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Abstract

This thesis reports on a method developed to improve the control over an ion’s
classical motion in a surface trap. The method consists of a numerical simulation
of the electric potential of the electrodes, a expansion of this potential in spherical
harmonics and a calculation of a specific voltage set. If this voltage set is applied
to the segmented DC electrodes of a surface trap, the generated electric potential
is shaped as the potential of a multipole.

In the the second part of this thesis the experimental setup is described which
was used to verify the presented method. Finally the results of these experiments
are presented and compared with simulations.
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1. Introduction

The development of quantum mechanics has drastically changed our understand-
ing of nature’s processes. Although quantum mechanical laws are rather unin-
tuitive and their interpretation has caused much debate among physicists, it is
among the most successful physical theories of the last century. The predictions
it makes have been verified in numerous experiments and many of the most im-
portant technological innovations of the twentieth and twenty-first century are
based on the laws of quantum mechanics.

However, making predictions about physical systems using these laws is not
an easy task. There are only few problems which can be solved analytically. A
number of others can be solved by making various approximations or by numerical
simulations with computers. However, when it comes to calculating the behavior
of systems consisting of many quantum particles, even these approaches fail. In
1982 Richard Feynman argued that many-particle quantum systems cannot be
efficiently simulated with the help of classical computers, because the effort scales
exponentially with the number of particles considered. Therefore, he reasoned,
a simulation of one quantum system can only be done with the help of another
quantum system [1]. In principle there are two distinct ways to do this: In the first
route a system is found which mimics the evolution of the original system, but
which is more easily accessible and controllable. These systems are called analog
quantum simulators [2–6]. Alternatively one could perform a digital simulation
using a quantum computer [7, 8]. In such a computer the state of the quantum
system is encoded in elementary quantum units called quantum bits (qubits) and
the evolution of the system is simulated by elementary quantum operations called
quantum gates. In either case a substantial requirement is to have a very high
level of control over the relevant degrees of freedom of the simulator-system.

Currently huge efforts are made to find suitable systems for quantum compu-
tation and quantum simulations. Among them are nuclear spins [9], photons [10],
neutral atoms in optical lattices [11], quantum dots [12], Josephson junctions [13]
and trapped ions [14]. So far, trapped ions seem to be the most promising can-
didate [15]. A number of basic ingredients have been already demonstrated in
proof-of-principle experiments: one- and two-qubit quantum gates [16–19], quan-
tum teleportation [20, 21], creation of many-particle entangled states [22–24],
quantum state tomography [25], quantum process tomography [26] and many
others.

Moreover, quantum simulations are not the only application of quantum com-
puters. There exist certain tasks, which a quantum computer could solve signif-
icantly faster than a classical computer [27–29]. Some of these algorithms have
already been implemented like the Grover algorithm [30] and the Deutsch-Jozsa
algorithm [31].
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Still there are some challenges to overcome. One of them is that, to date, these
systems are only capable of using a small number of qubits, since the current
ion trap architecture allows one to only manipulate a few tens of ions [32, 33].
In 2002 Kielpinski et al. [34] proposed a new architecture, where the ions are
localized in an array of trapping zones of a miniaturized trap. Manufacturing of
such a trap is made significantly easier by using a surface trap architecture [35].
Such a trap, where all electrodes lie in the same plane, has great promise for
miniaturization and scalability. This geometry has already been shown to work
[36–38] and to be capable of trapping large numbers of ions. Nevertheless a few
challenges need to be overcome when operating such a trap.

This work aims at one of these challenges, namely at improving the control over
the classical motion of a trapped ion. In Paul traps the classical motion of
the ion is governed by the electric potential. Two kinds of potentials are used;
potentials alternating at a radiofrequency (RF) and static (DC) potentials. The
total DC potential consists of a superposition of the potentials of several different
DC electrodes. The shape of the resulting potential is given by the relative
contribution of each electrode. In contrast to traditional Paul traps, surface Paul
traps have very little symmetry – having all the electrodes in a plane on one
side of the ion. This means that many simplifications of control which were
previously made on geometrical-symmetry grounds no longer hold. To control
the ion’s motion, an experimentalist needs to have highest possible control over
the potential’s shape; specifically over the position of the potential minimum,
and of its curvature. In surface traps this requires explicit considerations of the
combined effects of all individual electrodes.

This thesis presents a method which determines the relative contributions of
each DC electrode in such a way that the resulting potential has the desired
predetermined characteristics. This facilitates the complete control of an ion’s
classical motion in a segmented surface trap.

The structure of this thesis is as follows: The next chapter gives an overview of
the theory of Paul traps, with a focus on segmented surface traps. Chapter 3
introduces the numerical method used for the trap simulations and describes the
approach used to improve the control over the ion’s motion. This method has
to be verified experimentally and therefore chapter 4 presents the experimental
setup and the measurement methods. Finally in chapter 5 the experimental data
is presented and compared to the simulations.



2. Paul traps

Since their invention by Wolfgang Paul in 1953 [39], Paul traps have found wide-
ranging applications in many fields of physics and developed to be a very promis-
ing tool for the physics of quantum information and quantum optics [15, 40–42].
This chapter starts with a short description of the operation principle of a Paul
trap, followed by a description of the ideal implementation and deviations from
this case in section 2.1. The more recently developed surface traps are discussed
in section 2.2 and a motivation for segmented ion traps is given in section 2.3.
Finally section 2.4 sets out the objective of this work: the complete control over
an ion’s classical motion in a segmented surface ion trap.

2.1. Trapping theory

A comprehensive description of the theory of ion traps can be found in several
references [40, 43–45]. A general overview is given here.
Confinement of a charged particle at a certain point in space requires a force which
is directed towards this particular point (the trap center) from all directions. In
the simplest case the amplitude of this force is assumed to be proportional to
the distance of the particle from the trap center. Since the force F is related to
the potential Φ via F = −e∇Φ, the potential needs to be harmonic in all three
spatial dimensions:

Φ =
Φ0

r20

(
αx2 + βy2 + γz2

)
. (2.1)

In Paul traps the force is mediated by electric fields. Φ therefore has to obey the
Laplace equation, ∇2Φ = 0, implying the following relation:

α+ β + γ = 0. (2.2)

Accordingly it can be seen that it is not possible to generate a static field which
confines in all three directions; at least one coefficient has to be negative and
therefore the potential must be repulsive in that direction. However, this problem
can be circumvented by using a periodically varying voltage

V (t) = U + V cos(ΩRF t)

where U is a DC voltage and V the amplitude of the voltage component oscillating
at the radio frequency (RF) ΩRF . At every instance of time, the potential still
has at least one attractive direction and at least one repulsive direction, but for
the correct choices of U, V and ΩRF , a time-averaged net attractive potential in
all three dimensions remains.

3



4 2.1. Trapping theory

2.1.1. Pseudopotential approximation

In a simplified picture this confinement can be described as follows: The particle
performs fast oscillations at frequency ΩRF driven by the alternating field. If this
field is homogeneous, the integral over the force acting on the ion during one os-
cillation cycle, averages to zero and the particle comes back to its initial position.
In the case of an inhomogeneous field, the amplitude of the force depends on the
position of the particle. Therefore, after integration of the force over one cycle
of the oscillation, a resulting net force remains, directed towards the lowest field
region. The effective potential associated with this is called pseudopotential and
is given by

ψ =
e2

4MΩ2
RF

|∇Φ(x, y, z)|2. (2.3)

Here e is the charge of the ion and M the ion’s mass. For a detailed derivation
see [44].

2.1.2. Ideal implementation

Despite this approximation, equation 2.2 still needs to be fulfilled at all times.
One way to reach this is to use a two-dimensional quadrupole field, corresponding
to coefficients α = −β = 1, γ = 0. Such a field is ideally generated by four long
rods with hyperbolic cross-section, where one pair of the opposing electrodes is
held at the voltage V (t), the other one is grounded1 as depicted in figure 2.1.
With static voltages this configuration confines in x-direction and repels in y-
direction, or vice versa, depending on the sign of V (t). A rapidly oscillating field
however, leads to a harmonic two-dimensional pseudopotential in the x-y-plane
with no component along the z-axis. Confinement in z-direction can be provided
by placing two additional electrodes at either end of the trap. These so-called
endcap electrodes are positioned on the z-axis and are held at a positive DC
voltage (for positively charged particles).

Figure 2.1.: Linear paul trap: Hyperbolic shaped electrodes at the periodical varying
voltage V (t) = U +V cos(ΩRF t) provide radial confinement. Axial confinement is given by
positive DC voltages at the endcap electrodes.

1 Strictly speaking, to generate the field of equation (2.1) both pairs of electrodes need to be
held at V (t) = U +V/2 cos(ΩRF t), where the voltage on one pair is 180◦ out of phase with
respect to the other pair. However, ensuring phase stability between two different voltage
sources is technologically demanding and furthermore the configuration with one pair of
electrodes grounded is equivalent for ion trapping purposes.
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2.1.3. Motion of the ions and stability

The equation of motion of a particle placed in such a potential can be expressed by
the so-called Mathieu equations [44]. Neglecting the potential from the endcaps
they take the following form:

d2x

dτ
+ (a− 2q cos(2τ))x = 0,

d2y

dτ
− (a− 2q cos(2τ))y = 0, (2.4)

d2z

dτ
= 0.

For simplification the following substitutions are used:

4eU

Mr20Ω2
RF

= a;
2eV

Mr20Ω2
RF

= q; ΩRF t = 2τ (2.5)

where r0 gives the distance from the trap center to the nearest electrode. As the
equations are decoupled in the spatial coordinates, it is sufficient to study the
one dimensional case. There are two types of solutions to this equation: Stable
solutions oscillating with ΩRF around a mean value and instable solutions whose
amplitude grows exponentially. The behavior depends on the value of the a and
q parameters. Figure 2.2 shows the stability region nearest the origin for a linear
Paul trap. Assuming that |a| ≪ q2 ≪ 1 an approximate solution is given by

x(t) = A cos

(
q√
2

ΩRF

2
t

)[
1 − q

2
cos(ΩRF t)

]
(2.6)

where A is a constant defined by the initial conditions [40]. This motion can be
decomposed into two parts: a slow oscillation at the secular frequency

ωr0,hyp =
q√
2

ΩRF

2
=

eV√
2Mr20ΩRF

and a fast oscillation at the trap drive frequency ΩRF called micromotion. If the
micromotion term is neglected, the solution reduces to the motion of a particle
in a harmonic trap. The amplitude of this micromotion scales with the distance
from the trap center. Since the ion is never completely at rest at the center, but
is always oscillating around it, micromotion can never vanish completely. It can
only be minimized by ensuring that the ion’s central position coincides with the
minimum of the pseudopotential [46].

Confinement in the z-direction is obtained by applying a static voltage to the
endcap electrodes. Assuming that they are hyperboloids of revolution around
the z-axis, the ion performs harmonic oscillations in z-direction with the secular
frequency

ωz,hyp =

√
2eUEC

Mz20



6 2.1. Trapping theory

where UEC is the applied static voltage and z0 the distance from the ion to the
endcap electrodes [47]. Again, this field has to obey the constraints of equation
(2.2), and therefore trapping axially, it generates a anti-trapping radial potential.
Thus the radial trap frequency is reduced to

ωr,hyp =

√
ω2
r0,hyp

− 1

2
ω2
z,hyp

�

�

�

���

���

����

����

��� ��� ��	 ��A

Figure 2.2.: The lowest stability region in a linear Paul trap. The dotted red lines delimit
the stability in x-direction, the dashed green lines limit the stability in y-direction and the
shaded area gives stability in both directions.

2.1.4. Deviations from the ideal trap

Hyperbolically shaped electrodes provide a highly harmonic potential in the whole
volume enclosed by the electrodes, but they have some drawbacks: The shape
is not easy to fabricate and the optical access is very limited. Fortunately the
potential does not necessarily have to be harmonic in the whole trapping volume.
It is sufficient if the potential is harmonic at the center of the trap, where the ion
is located. Therefore a common implementation of the linear Paul trap is realized
with cylindrical rods instead of the hyperbolae [48–50], as shown in figure 2.3.

�

�

�

Figure 2.3.: Common implementation of linear Paul traps with cylindrical rods and seg-
mented DC electrodes to form the endcaps.

Circular rods might appear a logical choice since they resemble the ideal case
at least to first order, but it has been shown that traps still work with an even
higher degree of deviation. Figure 2.4 shows cross sections of several trap designs
with the corresponding numerical simulations for the pseudopotential, starting
from the ideal case and moving on to more and more deformed traps.
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Figure 2.4.: Non-ideal traps: The left column shows cross-sections of the electrodes with
simulated equipotential lines. The potential along the dashed line is shown in the right
hand column, where the dotted line represents the actual potential, the solid line represent
a quadratic fit. The simulations are calculated for a RF Voltage of 300V, a trap drive
frequency of ΩRF = 2π × 10.2MHz and a minimal ion-electrode distance of r0 = 800µm.
The crosses mark the saddle points over which the ions would leave the trap. (a) Ideal
hyperbolic trap, η = 1, trap depth = 20.6 eV. (b) Typical implementation with circular
rods, η = 0.95, trap depth = 15.6 eV. (c) Rectangular electrodes arranged in a square,
η = 0.76, trap depth = 5.8 eV. (b) Surface trap, η = 0.32, trap depth = 0.2 eV. Note that
the y-axis of the bottom-right plot is scaled by a factor of 20 with respect to the three
upper plots as otherwise the shape of the potential cannot be recognized.



8 2.2. Surface-trap theory

The trapping principle stays the same, but the region over which the harmonic
approximation holds gets smaller, and the traps get shallower. Three parameters
characterize how “non-ideal” a trap is: the trap depth, the radial trap efficiency
η, and the axial trap efficiency κ. The depth of a trap is given by the height of the
potential energy barrier a particle needs to overcome in order to leave the trap.
The radial trap efficiency η is a geometrical factor which compares the quadrupole
moment of the electric field, generated by a given RF electrode structure with the
quadrupole moment of an ideal trap of the same ion-electrode separation. The
axial trap efficiency κ has a similar meaning, just that the comparison is made
for the DC endcap electrodes. The effect of these parameters is a reduction of
the corresponding trap frequency:

ωz =

√
2κeUEC

Mr20
; ωr0 =

ηeV

2Mr20ΩRF
(2.7)

So far the two radial trap frequencies were considered degenerate. This is only
the case if the DC endcap electrodes exhibit a perfect rotational symmetry about
the z-axis which is not fulfilled in many implementations. For example in the
common implementation with cylindrical rods shown in figure 2.3, only one of the
two pairs of rods is segmented and thus only one pair exhibits endcap electrodes.
Any asymmetry lifts the degeneracy and leads to distinct radial trap frequencies
ωr1 and ωr2 which have to fulfill the following constraint:

ω2
r1 + ω2

r2 + ω2
z = 2ω2

r0

The three frequencies introduced above characterize a trap with respect to three
axes, along which the motion of the ion can be regarded as decoupled from each
other. These axes are called the principal axes of a trap. Particularly for surface
traps these principal axes do not always coincide with the geometrical axes.

2.2. Surface-trap theory

In recent years a novel trap architecture was proposed [35], which is very promis-
ing for the development of future quantum computation applications. Instead of
using a three-dimensional electrode structure, in a surface trap all electrodes are
brought to one plane. A straightforward design approach is the so-called five-

wire geometry (cf. figure 2.5). There one of the DC electrodes is placed between
the RF electrodes, the other one is split up and placed laterally on either side.
This provides radial confinement just like in a three-dimensional trap, the trap
center lies at a certain distance above the central electrode. Axial confinement is
achieved by a segmentation of the DC electrodes, where the outermost segments
act as the endcaps. In the following various aspects of surface traps are discussed.

Trap depth and trap frequencies Compared to a standard macroscopic trap
the motional frequencies are only slightly lower, by a factor of approximately 3
to 6 [35], i.e. η = 0.3 to 0.15. However the trap depth is significantly reduced.
An excited ion most probably leaves the trap over the saddle point which lies
above the trapping zone (cf. figure 2.4d. The height of this saddle point defines
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(a) (b)

Figure 2.5.: Five-wire design: (a) All electrodes of a linear Paul trap are put into one
plane. One of the DC electrodes is split and lies laterally on both sides.(b) Perspective
view of a five-wire trap with segmented DC electrodes.

the trap depth and is typically reduced by a factor of 30 to 200 compared to
standard quadrupole traps. However, by adding a DC biased electrode above
the trapping zone the trap depth can be dramatically increased [51]. In the
simulations presented in figure 2.4 the reduction factor is ∼ 100.

Fabrication Many applications of ion traps require high secular frequencies.
As can be seen from equation (2.7), one way to increase these frequencies is to
reduce the dimensions of the trap. However, machining of traditional ion traps
to the required precision is a challenging and time consuming task, even with
the relatively large sizes typically used, not to mention making them smaller.
Here surface traps have a major advantage as they can be fabricated using well
established techniques of the semiconductor industry. Traps have been fabri-
cated using techniques like printed circuit boards (PCB) [36], metal deposition
via electroplating or evaporation [37] or etching of bulk silicon wafers [52]. Be-
sides simplification of the fabrication process, also the time needed to design and
produce a new trap is much shorter. A traditional trap needs usually over a
month to be machined and assembled, whereas a new surface trap can be pro-
duced within a week, once the fabrication process is mastered. This speed of
prototyping further simplifies the advancement of ion traps.

Versatility Not only is the minimum size of traditional traps restricted, but
also the fabrication of complex electrode structures is much more demanding
than with surface traps, if not altogether impossible. While the five-wire geome-
try introduced above is just the most direct implementation, surface traps provide
the possibility to experiment with far more complex structures [53, 54]. Besides
the linear trap type architecture there are proposals [55] and preliminary experi-
mental implementations [56] of a trap architecture consisting of two-dimensional
arrays of traps, which would be a substantial progress in terms of scalability of
the system and which would be impossible with standard traps.

Optical access As mentioned before, optical access is a crucial property of a
trap and a major motivation for deviation from the ideal hyperbolic geometry.
In many experiments with trapped ions good optical access is necessary for the
following reasons: The imaging system should cover as much of the solid angle as
possible in order to collect the fluorescence light from the ion efficiently. Secondly
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the ions need to be very well cooled, close to the absolute zero, which is typically
done by laser cooling. This cooling mechanism requires the laser beam to have a
component along all principal axes of the trap [57].

The problem with the standard five-wire design surface traps is that having
beam components along all principal axes is not easily achievable. Due to the
geometry the laser beam can only have a small angle with respect to the plane
of the trap. Otherwise the beam hits the trap and thus causes stray light (which
is detrimental to good imaging), and induces stray electric fields due to charging
of insulating materials near the trap [58, 59].

These challenges may be solved by the following ideas: In a surface trap ar-
chitecture parts of the optical system can be implemented directly into the trap,
which has already been shown in proof-of-principle experiments [60–62]. Efficient
cooling can be achieved by using a slightly different trap design with asymmetric
RF electrodes. In these traps the principal axes are rotated and therefore the
ions can be well cooled by a beam parallel to the trap plane [35]. Neither of
these solutions are implemented in the trap used in this experiment. However
the simulations developed here are applicable to such surface trap designs and
could be used to simulate them in the future.

2.3. Segmented traps

It was already mentioned in the introduction that one of the research goals of the
ion trapping community is to build a large scale ion computer [41, 63]. Simply
increasing the number of ions in one trap is not scalable. Gate operations depend
strongly on the confinement strength, and if further ions are added while keeping
the confinement strength constant, at a certain point the inter-ion separation will
get too small for efficient addressing. An alternative approach is to use segmented
microtraps [34], where the segmentation of the electrodes provides several distinct
trapping zones in one trap. These different zones can have differing functions,
like processing zones where the gate operations are performed and memory zones
where the ions are stored in between two operations. The segmented nature of
the electrodes allows the ions to be moved from one zone to the other (a process
called shuttling) as proposed in [34]. Shuttling can be also used for a new way of
realizing gate operations [64] by moving ions in and out of the laser beam instead
of addressing the beam onto the ion.

Another application of the additional degrees of freedom provided by segmented
electrodes was implemented in recent experiments in Innsbruck [65] and at NIST
[66], where coupling between two quantum mechanical oscillators in separate
potential wells was shown. The oscillators were ions sitting in two nearby trapping
sites of a so-called double-well potential, which was formed by applying specific
DC voltages to the relevant segments of the trap.

2.4. Controlling the ion’s motion

Despite the many opportunities afforded by segmented surface traps, such possi-
bilities do not come without a price. The technical overhead required to under-
stand and control the classical motion of the ion is not inconsiderable. Achieve-
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ment of such a control constitutes the main topic of this work. Specifically this
comprises the control over the three coordinates x, y, z of the potential minimum,
and the motional frequencies of the ion ωx, ωy, and ωz.

2.4.1. Radial position

In section 2.1.3 it was mentioned that the ion’s harmonic secular motion in the
trap is superimposed on a fast oscillation at the drive frequency. This micro-
motion is unavoidable even in ideal traps, since the ion is never at rest at the
minimum of the pseudopotential (RF null) where the micromotion vanishes, but
oscillates back and forth. In a real trap, however, static stray electric fields can
displace the average ion position from the RF null to a point with higher RF
field amplitude and therefore also bigger micromotion. This so-called excess mi-

cromotion has several adverse effects, such as: reduced cooling efficiency due to
the Doppler shift of the transition line shapes, AC Stark shifts and second-order
Doppler shifts. For a detailed description of these effects see [46]. Micromotion
therefore needs to be minimized which is done by spatially overlapping the saddle
point of the DC field with the saddle point of the RF field and thus ensuring that
the ion’s position is at the minimum of the pseudopotential.

There are several methods to minimize micromotion [46], all of them include
minimizing some micromotion-related signal by moving the ion to the RF null.
To move the ion in the desired way, one needs a uniform static electric field. As
the ion can be displaced in any arbitrary radial direction, in general two distinct
non-parallel fields are necessary to bring it back to the RF null. Ideally these two
fields are orthogonal with respect to each other and are additionally aligned with
the directions along which the micromotion is detected. In that case micromotion
compensation can be done in two steps: First, micromotion is minimized along
one direction, then it is minimized along the other direction. If the two directions
are not orthogonal this process has to be repeated iteratively.

The challenge with many commonly used surface trap geometries is that, as
opposed to traditional linear traps, it is not possible to generate mutually or-
thogonal fields by using only two electrodes. Therefore another solution has to
be found where one can use the fact that the segmentation of the DC electrodes
offers additional degrees of freedom. Instead of using only two electrodes, one
can use a set of DC electrodes and search for a specific set of voltages such that,
by applying these voltages to the corresponding electrodes, all the components
in the unwanted directions cancel each other out.

2.4.2. Axial position

Similar requirements need to be satisfied for the shuttling of ions. The curvature
of the potential can differ during the shuttling process for certain purposes [67],
but the ion should definitely move exactly along the RF axis of the trap in order to
not gain excess micromotion. This implies a field which has only a z-component.
In a three-dimensional segmented trap this is easily achieved by a differential
voltage applied between two pairs of segmented electrodes of the trap. Doing the
same in a surface trap would displace the ion in z-direction as desired, but would
additionally affect the ion’s height above the trap. To compensate for that, the
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same concept as above can be used, where a specific set of voltages needs to be
found and applied to a set of electrodes such that the emerging field is purely
axial.

2.4.3. Trap frequencies

Besides the position of the potential minimum, the curvature of the potential
determines the classical motion of a trapped ion. It was already shown that
the parameters α, β and γ, which determine the curvature of the potential in all
three dimensions, cannot be chosen independently. But as the trap frequencies
are directly related to these parameters, also the frequencies are not independent.
This means that one cannot increase one trap frequency without lowering another
one, but at least it would be desirable to be able to do that in a controlled manner
and without influencing the ion’s position. In a three-dimensional linear trap
raising the endcap voltages will give a higher axial confinement and a lower radial
confinement but due to the symmetry, the ion’s position would stay constant. In
a surface trap however the same naive approach would additionally raise or lower
the ion’s height above the trap. Once again this unwanted effect can be avoided
by taking more electrodes into account, using a specific set of voltages. The
procedure of how to find these voltages forms the basis of the next chapter.



3. Computer simulations

The rapid evolution in computational power of the last decades has provided an
enormously powerful tool for engineers and scientists and opened up numerous
new possibilities for theorists and experimentalists alike. Theorists can quickly
check if their new ideas make sense, where a verification by a real experiment
is either not possible or not feasible. Experimentalists can perform preliminary
tests of the design of their experiment, before building it, and thereby save time
and money. The following chapter starts in section 3.1 with the statement of
the problem, followed by an introduction to two widely used numerical methods,
the finite element method (FEM) and the boundary element method (BEM) in
section 3.2.

Section 3.3 describes the trap simulations performed, including the methods
used and some first examples. Finally, section 3.4 describes the approach used to
calculate voltages for controlling the ion’s motion within the trap.

3.1. Statement of the problem

Solving a scientific or technological problem often includes solving partial differ-
ential equations (PDAs). In the case of trap simulations we want to calculate
the electric potential Φ generated by the charge distribution surrounding the ion.
Dielectric surfaces are either far away or shielded by the electrodes and thus ne-
glected. Therefore the only contribution to the potential comes from the surface
charges on a set of n electrodes. The governing equation is the Laplace equation
in free space

∇2Φ = 0 (3.1)

with Dirichlet boundary conditions

Φi = Ui i = 1 . . . n (3.2)

where Φi is the potential at the ith electrode’s surface and Ui is the voltage applied
to the ith electrode.

Recently it has been shown that under certain approximations this equation
can be solved analytically for surface traps [68]. One of the approximations is,
that there are no gaps between the electrodes, or that any gaps are at least much
smaller than the ion-electrode distance. The trap used in this project however
has gaps of ∼ 500µm which is on the same order as the electrode width and the
ion-electrode distance. Therefore this method is not applicable, and numerical
methods have to be used.

13
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3.2. Numerical methods

Since digital computers cannot handle non-algebraic equations, the PDA needs
to be transformed to an algebraic equation, a procedure called discretization.
Numerical methods developed to solve these equations are classified according to
the type of the discretization. Two common ones are described here:

Finite element method (FEM)

The finite element method is a versatile and very popular technique and is imple-
mented in a variety of commercial software packages1. The basic idea is to divide
the volume for which one wants to know the solution (the domain) into small
but finite size elements with uniform material properties, cf. figure 3.1a. Each of
these elements approximates the behavior of the region it represents; the smaller
the element the more exact the solution, but the higher the computational effort.
The set of all of these subdivisions is called computational mesh. The strength of
FEM is the ease of handling complicated structures and the possibility to locally
adapt the mesh size, such that more important regions are divided into smaller
elements.

In the experiment at hand the boundaries to the domain could be set by the
walls of the grounded vacuum chamber which are ∼ 10 cm away. Rather than
meshing such a large volume, however, a non-physical grounded metallic bounding
box can be introduced. The dimensions of this box are much smaller than the
dimensions of the chamber, but still sufficiently large such that they do not
significantly influence the potential at the position of the ion.

Boundary element method (BEM)

The boundary element method follows an alternative approach, unlike the pre-
vious method, only the boundary has to be discretized, as illustrated in figure
3.1b. In the following the general steps are presented, while a comprehensive
description is provided in [69–71].

1. At first the differential equation is transformed into an equivalent integral
equation which is defined only on the boundary of the domain.

2. In most cases this integral cannot be solved analytically. Therefore the
next step is to discretize the boundary and solve the integral by numerical
integration. Similar to FEM, the subdivision is done into small elements,
each of uniform charge density. The mesh size can also be variably adjusted
to the geometry; the only difference is that the dimension of the elements
is reduced by one. The result of this integral is the surface charge σ(xj) at
each boundary element j at position xj .

3. Knowing the surface charges on all boundary elements, the potential in-
side the domain can be calculated by evaluating Coulomb’s law for each
element and summing up all contributions. Two things have to be noted:
Firstly, numerical errors in the simulated fields have their origin only in the

1 e.g.: COMSOL Multiphysics, MEDINA, ADINA Multiphysics
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discretization of step 2, the calculations of step 3 are analytical. Secondly,
the potential can be calculated at any arbitrary point inside the domain,
as opposed to FEM where the solution is only known at the nodes of the
mesh.

(a) (b)

Figure 3.1.: Discretization: (a) In FEM the whole domain needs to be meshed. (b) In
BEM only the boundary needs to be meshed, which results in a much smaller solution
space.

3.2.1. Comparison FEM and BEM

In the following, properties of BEM are discussed and compared to FEM.

• The most striking difference between the two methods is the discretization.
In FEM the whole domain has to be sub-divided (figure 3.1a), while in BEM
only the boundary is subdivided, (figure 3.1b). This reduces the dimension
of the problem space with BEM by one, making the system of equations
much smaller and therefore computationally less demanding and faster [72].

• BEM solutions are in principle differentiable to all orders, while solutions
calculated with FEM usually feature numerical artifacts such as disconti-
nuities at the boundaries of meshing regions.

• The matrices of the equation systems produced by BEM are densely pop-
ulated and asymmetric whereas FEM matrices are sparse and symmetric.
This was a major drawback, because algorithms solving dense systems used
to be much more demanding. However, recently an algorithm called fast
multipole method (FMM) was developed, which dramatically increases the
speed of solving dense matrix problems [71].

• BEM can reach higher accuracies due to its semi-analytical approach.

• In a BEM analysis no bounding-box has to be introduced.

Beside the mentioned points above, BEM was used because the points for which
the solution is calculated can be chosen on a rectangular grid which facilitates the
post-processing with a matrix based program such as MATLAB2. Furthermore an
interface connecting the BEM package CPO3 and MATLAB was already written

2 MATLAB 7.11.0, The MathWorks, Inc.
3 CPO3D/Di, Scientific Instrument Services
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which is easier to use than the available interface between the MATLAB and the
FEM package we previously used, COMSOL4.

3.3. Trap simulations

The trap simulations are done using the BEM package CPO. First the trap is
drawn in a CAD program5 (cf. figure 3.2a) and pre-segmented into rectangular
parts. The trap and the pre-segmentation of the electrodes is shown in figure
3.2b. In CPO this segmentation is further refined depending on the initial size of
the parts. A finer mesh can thereby be used for the more important regions, the
ones in the vicinity of the ion. The finest division is applied to the RF electrode
resulting in 336 segments. In total the simulation is done for 844 elements. Gaps
between the electrodes are treated as airspaces and the electrodes are assumed
to be two-dimensional. The characteristics of BEM allows the potential to be
evaluated at every point in the domain, so a rectangular grid around the ion’s
position is chosen with 61×61×61 points and an extension of 300×300×300µm.
Thus the grid has a spacing of 5µm. With these parameters the calculations take
about 110 minutes on a standard desktop computer6.

The grid origin is set to be at the trap center, the height above the trap (y-axis)
was determined from a primary simulation of the pseudopotential on a bigger grid
with smaller accuracy, see figure 3.3. The origin in the x-z-plane is chosen to be
at the geometrical center between electrode 3 and electrode 8, see figure 3.2.

(a) (b)

Figure 3.2.: (a) Bastille’s electrodes with their designations. (b) Primary subdivision of
the electrode structure, which was passed to CPO. The red cross marks the position of the
origin in the x-z-plane, the height of the origin above the trap is 850µm

DC Potential The simulation of the DC potential should be general in a sense
that it should be adaptable for any chosen voltage configuration for the electrodes.
Since the underlying differential equation is linear, the superposition principle
holds for the solutions. A general approach is as follows:

4 Comsol Multiphysics 3.4
5 AutoCAD 2009, Autodesk Inc.
6 Intel Core i5 CPU, 3.5GHz with 8GB of memory
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1. Set the RF electrode to ground.

2. Set Ui to 1 V and Uj 6=i to 0 V.

3. Calculate the potential ϕi at all grid points. ϕi is the so-called base function

of electrode i.

4. Iterate step 2 and 3 for all n electrodes.

5. For the total DC potential, weight the base-functions ϕi with the chosen
voltages Ui and superpose them.

ΦDC =
n∑

i=1

Uiϕi (3.3)

RF potential The effective potential generated by the RF voltage can be cal-
culated using the pseudopotential approximation, see section 2.1.1. At first only
the static amplitude is considered, and the same procedure as above can be used:
All the DC electrodes are set to 0 V, the RF electrode is set to 1 V, and the
potential ΦRF is calculated. This result needs to be post-processed to get the
pseudopotential ψRF via the already known formulation

ψRF =
e2

4MΩ2
RF

|∇ΦRF |2

x (mm)

y(
m

m
)
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Figure 3.3.: Equipotential lines of the pseudopotential at the trap center of Bastille in a
cross section through z = 0.

Total potential The total potential is obtained by adding the DC potential and
the pseudopotential

Ψ = ψRF + ΦDC (3.4)

3.4. Trap control

The method used to improve trap control which is presented here, is based on
the expansion of the potential in spherical multipole moments. At first in section
3.4.1 the theoretical background of this technique is reviewed, details can be
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Figure 3.4.: (a) Base functions of the DC electrodes on the z-axis (x=y=0) as a function
of axial position. Here only electrodes 1 to 5 are plotted, electrodes 6 to 10 show the same
behavior due to symmetry. (b) The central electrode DC 11 is plotted in a separate figure
since it is situated closest to the ion and therefore has the biggest influence. Furthermore
it can be seen that the potential has a gradient in the z-direction, more on this follows in
section 5.

found in [73]. Then section 3.4.2 describes how this can be used to create the
desired potentials.

3.4.1. Spherical multipole expansion

The potential of any charge distribution ρ(r′) at any point r can be expressed as

Φ(r) =

∫
dr′

ρ(r′)
|r− r′| . (3.5)

The origin is taken to be at the trap center, |r| gives the distance of the ion
to the origin whereas |r′| gives the distance of the electrodes to the origin. If
either |r| ≫ |r′| or |r′| ≫ |r| the denominator can be expanded using Legendre
Polynomials Pℓ

1

|r− r′| =
1

r>

∞∑

l=0

(
r<
r>

)l

Pℓ(cos γ). (3.6)

Here r< and r> are the smaller and the larger of the two distances respectively,
and γ is the angle between them. The corresponding physical situations are
the following: Either the charge distribution is centered at the origin and one
is interested in finding the potential in the far field. Or the potential at the
origin needs to be found for sources very far away from it. The corresponding
expansions are called exterior and interior expansion respectively. For us the
second case is valid as the distance between electrode and ion is much larger
than the distance over which the ion oscillates. To express (3.6) in terms of the
spherical coordinates θ and ϕ the Legendre function needs to be rewritten with
the help of spherical harmonic functions Y m

ℓ . For that, the addition theorem for
spherical harmonics is used [73]:

Pℓ(cos γ) =
4π

2ℓ+ 1

ℓ∑

m=−ℓ

Y m∗
ℓ (θ′, ϕ′)Y m

ℓ (θ, ϕ). (3.7)
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Combining (3.5), (3.6) and (3.7) gives

Φ(r) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∫
dr′ρ(r′)

rℓ

(r′)ℓ+1

4π

2l + 1
Y m∗
ℓ (θ′, ϕ′)Y m

ℓ (θ, ϕ)

=

∞∑

ℓ=0

ℓ∑

m=−ℓ

Iℓmr
ℓ

√
4π

2ℓ + 1
Y m
ℓ (θ, ϕ).

(3.8)

For the second equality all the terms with primed variables have been combined
to Ilm. The Ilm are called interior spherical multipole moments and are defined
by

Iℓm :=

∫
dr′

ρ(r′)

(r′)ℓ+1

√
4π

2l + 1
Y m∗
ℓ (θ′, ϕ′). (3.9)

Spherical harmonics form a complete set of orthonormal functions, which means
that every complex valued function depending on the angular variables θ and ϕ
can be expressed as a superposition of spherical harmonics. If the function to be
expressed is an electric potential as in this case, the coefficients of the expansion
are given by the multipole moments Iℓm. Physical potentials are real valued
functions, therefore rather than using a complex valued set of functions, it can be
equivalently described by a set of real functions. Such a set is more convenient
for the following calculations, and can be formed in the following way: With
Y m∗
ℓ = (−1)m Y −m

ℓ real valued spherical harmonics can be defined as:

Yℓm =





1√
2

(
Y m
ℓ + (−1)m Y −m

ℓ

)
if m > 0

Y 0
ℓ if m = 0
1

i
√
2

(
Y −m
ℓ − (−1)m Y m

ℓ

)
if m < 0.

(3.10)

Figure 3.5 shows the 9 lowest order real spherical harmonics, which are well
known in many fields of physics. In quantum physics, for example, they give
the angular distribution of the atomic orbitals. From a physicist’s view there is
an intuitive way to describe multipole expansions. An observer located very far
from the origin, cannot distinguish between an arbitrary charge distribution and
a point source. Coming nearer he/she will see at first a dipole component, then a
quadrupole component and so on. Depending on the number of terms taken into
account and the distance, or to be precise on the ratio between r and r′, a linear
combination of the lowest multipole moments will give a good approximation to
the actual potential.

A similar picture can be given for the interior expansion. Electrodes situated
very far from the origin, will result in a constant offset field only. If they are closer,
gradually the dipole and later the quadrupole component become stronger. The
electric field lines at the origin, generated by multipoles, are shown exemplary in
3.6. A dipole creates a linear gradient field which displaces the position of the
potential minimum in one direction, but leaves it unchanged in the other two.
It also leaves the potential’s curvature and thus the ion’s motional frequency
unchanged. A quadrupole creates a saddle shaped potential which alters the
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Figure 3.5.: 9 lowest order real valued spherical harmonics: (a) corresponds to a monopole.
(b)-(d) correspond to dipoles (e)-(i) correspond to quadrupoles.
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motional frequencies but keeps the ion’s position unchanged. These are exactly
the shapes we would like to create. The next sections describe how this is done.

�

�

(a)

�

�

(b)

�

�

(c)

Figure 3.6.: Example cross-section of electric field lines near the origin generated by
multipoles. (a) The x-dipole represented by Y1,1 (cf. figure 3.5b) creates a linear gradient
field in x-direction. (b) Quadrupoles have two designated axes, along one of them the field
lines point towards each other, along the other they point from each other. Here the Y2,−2

is presented (cf. figure 3.5). (c) Besides having such a structure in the x-z and y-z plane,
the quadrupole represented by Y2,0 (cf. figure 3.5f) shows an additional feature: In the
x-y-plane the field lines point radially towards the center.

3.4.2. Creating multipole potentials

Similar to the trap simulations, the expansion of the potential in real multipole
moments is done for each electrode individually. To illustrate this more clearly
the expansion for the jth electrode is written out up to second order in Cartesian
coordinates. For convenience the coefficients Iℓ,m were combined with all constant
prefactors and termed Mi,j. In this notation the indices l and m are mapped onto
one index i; this facilitates a matrix notation.

Φj = M0,j +M1,j x+M2,j y +M3,j z

+M4,j (x2 − y2) +M5,j (2z2 − x2 − y2)

+M6,j xy +M7,j yz +M8,j zx

+ O(x3, y3, z3)

(3.11)

After doing this for all electrodes j, the obtained multipole moments can be
written as a matrix Mi,j where j indicates the electrodes and i the expansion
terms. The total multipole moment M of the trap for a given set of voltages
{Uj} can be calculated by multiplying Mi,j with the {Uj}:




M1

M2
...

Mk


 =




M1,1 · · · M1,N
...

. . .
...

Mk,1 · · · Mk,N







U1

U2
...
UN


 . (3.12)
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Here N indicates the total number of electrodes and k the number of terms
considered in the expansion. The monopole term M0,j has been neglected as it
corresponds to a constant offset.

However, finding the total multipole moments is not the goal. The goal is to
find a certain set of voltages {Uj} such that multiplied with the multipole matrix
M all but one total multipole moment cancel out. For example if one wants to
generate an x-dipole (Y1,1) one needs to find a set {Uj} such that only the first
entry on the left-hand side of equation (3.12) has a nonzero entry:




1
0
0
...
0




=




M1,1 · · · M1,N
...

. . .
...

Mk,1 · · · Mk,N







U1

U2
...
UN


 . (3.13)

Since M is in general a rectangular matrix the solution has to be found numerically
in a least-squares approximation. This means solving the equation M = MU by
minimizing the norm

‖MU −M‖. (3.14)

In the case considered, the linear system is underdetermined since 8 expansion
terms are taken into account and the trap has 11 electrodes. Therefore either
no solution exists or infinitely many solutions. There are several algorithms
solving this problem; here the equation is multiplied with the Moore–Penrose
pseudoinverse [74, 75] of the matrix M from the left.

In MATLAB the pseudoinverse is calculated by a singular value decomposition
[76] and has the following advantage: If the system is underdetermined, the
algorithm chooses out of all possible solutions which minimize the norm (3.14),
the unique solution which has itself the minimal norm |U |. This means that the
individual voltages of U are made as small as possible. That is beneficial in the
experiment since practical or technological reasons often limit the voltages which
can be applied.



4. Experimental implementation

With the simulations completed, the next step of this project was to verify the
results experimentally. The measurements were performed with the surface trap
Bastille, as it is a trap which had repeatedly proven to work well and furthermore
the vacuum and imaging system were already at hand, so only the optical and
electronic setup had to be rebuilt.

This chapter starts with a description of the experimental setup of the Bastille
trap in section 4.1. Section 4.2 deals with the implementation of the multipole
method into the experiment control software TrICS. Finally the measurement
methods are described in section 4.3.

4.1. Experimental setup

In this section the apparatus with which the experiments of this project were
performed is described. It consists of a characterization of the trap, the electronics
providing the voltages to the trap electrodes, the vacuum chamber, the optical
setup and the imaging setup. At the end it describes the procedure of loading
the trap.

4.1.1. Surface trap Bastille

Bastille is a printed circuit board (PCB) trap, constructed in the five-wire design
width DC control electrodes on either side of the RF rails, each segmented into 5
parts. It was designed in the group of Prof. Isaac Chuang at the Massachusetts
Institute of Technology [77]. Figure 4.1 shows a photograph and drawing with
the most important dimensions. It is composed of a 20µm copper layer on a
635µm substrate made of a vacuum-compatible dielectric (Rogers 4350). The
bare substrate is milled away in the areas near the trap center to minimize di-
electric exposure to laser light (and thereby minimize build-up of stray charges
[58, 59]) and to prevent shorting due to calcium deposition. The RF and the axial
electrode and the gaps in between are designed to have an equal width of 508µm,
but in order to provide further shielding of the ions from the dielectric substrate
the copper is wrapped around the edges, making the electrodes wider and the
gaps smaller by 40µm. The trap was typically operated at 300 V < VRF < 500 V
with a frequency of 10.2 MHz.

Height of trap center

The average height of the RF null above the trap is 850µm. From figure 4.1 it can
be seen that the design of the trap differs from the most basic five-wire design:
There is an additional bar running vertically on each side, one connecting both
RF electrodes, the other one is connected to the axial electrode and surrounds

23
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(a) (b)

Figure 4.1.: Bastille: Photograph and trap dimensions

Surface trap Bastille: (a) Each electrode is bonded with three gold wires, two of
which are connected to the feed-through outside of the vacuum chamber. This
enables us to test if contacts are still faultless. (b) Sketch with trap measures,

all lengths are given in µm.

the segmented electrodes. This asymmetry leads to varying height of the RF null
position along the trap axis. Over the whole trap this variation is on the order
of 200 µm.

Trap depth

For a surface trap in five-wire design the exit path out of the trap is along the
y-axis (orthogonal to the trap plane) above the trap center. Figure 4.2 shows a
line plot of the simulated pseudopotential along this direction. The simulation
was performed without static voltages, with 500 V RF-voltage (0-peak) and a
drive frequency of 10.2 MHz. This results in a trap depth of 0.22 eV. With added
DC voltages this value increases slightly but is still at a few hundred meV, for a
detailed treatment see [78].

Trap frequencies

The secular trap frequencies strongly depend on the DC Voltages. Under typical
conditions used in the experiment they take the following values: 0.2 MHz <
ωx/2π < 0.4 MHz, 0.8 MHz < ωy/2π < 1.1 MHz and 0.1 MHz < ωz/2π <
0.2 MHz, more details follow in section 5.

4.1.2. Electronics

The generation of stable trapping conditions in the surface trap Bastille requires
static voltages up to 50 V and RF voltages up to 500 V. In the following it is
described how these voltages are provided.
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Figure 4.2.: Numerical simulation of the pseudopotential along the y-axis starting from
the center of the axial electrode. The trap depth is 0.22 eV

RF supply

Bastille was operated at RF voltages of 300 V to 500 V at a frequency of 10.2 MHz.
This voltage was generated by amplifying the output of a signal generator1 with
a 2 W amplifier2 and impedance matched to a λ/4 helical resonator [79]. The
resonator consists of a copper tube with a helical wound wire inside. One end
of the wire is connected to the trap, the other end to the outer tube which is
grounded. The signal is coupled-in via a crocodile clip at the first winding. The
exact point at which this must be connected and the correct drive frequency
are tuned by monitoring the reflected signal with a standing wave ratio (SWR)
meter3 which is connected between the amplifier and the resonator. For perfect
coupling and correctly matched frequency the reflected signal should vanish. The
quality factor of the loaded resonator was measured to be Q ≈ 150. The actual
voltage was measured with a 100:1 capacitive divider.

DC supply

Control over an ion’s motion in a trap requires the control over six trap parame-
ters: the three spatial coordinates of the potential-minimum and the three trap
frequencies. For a given RF field this is achieved by applying specific static volt-
ages to the DC electrodes. If these voltages are determined with the multipole
method described in section 3.4, each electrode needs to be addressed individu-
ally. Formerly a different approach was used, where the four endcap electrodes
(1, 5, 6 & 10) were held at the same voltage, as were the two middle electrodes (3
& 8). Thereby the number of necessary voltage signals was reduced and a data
acquisition card (DAQ) with only 8 analog output channels could be used as the
voltage source. Since in the new approach 11 electrodes need to be addressed
individually a new card4 was installed, offering 16 analog output channels with
a 16 bit resolution (∼ 1 part in 3 · 10−4). The output voltage of this card ranges
from -10 V to 10 V. As the endcaps usually are operated in a range from 30 V

1 Marconi Instruments; 2022E
2 Mini Circuits; ZHL-1-2W-S
3 Daiwa; CN-101CL
4 National Instruments; PCI-6703 DAQ
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to 50 V, amplification of the signal was necessary. Commonly in ion trap experi-
ments low-pass filters are placed close to the trap to minimize heating of the ion
due to RF pickup. For convenience the previous filterbox was replaced with a
new circuit including the breakout box, the amplifiers and the low pass filters all
on one board. A basic unit of the schematic is shown in figure 4.3, the whole
circuit consists of 11 copies of it; one for every electrode.
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Figure 4.3.: DC supply circuit: A non-inverting amplifier using the high-voltage opera-
tional amplifier OPA445 and a passive low pass filter in T design. Every electrode has two
separate wires attached, which are connected to the two ports of the pin header H1. This
gives the possibility to check for proper connectivity.

The amplifier itself is built with the operational amplifier OPA445 in a non-
inverting design with a gain of 11. The OPA445 works with supply voltages up
to ±45 V and can also be operated with asymmetric supplies, with a voltage
difference not exceeding 90 V. This is desirable as we need high positive voltages
for the endcaps but only small negative values. The low pass filtering was done
passively with an RC circuit in T design with a cut-off frequency of 72 Hz. The
T design not only assures that high frequency noise is stopped from transmission
to the electrodes, but it also prevents the amplifier from being disturbed by RF
pickup from the DC electrodes. Additionally three SMA connectors were placed
and coupled to electrodes 2, 7, and 11 with 100 pF capacitors. This is needed for
trap frequency measurements, as described in section 4.3.3.

4.1.3. Vacuum chamber

In general ion trapping experiments require very low background pressure to pre-
vent loss of ions out of the trap due to collisions with background gas molecules.
Therefore our trap is situated in a vacuum chamber as shown in figure 4.4. The
chamber is made out of stainless steel in a six-way cross configuration. The trap
is mounted vertically in the center of that cross, parallel to viewport V3 and with
the trap axis aligned to the connecting line between viewports V1 and V2. All
laser beams enter through V1 and leave through V2 under a small angle with
respect to the z-axis. In the z-y plane this angle is restricted by the dimensions
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of the trap: A beam incident under an angle α > 7◦ would hit the trap and
cause stray light and stray charges. In the z-x plane the maximum angle is ∼ 9◦

and is limited by the dimensions of the chamber, in particular by the diameter
of viewports V1 and V2 and by the distance in between them. Therefore the
propagation direction of the beam has only small components along the x- and
y-axis which limits the laser cooling efficiency in these directions.

V3 is an inverted viewport, where the inner glass surface is ∼ 5 cm away from
the trap. It is used for detection of the ions’ fluorescence light. The upper
arm of the cross is used as a feedthrough for the DC wires from the segmented
electrodes to the filterboard. The lower arm contains the calcium oven, which is a
thin-walled stainless steel tube of 1.8 mm diameter filled with granulated calcium.
By resistively heating to temperatures over 500 K calcium vapor is evaporated
towards the trapping region.

Figure 4.4.: Schematic of the vacuum chamber. (Courtesy of [78])

The arm opposite of V3 connects the experiment chamber to vacuum measure-
ment and pumping devices. A turbomolecular pump serves as the prepumping
stage and reaches pressures of about 10−6 mbar. Further improvement is achieved
with a continuously running ion-getter pump5 and a titanium sublimation pump6

which is switched on as necessary. The experiments during this project were per-
formed under typical pressures of 10−10 to 10−11 mbar, measured by a Bayard-
Alpert ionization gauge. Between V1, V2 and the upper arm there is an additional
satellite flange S1, which can be used to bring an optical fiber to the vicinity of
the trapped ions, but this was not used in this project.

5 Varian; StarCell 20L/s
6 Varian; 9160050
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4.1.4. Laser systems

For this project four different laser systems were used. They can be subdivided
in two groups: Two lasers were used to ionize the atomic calcium and the other
two were necessary for laser cooling and detection. All laser systems are build
on separate optical tables and are shared between four different experimental
setups within our group, the light is distributed to each table via optical fibers.
An energy-level scheme of calcium with the relevant levels for this experiment is
shown in figure 4.5.
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Figure 4.5.: Schematic energy-level diagram of the relevant levels. (a) Atomic calcium is
photoionised in a two-step process, first it is excited resonantly to the 4p 1P1 state with a
422 nm laser and then ionized with a 375 nm laser. (b) The ions are Doppler cooled on the
short-lived 2P1/2 - 2S1/2 transition at 397 nm. This transition is also used for detection.
The 2P1/2 state can also decay to the 2D3/2 state, therefore a second laser at 866 nm is
used to bring the ions back to the cooling cycle.

The photoionization of calcium is done in two steps [80, 81]. First, the atom is ex-
cited from the 4s 1S0 ground state to the 4p 1P1 state. This is a dipole transition
with an energy difference corresponding to a laser wavelength of 422.673 nm in
air. Since the output of the previously used laser was slowly degrading with time
and the performance could not been improved a new second harmonic generation
(SHG) laser system was installed7. The light is generated by frequency doubling
of 845 nm light from a grating stabilized diode laser in a nonlinear crystal (LBO).
The output power is around 5 mW. The frequency can be tuned by 10 GHz with-
out mode-hopping by changing the voltage on the piezoelectric transducers of
the grating and by varying the diode current. Besides the main output, this sys-
tem additionally has a separate low power output for measuring the wavelength,
which is located before the second harmonic generation (SHG) stage.

In the second photoionization step the atom is excited from the 4p 1P1 state
to the continuum by a grating stabilized diode laser at 375 nm8. Here tuning
to the exact wavelength is not critical, for the transition to the continuum the
wavelength only has to be smaller than 389 nm [81].

7 Toptica; DL-SHG pro
8 Toptica; DL-100
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For Doppler cooling and fluorescence detection the ions are excited on the
strong dipole transition from 4p 2P1/2 to 4s 2S1/2 by laser light from a frequency-
doubled 794 nm Ti:Sa laser9. The laser is pumped by a 532 nm solid state laser10

and frequency stabilized by a Pound-Drever-Hall lock [82] to a reference cavity.
The output power of the frequency doubled light is around 50 mW and is divided
approximately equally between four different projects. In the other projects the
light then passes an acousto-optic modulator (AOM) in a double pass config-
uration [83] shifting the far red detuned light by 160 MHz into resonance. In
Bastille’s setup this AOM is omitted for the following reason: Due to the geom-
etry of the trap radial cooling is very inefficient. Thus in the radial direction
the ions are hotter, their Doppler profile broader compared to the other experi-
ments and therefore the frequency with the most efficient cooling power farther
red detuned.

In 7.5% of the cases the excited ion does not decay back to the ground state,
but to the intermediate state 2D3/2, which has a lifetime 8 orders of magnitude
longer than the excited state (1 s compared to 7 ns). To maintain high photon
scattering- and thus cooling rates the population needs to be “repumped” to
the 2P1/2 state on the 866 nm dipole transition. This light is generated by a
grating stabilized diode laser,11 and further stabilized to an external reference
cavity. After again splitting up the light among the four different projects, it
goes through a double pass AOM which shifts the laser frequency by 200 MHz in
each pass.

4.1.5. Optical setup

Once the light is brought by optical fibers to the experimental table, all different
beams are overlapped and pointed at the trap together. This has the advantage
that once they are properly overlapped only one beam path has to be controlled
in the trap loading procedure. A sketch of the optical setup is shown in figure
4.6.

The 397 nm beam coming from the fiber first passes a λ/2 wave-plate and is
then focused into an AOM12 by a f = 300 mm lens. The wave-plate is used to
rotate the polarization of the beam as the diffraction efficiency depends on the
incident polarization. Maximal diffraction is obtained for vertical polarization.
The achieved diffraction efficiency of the AOM into the first order was measured
to be ∼ 70%. This diffracted light from the AOM contains several transverse
modes. All but the TEM00 mode are unwanted as they cause stray-light and
therefore hinder ion detection. Therefore the light is coupled into a 150 cm long
single-mode fiber, where all unwanted modes are filtered out. This technique is
called mode cleaning and has the drawback that ∼ 50% of the laser power is lost.

All of the beams are overlapped using very narrow bandpass filters13 with
transmission characteristics as depicted in figure 4.7. These filter are optimized
for normal incidence. After a rough alignment by eye, the light is reflected onto

9 Coherent; CR-899-21
10 Coherent; Verdi V10
11 Toptica; DL-100
12 Brimrose; QZF-80-20-397
13 Semrock; FF01-839/270-25, FF01-395/11-25 and FF01-417/60-25
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a pinhole by a flip mirror. This pinhole is placed at the same distance from
the last lens as the trap. A photodiode placed behind the pinhole detects the
transmission signal, by maximizing this signal for each individual beam, proper
alignment was assured at the ion’s position. Finally, before entering the chamber,
the beam-height had to be adjusted with a periscope.

To align the beam on the ion it was at first directed onto the trap. With the
help of the CCD camera the beam was adjusted in the x-z plane to hit the trap
center. Then it was lifted off the trap in y-direction such that behind the chamber
a displacement of 1.6 mm was measured. With that, the beam’s height above the
trap was ∼ 800µm and only fine tuning was necessary to “find” the ions.
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Figure 4.6.: Optical setup for Bastille. The 397 nm light is focused with a f=300mm lens
into a AOM where it is frequency shifted by 80MHz. The first order diffracted beam is
coupled into a single-mode fiber where it is mode cleaned. The 375 nm light is shared with
another project (Micreon trap) and can be deflected with a flip mirror. The waist of this
beam is adjusted with a telescope consisting of a f=300mm lens followed by a f=100mm
lens. The waists of the 422 nm and 866 nm beam have already appropriate size after the
collimation lens of the fiber couplers and need therefore no further adaptations. All beams
are overlapped on very narrow bandpass filters (BF). For fine tuning of the alignment
the beams can be reflected with a flip mirror onto a pinhole. Finally before entering the
chamber the beam’s height is adjusted with a periscope.



4. Experimental implementation 31

400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

T
ra
n
s
m
is
s
io
n
 (
%
)

3
9
7

3
7
5

4
2
2

8
6
6

BF1

BF2

BF3

Figure 4.7.: Transmission characteristics of the bandpass filters, the graphs correspond
to measured data taken by the company. BF1 was used to overlap the 422 nm and 375 nm
beams; BF2 to overlap the 422 nm, 375 nm and the 397 nm beam; and finally BF3 is used
to overlap the 866 nm beam with the 422 nm, 375 nm and 397 nm light.

4.1.6. Imaging

Detection of the ion’s position, and in more advanced experiments also the detec-
tion of the internal state [40], is done by imaging the fluorescence light from the
cooling transition onto an electron multiplying charge-coupled device (EM-CCD)
camera14. For high sensitivity a large solid angle needs to be covered, which is
done by placing the imaging lens system as close to the ion as possible. The
vacuum chamber has an inverted viewport, therefore the distance from the lens
to the ion is ∼ 5.8 cm. A lens system was used with f/# = 1.7, NA = 0.28
and focal length 67 mm mounted on an x-y-z translation stage. In front of the
camera three bandpass filters are installed to block any scattered light from the
photoionization and repumping lasers as well as ambient light. One filter has
its center frequency at 417 nm with a bandwidth of 60 nm15 the other two are
centered at 395 nm and have a width of 11 nm16. The camera uses a EM-CCD
chip with 658 × 498 pixels where each pixel has an area of 10µm × 10µm and
has a quantum efficiency of ∼ 40% at 397 nm.

4.1.7. Loading ions

When a trap is loaded for the first time, or has not been loaded recently, the first
step is to check if the oven is working and the photoionization light is tuned to
the right frequency. This is achieved by looking for resonant atomic fluorescence.

14 Andor; Luca-S DL-658M
15 Semrock; FF01-417/60-25
16 Semrock; FF01-395/11-25
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Atomic fluorescence

Atomic florescence is observed with only the 422 nm laser turned on. This ensures
high scattering rates as the atom does not get ionized by the 375 nm light but
decays back to the ground state after ∼ 5 ns. With the old 422 nm laser the
power after the fiber was as low as ∼ 8µW, and no fluorescence could be seen
at all. With the new one, the laser power before the vacuum chamber is ∼
400µW. At an oven current of 5 A and when the 397-filters are removed, a clear
fluorescence signal is visible (cf. figure 4.8). The correct laser wavelength is found
by scanning the wavelength and integrating the fluorescence counts on the camera
coming from a rectangular “region of interest” (ROI). The maximum fluorescence
was measured at λair = 845, 3509 nm with a commercial wavemeter17. This
corresponds to the master laser wavelength of the Toptica; DL-SHG pro. The
wavelength of the doubled light in vacuum is therefore λ422 =

λ845,air

2 · n845 =
422.7894 nm where the refractive index n845 is calculated from [84]. Possible
reasons for the slight deviation from the literature value of λair = 422.7918 nm
[85] are: The transition frequency is Doppler shifted as the atomic beam and
the laser beam cross under a small angle. And secondly the wavemeter is not
calibrated to that accuracy.
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Figure 4.8.: Resonant atomic fluorescence. (a) Inverse picture of the calcium beam. (b)
Mean number of counts from a “region of interest” versus time. The laser wavelength is
scanned over 2 pm. The oven is turned off at t = 30 s and the fluorescence signal decays to
the background level in ∼ 30 s

Trap loading

After successful atomic fluorescence detection the filters are reinserted and all
lasers turned on. From previous experience with the trap, a set of parameters
was known, which gives stable trap operation. These settings are listed in table
4.1.
The only parameter which needs fine tuning is the beam path. Once it is cor-
rectly aligned the trap can be loaded almost instantaneously. Figure 4.9 shows
a photograph of the first ions which were loaded. The above settings are reliable
for loading but the ions are not exactly at the RF null and therefore a micromo-
tion compensation needs to be carried out. This can be achieved by monitoring
the position of the ion on the CCD camera while raising and lowering the RF

17 HighFinesse; WS7
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DC voltages Laser power
DC 1 53.17 V 422 nm 400 W
DC 2 7.30 V 375 nm 233 W
DC 3 17.50 V 397 nm 650 W
DC 4 4.42 V 866 nm 400 W
DC 5 53.17 V
DC 6 53.17 V Oven current 4 A
DC 7 6.06 V RF Amplitude 400 V
DC 8 17.50 V
DC 9 3.18 V
DC 10 53.17 V
DC 11 7.63 V

Table 4.1.: Trapping parameters

amplitude [46]. If the ion is at the RF null its position is independent of the RF
amplitude. But if a DC field is pushing it out of this center, by lowering the pseu-
dopotential the DC force will prevail and the ion gets pushed further out. So at
a high RF amplitude the position of the ion is marked on the CCD image. Then
the amplitude is lowered and if the position changes, the DC fields are altered in
such a way that the ion is pushed back to the center. Then the pseudopotential
amplitude is increased again and the process repeated iteratively. This method
only compensates for static fields in x direction, and is limited by the resolution
of the camera. In y direction a rough micromotion compensation is achieved by
tuning the ion’s height above trap until the point where the image of the ion can
be well localized.

���� ����� ������

Figure 4.9.: The first trapped ions of this project, loaded with the parameters of table
4.1. The ion spacing is 22µm

4.2. Implementation in TrICS

Previously the experiment was computer controlled with a LabView program, but
as this system was unstable for demanding applications, the decision was made
to write a control program in C++. This software, TrICS (Trapped Ion Control
System), should also include the control over the DC multipoles. Ideally the end
user should have simple slider bars which need to fulfill the following demands:
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i Each multipole is assigned to a separate slider bar. The strength of the
multipole excitation is controlled by varying the value of this slider, which
changes the voltage of all DC electrodes according to the n-tuple U from
equation (3.13).

ii Each electrode is individually adjustable.

iii The DC voltages were provided by DAQ cards with an analog voltage output
range of ±10 V. If one channel reaches this limit, further increasing of the
multipole sliders has no effect on any channel, since the fields generated by
this additional voltages will no longer have the aimed characteristics.

iv U is dependent on the z-position of the ion and is thus adjustable at runtime.

The above points were implemented by assigning a “master” slider to each multi-
pole and a “slave” slider to each electrode. Slave sliders are connected to a DAQ
output channel; master sliders are not: They only change the values of the slave
sliders. Thomas Holleis, the developer of TrICS, provided the routines which
are needed to read out the actual value of a slider, write values to a hardware
channel and read out the former value of a slider. Reading out the former value
of a slider is necessary as slave sliders should change by an amount proportional
to the change of the master slider, not to its absolute value.

Task (iii) was worked out by no longer passing new values to the slave slider
as soon as one of them is out-of-range and saving the theoretical value of each
out-of-range slider in a temporary variable. As long as the slider stays out of
range all calculations are performed with the temporary values, as they move
back in to the specified range the actual read-out value is used again.

Lastly, task (iv) was addressed by reading-in all of the simulated U n-tuples
in distinct variables at the start up of the program. An additional slider bar lets
the user set the actual position of the ion, which is translated into the relevant
U value.

4.3. Measurement methods

4.3.1. Measurement of x and z displacement

It was mentioned in section 2.4 that controlled shuttling is one of the main moti-
vations for this work. A requirement for characterizing how good the control is, is
the ability to measure displacements of the ion. Measuring them in the x-z-plane
is straightforward as one can count the number of pixels the ion moves on the
camera. The resolution is of course limited by the pixel size and magnification
of the imaging system. The ion’s absolute position is determined by calibrating
the pixel size and then setting a reference frame. For the calibration the image
section is moved to the middle DC electrode which is narrow enough to fit on
one image (c.f. figure 4.10c). Then the trap is illuminated with a bright halogen
lamp such that the edges of the electrodes can be clearly distinguished. A picture
of the trap is taken and integrated row wise, such that intensity peaks emerge at
the position of the edges. As the electrodes are not perpendicular to the CCD
frame, the image needs to be rotated stepwise until the point of minimal peak
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width is found. By measuring all possible distance combinations between the
four peaks marked in figure 4.10b and comparing them to the known widths of
the electrodes and gaps the calibration is determined to be

1px =̂ 2.46µm ± 0.10µm (4.1)
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Figure 4.10.: Calibration of the CCD image. (a) shows a picture of the middle electrode,
rotated such that the edges are parallel to the image boarders. The section from which
the image is taken, is indicated in (b) by a red rectangle. (c) After row-wise integration
of the counts, the distances between all 6 combinations of the marked peaks are measured
and in (d) they are plotted against the known dimensions. The gradient of this curve is
determined by a linear fit constrained to pass through the origin.

Now the image section needs to be moved back to the trap center. With its
658 × 498 pixel chip the height of the image section is ∼ 1309µm. However,
the distance from the corner of the middle electrode to the trap center is ∆x =
1758µm and ∆z = 508µm. Thus the section needs to be moved at least two
times. For this, other intermediate reference points like features (imperfections)
on the trap electrodes need to be used.

4.3.2. Measurement of y displacement

Measurement of the y displacement requires a different approach as there is no
window in the vacuum chamber through which fluorescent light in the x-direction
could be observed. As an alternative one can use the fact that the general fluo-
rescence signal decreases when the ion moves in y-direction since the ion moves
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out of the center of the laser beam. By measuring the distance the beam has
to be moved in order to maximize the signal again the displacement of the ion
can be determined. The resolution of this method is given by the waist of the
laser beam (28µm) and is therefore ∼ 10 times lower than the resolution of the
imaging method described above for measurements in the x-z-plane. The beam
was shifted by moving the last lens before the vacuum chamber (L4, cf. figure
4.6) transversally with a long stroke piezoelectric actuator18 and calibrated by
measuring the change in position on a CCD camera19 just behind viewport V2
(Not shown in figure 4.6).

4.3.3. Measurement of trap frequencies

There are several possible ways of measuring trap frequencies [46], in our exper-
iment they are measured by resonant excitation of the ions secular motion with
an RF voltage additionally applied to a DC electrode. If the frequency of the
applied voltage coincides with one of the characteristic trap frequencies the ions
perform a driven motion. This motion was detected by choosing a small ROI
around the ion on the CCD camera and measuring the integrated signal from
that area. At large oscillation amplitudes the ion spends less time inside this
region and therefore contributes less to its averaged signal. Figure 4.11 shows
a typical CCD picture of an ion oscillating at the axial trap frequency and the
corresponding integrated signal of the ROI which was obtained by scanning the
drive frequency from 120 kHz to 180 kHz. The voltage was applied with a signal
generator and capacitively coupled to either electrode 2 or electrode 11 (cf. 3.2).
Electrode 11 has a large electric field component along the y-axis, a small com-
ponent in z-axis and no component along the x-axis. Therefore it is well suited
to measure ωy. The other two secular motions are excited via electrode 2, as it
has field line components along all three axes.

18 PI; PiezoMove P-601.1S
19 Newport; LBP-4-USB
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Figure 4.11.: Trap frequency measurement: A RF signal with a power of -30 dBm is
applied to electrode 2, and the frequency is scanned by 60 kHz. When the frequency
coincides with one of the trap frequencies, the ion’s motion gets excited, resulting in a
reduced signal from the ROI. (a) shows the unexcited and excited ion respectively, the red
square marks the ROI. (b) shows the averaged count-rate from the ROI as a function of
frequency.

4.4. Summary

This chapter has described the apparatus used for trapping and cooling ions,
and testing the theoretical work presented before. For the experimental setup
consisting of: the trap, the electronics supplying the voltages for the trap, the
vacuum and laser systems and the optical setup, the main specifications have been
given. Then it has been shown, how the theoretical results were implemented into
the experiment control software TrICS. Finally the measurement methods have
been described.



5. Results

The following chapter contains the results of the simulations and the results of
the experiments with the surface trap Bastille. Section 5.1 concentrates on the
simulation results, beginning with the calculated trap models for the pseudopo-
tential. Then the resulting voltage sets for trap control are given, and presented
alongside with the corresponding potential shapes. Section 5.2 deals with the
experimental results, where ion displacements and motional frequencies are mea-
sured as a function of the multipole excitation strength. Finally the results are
discussed.

5.1. Simulation results

The simulation results consist of three parts: The analysis of the RF pseudopo-
tential is given in section 5.1.1. The DC trap control voltages, required to give
the desired multipole potentials at the axial center of the trap, are given in sec-
tion 5.1.2. The DC trap control voltages at different points along the z-axis are
presented in section 5.1.3.

5.1.1. Electric-potential analysis

Figure 5.1 shows an x-y cross section of the pseudopotential taken at z = 0 and a
line plot of the potential along the y-axis (x = z = 0). At an RF voltage of 410 V
the resulting radial trap frequencies are: ωx = ωy = 573 kHz. The trap depth is
0.15 eV.
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Figure 5.1.: Radial potential: (a) shows equipotential lines of the pseudopotential at
z = 0. The lines are spaced by 0.01 eV. (b) shows a line plot of the potential along the
y-axis.
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From a y-z cross section (cf. figure 5.2) it can be seen that the height of the RF
null varies from 0.75 mm to 0.92 mm over a range of 6 mm across the trap. This
results in an angle of 1.5◦. The axial trap frequency due to the RF pseudopotential
alone is 12 kHz.
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Figure 5.2.: Axial potential: Equipotential lines of the pseudopotential, the lines are
spaced by 0.003 eV

5.1.2. Trap control voltages at trap center

The following pages present the calculated voltages which are needed to generate
multipole shaped potentials. They were obtained by the methods described in
section 3.4. Here they are displayed graphically to aid visualization; in appendix
1 they are listed in tabular form. As a basic check that these voltages generate
the desired potentials, simulations are carried out with these voltages applied to
the corresponding DC electrodes and the RF electrode held at ground. Cross
sections of the resulting potentials are plotted next to their residuals (difference
between the achieved and the ideal multipole potentials). This is done for the
three dipoles and five quadrupoles. For better comparison the constant offset was
subtracted.
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Figure 5.3.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column
shows the residuals of these potentials. The equipotential lines are orthogonal to the x-
axis, meaning that the electric field points in x-direction. The residuals increase with rising
distance from the trap center.
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Figure 5.4.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. Near the trap center the equipotential lines are orthogonal
to the y-axis, meaning that the electric field points in y-direction. In the x-y cross section
it can be seen that with increasing distance from the trap center the equipotential lines are
no longer perfectly parallel to the x-axis.
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Figure 5.5.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. Near the trap center the equipotential lines are orthogonal
to the z-axis, meaning that the electric field points in z-direction. In the x-z cross section
it can be seen that with increasing distance from the trap center the equipotential lines are
no longer perfectly parallel to the x-axis.
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Figure 5.6.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. The equipotential line in the x-y cross section exhibit a
quadrupole shape, with the axes of the quadrupole along the x and y direction respectively.
From the other two cross sections it can be seen that the equipotential lines are parallel to
the z-axis, which means that there is no field component along the z-direction.
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Figure 5.7.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. The equipotential lines in the z-y and x-z cross section
exhibit a quadrupole shape. From the x-y cross section it can be seen that near the trap
center the potential is ring shaped, as expected.
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Figure 5.8.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. In the x-y cross section the equipotential lines exhibit a
quadrupole shape with the axes aligned along the (x+y)- and (x−y)-direction respectively.
While showing perfect symmetry with respect to x = 0 the potential shape is less symmetric
with respect to y = 0.85mm. This effect is stronger the bigger the distance from the trap
center is, and can by explained by the geometry of the trap (The electrodes are perfectly
symmetric with respect to x = 0 and lie all in the y = 0 plane).
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Figure 5.9.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. In the z-y cross section the equipotential lines exhibit a
quadrupole shape with the axes aligned along the (z+y)- and (z−y)-direction respectively.
While showing perfect symmetry with respect to z = 0 the potential shape is less symmetric
with respect to y = 0.85mm. This effect is stronger the bigger the distance from the trap
center is, and can by explained by the geometry of the trap (The electrodes are nearly
symmetric with respect to z = 0 and lie all in the y = 0 plane).
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Figure 5.10.: The top right figure shows a schematic representation of the voltages. Below,
the left column shows cross sections of the resulting DC potentials. The right column shows
the residuals of these potentials. In the x-z cross section the equipotential lines exhibit a
quadrupole shape with the axes aligned along the (x+z)- and (x−z)-direction respectively.
In the other two cross sections no structure can be seen as expected and the residuals are
very small. Thus the electric field has no component along the y-direction.
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5.1.3. Trap control voltages dependent on z position

All the calculations shown so for were done for the ion located at the geometrical
center of the trap. It has been shown that the generated potentials have the
desired shape only in a small area. Thus as the ion is shuttled along the z-axis,
the calculations have to be adapted and the multipole expansion has to be carried
out for a number of points along this axis. This is done over a range of 2.6 mm,
stretching from the middle of electrodes 9 and 4 to the middle of electrodes 2
and 7. The spacing between the points is 10µm. Looking at the results for
neighboring points, it can be seen that the voltages vary smoothly without any
discontinuities. In figure 5.11 this behavior is shown using the example of the x-
dipole (Y1,1). From inspection of the electrode arrangement of the trap (cf. figure
3.2a) one would expect certain qualitative relationships to hold when creating an
x-dipole: Opposite pairs through the z-y-plane (DC10 & DC5, DC9 & DC4 etc.)
should be reflections of each other with respect to voltage, i.e.

DC10(z) = −DC5(z)

DC9(z) = −DC4(z)

Opposite pairs through the x-y-plane (DC10 & DC6, DC9 & DC7 etc.) should
be approximate reflections of each other with respect to the z-position, i.e.

DC10(z) ≃ DC6(−z)
DC9(z) ≃ DC7(−z)

The imperfect reflection here is due to the broken symmetry of DC11 and the
RF electrode. From figure 5.11 it can be seen that these intuitive expectations
are well reproduced by the simulation.
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Figure 5.11.: Voltages needed to create an x-dipole for various positions on the z-axis.
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5.2. Experimental results

To verify the theoretical results experimentally a single ion is loaded into the trap
and, as a function of the multipole excitation, displacements of the ion and trap
frequencies are measured. The DC voltages used for trapping are listed in table
5.1. The RF voltage is 410 V.

Electrode DC1 DC2 DC3 DC4 DC5
Voltage 30.27 6.82 -0.10 3.11 36.10

Electrode DC6 DC7 DC8 DC9 DC10 DC11

Voltage 30.41 6.77 -0.13 2.68 36.03 1.89

Table 5.1.: Trapping voltages

5.2.1. Dipoles

In the experiment control software a master slider is used to vary the excitation
strength of the x-dipole. The value of this master slider (M1) is read out and
multiplied with the voltage set presented in the previous section (5.1). Then this
scaled voltage set is passed to the output channels of the DAQ card and applied
to the DC electrodes. For different values of M1 the displacement of the ion in
all three directions is measured. The results are plotted in figure 5.12. To ensure
that the ion is well cooled along the entire range the laser beam was realigned as
needed.

As expected the x-displacement increases linearly with increasing M1. The
movement in the other directions is strongly suppressed: movement in the y-
direction is suppressed by factor of 4, movement in z-direction is suppressed by
factor of 15.
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Figure 5.12.: x-dipole: points are measured data, solid lines are linear fits to the data.
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The same approach is used for the y and z-dipole fields. The results are plot-
ted in figures 5.13 and 5.14 respectively. For the y-dipole the y-displacement
grows linearly with increasing M2, the suppression of the other movements is
slightly weaker. The movement in x-direction is suppressed by a factor of -7, the
movement in z-direction only by a factor of 3.
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Figure 5.13.: y-dipole: points are measured data, solid lines are linear fits to the data.

For the z-dipole the z-displacement also grows linearly with increasing M3, The
movement in x-direction is suppressed by a factor of -50, the movement in y-
direction by a factor of 20.
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Figure 5.14.: z-dipole: points are measured data, solid lines are linear fits to the data.
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5.2.2. Quadrupole

In the current setup of Bastille, it is only possible to measure trap frequencies

in the x- and z-directions. Therefore the quadrupole Y2,0 =
√

5
16π

2z2−x2−y2

r2 is

chosen to test the method developed. The other quadrupoles either affect only
one of the measurable frequencies or they cause a rotation of the principal axes.

Before the actual measurement is done, one needs to ensure that the quadrupole
to be applied is centered at the position of the ion (or alternatively, that the
ion’s position is at the quadrupole center). It was shown previously that the
simulations were done for a range of points on the z-axis. Thus one way to
center the quadrupole to the ion’s position is to choose the right simulation.
Alternatively the ion can be simply moved onto the desired (central) spot as
follows: With 4 ions in the trap the coefficient M5 of the Y2,0 quadrupole is made
increasingly negative such that the axial potential becomes repulsive at a certain
moment. Then the ions are pushed away in either one or the other axial direction.
Iteratively the ions are moved using the z-dipole and then it is checked on which
side of the repulsive potential they are. Finally, if they are on the right spot,
decreasing of M5 causes the ion string to split in the middle, with two ions going
one way, and two going the other way. Then the ions are discarded from the trap,
a single ion is loaded and the frequency measurement is carried out as described
in section 4.3.3. Figure 5.15 shows the results.
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Figure 5.15.: Trap frequency measurement: The lower curve corresponds to ωz the upper
one to ωx. Besides the measured values (points with error bars), values obtained from a
simulation using the experimental voltage values are plotted for comparison. The measured
points were fitted with two linear functions in order to determine the gradients.

In addition to the measurement results, trap frequency values obtained by simu-
lations are plotted for comparison. For the axial frequency they agree to within
3%. Experimentally there is a ∼ 20% systematic uncertainty regarding the ac-
tual RF voltage. The RF voltage used for the simulations was chosen to fit the
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experimental data accordingly. The inferred value of 410 V is consistent with the
experimental value of 500 V ± 100 V. From that an estimation of the division
ratio R of the capacitive divider can be made:

R =
410V

5V
= 82 (5.1)

where 5 V is the voltage we measured after the divider.

Looking at the form of the applied field, Y2,0 =
√

5
16π

2z2−x2−y2

r2
, it can be seen

that as the coefficient M5 changes, the rate of change of ωz should be −2 times
as high as the rate of change of ωx:

dωx

dM5
= −2 × dωz

dM5
(5.2)

From linear fits to the measured values the following rates are obtained:

dωx

dM5
= 1059 ± 9 (5.3)

dωz

dM5
= −2083 ± 42 (5.4)

Thus the ratio of these two rates is:

dωz

dM5
:

dωx

dM5
= −1.96 ± 0.04 (5.5)

5.3. Discussion of the results

The theoretical results show that the multipole method works as expected. The
method gives rise to electric fields which exhibit the shape of either dipoles or
quadrupoles in a small area around the trap center. The larger the distance from
the center, the bigger are the residuals. This is to be expected, as the multipole
expansion only holds for small distances from the trap center. In addition, if the
expansion is carried out for multiple points along the z-axis, the results change
without discontinuities between the points.

These theoretical results are in principle confirmed in the experiments. For
the dipole fields the ion moves linearly with the strength of the applied dipole.
However, these movements are not completely decoupled from each other. Espe-
cially for the case of the y-dipole, the ion moves by a notable amount in the two
unwanted directions. This could be for the following reasons:

• The model of the trap does not resemble the real trap sufficiently well. The
trap was modeled to be two-dimensional, with rectangular electrodes and
without any dielectrics. However the real trap has a finite thickness, the
electrodes are rounded down, the trap is mounted onto a dielectric substrate
and additionally a pair of bond wires is connected to each electrode coming
from above the trap, which also influences the potential.
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• Numerical errors in the analysis. Both the BEM calculations and the ma-
trix inversion used for the multipole method are numerical methods and
therefore error-prone.

• Influence of the pseudopotential. The multipole method only takes the DC
electrodes into account. If the ion is not located exactly at the RF null and
a DC dipole field is applied which does not point radially towards, or away
from the center, the movement of the ion is governed by a combination of
DC potential and RF potential.

The quadrupole measurement showed that the applied field alters the motional
trap frequencies in the predicted manner. As the strength of the quadrupole
changes, ωx and ωz change linearly. The measured ratio of the gradients agrees
with the expected value.



6. Conclusion and outlook

The experiments with trapped ions performed in our group require the highest
possible control over the ions’ internal and external degrees of freedom. This
thesis is concerned with improving the control over the classical motion of an ion
in a new generation of traps, namely in surface traps. The classical motion of the
ion is determined by six parameters: the three coordinates of the ion’s position
x, y, z and the three motional frequencies of the ion ωx, ωy and ωz.

In Paul traps ions are trapped by electric fields. Control over the ion’s motion
therefore requires control over these fields. One way to gain control over the
parameters mentioned above (x, y, z, ωx, ωy and ωz,) is to generate electric fields
which are shaped as either dipoles or quadrupoles. As a first step to achieve
this, the electric potential generated by the electrodes of the trap was modeled
by numerical simulations. Then a multipole expansion was carried out for the
potential due to each individual electrode. Summing up the weighted contribu-
tions of all electrodes gives the multipole moments of the total potential. As it is
desired that this total potential only contains one multipole moment, the main
task is the following: To find out which voltages have to be applied to the DC
electrodes, such that all of the total multipole moments but one are equal to zero.
The individual moments of the different electrodes should cancel each other out.
To find these voltages an underdetermined linear system of equations needs to
be solved, which was done numerically using MATLAB.

To verify this method experimentally, its results are applied to a surface trap
which is in use in our group called Bastille. After the installation of the experi-
mental setup, measurements of ion displacements and motional frequencies as a
function of multipole excitation strength were performed. The results of these
measurements agree well with the theoretical results. In conclusion it can be said
that the developed method works and that it significantly facilitates the control
over the ion’s motion.

Beyond this, there are a number of features which could be implemented to
further improve the performance and usability:

• Currently the user has to read out the ion’s position manually and to choose
the corresponding simulation. To improve usability, the imaging software
could be used to read out the actual position and then automatically choose
the right simulation. Currently, this is not possible as different programs are
used for imaging and voltage output. However, the new experiment control
software (TrICS) which is currently developed within our group will in the
future include both features in one program, thus giving the possibility to
implement this idea.
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• With the current setup only a rough micromotion compensation is possi-
ble. Higher precision could be reached with the RF correlation technique
[46]. This technique usually requires three non-coplanar laser beams at the
fluorescence detection transition, in order two compensate for micromotion
in all directions. However, in a surface trap the geometry prevents the
efficient compensation in both radial directions. Nevertheless, recently a
modification of this technique was presented, which makes it suitable for
surface traps [86]. With better micromotion compensation the effect of
the applied DC multipoles could be studied with less influence of the RF
pseudopotential.

• Instead of using CPO to simulate the electric potentials, one could use a
different BEM package where the fast multipole algorithm [71] is imple-
mented. This would cause a substantial reduction of computational effort
and therefore would allow the accuracy to be increased.

• Differences between the modeled trap and the real trap are most likely a
limiting factor. Therefore a better verification of the presented method
could be done when applied to a trap which is easier to model. This means
a trap whose electrodes are not rounded down, and where the gaps between
the electrodes are small compared to the electrode dimensions and to the
ion-electrode distance. Besides being easier to model, such “gapless” traps
are also easier to fabricate and they are already in use in other experimental
setups within our group. Furthermore instead of connecting the electrodes
with wires from above, the voltages could be supplied through vias from
below the plane of the trap, thereby reducing the influence of the wires on
the potential at the trapping zone.
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A. Trap control voltages

The results of the trap-control calculations presented graphically in section 5.1.2
are given here in tabular form:

Electrode Voltage (V)

DC1 -10.75

DC2 -4.72

DC3 29.30

DC4 -4.90

DC5 -10.80

DC6 11.69

DC7 4.52

DC8 -30.31

DC9 4.69

DC10 11.76

DC11 -0.01

Table A.1.: Voltages needed to create Y1,1

Electrode Voltage (V)

DC1 -17.36

DC2 -16.41

DC3 -12.31

DC4 -17.19

DC5 -13.11

DC6 -17.99

DC7 -17.26

DC8 -11.36

DC9 -18.02

DC10 -13.87

DC11 -4.85

Table A.2.: Voltages needed to create Y1,−1

Electrode Voltage (V)

DC1 -63.81

DC2 55.39

DC3 -0.82

DC4 -53.69

DC5 61.26

DC6 -61.01

DC7 56.34

DC8 -0.82

DC9 -54.68

DC10 58.61

DC11 0.03

Table A.3.: Voltages needed to create Y1,0

Electrode Voltage (V)

DC1 -8.45

DC2 -7.18

DC3 -6.65

DC4 -7.81

DC5 -4.93

DC6 -9.29

DC7 -8.05

DC8 -5.19

DC9 -8.68

DC10 -5.88

DC11 -4.29

Table A.4.: Voltages needed to create Y2,2
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Electrode Voltage (V)

DC1 4.36

DC2 -9.84

DC3 -89.08

DC4 -11.01

DC5 13.89

DC6 4.78

DC7 -11.21

DC8 -89.36

DC9 -12.34

DC10 14.04

DC11 -13.02

Table A.5.: Voltages needed to create Y2,0

Electrode Voltage (V)

DC1 -20.13

DC2 -18.34

DC3 33.66

DC4 -18.59

DC5 -20.18

DC6 21.47

DC7 17.84

DC8 -35.14

DC9 18.07

DC10 21.64

DC11 -0.07

Table A.6.: Voltages needed to create Y2,−2

Electrode Voltage (V)

DC1 -75.01

DC2 37.91

DC3 -0.79

DC4 -36.18

DC5 72.11

DC6 -72.35

DC7 38.26

DC8 -0.78

DC9 -36.58

DC10 69.61

DC11 0.02

Table A.7.: Voltages needed to create Y2,−1

Electrode Voltage (V)

DC1 2.33

DC2 7.50

DC3 -0.05

DC4 -7.49

DC5 -2.33

DC6 -1.96

DC7 -7.94

DC8 0.05

DC9 7.92

DC10 1.97

DC11 0.00

Table A.8.: Voltages needed to create Y2,1



B. Source code

B.1. Trap-control voltage calculation

The calculation of the trap-control voltages are performed in MATLAB. The
starting point is a data structure generated by CPO containing the following:
Vectors x, y and z which define a grid and the simulated potential of each elec-
trode, calculated at each grid-point. To cover a range of possible axial ion po-
sitions, several such structures are generated at different axial position. The
spacings are chosen such, that the different structures have one grid-point over-
lap. For the expansion in spherical harmonics, the ion needs to be at the origin
of the potential structure. Therefore in order to be able to make this expansion
for arbitrary axial positions, the next step is to use two neighboring structures to
generate a new data structure which is centered at a particular position. This is
done for a given set of positions via the script centering data.m. Then the script
multipolemoments.m calculates the multipole matrix by expanding the potential
of each electrode in spherical harmonics. Finally the trap-control voltages are
obtained by calculating the pseudoinverse of the multipole matrix in the script
multipolecontrol.m.

1 function data center ed = centering data ( datapath , project name , po s i t i on ,
NofGrids ,N, Zlim )

2 % generat e the data s t ruc t u r e f o r t rap operat ion around a x i a l po s i t i on
3 % centered at ” pos i t i on ” . the consecut i ve data s r t u c t u r e s have over lapp ing
4 % f i r s t and l a s t points , i . e . p t I .Z( l a s t ) = p t I +1.Z( f i r s t )
5 % Adam July 2010 based on Nikos
6

7 I = find ( Zlim>pos i t i on , 1 , ’ f i r s t ’ )−1; %% the Ion s i t s in da t a s t ruc t u r e #I
8 totNofGR = 2∗NofGrids+1;
9 i f ( I<1) | | ( I>totNofGR) ,

10 fpr int f ( ’ In va l i d ion pos i t i on . Qui t t ing .\n ’ ) ;
11 return

12 end

13 d = load ( sprintf ( ’%s%s%i .mat ’ , datapath , project name , I ) ) ;
14 data0 = d . data ;
15 S = size ( data0 . Z , 1 ) ;
16 S2 = ce i l (S/2) ;
17 S3 = f loor (S/2) ;
18 K = find ( data0 . Z>=pos i t i on , 1 , ’ f i r s t ’ )−1;
19

20 i f ( i s sca lar (K) == fa l se )
21 K = S ;
22 end

23

24 i f (K+S3<S)&&(K−S3>1)
25 K1 = K−S3 ;
26 K2 = K+S3 ;
27 data1 = data0 ;
28 K3 = 2 ;
29 K4 = 1 ;
30 data2 = data0 ;
31 e l s e i f (K−S3<=1)&&(I==1)
32 K1 = 1 ;
33 K2 = S ;
34 d = load ( sprintf ( ’%s%s1 .mat ’ , datapath , project name ) ) ;
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35 data1 = d . data ;
36 K3 = 2 ;
37 K4 = 1 ;
38 data2 = data1 ;
39 e l s e i f (K−S3<=1)&&(I>1)
40 K1 = S+K−S2 ;
41 K2 = S−1;
42 d = load ( sprintf ( ’%s%s%i . mat ’ , datapath , project name , I−1) ) ;
43 data1 = d . data ;
44 K3 = 1 ;
45 K4 = K+S3 ;
46 d = load ( sprintf ( ’%s%s%i . mat ’ , datapath , project name , I ) ) ;
47 data2 = d . data ;
48 e l s e i f (K+S3>=S)&&(I==totNofGR)
49 K1 = 1 ;
50 K2 = S ;
51 d = load ( sprintf ( ’%s%s%i . mat ’ , datapath , project name , totNofGR) ) ;
52 data1 = d . data ;
53 K3 = 2 ;
54 K4 = 1 ;
55 data2 = data1 ;
56 e l s e i f (K+S3>=S)&&(I<totNofGR)
57 K1 = K−S3 ;
58 K2 = S ;
59 d = load ( sprintf ( ’%s%s%i . mat ’ , datapath , project name , I ) ) ;
60 data1 = d . data ;
61 K3 = 2 ;
62 K4 = K+S2−S ;
63 d = load ( sprintf ( ’%s%s%i . mat ’ , datapath , project name , I+1) ) ;
64 data2 = d . data ;
65 else

66 fpr int f ( ’ Problem with c r ea t i n g data .\n ’ ) ;
67 return ;
68 end

69

70 for i = K1 :K2
71 data center ed . Z( i−K1+1) = data1 . Z( i ) ;
72 data center ed . Vrf ( : , : , i−K1+1) = data1 . Vrf ( : , : , i ) ;
73 data center ed . Erf ( : , : , i−K1+1) = data1 . Erf ( : , : , i ) ;
74 for j =1:N;
75 data center ed .VDC( j , : , : , i−K1+1) = eval ( sprintf ( ’ data1 .Vdc%i ( : , : , i ) ’

, j ) ) ;
76 end

77 end

78

79 for i = K3 :K4
80 data center ed . Z( i−K3+max(K2−K1,−1)+2) = data2 .Z( i ) ;
81 data center ed . Vrf ( : , : , i−K3+max(K2−K1,−1)+2) = data2 . Vrf ( : , : , i ) ;
82 data center ed . Erf ( : , : , i−K3+max(K2−K1,−1)+2) = data2 . Erf ( : , : , i ) ;
83 for j = 1 :N;
84 data center ed .VDC( j , : , : , i−K3+max(K2−K1,−1)+2) = eval ( sprintf ( ’ data2

.Vdc%i ( : , : , i ) ’ , j ) ) ;
85 end

86 end

87

88 data center ed .Z = data center ed .Z ’ ;
89 data center ed .X = data1 .X;
90 data center ed .Y = data1 .Y;
91 data center ed . grid = [min( data center ed .X) min( data center ed .Y) min(

data center ed .Z) data1 . grid (4) data1 . grid (5) data1 . grid (6) ] ;
92 plot ( data center ed . Z , ’−−∗ ’ ) ; t i t l e ( ’ g e t t h e da t a .m: t h i s i s to check t ha t the

data was generated s u c c e s f u l l y . ’ )
93 end

Listing B.1: centering data.m: Generation of a data structure centered around the ion’s
position.
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1 function datout = multipolemoments ( data ,N, po s i t i on ,L)
2 % func t ion datout = multipolemoments ( data ,N, pos i t i on ,L)
3 % L i s the order o f expansion
4 % N i s the Number o f DC e l e c t r o d e s
5 % Also return a f i e l d datout .M, which conta ins the
6 % mul t i po l e c o e f f i c i e n t s f o r a l l e l e c t r o d e s .
7 % ( mu l t i po l e s e l e c t r o d e s −> )
8 % M = ( V )
9 % ( )

10 % data i s the cpo s imula t ion data s t ruc t u r e .
11 % pos i t i on i s the a x i a l po s i t i on where the ion s i t s .
12 % Adam June 2010 based on Nikos June 2009
13

14 datout = data ;
15 X = normalize( data .X) ;
16 Y = normalize( data .Y) ;
17 Z = normalize( data . Z) ;
18

19 [ y x z ] = meshgrid(Y,X,Z) ;
20 [ Xrf Yrf Zr f ] = exactsaddle( data . Vrf ,X,Y, Z , 2 , p o s i t i o n ) ;
21 [ I r f J r f Krf ] = findsaddle ( data . Vrf ,X,Y,Z , 2 , p o s i t i o n ) ;
22 Qrf = spherharmxp( data . Vrf , Xrf , Yrf , Zrf , L ,X,Y, Z) ;
23 datout . Qrf = 2∗ [ Qrf (8) ∗3 Qrf (5) /2 Qrf (9) ∗6 −Qrf (7) ∗3 −Qrf (6) ∗ 3 ] ;
24 datout . t h e t a r f = 45∗( sign ( Qrf (9) ) )−90∗atan ( (3∗Qrf (8) ) /(3∗Qrf (9) ) ) /pi ;
25

26 %used f o r reorder ing and r e s c a l l i n g o f t he c o e f f i c i e n t s
27 c = [ 1 0 0 0 0 0 0 0 0 ; . . .
28 0 0 1 0 0 0 0 0 0 ; . . .
29 0 0 0 1 0 0 0 0 0 ; . . .
30 0 −1 0 0 0 0 0 0 0 ; . . .
31 0 0 0 0 0 0 0 6 0 ; . . .
32 0 0 0 0 1 0 0 0 0 ; . . .
33 0 0 0 0 0 0 0 0 12 ; . . .
34 0 0 0 0 0 0 −6 0 0 ; . . .
35 0 0 0 0 0 −6 0 0 0 ] ;
36

37 for i = 1 :N
38 Vdc ( : , : , : ) = data .VDC( i , : , : , : ) ;
39 Q = spherharmxp(Vdc , Xrf , Yrf , Zrf , L ,X,Y, Z) ;
40 M1( : , i ) = Q( 1 : ( L+1) ˆ2) ;
41 end

42

43 size (M1) ;
44 datout .Q = Q;
45 %reorder ing and r e s c a l l i n g o f t he c o e f f i c i e n t s
46 datout .M = vertcat ( c∗M1( 1 : 9 , : ) ,M1( 1 0 : (L+1) ˆ 2 , : ) ) ;
47

48 %%%%%%%%%%%%%%%%%%% Auxi l i ary f unc t i on s
49

50 function out = normalize( i n )
51 % keep only the f i r s t 4 s i g n i f i c a n t d i g i t s o f t he increment in vec tor
52 % ” in”
53 dr = ( in ( size ( in , 1 ) )−i n (1) ) /( size ( in , 1 )−1) ;
54 p = 0 ; cnt = 0 ;
55 while ( cnt == 0)
56 dr = 10∗ dr ;
57 cnt = f ix ( dr ) ;
58 p = p+1;
59 end

60 out = roundn( in ,−p−4) ;

Listing B.2: multipolemoments.m: Calculation of multipole moments.
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1 function f=spherharmxp(V,Xc ,Yc , Zc , Order , Xe ,Ye , Ze )
2 % func t ion f=spherharmxp (V,Xc ,Yc , Zc , Order ,Xe ,Ye , Ze) ;
3 % This func t ion expands the p o t e n t i a l V in s s p h e r i c a l harmonics , i . e . :
4 % V=C00∗Y00+C10∗Y10+C11c∗Y11c+C11s∗Y11s+ . . .
5 % here the Ynm are chosen to be rea l , and s u b s c r i p t c corresponds to
6 % cos (m∗ phi ) dependence , whi l e s i s s in (m∗phi ) . The expansion i s carr i ed up
7 % to mu l t i po l e s o f order Order .
8 % The ind i c e s in V are V( i , j , k )<−> V(x , y , z ) .
9 % Xc,Yc , Zc are the coord inat e s o f t he cente r o f t he mu l t i po l e s .

10 % Order i s t he order o f t he expansion
11 % Xe,Ye , Ze are the v e c t o r s t ha t de f i n e the g r i d in three d i r e c t i o n s
12 % The func t ion re turns the c o e f f i c i e n t s in the order : [ C00 C10 C11c C11s ] ’
13 % These correspond to the mu l t i po l e s in car t e s i an coord inares :
14 % [ c z −x −y ( zˆ2−xˆ2/2−yˆ2/2) −3zx −3yz 3xˆ2−3yˆ2 6xy ]
15 % 1 2 3 4 5 6 7 8 9
16 % Nikos January 2009
17

18 s = size (V) ;
19 nx = s (1) ;
20 ny = s (2) ;
21 nz = s (3) ;
22 [ y x z ] = meshgrid(Ye−Yc ,Xe−Xc , Ze−Zc ) ;
23 x1 = reshape (x , 1 , nx∗ny∗nz ) ;
24 y1 = reshape (y , 1 , nx∗ny∗nz ) ;
25 z1 = reshape ( z , 1 , nx∗ny∗nz ) ;
26 r = sqrt ( x1 .ˆ2+y1 .ˆ2+z1 . ˆ2 ) ; r t = sqrt ( x1 .ˆ2+y1 . ˆ2 ) ;
27 theta = atan2( rt , z1 ) ;
28 phi = atan2( y1 , x1 ) ;
29 s c a l e = max(max(max( r ) ) ) ;
30 r = r / s c a l e ;
31

32 % make the s p h e r i c a l harmonic matrix in sequence o f [Y00 Y10 Y11c Y11s
33 % Y20 Y21c Y21s . . . ]
34

35 N = nx∗ny∗nz ;
36 Q = ( 1 :N) ’ ;
37 Q( : ) = 1 ;
38

39 for n = 1 : Order
40 p = legendre (n , cos ( theta ) ) ;
41 c = r . ˆ n .∗p ( 1 , : ) ; c=c ’ ; Q=horzcat (Q, c ) ;
42 for m=2:n+1
43 c = r . ˆ n .∗p(m, : ) .∗ cos ( (m−1)∗phi ) ; c=c ’ ; Q=horzcat (Q, c ) ;
44 s = r . ˆ n .∗p(m, : ) .∗ sin ( (m−1)∗phi ) ; s=s ’ ; Q=horzcat (Q, s ) ;
45 end ;
46 end ;
47

48 W = reshape (V, 1 , nx∗ny∗nz ) ’ ;
49 % numer ica l l y i n v e r t
50 f = Q\W;
51

52 % re s c a l e to o r i g i n a l un i t s
53 i = 1 ;
54 for n = 1 : Order
55 for m = 1:2∗n+1
56 i = i +1;
57 f ( i ) = f ( i ) / s c a l e ˆ(n) ;
58 end

59 end

Listing B.3: spherharmxp.m: Expansion in spherical harmonics.
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1 function datout = multipolecontrol ( data )
2 % func t ion datout = mu l t i po l e c on t ro l ( data )
3 % return a 8xN f i e l d datout .C with the l i n e a r combinat ions o f t rap
4 % e l e c t r o d e v o l t a g e s t ha t g i v e 1 V/mm, or 1 V/mmˆ2 of the mu l t i po l e number
5 % i i .
6 % dataout .C
7 % The order o f mu l t i po l e c o e f f i c i e n t s i s :
8 % 1/r0 ˆ [ x y z ] and
9 % 1/r0 ˆ2∗ [ ( xˆ2−yˆ2) /2 (2 zˆ2−xˆ2−yˆ2) /2 xy/2 yz/2 xz /2 ] , where r0 i s 1 mm

10 % ( un le s s r e s c a l i n g i s app l i e d )
11

12 datout = data ;
13 SIunits ;
14 M = data .M;
15 Mt = vertcat (M( 2 : 9 , : ) ) ;
16

17 for i i =1:8
18 Mf = zeros ( 8 , 1 ) ;
19 Mf( i i ) = 1 ;
20 PP = pinv(Mt)∗Mf ;
21 C( i i , : ) = PP ’ ;
22 end

23

24 datout .C = C’ ;

Listing B.4: multipolecontrol.m: Calculation of trap control voltages out of the multipole
matrix.
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B.2. Implementation in TrICS

The experiment control software used in this project is written in C++. The
implementation of the multipole method into TrICS is done in the file channel-

processinghandler.cpp according to the points described in section 4.2. Each of
the 11 DC electrodes is connected to a analog ouput channel of the DAQ card.
To each of these channels a slave slider is assigned. This enables one to adjust
each channel individually and to control each slave channel via master sliders.
Master sliders are not assigned to hardware output channels, they only control
the slave sliders. The following code snippet demonstrates this behavior using
the example of the x-dipole which is controlled by the master slider M1. The
value of each slave slider is read in as well as the change of the value of the
master slider M1 (called offset). This offset is multiplied with the corresponding
voltage value taken from the vector v1 and added to the old slave value. Now
it needs to be checked whether the new values are inside the range of the DAQ
card. This is done via the subroutine OutOfRangeCheck and the boolean variable
OutOfRange. Then the new values are written to either the output channels or
to temporary variables respectively.

1 i f ( masterId == ”M1” ) {
2 std : : s t r i n g slaveId DC1= ”DC01” ;
3 std : : s t r i n g slaveId DC2= ”DC02” ;
4 std : : s t r i n g slaveId DC3= ”DC03” ;
5 std : : s t r i n g slaveId DC4= ”DC04” ;
6 std : : s t r i n g slaveId DC5= ”DC05” ;
7 std : : s t r i n g slaveId DC6= ”DC06” ;
8 std : : s t r i n g slaveId DC7= ”DC07” ;
9 std : : s t r i n g slaveId DC8= ”DC08” ;

10 std : : s t r i n g slaveId DC9= ”DC09” ;
11 std : : s t r i n g slaveId DC10=”DC10” ;
12 std : : s t r i n g slaveId DC11=”DC11” ;
13

14 double s laveValue DC1 = 0 . 0 ;
15 double s laveValue DC2 = 0 . 0 ;
16 double s laveValue DC3 = 0 . 0 ;
17 double s laveValue DC4 = 0 . 0 ;
18 double s laveValue DC5 = 0 . 0 ;
19 double s laveValue DC6 = 0 . 0 ;
20 double s laveValue DC7 = 0 . 0 ;
21 double s laveValue DC8 = 0 . 0 ;
22 double s laveValue DC9 = 0 . 0 ;
23 double s laveValue DC10 = 0 . 0 ;
24 double s laveValue DC11 = 0 . 0 ;
25

26 i f ( i sMasterSlaveCandidate ( masterId , slaveId DC1 , srcChannels ,
s laveValue DC1 )

27 && isMasterSlaveCandidate ( masterId , slaveId DC2 , srcChannels ,
s laveValue DC2 )

28 && isMasterSlaveCandidate ( masterId , slaveId DC3 , srcChannels ,
s laveValue DC3 )

29 && isMasterSlaveCandidate ( masterId , slaveId DC4 , srcChannels ,
s laveValue DC4 )

30 && isMasterSlaveCandidate ( masterId , slaveId DC5 , srcChannels ,
s laveValue DC5 )

31 && isMasterSlaveCandidate ( masterId , slaveId DC6 , srcChannels ,
s laveValue DC6 )

32 && isMasterSlaveCandidate ( masterId , slaveId DC7 , srcChannels ,
s laveValue DC7 )

33 && isMasterSlaveCandidate ( masterId , slaveId DC8 , srcChannels ,



B. Source code 65

s laveValue DC8 )
34 && isMasterSlaveCandidate ( masterId , slaveId DC9 , srcChannels ,

s laveValue DC9 )
35 && isMasterSlaveCandidate ( masterId , s laveId DC10 , srcChannels ,

s laveValue DC10 )
36 && isMasterSlaveCandidate ( masterId , s laveId DC11 , srcChannels ,

s laveValue DC11 ) ){
37

38 double newValue DC1 ;
39 double newValue DC2 ;
40 double newValue DC3 ;
41 double newValue DC4 ;
42 double newValue DC5 ;
43 double newValue DC6 ;
44 double newValue DC7 ;
45 double newValue DC8 ;
46 double newValue DC9 ;
47 double newValue DC10 ;
48 double newValue DC11 ;
49

50 i f (OutOfRange ){
51

52 newValue DC1 = (voltTemp DC1 +o f f s e t ∗v1 [ 0 ] ) ;
53 newValue DC2 = (voltTemp DC2 +o f f s e t ∗v1 [ 1 ] ) ;
54 newValue DC3 = (voltTemp DC3 +o f f s e t ∗v1 [ 2 ] ) ;
55 newValue DC4 = (voltTemp DC4 +o f f s e t ∗v1 [ 3 ] ) ;
56 newValue DC5 = (voltTemp DC5 +o f f s e t ∗v1 [ 4 ] ) ;
57 newValue DC6 = (voltTemp DC6 +o f f s e t ∗v1 [ 5 ] ) ;
58 newValue DC7 = (voltTemp DC7 +o f f s e t ∗v1 [ 6 ] ) ;
59 newValue DC8 = (voltTemp DC8 +o f f s e t ∗v1 [ 7 ] ) ;
60 newValue DC9 = (voltTemp DC9 +o f f s e t ∗v1 [ 8 ] ) ;
61 newValue DC10= (voltTemp DC10+o f f s e t ∗v1 [ 9 ] ) ;
62 newValue DC11= (voltTemp DC11+o f f s e t ∗v1 [ 1 0 ] ) ;
63 }
64 else {
65

66 newValue DC1 = ( slaveValue DC1 +o f f s e t ∗v1 [ 0 ] ) ;
67 newValue DC2 = ( slaveValue DC2 +o f f s e t ∗v1 [ 1 ] ) ;
68 newValue DC3 = ( slaveValue DC3 +o f f s e t ∗v1 [ 2 ] ) ;
69 newValue DC4 = ( slaveValue DC4 +o f f s e t ∗v1 [ 3 ] ) ;
70 newValue DC5 = ( slaveValue DC5 +o f f s e t ∗v1 [ 4 ] ) ;
71 newValue DC6 = ( slaveValue DC6 +o f f s e t ∗v1 [ 5 ] ) ;
72 newValue DC7 = ( slaveValue DC7 +o f f s e t ∗v1 [ 6 ] ) ;
73 newValue DC8 = ( slaveValue DC8 +o f f s e t ∗v1 [ 7 ] ) ;
74 newValue DC9 = ( slaveValue DC9 +o f f s e t ∗v1 [ 8 ] ) ;
75 newValue DC10= ( slaveValue DC10+o f f s e t ∗v1 [ 9 ] ) ;
76 newValue DC11= ( slaveValue DC11+o f f s e t ∗v1 [ 1 0 ] ) ;
77 }
78

79 i f ( ! OutOfRangeCheck (newValue DC1 , newValue DC2 , newValue DC3 ,
newValue DC4 , newValue DC5 , newValue DC6 , newValue DC7 ,
newValue DC8 , newValue DC9 , newValue DC10 , newValue DC11) )

80 {
81 OutOfRange=fa l se ;
82 destChannel s . setChannelValue ( slaveId DC1 , newValue DC1 ) ;
83 destChannel s . setChannelValue ( slaveId DC2 , newValue DC2 ) ;
84 destChannel s . setChannelValue ( slaveId DC3 , newValue DC3 ) ;
85 destChannel s . setChannelValue ( slaveId DC4 , newValue DC4 ) ;
86 destChannel s . setChannelValue ( slaveId DC5 , newValue DC5 ) ;
87 destChannel s . setChannelValue ( slaveId DC6 , newValue DC6 ) ;
88 destChannel s . setChannelValue ( slaveId DC7 , newValue DC7 ) ;
89 destChannel s . setChannelValue ( slaveId DC8 , newValue DC8 ) ;
90 destChannel s . setChannelValue ( slaveId DC9 , newValue DC9 ) ;
91 destChannel s . setChannelValue ( slaveId DC10 , newValue DC10) ;
92 destChannel s . setChannelValue ( slaveId DC11 , newValue DC11) ;
93 }
94 else
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95 {
96 OutOfRange=true ;
97 voltTemp DC1 = newValue DC1 ;
98 voltTemp DC2 = newValue DC2 ;
99 voltTemp DC3 = newValue DC3 ;

100 voltTemp DC4 = newValue DC4 ;
101 voltTemp DC5 = newValue DC5 ;
102 voltTemp DC6 = newValue DC6 ;
103 voltTemp DC7 = newValue DC7 ;
104 voltTemp DC8 = newValue DC8 ;
105 voltTemp DC9 = newValue DC9 ;
106 voltTemp DC10= newValue DC10 ;
107 voltTemp DC11= newValue DC11 ;
108 }
109 }
110 }

Listing B.5: Code snippet of the file ”channelprocessinghandler.cpp” which changes the
values of the 11 slave slider depending to the change of the master slider M1

1 int IQChannelProcessorHandler : : OutOfRangeCheck (double v1 , double v2 , double
v3 , double v4 , double v5 , double v6 , double v7 , double v8 , double v9 , double
v10 , double v11 )

2 {
3 int i ;
4 vector<double> v ;
5 v . push back ( v1 ) ;
6 v . push back ( v2 ) ;
7 v . push back ( v3 ) ;
8 v . push back ( v4 ) ;
9 v . push back ( v5 ) ;

10 v . push back ( v6 ) ;
11 v . push back ( v7 ) ;
12 v . push back ( v8 ) ;
13 v . push back ( v9 ) ;
14 v . push back ( v10 ) ;
15 v . push back ( v11 ) ;
16

17 for ( i =0; i <11; i++){
18 i f ( ( v [ i ]>=10) | | ( v [ i ]<=−10) ) return 1 ;
19 }
20 return 0 ;
21 }

Listing B.6: Subroutine OutOfRangeCheck
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To implement the possibility to adjust the calculated voltages to the actual ion
position at runtime, a master slider is defined, called ION Z POS. The value of
this slider is read in and compared to the entries of a vector containing all the
axial positions for which the calculations have been performed. This is done in
the subroutine findIndex. The subroutine returns an index p which determines
the corresponding array matrizen(p). All of these arrays were read in at the
startup of the program. The rows of chosen this array are the requested voltage
sets v1, v2 . . . v8 for the 8 multipoles.

1 i f ( masterId == ”ION Z POS” ) {
2 std : : s t r i n g slaveId DC1= ”DC01” ;
3 std : : s t r i n g slaveId DC2= ”DC02” ;
4 std : : s t r i n g slaveId DC3= ”DC03” ;
5 std : : s t r i n g slaveId DC4= ”DC04” ;
6 std : : s t r i n g slaveId DC5= ”DC05” ;
7 std : : s t r i n g slaveId DC6= ”DC06” ;
8 std : : s t r i n g slaveId DC7= ”DC07” ;
9 std : : s t r i n g slaveId DC8= ”DC08” ;

10 std : : s t r i n g slaveId DC9= ”DC09” ;
11 std : : s t r i n g slaveId DC10=”DC10” ;
12 std : : s t r i n g slaveId DC11=”DC11” ;
13

14 double s laveValue DC1 = 0 . 0 ;
15 double s laveValue DC2 = 0 . 0 ;
16 double s laveValue DC3 = 0 . 0 ;
17 double s laveValue DC4 = 0 . 0 ;
18 double s laveValue DC5 = 0 . 0 ;
19 double s laveValue DC6 = 0 . 0 ;
20 double s laveValue DC7 = 0 . 0 ;
21 double s laveValue DC8 = 0 . 0 ;
22 double s laveValue DC9 = 0 . 0 ;
23 double s laveValue DC10 = 0 . 0 ;
24 double s laveValue DC11 = 0 . 0 ;
25

26 i f ( i sMasterSlaveCandidate ( masterId , slaveId DC1 , srcChannels ,
s laveValue DC1 )

27 && isMasterSlaveCandidate ( masterId , slaveId DC2 , srcChannels ,
s laveValue DC2 )

28 && isMasterSlaveCandidate ( masterId , slaveId DC3 , srcChannels ,
s laveValue DC3 )

29 && isMasterSlaveCandidate ( masterId , slaveId DC4 , srcChannels ,
s laveValue DC4 )

30 && isMasterSlaveCandidate ( masterId , slaveId DC5 , srcChannels ,
s laveValue DC5 )

31 && isMasterSlaveCandidate ( masterId , slaveId DC6 , srcChannels ,
s laveValue DC6 )

32 && isMasterSlaveCandidate ( masterId , slaveId DC7 , srcChannels ,
s laveValue DC7 )

33 && isMasterSlaveCandidate ( masterId , slaveId DC8 , srcChannels ,
s laveValue DC8 )

34 && isMasterSlaveCandidate ( masterId , slaveId DC9 , srcChannels ,
s laveValue DC9 )

35 && isMasterSlaveCandidate ( masterId , s laveId DC10 , srcChannels ,
s laveValue DC10 )

36 && isMasterSlaveCandidate ( masterId , s laveId DC11 , srcChannels ,
s laveValue DC11 ) )

37 {
38

39 int p ;
40 p=f indIndex ( posvector , masterValue ) ;
41 v1=matr izen . at (p ) . at (0) ;
42 v2=matr izen . at (p ) . at (1) ;
43 v3=matr izen . at (p ) . at (2) ;
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44 v4=matr izen . at (p) . at (3) ;
45 v5=matr izen . at (p) . at (4) ;
46 v6=matr izen . at (p) . at (5) ;
47 v7=matr izen . at (p) . at (6) ;
48 v8=matr izen . at (p) . at (7) ;
49 }
50 }

Listing B.7: Code snippet of the file channelprocessinghandler.cpp used to choose the right
voltages for a given ION Z POS slider value.

1 int IQChannelProcessorHandler : : f i ndIndex ( std : : vector<double> v , double pos )
2 {
3 int i =0;
4 bool found=fa l se ;
5

6 while ( ( i < ( int ) v . s i z e ( ) ) && ( ! found ) )
7 {
8 i f (v . at ( i )>=pos ) {
9 found = true ;

10 return i ;
11 }
12 i++;
13 }
14 return 1 ;
15 }

Listing B.8: Subroutine findIndex
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[41] H. Häffner, C. Roos, and R. Blatt, Quantum computing with trapped ions,
Phys. Rep. 469, 155 (2008).

[42] R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature
453, 1008 (2008).

[43] W. Paul, Electromagnetic traps for charged and neutral particles,
Rev. Mod. Phys. 62, 531 (1990).

[44] P. K. Ghosh, Ion Traps, volume 90 of The international series of monographs

on physics, Clarendon Press, 1995.

[45] F. G. Major, V. N. Gheorghe, and G. Werth, Charged Particle Traps, vol-
ume 1 of Atomic, optical and plasma physics, Springer-Verlag, 2005.

[46] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J.
Wineland, Minimization of ion micromotion in a Paul trap, J. App. Phys.
83, 5025 (1998).

[47] M. J. Madsen, W. K. Hensinger, D. Stick, J. A. Rabchuk, and C. Monroe,
Planar ion trap geometry for microfabrication, Appl. Phys. B 78, 639 (2004).
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Ich möchte mich an dieser Stelle bei allen bedanken die zum erfolgreichen Gelin-
gen meiner Diplomarbeit und meines Studiums beigetragen haben. Allen voran
gilt mein Dank Herrn Prof. Rainer Blatt, der durch seine Vorlesungen schon
früh im Studium mein Interesse für dieses Gebiet geweckt hat und mir schließlich
die Möglichkeit gab, in seiner Arbeitsgruppe an einem spannenden Projekt zu
arbeiten.

Besonderer Dank gilt auch dem Leiter dieses Projektes Mike Brownnutt. Durch
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