within one sequence with only one synthesizer possible.

Y0Very-High-Speed Integrated Circuits
"http://www.altera.com
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For a more detailed description of direct digital synthesizer operation see section(BZZ).
The programmable pulse generator adds the ability to generate amplitude modulated radio
frequency pulses. This is realized with a digital to analog converter (DAC) in combination
with a variable gain amplifier (VGA). The digital to analog converter and the direct digital
synthesizer are controlled by the digital outputs of the FPGA. With the help of additional
addressing electronics, the FPGA is able to control up to 16 synthesizers and 16 digital
to analog converters. A general purpose 12C (Inter-Integrated Circuit) serial bus is also
implemented in the FPGA programming. This bus may be used to interface different
microprocessors and measurement devices, but so far use of this bus has not been required.

Since several research groups are using the programmable pulse generator, it is man-
aged as an open source project on the Sourceforge Project management homepag. The
software is released under the BSD open source licens. The most recent software source

code and hardware design files are available on the project Web—page.

= DDS
FPGA
A
\

= TTL signal

DAC = VGA — RFsignal
-—=—=control voltage

Digital In/Out RF to AOM

Figure 32: Hardware block diagram of the pulse generator. The core is a programmable logic
device (FPGA). Radio frequency pulses are generated by the direct digital synthesizer (DDS).
Amplitude modulation of these pulses is realized with the digital to analog converter (DAC) in
combination with the variable gain amplifier (VGA). The digital inputs to the FPGA are used as
triggers to synchronize the sequence to the mains line phase. The free outputs of the FPGA are
used as synchronous digital outputs.

3.4.2 Frequency Generation

To reduce development time and cost, evaluation boards for the direct digital synthesizer
the digital to analog converter, and variable gain amplifier supplied from Analog Device
were used. In order to use more than one frequency source simultaneously, additional
addressing electronics (“chain boards”) are used for the synthesizer and the digital to analog
converter. The variable gain amplifier is controlled by an analog voltage and therefore
requires no additional addressing logic. It is possible to address up to 16 different radio

frequency channels with four address bits for the synthesizer and the digital to analog

Phttp:/ /www.sourceforge.net

YBhttp:/ /www.opensource.org/licenses/bsd-license.php
"“http://pulse-sequencer.sf.net

Yhttp:/ /www.analog.com
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converter. The schematics of these chain boards are available on the project web—page@ .

Direct digital synthesis The direct digital synthesizer may be divided into digital and
analog parts. A block diagram of a direct digital synthesizer is shown in Fig.B3l The digital
part consists of a phase accumulator and a sine lookup table. The phase accumulator
increases its value every time it receives a positive slope on the clock input. The value by
which the phase register is increased determines the frequency of the generated sine and is
called the frequency tuning word (FTW). From the actual value in the phase accumulator
the amplitude is obtained with a sine lookup table. The width of the phase register is 32
bit, but since a 32 bit lookup table would require over 400 million entries, only the 12 most
significant bits are used. This constraint has no effect on the accuracy of the frequency,
which is still determined by the phase and therefore the 32 bit register. The sine amplitudes
are converted into an analog current with a 10 bit digital to analog converter inside the
chip. Therefore there is almost no loss of information due to the reduced width of the sine
lookup table. On the analog side there are impedance matching and filter networks.

As for all digitally sampled signals, the Nyquist sampling theorem has to be applied on
the output of the synthesizer M] This theorem states that every frequency f, generated
with a sampling frequency fs, produces an additional mirror frequency f,, = fs — f. This
limits the output frequency f to a maximum frequency fa: < fs/2. The unwanted mirror
frequencies have to be filtered out using analog filters. In practice the maximum frequency
is determined by the steepness of this output filters to fie. &~ 0.4 - fs. A more detailed

introduction to direct digital synthesizer operation is given in references H, |.
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Figure 33: Block diagram of the direct digital synthesizer. It consists of a phase accumulator, a
sine lookup table and a digital to analog converter. (image from [27])

Performance of the direct digital synthesizer The main advantage of a direct digital
synthesizer over analog frequency generation methods is that the switching between fre-
quencies and even switching on and off the output may be achieved in a few hundred
nanoseconds. The frequency drift of the output signal is only dependent on the drift of

the reference frequency which may be obtained from a precise frequency standard. Given

Y http://pulse-sequencer.sf.net
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the fact that the phase is controlled digitally and switched with great accuracy and re-
peatability, phase coherent switching between several frequencies is possible within a few
microseconds.

The limitations of direct digital synthesizers are due mainly to the limited resolution
of the built in digital to analog converter and appear as spectral impurities and quantized
digital to analog converter noise. Another fundamental disadvantage of digital to analog
conversion is the presence of mirror frequencies. The higher harmonics generated by non-
linearities of the output are also subject to the Nyquist theorem and mirror frequencies
of them may be near the fundamental frequency. To estimate the spectrum of the DDS
for all possible clock and output frequencies an on-line simulation tool is available at the
Analog Devices Websit.

The measured figures of merit for the synthesizer used in the programmable pulse
generator are presented in Tab. Bl The frequency resolution of the synthesizer depends
on the register width of the phase accumulator and the reference frequency. The minimal
frequency step is equivalent to a change in the least significant bit of the frequency tuning
word. This leads to the following resolution for a reference frequency of 800MHz:

Af = % =0.18H=z
If a higher frequency resolution is required, it is possible to decrease the reference frequency,

however this also decreases the maximum achievable output frequency.

Maximum output frequency ~ 350 MHz
Minimum output frequency <10MH=z
Number of coherent frequencies 16
Frequency switching time < 150mns
Phase offset accuracy 21 2.4-107%
Signal to noise ratio 50dBc
Frequency resolution 0.18Hz
Maximum output level ~ —1dBm

Table 5: Figures of merit for the radio frequency generation of the programmable pulse generator
for a clock frequency of 800MHz.

Phase coherent switching For coherent qubit manipulation the phase of the laser light
is crucial as this determines the axis of rotation within the XY plane of the Bloch sphere.
The phase reference for a particular transition is set by the first laser pulse exciting that
transition. All subsequent pulses have to be phase-coherent with respect to the first pulse
in order to achieve fully controllable coherent state manipulation. As the laser is driven
by an AOM, the phase may be controlled by setting the phase of the radio frequency
driving the modulator. Additionally a single sequence may include pulses on more than one
transition (for example carrier and sideband transitions) therefore phase coherent switching

of multiple frequencies is required within one sequence. A phase offset is required to realize

"http:/ /designtools.analog.com /dtDDSWeb /dtDDSMain.aspx
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rotations around the 7 axis of the Bloch sphere. The synthesizer has only one phase
accumulator built in, therefore phase continuous switching between different frequencies is
not possible with a single synthesizer. Fig. Bdl gives an overview of the different switching

modes.

no switching

TANANA
RVEVERYis
RNV
BVARVAS

Figure 34: Different switching methods. For phase coherent switching the phase is set to the
value as if there was no switching at all. For phase continuous switching there are no phase jumps.

Because the synthesizer has only a single phase accumulator, keeping track of the phase
of multiple frequencies is handled by the FPGA which has 16 phase accumulators similar
to the ones built into the synthesizer. These phase accumulators have the same width as
the phase accumulator in the synthesizer. The FPGA can only be clocked with maximum
frequencies of around 100 MHz and therefore the FPGAs frequency tuning word is always
the tuning word of the synthesizer multiplied by eight. In a phase coherent frequency
switching event, the content of one of these registers is written into the phase accumulator
of the synthesizer. As there are different relative phases required for a single frequency it
is possible to add a constant value to the current phase accumulator in the FPGA. The
timing of the writing process determines the quality of the phase coherent switching. As
long as the delay between reading out the phase accumulator in the FPGA and setting the
phase accumulator in the synthesizer is constant for every switching process, the delay may
be left uncompensated as it leads to a constant phase offset. For writing the phase word to
the synthesizer the 32 bit word is split into four eight bit words. To keep the phase word
constant during the switching event, the value of the phase accumulator in the FPGA is
copied into a dedicated register. This register is then transferred to the synthesizer. After
this writing process the synthesizer takes over the new phase word with the rising slope

of a digital control signal generated by the FPGA. This process ensures a constant time
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delay between writing the phase accumulator into the register in the FPGA and updating

the phase register in the synthesizer.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Figure 35: Block diagram of the phase registers inside the FPGA. The FPGA clock frequency is
the synthesizer reference clock frequency divided by eight. A phase offset is added to the value of
the phase register and the sum is written to the synthesizer.

Amplitude shaping In order to create arbitrary pulse shapes for reducing the off-resonant
excitation, a variable gain amplifier controlled by a digital to analog converter is used. The
digital to analog converter is itself controlled by the FPGA. An amplitude shaped pulse is

generated in five steps:

e Phase coherent switching to the desired frequency and relative phase.

Generation of the rising slope with the digital to analog converter.

Wait cycles for realizing the desired pulse length.

Generation of the falling slope with the digital to analog converter.

Switching off the synthesizer.

The variable gain amplifier is an analog devices AD8367 which is logarithmic in control
voltage. Therefore the digital to analog converter has to compensate this behaviour. This
is done while compiling the sequence in the experiment control computer. The digital to
analog converter is an AD9744 which has a resolution width of 14 bits and a maximum clock
rate of 100 MHz. Addressing of multiple converters is realized with chain boards which
enable the clock of the converter depending on the addressing word. The resolution of the
amplitude shaping is 0.01 dB (the resolution is given in dB because the VGA is logarithmic
in control voltage). Therefore the resolution of the (linear) pulse shape changes with the

actual radio frequency power used.

3.4.3 The FPGA Core

The design of the FPGA system of the programmable pulse generator may be subdivided

in three different layers: the hardware, the firmware and the software. The hardware layer
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was designed by Paul Pham for his Master’s thesis at MIT E] The firmware layer controls
the behaviour of the FPGA. The firmware currently used was also written by Paul Pham,
whereas future versions are likely to include new components written by the author. The
software layer is running on the experiment control computer and handles the generation
and transmission of the machine code. It was written in a collaboration between Paul
Pham and the author.

The hardware is designed to be able to generate accurate digital pulses. The Low
Voltage Differential Signaling (LVDS) logic standard is used for external digital signals.
This standard was defined by National Semiconductor@ and is widely used for high speed
long distance digital signal transmission. Due to its differential nature it is very insensitive
to electrical noise coupled into and reflections generated inside the transmission lines. The
board has different options for reference clock signals. The two independent clock inputs
of the FPGA may be either connected to external radio frequency connectors, connected
to a clock derived from the external bus or connected to one of the two quartz oscillators
placed on the board. To increase the possible program size an external memory chip is
available on the board.

The firmware may be divided in the following blocks, as shown in Fig.

e PTP pulse transfer protocol: For transferring data between the computer and the
FPGA.

e PCP pulse control processor: The core with the timing and program control logic.

e Interfaces to the external and internal peripherals.

PTP TTL out
| PTPCORE p| PCPCORE | g

12C ETHERNET RAM

Figure 36: Simplified block diagram of the FPGA firmware. The transfer core handles the com-
munication with the experimental control computer and writes the byte code to the memory(RAM).
It also handles the start and stop commands for the timing core (PCP). The timing core reads out
the program from the memory and decodes and executes it. The 12C core is controlled directly by
the transfer core.

The pulse transfer protocol is a custom protocol for controlling the programmable
pulse generator. It is based on the User Datagram Protocol (UDP) which is a standard
Internet protocol. The part of the firmware which implements this protocol is denoted

in the following as the transfer core. The protocol supports directly the connection and

8http://www.national.com
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synchronization of several FPGA boards. The most important commands are shown in
Tab. @l

‘ Name ‘ Description ‘
Discover Searches for connected programmable pulse generators
12C Sends data to the general purpose 12C Bus
Start Starts the current sequence.
Stop Stops the timing core to initiate a new data transfer.
Write Writes data to the memory of the programmable pulse generator.

Table 6: Important commands of the pulse transfer protocol

The full specifications of the pulse transfer protocol may be found in chapter 4 of Paul
Pham’s Master thesis [23] or in appendix((J). The transfer core extracts the machine code
from the received data and writes it to the memory (RAM) of the programmable pulse
generator. After receiving the data the sequence is initiated with the start command.

After receiving the start command, the pulse control processor (PCP) fetches the first
instruction from the memory. This part of the firmware is denoted as the timing core. It
decodes and executes the single commands of a program. In addition to basic program
control structures, the instruction set also contains commands for setting the digital out-
put and for phase coherent switching. Although the instruction set shows parallels with
a microprocessor there are no general purpose registers, arithmetic or logic functions im-
plemented. This leads to the fact that the only way to influence the running program
is through trigger inputs. Small changes require a full recompilation. The most impor-
tant commands are shown in Tab. [l The phase accumulators required for phase coherent
switching as described in section(BZ2) are also part of the timing core.

The outputs on the external bus are separated in digital TTL outputs of the pro-
grammable pulse generator and control signals for the synthesizer and the digital to analog
converter. In total the external bus is 64 Bits wide, where 20 bits are available for digital
TTL outputs. For the implementation of the wait command, the timing core uses a register
which is loaded with the number of clock cycles which correspond to the desired waiting
time. For each rising edge of the clock the value of this register is decreased by one. The
next command is not executed until the register value is zero.

Additional information about the pulse transfer protocol and the programming of the

programmable pulse generator is given in appendix ().

‘ Name ‘ Description ‘
Pulse Generates a digital pulse on the external bus.
PulsePhase | Writes the content of a phase accumulator to the external bus.
Jump Jumps to a different memory address.
Branch Jumps to a different memory address depending on triggers.
Wait Waits for a certain number of clock cycles.

Table 7: Important machine code commands of the programmable pulse generator
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3.5 The Software
3.5.1 Overview

This section gives an overview over the software which is used for experiment control of
the °°Ca™ experiment. The main experiment control program is written in the graphical
programming language of LabView. It was written by Wolfgang Hénsel and a detailed
description would be beyond the scope of this thesis. This section will concentrate on
the part of the experimental control software which generates and transfers the machine
code for the programmable pulse generator. This software was written entirely in the
Python open source programming languagela. It will be denoted as the Python server.
An overview of the total experiment control software is given in Fig. Bl The Python
server source code is available on the pulse sequencer project homepage®]. Communication
between the LabView program and the Python server is realized with a standard network
protocol (TCPE]) to ensure maximum portability. In the current setup the Python server
and the LabView program run on the same computer and communicate over the Ethernet
loopback interface. The Python server is itself divided into three different layers. It receives
a human readable pulse sequence, converts this into machine code for the timing core inside

the FPGA and then transmits this to the programmable pulse generator.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Figure 37: Experiment control software. The LabView control software and the Python server
are connected via a TCP connection. The Python server generates byte code for the FPGA and
transmits it via the pulse transfer protocol.

3.5.2 The Python server

The different Layers of the Python server are shown in Tab. Bl A layer provides functions
to the layer above and uses functions from the layer below. The end user layer receives
functions directly from the LabView program and converts this to API layer commands.
Examples of functions at the end user layer layer would be “single qubit rotation” or “side-
band cooling”. The application programming interface (API) layer converts this functions
to commands for the programmable pulse generator. Examples of functions at the API

layer are “switch on synthesizer” or “set digital output to level high”. The pulse transfer

19 www.python.org

*’http://pulse-sequencer.sf.net
2 Transmission Control Protocol
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protocol is implemented in this layer. It is also used for writing small programs to de-

bug the hardware. The compiler layer generates the binary machine code from these API

commands.
‘ Name ‘ Description ‘
End user Receives human readable pulse sequence.
API Converts pulse sequence to events for the programmable pulse generator
compiler Machine code generation for the timing core

Table 8: The Python server software layers.

There are two different ways of describing a pulse sequence in the end user layer. They
are called the “parallel mode” and the “sequential mode”. The parallel mode is used in the
40Ca™ experiment whereas the sequential mode is used by all other experiments. In the
parallel mode the transmitted data is directly executed by the Python server whereas in
sequential mode the LabView program sends a command string with the file name and the
parameters of the current sequence. The difference between the two modes is described in
appendix([B]).

The syntax of the following program examples is not strictly correct but instead
shows the concept of the different layers. In Algorithm(1) a simple end user layer program
is shown. It consists of a simple experimental sequence with Doppler cooling, a single
qubit rotation and qubit detection. The corresponding API layer program is shown in
Algorithm(2). While the end user layer program is self explanatory the API layer program
needs some further explanations.

The begin _sequence() function is mandatory at the beginning of all sequences. It gen-
erates the internal variables used for the APT and the compiler layer and additionally gener-
ates events for initializing the external hardware. The begin _finite loop() marks the start of
the sequence to be repeated. The phase accumulators in the FPGA are initialized with the
initialize frequency (f carrier) command. The set ttl() and switch frequency() commands
are used to generate the digital and radio frequency pulses. The end_finite loop(100) com-
mand marks the end of the repeated sequence. The end sequence() command starts the
compilation and the transmission of the sequence. A complete list of all available com-

mands is given in the appendix of this thesis.

Algorithm 1 Example end-user program

doppler cooling()
R729(1,1,0,Carrier)
detection ()

3.5.3 Limitations

One major limitation of the Python server is the compilation speed. Amplitude shaped
pulses need 100 or more digital to analog converter events. When the amplitude shape is

calculated for every pulse used in the sequence this leads quickly to a large sequence which
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Algorithm 2 The API program generated from the sequence shown in Algorithm(1)

begin _sequence ()
begin_finite (loop)
initialize frequency (f_ carrier)

# doppler cooling

set _tt1 (["866_sw","397_dopp","397_sw" ,1)
wait (1000)

set _ttl (["866_sw","397_dopp","397_sw" ,0)

# single qubit rotation

switch frequency (f carrier ,0)
rising slope(shape time,amplitude)
wait (t _pulse)

falling slope(shape time,amplitude)
switch off (f_ carrier)

# detection

set_ttl (["866_sw" ,"397_det","397_sw" 1)
wait (2000)

set _tt] (["866_sw","397_det","397_sw" ,0)

end finite loop (count=100)
end sequence()

takes over one minute to compile. In order to work comfortably the compile time should
not be much longer than one second. Therefore the amplitude shapes are compiled once
and stay in the FPGA memory until a new shape is compiled. In the program they are
then invoked as subroutines. They are not overwritten when a new sequence is generated,
and this leads to short compilation times when the parameters of the amplitude shape is
not altered. If the parameters of the amplitude shape has to be altered this leads to long
compilation times and makes system calibration tedious.

Another bug of the programmable pulse generator is that when a new sequence is
loaded, sometimes the first command of the sequence may not be executed correctly. This
is due to a known bug in the FPGA firmware. A workaround is simply sequence recompi-

lation.

3.6 Future development of the programmable pulse generator

The programmable pulse generator is currently in further development to enable a more
general use. The instruction set is being completely rewritten to include more specialized
commands for digital to analog converters and direct digital synthesizer control. The lack of
a counter, for example for counting fluorescence photons, is a major missing feature which
will be added in the near future. Experiments with pulses depending on a measurement
during the sequence will become possible without the use of external hardware. In general

the development will lead to a more flexible core, where arithmetic and logic operations
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can be used to create the amplitude pulse shapes at runtime thus saving compilation time.

There is also an effort to develop custom boards for radio frequency generation. In
addition, by combining the data bus for the digital to analog converter and the direct
digital synthesizer, additional digital output channels may be obtained. The goal is to

increase the count of digital outputs from 21 to 32.
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4 Experimental results

4.1 Functionality tests of the programmable pulse generator

Prior to integrating the programmable pulse generator into the experimental setup, its
features had to be tested thoroughly. The emphasis of these tests was on characterizing
the radio frequency outputs and the phase coherent switching. Testing the digital outputs

and the communication with the experiment computer was mainly done by Paul Pham

and is not described here.
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Figure 38: Radio frequency pulse generated by the direct digital synthesizer. This pulse was
measured with an oscilloscope directly at the output of the synthesizer.
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Figure 39: Radio frequency pulse with a Blackman shape. The spikes at the beginning of the
pulse are suppressed by switching on the variable gain amplifier delayed.

First the quality and the switching speed of the radio frequency signal from the direct
digital synthesizer was analyzed. In Fig. BY a rectangular radio frequency pulse is shown.
The noticeable spikes at the beginning and the end of the pulse are caused by the ana-

log output filter on the direct digital synthesizer evaluation board. The spikes resemble
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the step response of this output filter. The effect of theses spikes may be minimized by
switching the direct digital synthesizer on while the variable gain amplifier is still switched
off. The variable gain amplifier is switched on after the spike at the beginning of the pulse
vanishes. Analogously the variable gain amplifier is switched off before the synthesizer.
The beginning of a Blackman shaped pulse with a suppressed spike is shown in Fig. B9
The spikes are attenuated by the maximum achievable attenuation with the variable gain
amplifier which is 40dB. The spike in Fig. is clipped by the digital oscilloscope and
therefore the attenuation seems to be only a factor of 4 whereas it is attenuated by a big-
ger amount. Furthermore the Fourier transform of these spikes contains only frequencies
lower than 50MHz and therefore does not affect the modulated laser light as the modulator
has a center frequency of 270MHz and a bandwidth of 50MHz.

4.1.1 Spectrum of the direct digital synthesizer output

Generally the spectral quality of a radio frequency source has to be measured when the
source operates in continuous wave mode. The spectrum of a radio frequency pulse as
shown in Fig. BY is broadened due to its finite length and therefore it is not possible to
measure the spectral quality of the source with a short pulse. As mentioned in section(BZ2)
the spectral quality of the direct digital synthesizer is direct related to the quality of its
clock signal. The clock is generated by a high quality Marconi synthesize which is
synchronized to an oven controlled crystal oscillato

with a phase noise of better than 116dBc/Hz at an offset of 20kHz. According to its
datasheet the phase noise of the direct digital synthesizer can be as good as 150dBc/Hz

1. The Marconi synthesizer is specified

for an offset of 100kHz. In our setup the phase noise of the radio frequency output is then
determined by the phase noise of the reference clock which is generated by the Marconi
synthesizer. The phase noise of the synthesizer output was not measured as there was no
suitable measurement device available.

The spectrum of the direct digital synthesizer output is shown in Fig. Bl and Fig. BTl
A measure of the spectral quality is the spurious free dynamic range (SFDR) which is
the ratio of the power of the carrier signal to the power of the largest spurious signal.
From the narrow spectrum the narrow band spurious free dynamic range is measured to
be 70dBc whereas the wide band spurious free dynamic range is 55dBc. The values given
in the datasheet are 72dBc for the narrow band and 52dBc for the wide band spurious free
dynamic range. The highest side-lobe in the wide band spectrum is the mirror frequency
of the second harmonic of the synthesizer’s digital to analog converter output. The origin
of the largest spurious signal may vary for different output and clock frequencies. The
carrier frequency for this measurement was 268MHz and the second harmonic frequency
is 536MHz. With a clock frequency of 800MHz the mirror frequency is at fpaco =
Jetock — 2+ fearrier = 264 MHz.

**Marconi 2032A
2 Oscilloquartz OCX08600
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Figure 40: Narrow spectrum of the DDS output. The largest spurious signal has a power of
-80dBm whereas the carrier signal is at -10dBm.
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Figure 41: Wide spectrum of the DDS output. The largest spurious signal is the mirror frequency
of the second harmonic of the carrier frequency.

4.1.2 Characterization of the phase coherent switching

For the characterization of the quality of phase coherent switching, the phase differ-
ence between two radio frequency sources is observed with a phase detector. For the
measurement two independent direct digital synthesizer outputs from one programmable
pulse generator were connected to a mixeird. A mixer multiplies the two input signals
ui(t) = Uy cos(wit + ¢) and ug(t) = Us cos(wat) and therefore produces a component
with the frequency difference U,y = Uy - Us - sin((w1 — wo) - t — ¢) and a component with
the sum of the two frequencies. In this measurement the component oscillating with the
frequency wi 4+ ws is filtered out by a low pass filter and may therefore be neglected. In the
measurement setup one synthesizer was programmed to generate a continuous wave radio

frequency output at a constant frequency fo. The other synthesizer was switched on and

24Mini Circuits ZAD-1
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off at the same frequency using phase coherent switching. The sequence used for testing
the phase coherent switching consists of three pulses where the phase of the first pulse is
slightly different to the phase of the other two pulses. By measuring the difference voltage
between the second and the third pulse, the quality of the phase coherent switching process
can be determined. Fig. shows the output of the mixer for a phase difference between
the first and the second pulses of ¢; 2 = 7/200 . This corresponds to a voltage difference of
approximately 1.3mV. The phase difference between the second and the third pulse is set
to zero. The voltage difference between Pulse2 and Pulse3 can be estimated to be below

0.3mV and therefore the error of the phase coherent switching may be expressed as

0.3mV =« T

Ag < ==,
1.3mV 200 800

The fast glitches shown in Fig. @3] are ring down effects in the low pass filter and are
caused by neither the direct digital synthesizer nor the variable gain amplifier. If these
ring down effects would be caused by the synthesizer they should also be visible in Fig.
or Fig. Bd which is not the case.

Switch phase

Low Pass
Out
Filter

Const freq

DDS 1

DDS 2

Figure 42: Electronic setup for measuring phase coherent switching

Pulse 2 Pulse 3

Amplitude (V)

—40 —30 —20 —10 0
Time (ps)

Figure 43: Phase coherent switching events. The phase difference between Pulsel and the suc-
ceeding pulses is A¢ = 7/200.
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4.1.3 Calibration of the radio frequency power

The radio frequency output power of the programmable pulse generator is determined by
the digital to analog converter output voltage which controls the variable gain amplifier.
The amplification of the variable gain amplifier is logarithmic in control voltage. The
dependence of the radio frequency output power on the digital to analog converter value
is shown in Fig. B4l The transferred data from the LabView experiment control program
contains the radio frequency amplitudes in linear scale between 0 and 1. For compatibility
with the previous radio frequency setup, where the signals were generated with Marconi
synthesizers, a transferred amplitude of 1 corresponds to the former maximum achievable
output power (13dBm). This power is set with external fixed attenuators. The hardware
configuration of the radio frequency channels is shown in Fig. Bl The acousto optical
modulator is driven with a maximum of 20dBm to prevent thermal effects due to power
dissipation. According to the datasheet the variable gain amplifier has a dependency on
the control voltage of 10dB /200mV . The control voltage is calculated from the digital to
analog converter value y as Ueontrol = Upmaz - y/(2'* — 1). As the variable gain amplifier
has a poor switching performance if the control voltage is at OV previous to a pulse, a

minimum voltage is applied. The function used for calibrating the variable gain amplifier

is
y=a+b-logy(z+107") .

When inserting the values found in the datasheet this leads to following coefficients.

a = 14300
b = 3200
c = 1500

The remaining non linear behaviour shown in Fig. il is due to saturation effects in

the acousto optical modulator.

0,

—104

RF power (dBm)

—20 4
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Figure 44: RF output power in dBm as a function of the DAC value.
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Figure 45: Light intensity measured on a photo diode as a function of the DAC value.
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Figure 46: 729nm AOM radio frequency setup.
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4.2 Starting up and calibrating the experiment

The first step when operating the experiment is loading the ions into the trap. A beam
of neutral *°Ca atoms is generated by an oven inside the vacuum vessel. The atoms
are then ionized with a two step photo-ionization process inside the trapping region [16].
For high loading rates the photo-ionization beams are spatially superimposed with the
Doppler cooling beam and therefore the ions are cooled immediately after ionization. After
loading the ions, the lasers are adjusted for best spatial overlap with the ion chain. This is
achieved by weakly driving the Sy, — P/, transition and maximizing the fluorescence. To
achieve optimal conditions for Doppler cooling the laser power is adjusted to the saturation
power of the cooling transition and detuned about half the transition linewidth. The
frequency of the 866nm repump laser is adjusted by maximizing the count rate while
switching on the detection 397nm laser. For adjusting the frequency of the 854nm laser
the 729nm laser is shone in. Without 854nm light this decreases the count rate by a factor
of two. The frequency of the 854nm laser is then set to the point where the fluorescence
is maximized. These adjustments are made in a continuous fluorescence monitoring mode,
whereas for coherent manipulation of the qubit the lasers are switched on and off during
an experimental cycle. The procedure for starting up the experiment is discussed in more
detail in the PhD theses of Hanns Christoph Négerl E] , Harald Rohde @], Christian
Roos @] and Mark Riebe B]

doppler
sigma
detection
854 | 1
866
729 J‘
1 2 3 4 5 6 7 8
Doppler sideband coherent detection
cooling cooling manipulation time [ms]

Figure 47: Scheme of a typical pulse sequence. The main parts are: state preparation, Doppler
cooling, sideband cooling, coherent manipulation and state detection.

The following adjustments are made using a pulsed scheme, where a typical experi-
mental sequence is shown in Fig. BE7l The first 854nm light pulse transfers any population
left in the D3y state from the previous sequence to the Pj/5 state. From this state the
ion decays quickly into the Sy /5 state. Doppler cooling is carried out by switching on the
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+5/2

+1/2 112
-12

Figure 48: Zeeman sublevels of the Sy, — Ds/5 transition. The arrows indicate the two main
carrier transitions.

397nm and 866nm lasers simultaneously. For optical pumping to the m = —% Zeeman
level, several short pulses of ¢~ polarized 397nm light are applied. Sideband cooling is
done with a 729nm laser beam which is red detuned by the axial trap frequency. Addi-
tionally the 854nm repump laser is switched on simultaneously to increase the cooling rate
and short ¢~ pulses of 397nm light are applied to ensure that only the m = —% Zeeman
level is populated. Coherent manipulation of the qubit consists of a series of 729nm laser
pulses. For state detection 397nm and 866nm light are switched on simultaneously and
the ion’s fluorescence is detected with the photo multiplier and the CCD camera.

The focus of the 729nm laser is optimized with respect to the ions positions with a
lens mounted on a digitally controlled translation stage and the electro optical deflector.
After adjusting the spatial positions of the laser beams, the exact frequencies of the carrier
transitions are determined. The Zeeman sublevels used in our experiments are shown in
Fig. For determining the magnetic field strength and the unshifted transition frequency,
the two transitions shown in Fig. ¥ are used. Due to temperature changes of the reference
cavity for the 729nm laser and slow fluctuations in the magnetic field, the laser frequency
has to be adjusted at the start of every experimental run. Once the system is completely
set up, the evolution of the magnetic field and the cavity frequency is traced by periodic
measurements at a typical interval of 30 - 200s. The typical value for the cavity drift is
around 1 Hz/s and for the magnetic field drift 1-1077G/s.

Then the ion positions and Rabi frequencies are measured. For determining the Rabi
frequency, a sequence with a resonant 729nm pulse and varying pulse length is used. The
Rabi frequency is obtained by fitting a sinusoidal curve to the resulting data. The Rabi
frequency is proportional to the amplitude of the electric field and therefore the relationship
between the Rabi frequency and the optical power is 2 ~ \/% . Here one has to bear
in mind that the AOM of the 729 laser is used in double pass configuration and so the
optical power scales with the square of the radio frequency power and this finally yields
Q) ~ Prp. This means that the Rabi frequency should double approximately with every
3dB decrease in radio frequency power. As can be seen in Tab. [ this is not exactly the
case. The reason for this are non linear effects in the AOM. These non linearities are also

observed when calibrating the radio frequency power in section(EL13]).
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‘ Power ‘ Rabi 27 Time

2dB 2.9 us
5dB 1.62 us
8dB 1.02 us

Table 9: Rabi frequencies for different RF pulse powers. The dB values correspond to the Marconi
setup and are therefore relative units.

4.3 Characterizing off-resonant excitations

In this chapter a method for measuring off-resonant excitations is presented. In a sequence
for quantifying these excitations the coherent manipulation consists of a single 729nm
pulse, with variable duration, detuning, RF power and pulse shape. For a single data
point the length of this pulse is varied. A sinusoidal curve with varying offset, frequency
and amplitude is fit to this data as shown in Fig. B9 In most cases only the amplitude
of the sine is used for further processing. For verifying the simple results obtained for
rectangular pulses in section(Z1l) the laser detuning with respect to the qubit transition
was varied. According to the theoretical results the population oscillation dependence on
the detuning should be p = ﬁ, which is verified by the fit shown in Fig. Bl From
Q
this fit the Rabi frequency is determined to be 2 = 27 182kHz . The increasing tail of
the measured data which starts at a detuning of about 900kHz corresponds to the first
motional sideband. As the simulations are based on a a two level system the sidebands are
not taken into account.
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Figure 49: Off resonant excitations with a fitted sine function. The parameters are =
27 182kHz and 6 = 700 kHz.

4.3.1 The effect of pulse shaping

In the following the amount of off-resonant excitations for rectangular pulse and amplitude
shaped pulses are compared. The Blackman shape defined in section(Z2) was used for the
following experiments. In Fig. Bl the off-resonant excitations as a function of the detuning
are compared for two different ramp durations. As expected the off-resonant excitations

vanish faster with increasing ramp durations.
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Figure 50: Off-resonant excitations as a function of the detuning for a rectangular pulse. The fit
yields a Rabi frequency of Q = 27 182k H z.
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Figure 51: Off-resonant excitations as a function of the detuning for different ramp durations.
The solid lines are simulations with a Rabi frequency of 2 = 27 340 kHz.
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Figure 52: Off resonant excitations as a function of the ramp duration with constant detuning.
The only parameter used for the simulation was the Rabi frequency 2 = 27 380k H z
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In Fig. B2 the lengths of the rising and falling slope are varied for a constant detuning
of 6 = 2w 400kHz and a Rabi frequency of 2 = 27 140kHz. Theory and experiment are
in good agreement. Therefore, it is possible to use the simulated values for the typical
parameters used in the experiment. Simulations predict off-resonant excitations of Pp =
3.5-10° when driving a sideband transition with Blackman shaped pulse with tsiope = SHs
and an axial trap frequency of around 1MHz and a Rabi frequency of 200kHz . Due to
projection noise and imperfect preparation of the initial state, this low excitation cannot

be measured.
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Figure 53: Simulated time evolution of a shaped pulse.

It was shown above that the final state of the time evolution can be predicted with
numerical simulations. Further comparison of the experiment to the simulations is accom-
plished by investigating the entire time evolution. However, it is difficult to access the
time evolution during the rising and falling slopes experimentally. Nevertheless it is easy
to generate a pulse which consists of only the rising slope and the constant plateau. With
this method the time evolution between the rising and the falling slope is accessible. As can
be seen in Fig. B3 this evolution is a sinusoidal with constant offset. Therefore amplitude
and offset of a sine function are fit to the measured data and the corresponding numerical
simulations. In Fig. B4l the doubled amplitude and the offset of the fitted sine are shown
for various Rabi frequencies and a ramp duration of 6 us. It can be seem that for a Rabi
frequency of 160kHz the offset converges to a constant value for large detunings. As stated
in section( T3l the state of the qubit is always the corresponding dressed state. In this
measurement this would mean, that the amplitude goes to zero while the offset converges
to a constant value which corresponds to the dressed state in the qubit basis. For a Rabi
frequency of 160kHz the simulations and the experimental results are in good agreement.
For a Rabi frequency of 623kHz the amplitudes are not predicted correctly. This is due to
decoherence which arises from laser intensity fluctuations, which increases with the laser
power due to thermal effects of the acousto optical modulator. Describing these effects in

detail is beyond the scope of this thesis.



4 EXPERIMENTAL RESULTS

66
_0.6
S
205
o
%
=
0.4
0.3
Amplitude
0.2
0.1
’ E
0 \ \ \ \ 0 \ \ \ = \
0 100 200 300 400 0 100 200 300 400
a) Detuning (kHz) Detuning (kHz)
2 0.6
.8
£05
i3
2
=
0.4
0.3
Amplitude
0.2
0.1+
0 \ \ \ \ 0 \ \ \ ‘ i
0 100 200 300 400 0 100 200 300 400
b) Detuning (kHz) Detuning (kHz)
= 0.6 o 1o
.8 .8 i
N 509
E 0.5 E 0.8 o
M o7 ¥
0.4 0.6 ]
0.5
1 Amplitude
0.3 0.4 o
0.3 A
0.2 A 0.2 A
1 0.1 ]
0.1 I I I ] 0 I \ \ \
0 100 200 300 400 0 100 200 300 400
C) Detuning (kHz) Detuning (kHz)

Figure 54: Simulated and measured offset and amplitude without the falling slope for different
Rabi frequencies: a) Q = 27 160kHz, b) 2 = 27 340kHz, ¢) Q = 27613 kHz
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4.3.2 The influence of the initial state

In the experiment, different initial states are created by a resonant pulse with a given
length, and afterwards an off-resonant pulse was applied. The excitation probability for
the D state after a pulse with the duration ¢t = TQW% is Pp = sinQ(g). For evaluating
the influence of the off-resonant excitation the duration of the off-resonant pulse was again
varied. Only the amplitude of the fitted sine is used because the offset is determined
by the initial state and therefore by the duration of the resonant pulse. In Fig. the
dependence of off-resonant excitations on the angle of the resonant pulse for a rectangular
pulse is shown. Performing the measurement for shaped pulses is difficult because a small
error in the initialization pulse leads to a non negligible error in the measurement of off-
resonant excitations. Additionally the quantum projection noise increases when the state is
a mixture of |0) and |1). Therefore the measurement for shaped pulses and different initial
states could not be carried out successfully. An attempt of taking a dataset with a Rabi
frequency of (2 = 27 160kHz and a detuning of 6 = 27 200kHz and a Blackman shaped
pulse with T, = 3pus has been made. For most of the collected data it was not possible
to fit a sine function properly and therefore the data is not presented here. In section (Z1I)
the parameter €2 was introduced as a measure for off-resonant excitations which is does
not depend on the initial state. However, it was not possible to measure small off-resonant
excitations and therefore it is not possile to calculate €? as only an approximation for small

€2 is derived.
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Figure 55: Population oscillation as a function of the angle of the resonant pulse. The parameters
are: ) = 340kHz 6 = 400 kHz.

The data presented above shows clearly that off-resonant excitations are understood

and that the off-resonant excitations can be minimized by using amplitude shaped pulses.
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4.4 CNOT process tomography

Process tomography is a method to fully characterize a quantum process, e.g. a quantum
gate operation [9]. A process is a completely positive linear map which describes the

dynamics of a quantum system.

p— €p)

This process €(p) may be expressed by an operator sum €(p) =, AipAz. The operators
A; can themselves be expressed using a fixed set of operators 4; =) . aimflm. Therefore,

€(p) may be rewritten as
E(p) = Z XnmAmPAIL (18)

where N is the number of qubits and A,, are operators forming a basis in the space of
2NV % 2N matrices. The process matrix x gives a full characterization of the operation. For
one qubit operations A, may be the Pauli operators I , Oz, Oy, 0, whereas for two qubit
operations combinations of these Pauli operators are used. By measuring the final state
for a set of 4V linearly independent input states the process matrix may be reconstructed
by inverting relation Eq. [8 Due to uncertainties in the experimental data the results
achieved by simply calculating the inverse of Eq. [ may be unphysical, which means that
x may not be completely positive. Therefore the process matrix is evaluated by performing
a maximum likelihood analysis to find the quantum process which fits best to the measured
data. The process quality can be characterized by the overlap of the measured Xe.p with

the ideal process matrix y;q. This measure of quality is usually called the process fidelity

Fproc =tr (Xid : Xexp)

Another characterization of the process quality is the mean fidelity Fj,cqn which is
calculated by averaging over the measured state fidelity over a large number of input states.
More precisely, this involves evaluating F' = (¥out.id| €(p) |Vout,ia) for a large number of
randomly generated input states and averaging over the results.

In our experiment, process tomography was carried out to characterize the perfor-
mance of our CNOT implementation [31]. Fig. Bl shows the absolute values of an obtained
x matrix. To investigate the influence of shaped pulse on a complex sequence, a CNOT
process tomography was performed with and without shaped pulses. The mean fidelity
was increased from Feqn = 84.3% without pulse shaping to Fiuean = 89.4% with pulse
shaping. With further optimization of the experimental parameters a maximum mean
fidelity of Fyuean = 92.6% was achieved.
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Figure 56: Absolute value of an experimentally obtained y matrix for a CNOT gate ﬂ]
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5 Conclusions and Outlook

The aim of this work was to set up the programmable pulse generator and quantify the
influences of amplitude modulated laser pulses on off-resonant excitations. The architecture
and capabilities of the programmable pulse generator have been introduced and discussed
briefly. Additionally, the integration of the programmable pulse generator in the existing
experimental setup has been described. A detailed manual for setting up and programing
the programmable pulse generator is given in Appendix ([B).

In section (1)) off-resonant excitations were introduced and it was shown that they
can be eliminated by switching the interaction on and off adiabatically. A simple method
for testing if a given pulse shape and ramp duration are in the adiabatic regime was given in
section (Z2). A Blackman pulse shape was defined and it was shown that this shape with
a ramp duration of 5 us suppresses the off-resonant excitations on the carrier transition
efficiently while driving sideband transitions for the parameters used in our experiment.
The theory presented in this thesis was verified in several experiments with rectangular
and Blackman shaped pulses. Further, it has been shown that the fidelity of a CNOT gate
is increased by applying the pulse shaping techniques described in this paper.

Due to various other improvements in the setup the qubit coherence time and therefore
also the gate fidelities will increase in the near future. Another possibility to increase the
performance is to generate numerically optimized pulse sequences. One possibility to
calculate these optimized sequences is the gradient ascent pulse engineering method [32].
With this method it is possible to optimize the pulse sequences for various criteria. For
the application of this technique arbitrary pulse shapes of the amplitude and the phase of
the radio frequency pulses are required. Hardware-wise this is already possible with the
currently used programmable pulse generator. However the experiment control software
has to be almost completely rewritten to offer this flexibility. Another perspective for the
future are different type of phase gates like the gate proposed by Mglmer and Sgrensen

|. Since off-resonant excitations are one of the biggest predicted error sources in this
type of gate, pulse shaping will be of crucial importance for its implementation.

The development of the programmable pulse generator in the near future will include
a new, more flexible radio frequency generation scheme, more digital output channels and a
more specialized firmware. The planned radio frequency generation will include a different
direct digital synthesizer and an additional FPGA on the same printed circuit board to
increase flexibility and to make the generation of arbitrary pulse shapes an easier task for

the compiler.
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Appendix

A Abbreviations

AOM:

API:

CNOT:

DAC:

DDS:

DHCP:

FPGA:

12C:

IP:

LVDS:

MAC:

NMR:

OSI:

PCP:

PCB:

PLL:

PPG:

PTP:

RAM:

RF:

SFDR:

TTL:

TCP:

UDP:

acousto optical modulator
abstract programming interface
controlled not

digital to analog converter
direct digital synthesizer
dynamic host configuration protocol
field programmable gate array
inter-integrated circuit serial bus
Internet protocol

low voltage differential signaling
media access control

nuclear magnetic resonance
open systems interconnection
pulse control processor

printed circuit board

phase locked loop
programmable pulse generator
pulse transfer protocol

random access memory

radio frequency

spurious free dynamic range
transistor transistor logic
Transmission control protocol

user Datagram protocol
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A ABBREVIATIONS

VCO:

VHDL:

VHSIC:

VGA:

voltage controlled oscillator
VHSIC hardware description language
Very-High-Speed Integrated Circuits

variable gain amplifier
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B Programmable pulse generator manual

B.1 The python server

In this section the commands for programming the programmable pulse generator (PPG)
are explained and general instructions for using the PPG are given. A more recent version

of this documentation may be found on the pulse sequencer homepage.

Typographic conventions Python code is written as :

python function (argl,arg2—=10)
python var=True

Filenames and command line commands are written as: path_to/filename.txt .

B.1.1 Installing the python server

As a prerequisite the python programming language in version 2.4 or 2.5 is required. It
may be downloaded from
http://www.python.org .
The python server source code for generating and executing pulse sequences for the PPG
are available for download at the PPG project homepage.
http://pulse-sequencer.sf.net
The package for QFP2.0 is called sequencer-python/python-qfp-2.0
The package for QFP _LIN is called sequencer-python/python-qfp-2.0

B.1.2 starting up the python server

The server may be started directly by the command line if the python executable is within
the search path of the environment variable.
python start_box_server.py

The command line options for this command are:

--debug debug_level Where the debug levels are supposed to be used as follows:

e 1 : The most important server messages are displayed
e 2 : Many server messages are displayed

e 3 : Many compiler messages are displayed. It’s not recommended to use this with
the server. This debug level is intended for low level debugging in the machine code

generation code

--nonet The python server is started without any network connection. This switch may

be used for testing the server on a computer where no PPG is connected.

*Shttp://pulse-sequencer.sf.net
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B.1.3 Troubleshooting

Error messages from the server are generally displayed on the command line terminal
executing the server. If the command line terminates without displaying an error messages,
open a new command window and run the server in this window. This command window
does not close when the python server crashes. If the box is connected to the voltage
supply the LEDs beneath the DIP switch for selecting the MAC address should blink a
few times while booting up. If this is not the case the clock settings and the presence of

a clock signal should be checked. Below a few error messages and possible solutions are
described.

No pulse transfer protocol reply: If the server complains that it got no pulse transfer
protocol reply there may be a hardware or network problem. Following steps are recom-

mended for troubleshooting:

e If it worked before it may help to flush the ARP@ cache of windows. Open a

command shell and type

netsh interface ip delete arpcache . If this does not solve the problem, waiting for

10 minutes before retrying to start the server may be the solution.

e The network connectivity can be checked with “link” LEDs at the FPGA board. If
this LED is dark, it’s most probably a hardware problem. It should be checked if
the network cables are plugged in correctly and the right cable type (No crossed

connections) is used.

e The DIP switch for setting the MAC address of the FPGA board might not be set
to match the settings given in the python compiler configuration. See the section

about configuring the server for details.

e There is no DHCP server running on the network where the box can get an IP
address from or the box may be misconfigured so it doesn’t send an DHCP request.

The DHCP server is most likely implemented in an Ethernet router.

For further troubleshooting it is advisable to use a network analyzing software like the
freely available wireshar

When investigating the network traffic with wireshark, restart the FPGA and look
for a MAC address of 00:01:ca:22:22:xx performing a DHCP request (xx is the value of the
DIP switch for setting the IP address). If this request is accepted, the FPGA is obtaining
a IP address successfully. It is likely that the error source is then a misconfigured python

server.

#6address resolution protocol
*"www.wireshark.org
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KeyError , AttributeError If the server returns some strange errors like KeyError or
AttributeError there might have been an error with transferring the variables from LabView
to the server. Another possibility is that the current sequence is using a TTL channel which
is not defined in the hardware configuration file. Check if all TTL channels used in the

current sequence are available in the QFP2.0 hardware configuration file.

Pulses still overlap  If you got this error and the sequential mode is used there might be
something wrong with the delay times in Innsbruck/__init__.py . If this error occurs
while running in a parallel environment t some overlapping pulses may have been defined.

This might not be a problem but the timing of your script may be incorrect.

Other errors One error that occurs frequently in new installed systems are incorrect
decimal separators sent from LabView to the python server. Check that the decimal

separator is a point “.” and not a comma “,”

B.1.4 Pulse programming reference

There are two fundamental modes of programming a pulse sequence:

e sequential programming (default, used for QFP2.0)

e parallel environments (used for QFP Lin)

B.1.5 Sequential programming

This is the default programming mode where the pulses are usually executed sub sequen-
tially. Delays between pulses may be inserted manually. The structure of a program is as

follows:

pulsel
pulse2
wait (10)
pulse3

This is intended to be used for sequences when the 729 beam is used to make rotations
on the qubits. The pulses are characterized by the ion, transition , the duration given in
angle, and the phase:

R729(ion,theta,phi, [transition], [start_time], [is_last])

If the transition is omitted a default transition given by the Labview control program
is used.

The command for inserting a waiting time is.

seq_wait(time)

The pseudo XML pulse program structure A sequence file is read by the LabView
program as well as by the python server. Therefore more information than just the

pulse sequence is stored in one file. This is realized by creating groups of information
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which are separated by XMI@ tags. The tags which are interpreted by the python server
are <VARIABLES>, <TRANSITION> and <SEQUENCE>. In the <VARIABLES> group
the variables which are controlled by and transmitted from LabView are defined. In the
<TRANSITION > group the transition objects which are defined in LabView may be edited
before the phase accumulators in the FPGA are initialized. The <SEQUENCE> group

contains the actual sequence.

<VARIABLES>
Duration=self.set variable("float" ,"Duration" ,20,1,2e7)
< /VARIABLES>

<some tag for labview>
some content for labview
</some_tag for labview>
<SEQUENCE>
TTL("PM_trigger" ,50)
seq_wait (Duration*1000.0)
TTL("PM_trigger",50)

< /SEQUENCE>

Variable definition The variable definition in the XML file has the following syntax:

VAR _NAME=self .set _variable ("TYPE" ,"LV_NAME" ,[MIN] , [MAX])
VAR, NAME:

The name of the python variable which is used in the script

TYPE: The type of the variable. One of FLOAT, INT, BOOL,
STRING
LV_NAME: The name of the variable in the LabView program.

MIN ; MAX The bounds of possible values of the variable. This value is
only used by LabView and has no influence on the python

Server.

Pulse code The pulse code is in the <SEQUENCE> group. Variables defined as described
above may be used as a simple python variable. Below an overview over the different

commands is given.

TTL Outputs The names of the TTL outputs are taken from the “Hardware Settings.txt”
file of the QFP. If the device is 'PB the output is inverted that means that setting the
output to 0 will result in a voltage of 3.3V at the according output. The location of the
Hardware settings file is determined in innsbruck/__init__.py .

866 sw.ch—=0
866 sw.Device—=IPB

Generates the device “866 main” . To generate a pulse on this channel the following

code is used:

2 Extended Markup Language
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ttl pulse ("866_sw" ,10)

This creates a TTL pulse of given duration. To switch the state of the TTL outputs

on a given position in the sequential environment the set_TTL command is used:

set TTL("866_sw" ,1)

set  TTL("866_sw" ,0)

RF pulses The command for generating RF pulses is:

R729(ion,theta,phi, [transition], [start_time], [is_last])

The technical details of the rotation are given by the transition object. See the
paragraph above how to define these transitions.

Depending on the version of the python compiler used the output for the second DDS
does not support phase coherent switching. The actual implementation of this command
may differ from one particular experiment to another. It is advisable to customize the

pulses for the particular experiment with the help of include files as described below.

Defining Transitions Transition objects in the python server are needed to do phase co-
herent switching between pulses. A transition object has information about the frequency,
the pulse shape, the amplitude and the Rabi times of the radio frequency pulse which is
needed to excite the given atomic transition. Transitions may be defined in two different

ways:
e Directly in the sequence file

e From LabView via the TRANSITION keyword

An example for the direct definition
Carrier=transition (transition name="Carrier" ,t rabi=t carr,
frequency=freql ,amplitude =1,slope type="blackman"
slope duration—=0.2,amplitude2—=—1,frequency2—=0)

This transition will be called by R729(ion,theta,phi,Carrier)
A transition named carrier which is transmitted from LabView is called by:
R729(ion,theta,phi,’carrier’)

Note that the name of the transition is now a string, whereas by direct definition
above the transition object is handled as a variable. The information of the transition is

submitted from LabView to the server.

seq_wait The syntax for the sequential wait function is:
seq _wait (time)
Where time is the waiting time in us. The specialty of this function is that it generates

pre and post delays depending on the previous and following commands to ensure that the

pause has the expected length. For an example if a seq_ wait() instruction is in between to



80 B PROGRAMMABLE PULSE GENERATOR MANUAL

R729() commands, it will count the delay between the two points where the amplitude of
the slopes are at the half maximum. An error message will be returned if the wait duration

is smaller than the slope duration plus the frequency switching delays.

The is_last variable There is a possibility to generate overlapping pulses by using the

is_last variable. For a sequence which generates the following pulses

TTL "866_sw" from 0 to 100
TTL "397_sw" from 90 to 110

This would look in the sequential mode like:

ttl pulse("866 sw",100,start time—0,is last—False)
ttl pulse ("397_sw" ,20,start _time=90)

The is_last variable is by default True.

Defining new commands In the Innsbruck/__init__.py file the include directories are
defined:

includes dir="e:/My_Documents/qfp_ 2.0/PulseSequences/Includes/"

Writing include files A sample include file may look like:

description="long_optical _Pumping_for_ca43"
function _name="ca43.OpticalPumping2"
arguments="optional : _length=>50"

class OpticalPumping2 (PulseCommand ): #for Cal8
def  init_ (self ,length=50):
configuration=self.get config()
ttl pulse(length ,"7" is last—False)
ttl pulse(length+1,"8" start time—0)

ca43.0OpticalPumping2=0pticalPumping2

This defines the function ca43.0pticalPumping2 which may be used in a sequence file.
The variables description, Function name and arguments are necessary for the built in
documentation system.

The prefixes for Include functions are:
e ca40 for the linear trap
e cad3 for the cad3 experiment
e cqged for the CQED experiment

e segtrap for the segmented trap

To avoid confusion the prefix for the actual experiment should be used.
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Documenting Include files The variables description, function_name and arguments
are used to automatically generate a documentation of the commands defined in the include
files. To display this list the python script include_doc.py which resides in the same

directory as the start_server.py script is used.

B.1.6 Parallel environment

In this programming mode the absolute start times in relation to the start of the sequence
and the durations of the pulses are given. The pulses may overlap but they cannot have

the same start or stop time. An example parallel program:

start _parallel env ()

ttl _add to_ parallel env("866_sw" ,0,10)

ttl _add to parallel env ("397_sw" ,2,5)

shape add to_ parallel env(start time=12,duration=5.0,frequency=freql ,\
phase=0,type="blackman" ;slope duration=1.1,amplitude=1.0)

end parallel env (trigger="Line" ,repeat—30)

This switches on the “866 sw” output at Ous for 10 us and the “397 sw” output at
2us for 5us. To some extend timing conflicts which arise from overlapping pulses may be
resolved. The server sends a warning response if the conflict is not resolved successfully.
The last line repeats the sequence 30 times and waits for a line trigger every time it is
running a single repetition. A parallel environment is started with the start parallel _env()
function. Prior to this function the coherent frequency initialization may be performed.
The end of a parallel environment is set with the end parallel _env(trigger,repeat) function.
The trigger variable is either "None" or "Line". When it is set to "Line" the PPG waits for
a rising slope on the Trigger input 0.

Coherent frequency initialization Before using phase coherent frequency switching the

frequencies have to be initialized at the beginning of your program :

freql=coherent create freq(frequency ,0)
first _dds_init frequency (freql)

TTL pulses A TTL pulse is generated with the command

ttl _add to_ parallel env(ttl channel ,start time ,stop time)

RF pulses RF pulses are generated with the command

get shaped pulse(duration ,frequency ,type ,[slope duration—=0],\
[amplitude =1],[phase=0],[frequency2=0],[amplitude2 =0])

If amplitude2 is bigger than 0 than the second DDS channel is switched on with
frequency frequency?2 . If slope_duration is bigger than 0 than the output is a pulse with

a Blackman shape where the slope duration is given in microseconds.
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It is not advisable to use arbitrary numbers for the slope duration and amplitude.
The program pre compiles the shapes because they take a long time to compile. It has

also to recompile if the amplitudes of the pulses change.

B.2 Configuring the software

This section is divided in two parts. In the first part the steps necessary for setting
up a “standard” PPG for use with QFP is described whereas the second part covers all

configuration possibilities. Any change in the configuration requires a restart of the server.

B.2.1 Basic configuration

This part relies on a working QFP2.0 environment. The configuration files for the python
servers reside in the innsbruck and the test_config directories. The main files are the
__init__.py files in the respective directory.

In the innsbruck directory the configuration class contains the configuration infor-

mation. To alter the configuration the methods of this class may be changed.

The hardware configuration file The location of the hardware configuration file is defined
by the hardware_config method of the configuration class. This file is generated by the
QFP2.0 Settings Editor.

The sequences directory The sequence directory is defined by the sequences_dir method

of the configuration. An example is sequences_dir=path_to_qfp/PulseSequences/.

The includes directory The includes directory is defined by the includes_dir method of

the configuration. An example is includes_dir=path_to_qfp/PulseSequences/Includes/ .

Setting the MAC address of the FPGA board The address of the FPGA board is set in
the __init__.py file in the test_config directory. The address is set via the DIP switches
on the FPGA board. The function of the DIP switches are defined as follows:

| Reset | IP1 | IP2 | IP3 | IP4 | DHCP |

Where the address of the FPGA board is calculated as IP1+21P2+41P3+ 81P4.
The address is set in the mac_byte variables of the sequencer generator statements in the
_init__.py file. All occurrences of the sequencer generator have to be altered.

B.2.2 In depth configuration

TCP ports The communication with LabView is handled over the TCP protocol. The
server is listening by default on port 8880. The port is set in the default_port method

of the configuration class.
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Activating the parallel mode For using with the old qfp the parallel mode has to be
activated. This is done by setting the parallel_mode method of the configuration class

to True.

Setting the TCP server mode The TCP server is able to switch between different TCP
connection protocols. All variables discussed here are methods of the configuration class.
If the answer_tcp method is set to True, the server sends a response to the LabView program
after finishing compiling and transferring the sequence. If the method send_pre_return is
True, an additional answer is sent to LabView after error checking but before compiling
the sequence. This is helpful if the compilation time is long and therefore it is possible to
determine whether the server is not responding or it is busy with compiling a sequence.
For the standard settings of QFP2.0 these methods have to be set to True.

If the disconnect_tcp method is set to True, the TCP connection is terminated af-
ter each LabView command. This may be helpful if problems with a long lasting TCP

connection may arise. For a standard QFP2.0 setup this method should be set to True.

Resetting the TTL outputs If it is desired to reset the TTL outputs of the PPG with
the beginning of each sequence the reset_ttl method of the configuration class may be

set to True.

Configuration of pulse shapes Pulse shapes have to be configured in two files in the
innsbruck directory. First an entry has to be made in the pulse_dictionary method of
the configuration class. In this dictionary a function has to be assigned with a string.

The functions for the pulse shapes are defined in the pulses.py file.

Calibration of the VGA The calibration function for the DAC and the VGA is defined in
the calibration function at the end of the __init__.py file. For the QFP2.0 environment
the input value is the desired output power in dB where 0 is the maximum and the return
value is the DAC value which is an integer between 0 and 16383. For the old QFP the input

value is a linear power value where 1 corresponds to the old Marconi setting of +13dBm.

Syntax of the hardware configuration file Normally the hardware configuration file is
generated by QFP2.0. For testing purposes it might be necessary to generate a different

hardware configuration file. The hardware definition syntax is as follows:

854 sw.Device=PB
854 sw.ch=15
866 sw.Device=!PB
866 sw.ch=17

The !'PB indicates a inverting channel. It doesn’t matter if the device or the channel

is the first argument.
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B.2.3 Configuring the devices

The compiler has to be reconfigured if you make changes to your hardware settings; e.g.
adding an additional DDS | ...

Configuring the devices For configuring the devices it may be necessary to edit the
innsbruck/__init__,py as well as the test_config/__init__.py files

The timing and the RF frequency generation depend on the clock of the DDS boards
and the FPGA. Tt is assumed that the FPGA clock is derived from the DDS clock and
that it operates at 1/8 of the DDS clock frequency.
ref freq=800
cycle time—(1le3/ref freq)

The cycle time is given in nanoseconds. Every other time used within the compiler

should be given in microseconds.
ttl device—={}
The ttl _device is a dictionary where the corresponding channels to the hardware file
are stored. It also stores whether the channel is inverting.
first _dac_device—dac factory.create device(chain address — 0x01)
This defines the first DAC which is accessible via innsbruck.first _dac_device. If another

DAC should be added just another line which is similar to this and a command in the

api.py file is necessary .

dds_ factory create devices(chain_ address={1; 0x1, 2; 0x2},ref freq=ref freq)

This defines the first DDS device. Note that it’s not possible to mix up DDS with
different reference frequency because the data transfer relies on fixed reference frequency
dividers between the FPGA clock and the DDS clock.

B.3 Configuring the Hardware

Details on the firmware and on programming the FPGA are given in section(). In this
section the configuration of the FPGA board, the chain boards and the evaluation boards

is covered

The FPGA board The jumpers CLKO0 and CLK2 select the different clock options. Where
internally CLKO is routed to the PCP core clock and CLK2 is routed to the PTP and the
Ethernet clock.

The DIP switch J3 determines the network address and the DHCP mode the switch

is configured as:

| Reset | IP1 | IP2 | IP3 | IP4 | DHCP |

Where the address of the FPGA board is calculated as ADDR = IP1 +21P2 +
4IP3 + 8IP4. The other switches are not used in the current configuration. The ip
address is 192.168.0.220 + ADDR and the MAC address is 00:01:ca:22:22:ADDR .
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The chain boards The chain boards for the DAC and the DDS are configured by a DIP

switch. The pin configuration is as follows:

| Addr0 | Addrl | Addr2 | Addr3 |

The address is calculated as Addr0 + 2 Addrl + 4 Addr2 + 8 Addr3.

The DDS evaluation board On the dds evaluation board the parallel board connector
U4 has to be removed. The jumper W2 has to be set to external mode.

The DAC evaluation board The output transformer T1 has to be removed and the solder
bridge JP8 has to be closed. The DAC clock has to be controlled externally, therefore the
jumper JP2 has to be set and the solder bridge JP3 has to be closed.

B.4 The LabView interface

In this section the interface between the python server discussed above and the experiment
control software is described. As for the programming of the sequence there exist two

different modes:

e Parallel environment: Build to be compatible with the old qfp program and using

the Matlab sequence files

e Sequential environment: Works with the new qfp program and uses python sequence
files

The communication is based on a plain text transmission via a TCP socket, where the
listening program (server) is the python environment and the sending program is the

LabView experiment control program. The standard TCP port is 8880.

B.4.1 Parallel environment

In the parallel environment LabView just sends the whole pulse sequence as a string to
the server. All TTL and RF pulses are calculated in the LabView program. There are no

additional global variables.

B.4.2 Sequential environment

In sequential mode the transmission from LabView to python consists of a command string
with information about Rabi times, RF amplitudes and the sequence file Name. The
sequence file is then read out and compiled by the python server. The sequence file format

is described above.
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General format  The server accepts strings in the following format:
commandl,optionl_1,optionl_2;command2,optionl,optionl
a simple example:
NAME, test_ttl.py; TRIGGER,NONE;FLOAT,duration,3.4;

The available variables are:

‘ Variable name ‘ Description Usage
NAME The name of the sequence file NAME file _name
INT Sends an integer value to the script INT,var name,value
FLOAT Sends a float value to the script FLOAT,var name,value
STRING: Sends a string value to the script | STRING,var name,value
BOOL Sends a Boolean value to the script | BOOL,var name, value
TRIGGER Gives the type of the trigger. TRIGGER,trig_string

Possible Trigger strings are: NONE | LINE . The commands are defined in the file

innsbruck/handle_commands.py .

The transition object The transition object is defined as follows:

TRANSITION, transition _name;RABI, Rabi_times;
SLOPE_TYPE, slope _type;SLOPE_DUR, slope duration;
AMPL, slope _ampl;FREQ, frequency ;IONS ,ion_map;
AMPIL2, second _amplitude;FREQ2, second frequency ;

Where Rabi frequencies for multiple ions are defined as:
1:19.34 , 2:21.12 | 3:20.34 , 4:22.67

And the ion _map:

1:101 , 2:102 , 3:103 , 4:104

The default transition There is the possibility to define a default transition which is used

if no transition is given in the R729 command:

DEFAULT TRANSITION, transition name;

B.4.3 Creating pulse commands

The functions intended for use in user level are defined in user_function.py orin api.py .
There exists a framework for handling global variables in a sequence and transferring this
variable back to LabView.

An example user mode function is the PMT Detection function:

class PMDetection (PulseCommand ):
def  init_ (self ,detect wait ,CameraOn=False):
configuration—self.get config()
detection397=configuration.detection397
PMTrigger=configuration .ion trig device
PMGate=configuration .PMGate
trigger length=configuration .PMT trigger length

detection count—self.get variable("detection count™)
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self.set_variable("detection count", detection count+2)
self.add to_ return list ("PM_Count" ,"detection count")
seq=TTL_sequence ()
ttl pulse(detection397 ,detect wait ,is last=False)
ttl pulse (PMGate, detect wait ,is_last—False)
seq.add pulse(PMTrigger, trigger length ,is last—False)
if CameraOn:
ttl pulse(trigger length ,configuration.Detection ,is last=False)
ttl pulse(trigger length ,configuration.CameraTrigger,is last—False)
ttl pulse (PMTrigger, trigger length ,

start _time—detect wait—trigger length ,is last—False)

This function can be divided in following parts:

class definition

variable definition from the configuration in __init__.py

handling of the return variables

the main ttl sequence

This function generates the TTL pulses required for a detection sequence. It generates dif-
ferent pulses if a CCD camera is present. Additionally it uses the variable "detection count"

to send information about the number of detection pulses to LabView.

class definition for user level functions The class definition has to refer to the parent
class (PulseCommand) and the method (function) that is executed when the class is called
is __init_

class PMDetection (PulseCommand ):

def  init_ (self ,detect wait ,CameraOn—False):

The PulseCommand class contains methods to handle local variables. A sample code
that increases a variable each time a command is executed and returns this variable to

LabView may look like:

class counterl (PulseCommand ):

def  init_ (self ,value—=0):
self.value=value

def incme(self):
self.valuet=self.increase
def return_ to labview(self):
self.set variable("counter",self.value)
self.add to_ return_list ("COUNTER_1","counter")

it is used in python like:

incl=counterl ()

incl.incme ()
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if CameraOn

incl.incme ()

incl.return_to_ labview ()

B.4.4 Returning values to LabView and using global variables

To return a value to LabView you have to create a global variable:

detection count—self.get variable("detection count™)
self.set_ variable("detection count",detection count+1)
self.add to_ return_list ("PM_Count","detection count")

First the current value of the variable is obtained. Then the variable is increased and
returned back to the global variable. Then the global variable is added to the return list.

If the variable is a list, the returned values are separated by commas.

B.4.5 User function framework

The supplied methods for user functions are

self.get config()

Returns the global configuration class which is defined in innsbruck/ _init__ .py

self.set variable(variable name, value)

Sets a global variable. You can assign all types except dictionaries !!!
self.get variable(variable name,[default value])

Returns the value set by set_variable().

If the variable is not set yet it returns default value. If default value is omitted the
default value is 0.

self.add to return_list (Pre_String ,variable name)

Adds the variable to the LabView return list. The variable is returned as:
‘“Pre_String,value;"
or if the variable is a list [varl,var2,var3,...]:

“Pre_String,varl,var2,var3,...;"
self.get error handler()

Returns the error handler function to return error messages to LabView.
self.get cycle time()

Returns the clock cycle time in microseconds.

self.address ion(ion,[start_ time])

Checks if the current ion is the parameter ion. If the ion has to be changed it invokes
self.ion_event(). It handles the ion return list as well
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self .ion_event ()

A pointer to the TTL event class which switches the ions. Normally this is
parallel _ttl (); Within the TTL _sequence class this is the method self .add_pulse.

B.5 Internals of the Software

In this section some details of the python compiler are described. For a general overview

see section (B2).

File locations

The directory tree of the compiler is divided in the following directories

sequencer Common parts of the compiler

sequencer/pcp Definition and generation of the pcp commands
sequencer/pcp/machines Implementation and generation of the instructions
sequencer/pcp/events Abstract definition of the events called by the API
sequencer/pcp/instructions Abstract definition of the pcp32 instructions
sequencer/devices Definition of the hardware devices (DDS,DAC)
sequencer/ptp/ Definition and implementation of the PTP protocol
test_config Definition of the API and configuration (for all experiments)
innsbruck Definition of additional API and special configuration

The object structure

The compiler is based on an object oriented structure where the main objects are:
sequencer  The sequencer main object.

test _config Includes the DDS and DAC and TTL objects.

innsbruck Consists of additional API commands and the end user layer.

Overview
The sequencer object

The most important methods of the sequencer object are:
current_sequence Methods and variables for managing the array of abstract events.

standard _params Common constants and definitions.

main_program Array for the end user layer events
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The test _config object

first _sequencer Object for the FPGA board with ptp address 1.
Includes methods for compiling the sequence and
sending it over PTP.

first_sequencer.machine The abstract machine object. Includes methods for

compiling the events to machine code.

first dac_ device Abstract hardware object for the DAC with chain
board address 1

second dac_device Abstract hardware object for the DAC with chain
board address 2

dds_ devices Array of abstract hardware objects for the DDS.

The index corresponds to the chain boards address

The innsbruck object

start_server()  Method to initialize the server and the compiler.

error_handler() Method for returning error messages to Labview

C Internals of the Programmable pulse generator

In this section not all aspects of the programmable pulse generators are covered. For a
complete description of the concepts of the programmable pulse generator the reader is
referred to reference [25]. In the following hexadecimals values are displayed as 0x(value).

For example 0xFF is 255 in the decimal representation.

C.1 The firmware
Compiling the firmware

The firmware is described in the hardware description language VHDL. The source code
files available on the project homepage are macro files which itself generate the VHDL
source files. This additional step has the advantage that if changes on an object is
made, this changes are made in all VHDL files containing this object. For compilation
of the VHDL sources the Quartus II design suite available on the Altera homepage@ is
required. The source code may be obtained from the CVS repository of the pulse sequencer
project homepag@. Additionally the GNU make tools and the M4 scripting interpreter
are required. For the windows operating system these are provided by the cygwiné en-
vironment. To generate the Quartus II project file open a command window and type
make sequencer_top.vhd and make sequencer_top.map.eqn. This creates a file called

sequencer _top.qpf which could be loaded in Quartus IT and compiled by pressing ctr+L .

2 www.Altera.com

3Ohtttp:/ /pulse-sequencer.sf.net
3http://www.cygwin.com
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Programming the FPGA The FPGA may be programmed with the programming soft-
ware provided by the Quartus II design suite. The cable should be connected to the config
port on the FPGA port. In the programming software choose the ByteBlaster IT cable and

the active serial programming mode. The file to program is sequencer_top.qpf .

Overview over the firmware

A general overview of the programmable pulse generator is given in section(@Z3]). The
firmware consists of different blocks which are shown in Fig. Bl These blocks are inter-
connected with a system-on-a-chip bus. The “Wishbone” bus standard as defined by the
Opencore community is used. The bus system is described in detail in the Master’s
thesis of Paul Pham [23].

PTP TTL out
| PTPCORE | g | PCPCORE | g

Y v

12C ETHERNET RAM

Figure 57: Overview over the firmware of the programmable pulse generator

The network communication

The programmable pulse generator has two different possibilities for communication:

e The Network Stack for communicating with the experimental control computer

e The Daisy-chain Stack for communicating with other programmable pulse generators.

The Daisy-chain stack is only required if two ore more programmable pulse generators
are synchronized and programmed by the same experiment control computer. In our
setup this feature is not used. Both stacks comply to the standard OSI (Open Systems
Interconnection) layer model which are shown in Tab.[[ll The layers of the Network Stack
are the standard Internet layers as used by normal personal computers. (Ethernet PHY,
RJ45) The Daisy-chain Stack uses the same connectors and cabling (RJ45 connector) but
utilizes LVDS logic. In difference to the Ethernet specification, the Daisy-chain physical
layer is half-duplex to make clock recovery and synchronization easier. The Datalink layer is
described by the pulse transfer protocol (PTP) frame definition. A PTP frame is shown in

Tab. [l It consists of fields containing the source and destination addresses, the firmware

*2http://www.opencores.org
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version, the PTP opcode, and the payload. The Network layer handles the routing of this

PTP package depending on the values in the Destination ID. field. The highest layer

is the PTP server which interprets the PTP Opcode and communicates with the other

blocks in the programmable pulse generator. The possible Opcodes are shown in Tab. [

The experiment control computer sends a PTP frame to the programmable pulse generator

over the UDP connection. These packets are either routed to other programmable pulse

generators in the PTP chain or interpreted by the PTP server.

described in more detail in the Master’s thesis of Paul Pham @]

OSI Layer Function Network Daisy-chain Stack
Stack
Physical Connector Ethernet LVDS, RJ45
interface PHY, RJ45
Datalink Logical Link Ethernet Daisy chain link
MAC
Network Global IP PTP routing
Addressing
Transport | Multiplexing | UDP, TCP None
Application APT for DHCP, PTP server
high level PTP server
functions

Table 10: The OSI layers of the network communication methods.

The PTP protocol is

Field | Source | Dest. | Major | Minor | PTP | Zero | Total | Unused | Payload
ID ID Ver. Ver. Op- Length
code
Octets 1 1 1 1 1 1 2 2 variable
Address | 0x0 0x1 0x2 0x3 Ox4 0x5 0x6 0x8 OxA
Table 11: A pulse transfer protocol frame.
‘ Opcode ‘ Name ‘ Function ‘
0x00 Null The PTP packet is ignored.
0x01 Status Request The PPG sends a standard reply to the source of
the package.
0x11 Status Reply The answer to a Status Request.
0x02 Memory Request Requests a RAM read or write function. The
payload contains the data to be written.
0x12 Memory Reply Answer to Memory Request. The payload
contains either a write success word or the data
to be read.
0x04 Start Request Starts or Stops the various blocks of the PPG.
0x14 Start Reply The answer to a Start Request.

Table 12: The pulse transfer protocol Opcodes.
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The PCP Core

The pulse control processor (PCP) core reads the instruction words from the RAM, inter-
prets it and controls the outputs of the FPGA. In Paul Pham’s Master’s thesis the PCP0
instruction set is described while in the current setup the PCP32 instruction set is used.
The main difference is the width of the instruction word. A PCP0 instruction word is 64
bit wide whereas the PCP32 instruction set is 32 bit wide. The PCPO0 instruction set has
also no support for phase coherent switching. A block diagram of the PCP core is shown in
Fig. B The Decoder interprets the instruction word and generates control signals for the
other blocks. The Program Counter keeps track of the current RAM address and handles
program control flow instructions, and the Phase Registers are needed for phase coherent
switching. The opcodes for the PCP32 are shown in Tab. 3 The Opcodes for the PCP32
core are documented below. The 4 most significant bits of the 32 bit instruction word are
reserved for the opcode. The remaining 28 bits are referred to as [27:0]. (If a function uses
the lowest 8 bits it is denoted as [7:0] )

Instruction Word
] Phase
Decoder Registers
Trigger Inout i i
I— Digital Output
Program Digital I
RAM Address Counter Output

Figure 58: Block diagram of the PCP32 core.

‘ Instruction ‘ Opcode ‘ Description ‘
nop 0x0 No operation
btr 0x3 Branch on trigger

jump 0x4 Jump to address
call 0x5 Subroutine Call
return 0x6 Subroutine return
halt 0x8 Halt pcp
wait 0x9 Wait
bdec 0xA Branch decrement
Idc 0xB Load constant
p 0xC Pulse immediate
[9)8) 0xD Pulse phase
Ip 0xE Load phase

Table 13: Instruction set of the pcp32
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nop
Opcode:  0x0
Name: No Operation

Function: Does nothing

Parameter: None

btr
Opcode:  0x3
Name: Branch on trigger

Functions: Jumps to the address given if the Trigger input matches the given data.
Parameter: Trigger word [27:19]

Parameter: Address [18:0]

jump
Opcode:  0x4
Name: Jump

Functions: Jumps to the given address.

Parameter: Address [18:0]

call
Opcode:  0x5
Name: Call Subroutine

Functions: Calls a subroutine at a given address.

Parameters: Address [18:0]

return
Opcode:  0x6
Name: Return Subroutine

Functions: Returns from a subroutine to the former address.

Parameters: None
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halt

Opcode:  0x8

Name: Halt PCP
Functions: Stops the PCP core.

Parameters: None

wait

Opcode:  0x9

Name: Wait

Functions: Waits for a given number of clock cycles

Parameters: Wait cycles [27:0]

bdec
Opcode:  0xA
Name: Branch decrement

Functions: Decrements the loop register and branches to the given address if the value in

the register is bigger than zero.
Parameters: Address [18:0]
Parameters: Register Address [27:23]

The PCP32 has 64 registers for different finite loops. The Register Address word selects

the register.

Idc
Opcode:  0xB
Name: Load constant

Functions: Loads a constant to the loop register.
Parameters: Constant |7:0]
Parameters: Register Address [27:23]

The PCP32 has 64 registers for different finite loops. The Register Address word selects

the register.



96 C INTERNALS OF THE PROGRAMMABLE PULSE GENERATOR

p
Opcode:  0xC
Name: Pulse immediate

Functions: Sets the value of the given part of the output registers to the given value
Parameters: Value [15:0]

Parameters: Output select [17:16]

The output select selects the part of the 64 bits of the LVDS output which is controlled.
If the value is 0 then the bits [0:15] are set if it is 1 then [16:31] are set, etc.

Pp
Opcode:  0xD
Name: Pulse Phase

Functions: Adds the phase offset to the current value of the addressed phase accumulator

and sets the corresponding output bits.
Parameter: Phase Offset [15:0]
Parameter: Byte select [16]
Parameter: Current 20|
Parameter: Phase Addend [21]

Parameter: Phase register address [27:23]

As the data bus for the DDS is only 8 bits wide, the 12 bit phase word has to be written
in two different write cycles. The Byte select bit selects if the lower 8 or the upper 4 bits
are written to the DDS.

Ip
Opcode:  0xE

Name: Load Phase

Functions: Sets the value of the frequency tuning word of the given phase register.
Parameter: Phase Value [15:0]

Parameter: Byte select [16]

Parameter: Phase wren [22]

Parameter: Phase register address [27:23]

As the frequency tuning word is 32 bits wide it has to be split up in two 16 bit words.
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C.2 Pin configuration of the LVDS Bus

In Tab. [ the pin configuration of the LVDS bus in the actual setup is shown. The digital
output form pin 0 is not used. Also the digital outputs ranging from pin 32 to pin 47 are

not used in the actual setup due to firmware limitations.

Pin Function ‘ Device ‘ Description ‘
0 Digital Out Not used
1 WRB DAC Write enable pin of the DAC
2-15 DO - D13 DAC Data bus of the DAC
16 PSEN DDS Profile enable pin of the DDS
17 WRB DDS Write enable pin of the DDS
18-23 A0 - A5 DDS Address bus of the DDS
24-31 DO - D7 DDS Data bus of the DDS
32 - 47 | Digital Out Digital Out to front panel
48 IO Update DDS Register update pin of the DDS
49,50 PS1, PSO DDS Profile select pins of the DDS
51-54 BAO - BA3 DDS Chainboard address of the DDS
chainboard
55-59 Digital Out Not used
60-63 BAO - BA3 DAC Chainboard address of the DAC
chainboard

Table 14: Output pin configuration of the FPGA
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D Matlab source code

D.1 Simulation of a 2 level system

The following code is a Matlab script to simulate an arbitrary pulse form on a two level

system. The concept is described in section (Z3]).
NO=5000;
t_top=10e-6;
t_slope=4e-6;
w0=1/1.62e-6*2xpi;% The Rabi frequency
delta=600e3*2xpi;’% The detuning
beta_array=[];%initialize the arrays used
w_int=0;
result=[];
resulti=[];
t_all=2*xt_slopet+t_top;
t_all_list=[t_all_list,t_alll;
hgenerate the pulse
raising_length=floor (t_slope/(t_all)*NO);
t_raising=[l:raising_length]/raising_length;
w_top=wO*ones (floor(t_top/t_all*N0),1);
w_raising=w0*1/2%(1-cos(t_raisingxpi));
w_falling=wO*1/2%(1-cos(pi+t_raising*pi));
omega_t=[w_raising,w_top’,w_falling];
t_step=t_all/length(omega_t);
hdefine the initial state
x1=[1;0];
%do the first evolution step outside the loop
wl=sqrt(omega_t(1)~2+delta~2);
beta=acos(delta/wl)/2;
x2=[cos(beta),-sin(beta) ;sin(beta),cos(beta)]*x1;
x21=x2;
x31=[exp(i*wl*t_step/2),0;0,exp(-i*wl*t_step/2)]*x21;
x41=[cos(beta),sin(beta) ;-sin(beta),cos(beta)]*x31;
for (i0=1:length(omega_t))
t=(10-1)*t_step;
wO=omega_t (i0) ;
wl=sqrt(w0~2+delta~2);
w_int=w_int+wl*t_step;
beta=acos(delta/wl)/2;
hget the new dressed state coefficient with the new parameters
x21=[cos(beta),-sin(beta) ;sin(beta),cos(beta)]*x41;
%do the dressed phase evolution
x31=[exp(i*wl*t_step/2),0;0,exp(-i*wi*t_step/2)]*x21;
%hrotate back to the unperturbed basis
x41=[cos(beta),sin(beta) ;-sin(beta),cos(beta)]*x31;

%do the ideal phase evolution (the adiabatic approximation)
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x3=[exp(i*w_int/2),0;0,exp(-i*w_int/2)]*x2;
x4=[cos(beta) ,sin(beta) ;-sin(beta),cos(beta)]*x3;
result=[result,x4];

resulti=[resultl,x41];

end;

figure(1)

plot(abs(resulti(2,:))."~2)

figure(2)
plot(t_all_list,abs(x41_result(2,:))."2)
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D.2 Calculation of the adiabatic factor

The following code calculates the adiabatic factor « for given detuning and Rabi frequency

T2=10e-6

t=[1:1000]/1000%T2;

omega0=461e3%2*pi;

dstart=30;

dstep=30e3;

n0=41

d_array=[];

max_black=[];

max_lin=[];

max_cos=[];

for i0=1:n0

d_array=[d_array,dstart+dstep*i0];

dl=(dstart+dstep*i0)*2xpi;

adia_black = .b5*omegaOx(sin(t*pi./T2)* pi./T2-.32% ...
sin(2*t*pi./T2)*pi./T2)* d1./(d1l.~2+.25*%omegal. 2 ...
*x(.84-cos(t*pi./T2)+.16%cos (2*t*pi./T2)).~2).~(3./2) ;

adia_lin = omegaO*dl./(T2*(d1l."2+omegal.~2%t.~2./T2.72).~(3./2));

adia_cos = 4*omegaO*sin(t*pi./T2)*pi*dl./(T2* ...
(4*d1."2+omegal. 2x(1-cos(t*pi./T2)).~2).7(3./2));

max_black=[max_black,max(adia_black)];

max_lin=[max_lin,max(adia_lin)];

max_cos=[max_cos,max(adia_cos)];

end;
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