
University of Innsbruck

Faculty of Mathematics,
Computer Science and Physics

Institute for Experimental Physics

Master’s Thesis
submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc)

Frequency comb Raman spectroscopy
for quantum logic

from
Elyas Mattivi

(Matr.-Nr.: 11908124)

Carried out under the supervision of Dr. Philipp Schindler at the
Quantum Optics and Spectroscopy group

February, 2025





Abstract
Molecular quantum states arise from electronic, vibrational, and rotational energy levels,
with rotational states forming distinct energy structures studied in rotational spectroscopy.
This technique measures the absorption or emission of radiation as molecules transition be-
tween rotational levels, typically using microwave or terahertz radiation. While microwave
radiation directly probes these transitions, terahertz radiation uses Raman transitions,
involving two lasers with a frequency difference matching the energy gap of the target
transition, with a third level far off-resonant. Optical frequency combs, ultrafast lasers
primarily used in metrology, can coherently drive such transitions when the energy falls
within their bandwidth. The research group where this work was conducted plans to use
this system to manipulate rotational states of molecular ions, enabling spectroscopy and
molecular error correction experiments.

The state-of-the-art setup of this research group features a linear ion trap with optical
access for lasers capable of ablating, ionizing, and cooling trapped calcium-40 ions. It also
enables the use of a 4 2S1/2 ↔ 3 2D5/2 transition as a qubit manifold, along with its readout.
Additionally, techniques for generating calcium-based molecules have been implemented.
The primary goal of this work was to integrate a commercial optical frequency comb
into the setup while implementing self-phase modulation to extend its bandwidth and
expanding the range of accessible energy differences for Raman transitions in quantum
systems. Additionally, dispersion compensation was applied to bring the comb closer to
the Fourier limit, improving the efficiency of Raman transitions.

Proof-of-principle spectroscopy measurements were performed by driving Raman tran-
sitions between the 3 2D5/2 (m5/2 = −1/2) and 3 2D3/2 (m3/2) states of a calcium-40 ion,
where m3/2 was either −1/2 or +3/2. These transitions were chosen since they have a
similar transition frequency as targeted molecular ions. As a result of the performed mea-
surements, the Landé g-factor of the 3 2D3/2 state was evaluated to be g3/2 = 0.79945(2).

The comb system is capable of manipulating the rotational states of molecules such as
CaH+ and CaOH+, which will be part of future quantum logic experiments of our group.
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Chapter 1
Introduction

Quantum computing refers to the harnessing of quantum bits (qubits) as carriers of
information to perform computations through quantum superposition and entanglement
[1–4]. Once fully developed, this technology is expected to offer significant computational
advantages in specific areas compared to classical computers [5–7].

Qubits, the fundamental units of quantum computers, are typically formed from two
discrete energy states of a quantum system. These states arise due to energy quantization,
meaning the quantum system can only occupy specific states dictated by the Schrödinger
equation [8, ch. 2.2.2]. Their behavior can be modeled using the mathematical framework
of the Hilbert space. According to the superposition principle, a quantum system can
exist in, or populate, a combination of multiple energy states simultaneously [8, ch. 2.2.1].
Population can also be transferred between different states. Such a transition occurs when
the quantum system interacts with its environment and absorbs or emits energy, often
in the form of photons, causing its population to shift from one state to another. This
process, known as driving transitions, enables controlled state manipulation in quantum
computing.

Commonly used qubit platforms for quantum computing include atomic ions [9], super-
conducting circuits [10], NV-centers [11], quantum dots [12], and photons [13]. At the
Quantum Optics and Spectroscopy Group [14] at the University of Innsbruck, atomic ions
are the most extensively studied platform [15–22], where qubits are encoded in the energy
states of their electrons. This work was conducted within QCosmo [23], a subgroup focused
on investigating the physics and exploiting the computational capabilities of molecular
ions rather than atomic ions [24–26].

The Hilbert space of molecular ions is significantly larger than that of atomic ions due
to additional spatial degrees of freedom, three for each atom in the molecule. These extra
degrees of freedom give rise to complex quantized energy structures beyond electronic
states due to molecular vibrations and rotations [27, ch. 10.4]. This complexity could
make molecules a promising platform for more robust qubits, as qubit state information
can be redundantly stored in other states to enhance protection against noise and errors.
However, this same complexity has made molecular ions less studied in quantum computing
compared to atomic ions [28]. Consequently, many experimental techniques for controlling
molecular ions are still in development.

Despite the challenges, significant progress has been made in various areas. Long storage
times of quantum information have been demonstrated [29, 30], and the technique of
quantum logic spectroscopy has been applied to molecules [31, 32], where quantum logic
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spectroscopy refers to the mapping of quantum information from a molecular ion to a fully
controllable atomic ion via their shared quantized motion, which is caused by a trapping
potential and their Coulomb repulsion. Additionally, techniques for preparing molecules in
pure energy states have been developed [33], entanglement (a quantum correlation linking
particle states [8, ch. 2.2.8]) has been demonstrated [34–36], and rotational quantum
states have been tracked over long periods of time in thermal environments [37]. Recent
theoretical work includes strategies for robust qubit encoding in molecular rotational states
[38], as well as methods to protect such encoding against spontaneous photon emission
and black-body radiation errors in specific molecules [39]. These works enabled a proposal
for the experimental implementation of molecular quantum error correction [26].

QCosmo aims to build on this past research by developing techniques to prepare, control,
and characterize polyatomic molecules at the quantum level. A key goal is achieving precise
control over rotational energy states, enabling controlled population transfer. Rotational
states are distinguished by their energy magnitudes, which differ from vibrational and
electronic states. These energies correspond to frequencies typically ranging from 10 GHz
to 10THz [40, 41]. One approach to transfer population between rotational states is to
drive the transition directly using a free-space electromagnetic field whose frequency is
resonant with the transition frequency [42]. However, such fields are hard to integrate as
they are typically in the microwave and not in the optical frequency range.

Optical fields can also drive such transitions using Raman transitions [43]. The basic
principle is based on a three-state quantum system and two single-frequency lasers whose
frequency difference matches the energy gap between two target states. For effective
population transfer, the lasers must remain off-resonant with respect to the third state.
This ensures population transfer between the first two states without populating the third.
However, this approach lacks flexibility. Lasers engineered for a specific Raman transition
between two rotational states may not be suitable for other rotational transitions, as their
frequency difference may no longer match the original energy gap.

A more flexible approach to this problem is provided by optical frequency combs, a
type of pulsed laser with a broader spectral bandwidth than single-frequency lasers. Their
working principle will be discussed in this thesis, but the core idea is that they can
be viewed as a superposition of many single-frequency lasers with distinct, regularly
spaced center frequencies. To drive a transition with a specific energy difference, the
corresponding frequency must fall within the comb’s bandwidth so that two of its single-
frequency components can induce a Raman transition. Previous work has demonstrated
the use of optical frequency combs for driving transitions between D-states in calcium-40
ions [44] and rotational transitions in calcium monohydride ions (CaH+) [45].

One of the goals of this work was to integrate a commercial optical frequency comb
into the QCosmo setup to enable future experiments to control the rotational energy
states of molecular ions such as CaH+ and CaOH+. Before the experimental phase of
this work began, the QCosmo setup consisted of the following components: A linear
Paul trap [46] designed to confine calcium-40 ions and other molecules within a harmonic
potential using radio-frequency and direct-current electrodes [47]. The trap is located
in an ultra-high vacuum chamber (10−10 mBar) to minimize collisions of the ions with
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background gas. Additionally, several single-frequency lasers are aligned to the trap,
serving distinct functions:

• A laser with 532 nm center frequency: Ablates calcium-40 from a target into the
vacuum [48].

• 422 nm and 375 nm: Ionize the resulting atomic cloud by removing one electron in a
two photon process [49].

• 397 nm and 866 nm: Perform Doppler cooling, bringing trapped ions close to Doppler
limited temperature [50].

• 729 nm and 854 nm: Enable resolved-sideband cooling, driving the ions toward their
motional ground state within the harmonic potential [51–53].

Once the desired number of ions is trapped, they can be detected using either a camera or
a photomultiplier tube by observing fluorescence from a cycling transition within the ions’
electronic states [54]. A cycling transition refers to an excitation that consistently decays
back to its original state via spontaneous emission. This process enables state detection
by distinguishing whether the ions are in the 4 2S1/2 state (observed fluorescence due to
repeated spontaneous emission) or in a different state (no fluorescence). Additionally,
control over a qubit transition has been achieved with high-fidelity readout and long
coherence times. The qubit states are encoded in the 4 2S1/2 and 3 2D5/2 states and
manipulated using a 729 nm single-frequency laser.

This work builds on the existing setup and demonstrates the integration of a commercial
optical frequency comb. For efficient population transfer, the drivable energy differences of
a quantum state must fall within the comb’s spectral bandwidth. As such, it is beneficial
to have as high of a bandwidth as possible. To extend this bandwidth, a nonlinear
optical effect known as self-phase modulation was used, where the nonlinearity arises from
a material’s refractive index depending on the laser’s intensity. However, this process
introduces spectral phase variations across the bandwidth, a phenomenon known as
dispersion. Dispersion can arise due to a material’s refractive index depending on the
laser’s wavelength. Due to destructive interference between different spectral components,
dispersion reduces the efficiency of driving transitions. To mitigate this, this work also
implements so-called dispersion compensation.

The theoretical framework for describing optical frequency combs, dispersion, and self-
phase modulation is presented in chapter 2. This chapter also covers relevant light-atom
interactions between the optical frequency comb and a single trapped calcium-40 ion,
with a focus on Raman transitions and Ramsey interferometry. Chapter 3 details the
experimental implementation of these concepts in an optical setup. Specifically, it describes
the generation of the optical frequency comb, power amplification, self-phase modulation,
dispersion compensation, and the alignment of the light to ensure spatial overlap with a
trapped ion. It also characterizes the temporal and spectral amplitudes and phases of the
optical frequency comb at various stages of the optical setup.

Using this optical frequency comb setup, this work demonstrates coherent state ma-
nipulation of a calcium-40 ion via comb Raman transitions between the electronic states
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3 2D5/2 (m5/2 = −1/2) and 3 2D3/2 (m3/2), where m3/2 was either −1/2 or +3/2. Addition-
ally, the collected data was used to estimate the Landé g-factor of the 3 2D3/2 state with
higher precision than its theoretical value. It was estimated by constructing a likelihood
function and extracting the most likely value. This value was measured as no known
publication reported on this Landé g-factor till now. The extracted result, stated in
equation (4.2), has a relative precision uncertainty of 2.5 ·10−5. However, systematic errors
have not been investigated. These results are presented in chapter 4.

Finally, chapter 5 concludes with a comparison of the results from this work with similar
studies from other groups and suggests potential improvements and expansions to the
optical frequency comb setup. It also provides an outlook on how this setup will be used
in the future to study rotational transitions in molecular ions.
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Chapter 2
Fundamentals of optical frequency
combs and light-atom interaction

This chapter focuses on establishing the foundational principles that support this work.
It will cover the theoretical description of optical frequency combs (section 2.1.1), how
they are affected by dispersion (section 2.1.2), and how they are influenced by self-phase
modulation (section 2.1.3). A brief overview of how optical frequency combs are generated,
stabilized, and their applications is presented (section 2.1.4). Moreover, the interaction
of light and matter is discussed by first introducing the calcium-40 ion and modeling
it as a two-level system (section 2.2.1). A relevant generalization for this work is the
three-level system together with continuous-wave Raman transitions (section 2.2.2) whcih
can ultimately be expanded to optical frequency comb Raman transitions with the ion
(section 2.2.3). Finally, Ramsey and spin echo techniques to characterize certain types of
noise in the system are also discussed (section 2.2.4).

2.1 Optical frequency comb theory
Optical frequency combs are a type of ultrafast pulsed laser that provide a comb-like
structure in the frequency domain. They have two distinct properties that differentiate
them from ultrafast pulsed lasers: the stabilization of the repetition rate ωrep and the
carrier-envelope offset frequency ωCEO. Optical frequency combs have been extensively
reviewed (see, for example, [55–57]) as they are an important tool for today’s technologies,
enabling, for example, the most precise measurements of the second [58, 59]. In this
section, it is explained how ωrep and ωCEO emerge by modeling an optical frequency comb
in time and frequency domain. Further, we explore what roles the optical phenomenon of
dispersion and the nonlinear self-phase modulation effect play. The section concludes with
a more practical aspect of optical frequency combs: how they are generated, what their
applications are, and how ωrep and ωCEO are stabilized.

2.1.1 Modeling and properties

To understand how optical frequency combs work and how they interact with certain
systems such as a trapped ion, it is useful to model them mathematically and derive
their properties from there. We will look at a temporal and spectral description of an
optical frequency comb while introducing key quantities, such as the repetition rate and
the carrier-envelope offset frequency.
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2.1 Optical frequency comb theory
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Figure 2.1: Temporal and spectral representation of an optical frequency comb.
The top half represents the time domain of an optical frequency comb and
the bottom half the frequency domain. They are connected via the Fourier
transform (FT). In the time domain, convolving (denoted as ∗, see appendix A)
a single pulse (b) with a temporal Dirac comb (c) results in a pulsetrain (a).
In the frequency domain, the typical spectral structure of an optical frequency
comb (a) is found by multiplying a spectral envelope (b) by a spectral Dirac
comb (c). The drawing is based on equations (2.1) and (2.2).

The top part of figure 2.1a shows the electric field of a pulsetrain in the time domain.
It can be modeled using an envelope function Esingle(t), which repeats with period T ,
multiplied by a waveform function with amplitude cos(ϕ(t)). The electric field can be
modeled by

E(t) = cos(ϕ(t))
∞∑

n=−∞

Esingle(t− nT ). (2.1)

We can simplify the analysis of this model by assuming a single-frequency laser such that
its temporal phase term takes the form of ϕ(t) = ωct− ϕ0, where ωc represents the carrier
frequency of an optical laser pulse. This assumption is not strictly necessary but enables
an intuitive derivation of the properties of the optical frequency comb. The effects of a
general ϕ(t) will be discussed qualitatively towards the end of this section.

To extract the relevant properties of the model of the optical frequency comb, we can
analyze it in the Fourier domain. Thus, we can apply the Fourier transform F on this
expression. The derivation of the Fourier transform Ẽ(ω) := F{E(t)}(ω) specific to the
field model described above can be found in Appendix A. Ignoring negative frequencies as
they do not provide additional information for real temporal fields, the frequency domain
representation of the electric field model is

Ẽ(ω) ∝ F{Esingle(t)}(ω − ωc) Ш2π/T (ω − ωc). (2.2)
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2.1 Optical frequency comb theory

An example of this peculiar structure is depicted in the bottom part of figure 2.1a.
The symbol Ш is pronounced “sha” and represents the Dirac comb function, it is defined

in terms of Dirac delta distributions δ(ω) as

Ш2π/T (ω) :=
∞∑

n=−∞

δ

(
ω − n

2π

T

)
and generates a regular comb-like array of delta functions. This function and its Fourier
transform is illustrated in figure 2.1c.

The frequency domain of the electric field model describing a frequency comb has
essentially two parts: (i) The global spectral envelope, which is defined by the Fourier
transform of the single pulse envelope. This spectral envelope is centered around the
carrier frequency ωc and spans over all non-zero spectral components; thus it is called
global. In this derivation, the width of the global spectral envelope is related to the width
of the temporal envelope ∆τ by being proportional to 1/∆τ . The proportionality factor
is given by a quantity called time–bandwidth product [60]. This situation is depicted in
figure 2.1b. (ii) The Dirac comb generates periodic peaks, also known as comb teeth, with
separated by a distance called the repetition rate. The value of the repetition rate is

ωrep :=
2π

T
.

This implies that such an electric field is everywhere zero in the Fourier domain except at
the location of the comb teeth.

There will generally be an offset between the lowest frequency comb tooth and the
absolute zero frequency. This is due to the fact that the Dirac comb in equation (2.2) is
centered around the carrier frequency ωc, and there does not necessarily exist an integer N
such that ωc −Nωrep = 0. This offset is quantified by the carrier-envelope offset frequency
ωCEO or the carrier-envelope phase φCEO defined as

ωCEO := ωcmodωrep and φCEO = 2π
ωcmodωrep

ωrep

⇒ ωCEO = ωrep
φCEO

2π
.

Using this offset we can localize the n-th comb tooth ωn in the modeled electric field with
respect to the origin via

ωn = ωCEO + nωrep.

In the context of practical implementations of optical frequency combs, this equation only
holds if both the repetition rate ωrep and the carrier-envelope offset frequency ωCEO are
measured to be accurate and precise over time, typically with precision uncertainties on
the order of mHz and Hz, respectively. The differences between a generic ultrafast laser
and an optical frequency comb are exactly these highly stabilized values of ωrep and ωCEO.
The way these are commonly stabilized is discussed in section 2.1.4.

The presented derivation assumed a linear temporal phase function ϕ(t) = ωct− ϕ0. We
talk about a chirped waveform if its temporal phase function ϕ(t) is described by additional
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2.1 Optical frequency comb theory

higher-order terms O(t2) (chirp as in bird sounds, mimicking changing frequencies over
time). A phase with a highest-order term of t2 is said to be linearly chirped due to the
instantaneous frequency dϕ/dt being linear. If we allow for a general temporal phase term
cos(ϕ(t)) in this derivation, then the relation of equation (2.2) becomes more complicated.
This phase term would then encode additional spectral phase and global spectral amplitude
information. Such a general spectral field takes the following form:

Ẽ(ω) = F{cos(ϕ(t))}(ω) ∗ (F{Esingle(t)}(ω) Шωrep(ω)).

If we start from a Fourier description, we can reformulate this last equation by collecting
amplitude, phase, and comb terms. We can then describe it as

Ẽ(ω) = Ẽenv(ω − ωc) Шωrep(ω − ωCEO) e
−iφ(ω), (2.3)

where Ẽenv is a real valued envelope function centered around zero, the spectral phase
term φ(ω) captures real and imaginary oscillations, and the Dirac comb is equal to
Шωrep(ω−ωCEO) = Шωrep(ω−ωc) due to its infinite extension and ωCEO = ωcmodωrep. It
should be noted that only positive frequencies are shown here, as the Dirac comb would be
reflected around zero for negative frequencies. We can rewrite this expression by expanding
the Dirac comb

Ẽ(ω) =
∞∑
n=0

Ẽenv(ω − ωc) δ(ω − (ωCEO + nωrep)) e
−iφ(ω)

=
∞∑
n=0

Ẽenv,n δ(ω − ωn) e
−iφn ,

where ωn = ωCEO + nωrep are the frequencies of the comb teeth, the amplitudes of the
comb teeth are Ẽenv,n = Ẽenv(ωn − ωc), and φn = φ(ωn) describe their phases. Taking the
inverse Fourier transform of the previous expression (including negative frequencies) yields

E(t) = F−1{Ẽ(ω)}(t)

=

√
2

π

∞∑
n=0

Ẽenv,n cos(ωnt− φn). (2.4)

This form leads to the interpretation that an optical frequency comb can be viewed as a
superposition of single-frequency lasers, each with different amplitudes and phases but
with regularly spaced frequencies. This equation also shows that temporal phases equate
to spectral phases.

2.1.2 Dispersion

Optical media have a property called dispersion, which makes the phase velocity and
group velocity of light passing through the medium frequency dependent. Such dispersion
affects the temporal envelope of ultrafast lasers, can introduce temporal chirp (a non-linear
temporal phase), and generates different spectral phases at different parts of the spectrum
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2.1 Optical frequency comb theory

[61, ch. 4]. These effects impact the performance of ultrafast lasers and could render
them inefficient for intended applications. For example, in the experimental system of this
work, we rely on the phase relation between two different spectral components for driving
transitions on the calcium-40 ion. If this relation introduces destructive interference, then
the effectiveness of driving such transitions is reduced. We will cover how to model and
calculate dispersion by Taylor-expanding the spectral phase into different orders, show the
effect of dominant low-order dispersion terms, and discuss strategies of how to compensate
for unwanted dispersion.

Dispersion emerges when we analyze the spectral description of an optical frequency
comb derived in equation (2.3). There, the spectral phase φ(ω) is responsible for the
physical effects of dispersion. The spectral phase can be a complicated function depending
on the details of the Fourier transform of the temporal single pulse envelope and the
temporal phase term. It is common to express the spectral phase φ(ω) in terms of a Taylor
expansion of the frequency variable around the carrier frequency

φ(ω) =
∞∑
j=0

Dj

j!
(ω − ωc)

j, Dj =
djφ

dωj
(ωc). (2.5)

The coefficients of the expansion are called dispersion coefficients and have dedicated
names and units :

D0 : Phase delay, [D0] = rad,

D1 : Group delay (GD), [D1] = fs,

D2 : Group delay dispersion (GDD), [D2] =
fs2

rad
,

D3 : Third-order dispersion (TOD), [D3] =
fs3

rad2 ,

D4 : ... .

The time units of the dispersion coefficients are determined by the typical duration of the
pulse, which is usually given in fs or ps. The radian angle units (rad) are often omitted,
but it is important to specify them for clarity.

The phase delay D0 generates a common temporal phase shift and relates to the
propagation of the carrier phase itself. The group delay D1 describes a temporal shift of
the single pulse envelope function with respect to the origin. The group delay dispersion D2

is responsible for the broadening of the temporal envelope and introducing a linear chirp
in the temporal phase. Higher-order terms deform the temporal pulse envelope and phase
non-trivially, like generating post- and pre-pulses. While D0 only induces a phase shift,
other even-order dispersion values affect the temporal shape symmetrically and introduce
a chirp on the temporal phase, while odd-order values affect the shape asymmetrically
and introduce no chirp. Examples of zero-, second-, and third-order dispersion on a
Gaussian-shaped pulse are shown in figure 2.2. A light pulse traveling through a material
with positive group velocity dispersion results in a shape as shown in the middle red plot
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2.1 Optical frequency comb theory

in figure 2.2. While propagating through the medium, blue light is slowed more than red
light due to the implied higher refractive index. This results in the chirp visible at the
waveform of the temporal pulse. Based on this discussion, dispersion is said to arise when
the temporal envelope is altered. This happens when the terms Dj for j ≥ 2 are non-zero.
Otherwise, a pulsed light field is said to be transform- or Fourier-limited.

For a more practical discussion: As we will see in section 2.2.3, dispersion influences
the Raman Rabi rates in a coherent interaction between an ion and the optical frequency
comb via Raman transitions due to interference effects. A laser phase shift induced by D0

does not affect the interaction’s effectiveness, while D1 merely introduces a timing delay
of the pulse, which also has no impact in a single-beam interaction. However, higher-order
terms reduce the interaction’s effectiveness.

Information about dispersion coefficients is often stated with a different convention.
There, higher-order dispersion coefficients follow a different definition along with having
different units. They are based on derivatives of the spectral phase with respect to the
wavelength λ instead of the angular frequency ω = ω(λ) = 2πc/λ, where c is the speed of
light in vacuum. The definitions and units are

Dλ
j =

dj−1

dλj−1

dφ

dω
(ω(λ))

∣∣∣∣
λ=λc

[Dλ
j ] =

ps

nmj−1
for j ≥ 2,

where λc = 2πc/ωc. For the special case of j = 2 and j = 3 we get

Dλ
2 =

(
−2πc

λ2c

)
D2 and Dλ

3 =

(
−2πc

λ2c

)2(
λc
πc

D2 +D3

)
.

After having discussed how to calculate dispersion using two different conventions based
on a field’s spectral information, to control dispersion it is important to understand how
dispersion accumulates when the field interacts with its environment. Dispersion is a
property of a dynamic field, but such a field can accumulate more dispersion as it travels
through a material or interacts with optical elements such as mirrors or gratings due to
the objects’ influence on the field’s phase. If a field has an initial dispersion coefficient of
Dj,i and passes through a medium for which a corresponding material dispersion coefficient
of Dj,m can be associated (as we will see, Dj,m is then a material property arising from the
refractive index), then the field after passing through the medium has a final coefficient of

Dj,f = Dj,i +Dj,m.

Thus as a light pulse travels through any optical setup it can potentially accumulate
spectral phase. In the context of dispersion arising from propagation through dispersive
media we define normal dispersion to be D2 > 0 (Dλ

2 < 0) and anomalous dispersion to
be D2 < 0 (Dλ

2 > 0) [61, ch. 4.1.2]. The following discussion covers how to calculate the
material dispersion coefficients Dj,m for solid media and briefly touches on how to calculate
it for free-space optical elements such as mirrors and gratings.

If Dj represents the dispersion a field acquires while traveling through a material of
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Figure 2.2: Effects of different dispersion orders on a short pulse. For this figure
the spectral phase of a Fourier-limited Gaussian-shaped pulse (electric field)
was altered to include only phase delay D0 (top, blue), group delay dispersion
D2 (center, red), and only third-order dispersion D3 (bottom, green). The
dashed lines represent the carrier frequency for the instantaneous frequency
(inst. freq.) graphs in the temporal plots and zero phase for the spectral plots.
The colored parts of the temporal plots show both the amplitude envelope of
the electric field and the real part of the electric field (waveform) to visualize
frequency chirp. The drawn graphs are based on equations (2.3) and (2.5).
FT: Fourier transformation.

length L, then the dispersion per unit length associated with the material is defined as

βj =
Dj

L
, [βj] =

fsj

mmradj−1 ,

or βλ
j =

Dλ
j

L
, [βλ

j ] =
ps

kmnmj−1
.

The dispersion coefficients per unit length in a material is determined by the refractive
index n(ω). To understand how, it is useful to split the spectral phase φ in a angular
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2.1 Optical frequency comb theory

wavenumber term k multiplied by the material length L,

φ(ω) = k(ω)L.

Under certain assumptions, especially linear, homogeneous, and isotropic materials, the
wavenumber follows the dispersion relation [62, ch. 5.5]

k(ω) = β(ω) + iα(ω) =
ω

c

√
ϵ(ω), (2.6)

where ϵ is the relative permittivity, or dielectric constant. The parameter α quantifies
absorption inside a medium and relates to the extinction coefficient, and the parameter β
relates to the refractive index n via

β(ω) =
ω

c
Re
{√

ε(ω)
}
=
ω

c
n(ω).

The dispersion coefficients per unit length βj are then the Taylor series expansion
coefficients of β(ω), assuming negligible α(ω) typical for transparent media. Using the
so-called group refractive index

ng(ω) =
d

dω
(ω n(ω)) = n(ω) + ω

dn

dω
(ω)

and the phase and group velocities respectively defined as

vph(ω) =
c

n(ω)
, vg(ω) =

c

ng(ω)
,

we can calculate the dispersion coefficients per unit length via

β0 =
ωc

vph(ωc)
,

β1 =
1

vg(ωc)
,

βj =
dj−1

dωj−1

(
1

vg(ω)

)∣∣∣∣
ω=ωc

or βλ
j =

dj−1

dλj−1

(
1

vg(ω(λ))

)∣∣∣∣
λ=λc

for j ≥ 2.

The term β2 is named group velocity dispersion (GVD), the term βλ
2 is often referred to

as a dispersion parameter, and βλ
3 is called the dispersion slope.

This last part illustrated how to calculate dispersion coefficients Dj for light fields that
propagate through materials. However, dispersion is also introduced through dispersive
optical elements, such as mirrors and grating pairs (a pair of gratings which transmit
the first order beam parallel to the incoming beam often used for pulse compression
[61, ch. 4.3]). Dispersion can be introduced by mirrors, especially those with multiple
layers, such as Bragg mirrors, due to the multiple reflecting interfaces and phase shifts
accumulated when partially traveling through the layers. Their dispersion can, for example,
be evaluated using the transfer-matrix method [63] by comparing the spectral phase φr of
the reflected beam with the spectral phase φin of the incident beam. The added phase
is then φadd = φr − φin. For optical elements similar in concept to grating pairs, we
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2.1 Optical frequency comb theory

can track the path length difference ∆L(ω − ωc) that different frequencies travel through
compared to the carrier frequency. Then the added spectral phase is φadd = 2π∆L/λ plus
other potential contributions, such as grating surface effects. In both cases, we can then
derive the accumulated dispersion coefficients from the added spectral phase φadd using
equation (2.5). Typical group delay dispersion D2 values for regular Bragg mirrors can
be as low as 0.1 fs2, while the D2 induced by a grating pair can be adjusted through the
system parameters but can typically be set between −1000 fs2 and −100′000 fs2.

From this discussion, it becomes clear that we can design optical systems with which
we can manipulate the dispersion coefficients of our optical frequency comb. Dispersion
coefficients can be either positive or negative and can be tailored to shape a light field
with a specific amount of dispersion. In this work, we approximately compensate for any
dispersion within the optical frequency comb to maximize the Raman Rabi rates (see
section 2.2.3). Examples of optical systems that are used in our setup to control the
dispersion coefficients are normal optical fibers, dispersion-compensating optical fibers [64],
chirped fiber Bragg gratings (CFBG) [65], and chirped volume Bragg gratings (CVBG)
[66]. Other elements that could be used are transparent media [61, ch. 4.1.2], grating
pairs [61, ch. 4.3], prism pairs [61, ch. 4.4], chirped mirrors [61, ch. 4.6.3], and time delay
stages [67, 68].

An important example for dispersion control is a technique called chirped pulse amplifi-
cation [69], where non-zero group delay dispersion is introduced on purpose. If we want
to amplify an ultrafast laser directly, the problem arises that the gain medium inside the
amplifier is easily damaged due to the high peak intensities of such a laser compared to
continuous-wave lasers. In chirped pulse amplification, a controlled amount of group delay
dispersion D2 is introduced to achieve a longer pulse length and thus a lower peak intensity.
This allows the amplifier to safely increase the power of the laser. After amplification, an
inverse group delay dispersion of −D2 brings the ultrafast laser close to its original pulse
length. Typical values for D2 for femtosecond lasers and watt-level power are on the order
of 0.1 to 10 ps2.

The relationship between the dispersion coefficients and the spectral bandwidth deter-
mines whether or not dispersion in the optical frequency comb is significant and whether
or not it can be regarded as Fourier-limited. Additionally, appropriately comparing the
relative magnitudes between different dispersion coefficients can tell us which of the terms
is dominant. Such comparisons can be performed by considering the spectral bandwidth
∆ω using (∆ω/2)jDj/j!, which essentially is a comparison between terms in a polynomial.
For example, to determine if the group delay dispersion in the light field is significant,
compare (∆ω/2)2D2/2! to 1. To assess if the group delay dispersion dominates over
third-order dispersion, compare (∆ω/2)2D2/2! to (∆ω/2)3D3/3!. Commonly, a treatment
of the group delay dispersion D2 is sufficient.

2.1.3 Self-phase modulation

Dispersion is a linear effect as it arises from the frequency-dependent refractive index
and acts linearly on the electric field, meaning each frequency component propagates
independently without mixing. In contrast, nonlinear optical effects introduce intensity-

13
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dependent changes, leading to spectral broadening and frequency mixing, with self-phase
modulation (SPM) being one of the most important among them. An interesting duality
between dispersion and SPM is the following: Dispersion control techniques can be used
to manipulate the spectral phase of a pulsed light field to change its temporal envelope
while leaving the spectral envelope unchanged. On the other hand, SPM can be used to
manipulate the temporal phase of a pulsed light field while leaving its temporal envelope
unchanged, thereby changing its spectral envelope [70]. Combining dispersion control and
SPM allows us to broaden the spectral bandwidth using SPM and cancel out accumulated
dispersion using dispersion compensation methods. This leads to the creation of a Fourier-
limited pulse with shorter temporal length and a larger bandwidth. This method is
beneficial in our applications, as increasing the bandwidth of the optical frequency comb
will allow us to drive higher-energy Raman transitions in qubit systems, see section 2.2.3.
This section will cover how to model SPM and model its effects.

Self-phase modulation is a phenomenon that arises from the intensity dependence of the
refractive index of a material due to the optical Kerr effect [71, ch. 6.2.2]. The refractive
index is typically modeled as

n(I) = n0 + n2I,

where I is the intensity of the light field, the term n0 = n0(ω) is the linear refractive index,
and n2 is the second-order nonlinear refractive index of the medium. The intensity is
defined according to the temporal electric field E as

I(t, z) = |E(t, z)|2, [E] =

√
W

m2
,

where in this section the electric field E is modeled to have units of root intensity.
In practice, the second-order nonlinear refractive index n2 is often expressed in terms of

the nonlinear coefficient, or Kerr-nonlinearity coefficient, γ, but can also be evaluated from
the third-order nonlinear susceptibility χ(3) of the material [72]. The relations defining
these connections follow

n2 = γAeff
c

ωc

=
3

8

Re
{
χ(3)
}

n0(ωc)
,

[n2] =
m2

W
, [γ] =

1

Wm
, [χ(3)] =

m2

W
,

where ωc is the carrier angular frequency, the speed of light in vacuum is c, and Aeff is the
effective mode area. The nonlinear coefficient γ accounts for both the nonlinear refractive
index and the effective mode area of the light field. In our case, the latter is connected to
the effective area of single-mode fibers, which are commonly used to generate SPM.

A theoretical description of self-phase modulation can be done in either time- or
frequency-domain. Numerically, a frequency description is more convenient as dispersion
effects can be summarized with only one term. For this we need the Fourier transform of
the temporal pulsed field

Ẽ(ω, z) = F+{E(t, z)}(ω),

14



2.1 Optical frequency comb theory

where

F+{A(t)}(ω) = (1+sgn(ω))
1

2tmax

1√
2π

∫ tmax

−tmax

A(t)e−iωt dt,

with sgn(±|ω|) = ±1, is unit-preserving ([E] = [Ẽ]) and eliminates negative frequencies.
If an inverse Fourier transform matching equation (A.1) is applied to this spectral field,
then a so-called analytic temporal field EA = F−1{Ẽ}, which has the special property
E = Re{EA}, is retrieved (see Hilbert transform [73, ch. 4.3.7]). The endpoints of the
integral allow for numerical calculations with finite summation terms. The endpoints can
be motivated by considering a single pulse of a pulsetrain with repetition rate ωrep. Since
the pulse train is periodic, we set the endpoints to be 2tmax = 2π/ωrep to match the time
period of the repetition.

The here assumed differential equation describing the propagation through a nonlinear
medium takes the form [74]

i
∂Ẽ

∂z
(ω, z) + k(ω)Ẽ(ω, z) + n2

ω

c
F+{|E(t, z)|2E(t, z)}(ω) = 0 (2.7)

and is called the simplified forward model for an analytic signal. “Simplified” indicates
an approximate version of a more complex model (in fact, it is derived from a more
general nonlinear wave equation), “forward model” means it describes the evolution of
a signal as it propagates in time, and “analytic signal” refers to the propagation of a
complex-valued representation EA of a real signal E used to separate positive and negative
frequency components. The wavenumber k(ω) in the equation is the same as introduced
in equation (2.6) and contains all dispersion effects. The third term models SPM.

To get a feeling on the effects of SPM, it is useful to disregard dispersion effects
(n(ω) = 1, ⇒ k(ω) = ω/c), approximate ω ≈ ωc, and perform an analysis in the time
domain. By applying the inverse Fourier transform F−1 on equation (2.7), we retrieve

i
∂EA

∂z
(t, z) +

ωc

c
EA(t, z) + n2

ωc

c
|EA(t, z)|2EA(t, z) = 0. (2.8)

Separating the temporal field into amplitude and phase by EA =
√
Ie−iϕ, inserting this

into the differential equation (2.8), and separating the real and imaginary parts results in

∂I

∂z
(t, z) = 0,

∂ϕ

∂z
(t, z) = −ωc

c
(1 + n2 I(t, z)).

Thus, from the first equation we can conclude that for pure SPM the field intensity I = I(t)
is invariant under propagation in the z direction. From the second equation we find that
the temporal phase varies as

ϕ(t, z) =

∫
∂ϕ

∂z
(t, z) dz = ϕ(t, 0)− ωc

c
(1 + n2 I(t)) z.
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This relation indicates that SPM is induced via the intensity I of the propagating field
and the distance z this field propagates through the medium. From this, the naming
of self-phase modulation also becomes clear. When a field propagates through such a
nonlinear medium, its temporal phase ϕ changes according to the time-varying intensity
of the field itself.

An interesting effect of SPM can be seen when inspecting the instantaneous fre-
quency defined as ωinst := ∂ϕ/∂t. Assuming a Gaussian-shaped field amplitude

√
I(t) =√

I0e
−t2/(2∆τ2), where ∆t characterizes the width of the field and

√
I0 defines its amplitude,

the instantaneous frequency then takes the form of

ωinst(t, z) :=
∂ϕ

∂t
(t, z) =

∂ϕ

∂t
(t, 0) +

(
n2
ωc

c

2I0
∆τ 2

z

)
t e−(t/∆τ)2 . (2.9)

This shape can be seen on the left side of figure 2.3. We can see from the instantaneous
frequency that due to SPM, new frequencies are being generated inside a temporal field.
Higher frequencies are shifted towards the end of the pulse (positive times), while lower
frequencies are shifted towards the beginning of the pulse (negative times). No shift occurs
at the maximum of the pulse. Around the center, an approximate linear frequency shift
can be observed (linear chirp). The newly generated frequencies effectively broaden the
spectrum of the field in Fourier space. As a note, it is possible to analytically predict the
characteristic features of this broadening [75].

The analysis so far has neglected dispersion. However, there will always be additional
dispersion effects in real materials that induce SPM. If the incident field is Fourier-limited
and the nonlinear material has normal dispersion (D2 > 0), then low frequencies will have
higher phase velocities than high frequencies. Since low frequencies are generated in front
of the pulse and high ones in the back, the frequencies effectively spread and broaden the
pulse in time. For initial anomalous dispersion (D2 < 0), on the other hand, the low and
high frequencies can converge, effectively compressing the pulse in time before broadening
again [71, ch. 4.1.3].

To illustrate the effects of self-phase modulation without dispersion in the frequency
domain, a numerical analysis is shown on the right side of figure 2.3. As the pulse
is propagating through a distance z of the medium, the spectrum is broadened in a
characteristic way. This induces a typical shape in the instantaneous frequency of the
pulse, as described by equation (2.9), while the temporal shape remains nearly unaffected.
The used simulation, however, includes an additional nonlinear effect called self-steepening
[71, ch. 4.3.1], which leads towards a distortion of the temporal shape due to spectral
broadening being stronger for higher frequencies. A characteristic oscillatory shape of
the spectral amplitude emerges alongside the broadening of the spectral bandwidth. This
oscillatory structure can be attributed to SPM-induced frequency chirp from equation (2.9).
This can be illustrated as follows: For each generated frequency, there will always be two
points inside the temporal pulse with the same instantaneous frequency but, in general,
two different phases. These phases can interfere constructively or destructively. This
interference gives rise to the multipeak structure of the spectrum.

SPM can be accompanied by other nonlinear processes such as stimulated Raman
scattering [71, ch. 8] and four-wave mixing [71, ch. 10.1]. These can result in broadening
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of the spectral bandwidth beyond the broadening rate of SPM. Such broadening is referred
to as a supercontinuum or white-light continuum [76].
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Figure 2.3: Effects of self-phase modulation on a pulse. A Fourier-limited Gaussian
pulse with an average power of 1.5W is simulated traveling through a non-
linear fiber of length z with a nonlinear coefficient γ = 10.7 (Wkm)−1 while
disregarding dispersion. The drawn simulations are based on equation (2.7)
if dispersion is disregarded. FT: Fourier transformation, inst. freq.: instanta-
neous frequency.

The simulator used for figure 2.3 has the project name py-fmas [74]. The code can be
found in https://github.com/omelchert/py-fmas. It should be noted that the simulation
takes the convention that the second-order nonlinear refractive index n2,py-fmas has units of
1/W instead of m2/W because the simulation integrates over the effective mode area

n2,py-fmas =
n2

Aeff

.

As a consequence, the field amplitude passed into the simulation has units of root power√
W instead of root intensity

√
W/m2, which can be obtained

Epy-fmas(t) = E(t)
√
Aeff .
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2.1 Optical frequency comb theory

2.1.4 Generation, stabilization, and applications

Shifting from the mathematical treatment to practical considerations, we now consider how
an optical frequency comb is generated, how the repetition rate ωrep and the carrier-envelope
offset frequency ωCEO are stabilized, and what some of their applications are.

Various techniques have been developed to generate optical frequency combs, with
passive and active mode locking being the most predominant. Mode locking [61, ch. 2]
refers to the phase locking of different longitudinal modes within a laser cavity. The basic
principle of mode locking is that of an oscillator: The interaction between a pump laser
and a gain medium generates initial photons, which, through stimulated emission and
mode locking, evolve into a coherent optical frequency comb. The gain medium further
amplifies these photons, while a partially transparent mirror serves as an output coupler.

To go further into detail, at the core of mode locking is the need to synchronize
the phases of the longitudinal modes of the laser cavity. In a typical laser, the cavity
supports many modes, each corresponding to a different frequency. When these modes
oscillate independently, they can produce a continuous wave of light. However, mode
locking ensures that these modes are not independent; instead, their phases are locked
together in such a way that the combined output is not a continuous wave, but rather a
train of ultrashort pulses. This synchronization is achieved through periodic modulation
or nonlinear interactions within the cavity, which causes the electromagnetic waves to
constructively interfere at regular intervals, generating pulses at a specific repetition rate.
The pulse durations can reach a time scale of picoseconds or femtoseconds, leading to the
creation of an optical frequency comb (a spectrum of discrete, evenly spaced frequencies).

In active mode locking the phase relationship between the longitudinal modes is controlled
by an external modulator, such as an acousto-optic or electro-optic modulator, that
periodically regulates the cavity losses or the round-trip phase shifts. In contrast, passive
mode locking occurs without an external modulator. Instead, it relies on an intensity-
dependent mechanism that favors the formation of short pulses over continuous waves.
One approach, used in our frequency comb setup, exploits nonlinear polarization rotation
[71, ch. 6]. By designing the system with polarization optics in such a way that beams
experiencing nonlinear polarization rotation encounter minimal losses, high-intensity pulses
are selectively amplified while low-intensity continuous waves are suppressed. Further
details about this technique are provided in section 3.1. Because passive mode locking
does not depend on the speed or efficiency of an external modulator, it can produce pulse
trains with shorter pulse durations than active mode locking.

Once the train of ultrashort pulses is produced, an optical frequency comb can be
generated by stabilizing the repetition rate and the carrier-envelope offset frequency. The
repetition rate ωrep is usually on the order of MHz to GHz and depends on the length
of the cavity. An appropriate photodiode can be used to measure such frequencies by
picking off a portion of the generated light. As the repetition rate of the signal is typically
a radio-frequency it is straightforward to measure directly. Through a feedback loop
(phase-locked loop [77]) into the optical frequency comb generator, a setpoint, and an
error signal, one can then stabilize the repetition rate. This can be achieved by using
piezoelectric actuators to drive the cavity mirrors.

Stabilizing the carrier-envelope offset frequency ωCEO, on the other hand, is more
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involved. Theodor Hänsch and John Hall were awarded with Nobel Prize in 2005 due to
the invention of the basic scheme for this procedure [78–80]. The technique they developed
is called the “f -2f ” self-referencing scheme and requires broadening the spectral bandwidth
of the optical frequency comb via self-phase modulation (see section 2.1.3) to a white-light
continuum such that the spectral bandwidth covers more than one octave. This means
that inside the bandwidth there should be one frequency ωn that, when doubled, still falls
inside the bandwidth. This frequency is doubled using second harmonic generation (SHG),
creating the frequency 2ωn, and is then compared with the frequency ω2n. In practice we
split the optical frequency comb into two paths. One path is transformed into a white-light
continuum, and the other passes through a nonlinear crystal, which can generate second
harmonics. Overlapping these two beams and making them interfere creates a beat signal,
where the lowest frequency will be

“f -2f” : 2ωn − ω2n = 2(ωCEO + nωrep)− (ωCEO + 2nωrep)

= ωCEO, (2.10)

as depicted in figure 2.4. The carrier-envelope offset frequency is directly extracted from
the beat frequency. It is typically in the MHz range and can be measured and stabilized
using the same feedback method as the repetition rate.

Typical applications for optical frequency combs involve beat notes between themselves
and other lasers as their core component. These allow linking optical frequencies to radio
frequencies. Such techniques are used for high-accuracy metrology [81], laser frequency
references and stabilization [56], dual-comb spectroscopy [82, 83], and more. In this work,
the narrow peaks of an optical frequency comb will be used to drive Raman transitions in a
quantum system whose energies fall within the spectral bandwidth as already demonstrated
by [44] and [45]. For driving Raman transitions, it is important to have a stable repetition
rate; however, the carrier-envelope offset frequency is irrelevant for this interaction, as only
the frequency difference of two photons counts, and the carrier-envelope offset frequency
thus cancels out.
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Figure 2.4: Measurement technique of the carrier-envelope offset frequency. By
generating a white-light continuum out of an optical frequency comb that spans
at least an octave and beating it with its second harmonic, it is possible to
measure the carrier-envelope offset frequency ωCEO as shown in the schematic.
The drawing is based on equation (2.10).
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2.2 Light-atom interaction
This section describes the interaction between an optical frequency comb and a trapped ion
system, specifically for the example of a calcium-40 ion. For this, basic concepts around the
calcium-40 ion, such as energy level structure, Zeeman substructure, and AC-Stark shifts,
will be presented in section 2.2.1. Although not central for this thesis, two-photon Raman
transitions in a three-level system using two continuous-wave lasers will be discussed in
section 2.2.2. This concept of Raman transitions will be expanded in section 2.2.3 to
enable the description of the used interaction between an optical frequency comb and an
ion. Section 2.2.4 covers Ramsey interferometry used in our experiments.

2.2.1 Calcium-40 ion theory and two-level system

Calcium-40 ions (40Ca+) are a popular platform for quantum information processing
platforms due to the relatively long lifetime of the D-level excited state (∼ 1 s) for
encoding a qubit state and their experimentally accessible transition frequencies using
continuous-wave lasers [84]. The setup of the research group where this work was conducted
is capable of readily trapping calcium-40 ions in a linear Paul trap. The aim of this section
is to describe the calcium’s interaction with a continuous-wave laser field to lay the
foundation for a description using Raman transitions and then further involving an optical
frequency comb. For the sake of simplicity, the ion will be modeled as a two-level system
by picking two arbitrary real states and is assumed to rest in space without the need of
any trapping potential and be in its motional ground state.
The ion can be described as a hydrogen-like quantum system due to there being only a
single valence electron in its outermost shell. Additionally, it does not have any hyperfine
structure. The Hamiltonian describing the electronic states of the calcium ion takes the
form of

Hatom =
∑
j

ℏωj |j⟩ ⟨j| , (2.11)

where ℏωj describes the eigenenergies and |j⟩ are the corresponding eigenstates in Dirac
notation. The constant ℏ is the reduced Planck constant, and ωj is the angular frequency
of the j-th energy level. For our specific case, the eigenstates can be characterized by five
quantum numbers as

|j⟩ = |n, S, L, J,mJ⟩ .

The quantum numbers describe the quantum state in which the valence electron of the ion
is [27, ch. 5]. The principal quantum number n ∈ N is related to how far, on average, the
electron is from the nucleus. The angular momentum quantum number for spin S = 1/2
describes the spin of the single electron and is always 1/2 due to there being only one
valence electron. The azimuthal quantum number L ∈ {0, 1, ..., n − 1} determines the
electron’s orbital angular momentum and specifies the shape of the orbital. The total
angular momentum quantum number J ∈ {|L− S|, |L− S|+ 1, ..., |L+ S|} combines the
azimuthal and spin angular momentum and parametrizes the total angular momentum
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due to the presence of spin-orbit coupling. The projection of the total angular momentum
along the quantization axis mJ ∈ {−J, − J + 1, ..., J} becomes relevant when a magnetic
field is applied and lifts the 2J + 1-fold degeneracy. The quantization axis is defined as
the local direction of the applied magnetic field B⃗ at the position of the ion.

These quantum numbers are typically concentrated in a single notation that describes
the eigenenergies of the valence electron called term symbols [85]. The notation follows

n 2S+1LJ(mJ),

where for L = 0 we replace L with S, for L = 1 we replace L with P , and for L = 2
we replace L with D according to spectroscopic notation [86]. Central to this work are
the states with n = 3, S = 1/2, L = 2, and J = 3/2 and J = 5/2, since coherent state
manipulation between these two general states is performed using an optical frequency
comb. Omitting the specification of mJ , these values lead to the notation 3 2D3/2 and
3 2D5/2.

The eigenenergies ℏωj of the calcium ion Hamiltonian in equation (2.11) generate a
unique energy structure, which is qualitatively depicted in figure 2.5. The figure only
shows the lifted degeneracy of an applied magnetic field for the 3 2DJ states.
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Figure 2.5: Simplified energy structure of a calcium-40 ion. Drawn are the lowest
relevant energy levels of the ion labeled using term symbols. The wavelengths
of the transitions are given in nm. The Zeeman substructure of the D-levels is
also sketched, and is determined by the quantum number mJ . This image is a
representation of equation (2.11).

For the purposes of this work, it is important to understand how the 2J + 1-fold
degeneracy is lifted due to the influence of an external B-field. Let ℏω0 be the eigenenergy
of a particular degenerate state, i.e., a state that for zero B-field, and ℏωmJ

the same
eigenenergy but with lifted degeneracy. The degeneracy is lifted when an external B-field
is applied due to the interaction −µ⃗J · B⃗, where µ⃗J is the magnetic moment associated with
the total angular momentum J⃗ of the electron, leading to discrete energy shifts depending
on the quantum number µ⃗J . This so-called Zeeman splitting then has the magnitude [87,
ch. 7.4]

∆ωZeeman,mJ
= ωmJ

− ω0 =
1

ℏ
mJ gJ µBB, (2.12)
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where gJ is the Landé g-factor, the Bohr magneton is denoted as µB, and the magnetic
field strength as B = |B⃗|. To first order, the Landé g-factor is given by [87, ch. 7.4]

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.13)

In this work we need the values for the 3 2DJ states. Using equation (2.13), we can evaluate
them to be g3/2 = 0.8 and g5/2 = 1.2. The accuracy of modern experiments require higher-
order corrections for the here presented simple model, leading to slightly different Landé
g-factors. For the experiments to be performed in this work, these first-order calculations
are not sufficiently precise. An experimental value for the 3 2D5/2 was found [88, p. 81]

gexp5/2 = 1.200 333 75(3), (2.14)

but to our knowledge, the Landé g-factor g3/2 of the 3 2D3/2 state has not been measured.
This work experimentally measures this value.

Appropriately chosen continuous-wave lasers can be used to manipulate the quantum
state of a calcium ion. To see how, we assume that the laser’s frequency ωL roughly
corresponds to a frequency difference, or transition frequency, ωatom = ωe − ωg of two
eigenenergies associated with the eigenstates |g⟩ = |j1⟩ (ground state) and |e⟩ = |j2⟩
(excited state). We additionally assume that the wave function of the electron can be
expressed in terms of a radial function and spherical harmonics, implying that the wave
function has definite parity, which is important for later defining the Rabi rates. We also
assume that the laser field is far-detuned from any other transition. This allows us to treat
the light-atom system as an effective two-level system. The Hamiltonian of the two-level
system takes the following form:

Hge
atom = 0 |g⟩ ⟨g|+ ℏωatom |e⟩ ⟨e| ,

where the energy reference was set to the ground state energy ℏωg. A sketch of this
situation is shown in figure 2.6.

We can model the electric field via

E⃗(r⃗, t) =
1

2
E⃗0 e

i(k⃗L·r⃗−ωLt+ϕL) + c.c., [E⃗0] =
V

m
, (2.15)

where E⃗0 is complex and defines the amplitude and direction (polarization) with which the
electric field is oscillating in space, the wave vector k⃗L defines the propagation direction
of the light, and ϕL defines a phase offset. The abbreviation c.c. denotes the complex
conjugate of the preceding expression. When applied to only a single object, it is also
denoted with the symbol *. Since we are not considering the motion of the ion, we can
apply the electric dipole approximation ei⃗kL·r⃗ ≈ 1, which assumes that the wavelength of
the field is much larger than the spatial extension of the ion [89, ch. 5.1.2].

In an electric dipole transition, an ion absorbs or emits a photon due to the interaction
between its electric dipole moment and an oscillating electric field, such as that of a laser.
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2.2 Light-atom interaction

The interaction Hamiltonian describing this process can be derived from the potential
energy of an electric dipole in an external electric field, and is given by [52]

HL(t) = −p⃗ · E⃗(t), (2.16)

where p⃗ is the electric dipole moment operator. By changing the basis of this expression
using the identity I = |g⟩ ⟨g|+ |e⟩ ⟨e|, defining the Rabi rate

Ω := |Ω|eiϕΩ :=
1

ℏ
⟨e| p⃗ · E⃗0 |g⟩ , Ω̃ := |Ω̃|eiϕ̃Ω :=

1

ℏ
⟨e| p⃗ · E⃗∗

0 |g⟩ ,

and recognizing that the diagonal elements vanish, i.e., ⟨g| p⃗ · E⃗0 |g⟩ = ⟨e| p⃗ · E⃗0 |e⟩ = 0,
due to definite parity, we can rephrase the Hamiltonian of equation (2.16) as

HL(t) = −ℏ|Ω|
2

(
|e⟩ ⟨g| e−i(ωLt−ϕL−ϕΩ) + h.c.

)
−ℏ|Ω̃|

2

(
|e⟩ ⟨g| ei(ωLt−ϕL+ϕ̃Ω) + h.c.

)
,

where h.c. denotes the Hermitian conjugate of the preceding expression, also denoted with
the symbol † if it is only applied to a single object.

|e〉

|g1〉

ωe

ωL

Energy/ℏ

|∆|

ωg

Figure 2.6: Two-level system with one interacting field. A continuous-wave laser
field with frequency ωL interacts with two energy levels ℏωg and ℏωe with an
interaction strength proportional to the Rabi frequency Ω. This figure is based
on equation (2.18) and is a simplification of the energy structure shown in
figure 2.5.

The total Hamiltonian can now be written as H(t) = Hge
atom + HL(t). To analyze

this Hamiltonian, it is useful to introduce unitary operators U that fulfill U †U = I, as
they will allow us to bring forth experimentally relevant quantities. These operators can
perform a basis transformation on a Hamiltonian while preserving the Schrödinger equation
iℏ d

dt
|ψ(t)⟩ = H |ψ(t)⟩ and the eigenenergies, meaning that the transformed Hamiltonian

and its corresponding eigenstates retain the same eigenenergies as the original Hamiltonian
and eigenstates. A unitary transformation on a Hamiltonian and a general state vector is
defined by

HU = U †HU + iℏ
dU †

dt
U and |ψU(t)⟩ = U † |ψ(t)⟩
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2.2 Light-atom interaction

and fulfills the Schrödinger equation

iℏ
d

dt
|ψU(t)⟩ = HU |ψU(t)⟩ .

The unitary operator U1 = e−iHge
atomt/ℏ changes the description into the so-called rotating

frame of reference [90], or interaction picture, resulting in

HI = U †
1HU1 + iℏ

dU †
1

dt
U1

= −ℏ|Ω|
2

(
|e⟩ ⟨g| e−i((ωL−ωatom)t−ϕL−ϕΩ) + h.c.

)
− ℏ|Ω̃|

2

(
|e⟩ ⟨g| ei((ωL+ωatom)t−ϕL+ϕ̃Ω) + h.c.

)
RWA
≈ −ℏ|Ω|

2
|e⟩ ⟨g| e−i(∆t−ϕL−ϕΩ) + h.c., (2.17)

where ∆ = ωL − ωatom is the detuning between the laser frequency and the transition
frequency. The change into the rotating frame cancels out Hge

atom and reveals two different
timescales, a fast ωL + ωatom and a slow ωL − ωatom = ∆ timescale.

The last equation applies the rotating wave approximation (RWA), which disregards
fast dynamics driven by phase terms with frequencies ωL + ωatom ≫ ωL − ωatom = ∆ as
these average out for slow timescales comparable to the detuning ∆. The RWA acts
as a low-pass filter on the system’s frequencies as it effectively removes high-frequency
oscillations from the system’s equations [91].

The remaining time dependence in the Hamiltonian can be eliminated by changing to
frame of reference which rotates at the detuning frequency ∆ using the unitary operator
U2 = e−i(∆t−ϕL−ϕΩ)|e⟩⟨e|. This leads to a simplified light-atom interaction Hamiltonian

HLA = U †
2HIU2 + iℏ

dU †
2

dt
U2

= −ℏ|Ω|
2

(|g⟩ ⟨e|+ |e⟩ ⟨g|)− ℏ∆ |e⟩ ⟨e| . (2.18)

Due to the properties of unitary transformations, this Hamiltonian preserves the eigenen-
ergies of the original Hamiltonian H. Solving the Schrödinger equation by finding the
roots of the characteristic polynomial det(HLA − λI) yields the eigenenergies

λ± =
ℏ
2
(−∆±

√
|Ω|2 +∆2), (2.19)

where det denotes the determinant operation. From this we can find the eigenstates of the
coupled field-atom system, called dressed states, which we use to describe the evolution of
a state |ψLA(t)⟩ = e−iHLAt/ℏ |ψLA(t = 0)⟩, where |ψLA(t)⟩ = U †

2U
†
1 |ψ(t)⟩. Setting the initial

state as |ψ(t = 0)⟩ = |g⟩, we can predict the evolution of the two-level system interacting
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2.2 Light-atom interaction

with the laser light by observing the probability of finding the ion in the state |e⟩ defined
as

pe = | ⟨e|ψ(t)⟩ |2

= | ⟨e|ψLA(t)⟩ |2 |e−i((ωatom+∆)t−ϕL−ϕΩ)|2

=

(
|Ω|
Ω′

)2

sin2

(
1

2
Ω′t

)
=

(
|Ω|
Ω′

)2
1

2
(1− cos (Ω′t)) (2.20)

=

(
1

2
|Ω|t

)2

sinc2
(
1

2
Ω′t

)
, (2.21)

where Ω′ =
√

|Ω|2 +∆2 is the generalized Rabi frequency. We can see that for large
detunings ∆/|Ω| ≫ 1 the population transfer to the excited state is largely suppressed.
This process of coherently transferring population between quantum states is what we
refer to as actively driving transitions.

The pulse length t is the time over which the laser interacts with the ion. When referring
to an optical frequency comb, this quantity is more appropriately called the pulsetrain
to avoid confusion with the length of a single pulse within the comb. Varying the pulse
length for a given detuning (usually ∆ = 0) yields a population oscillation of the excited
state. These are commonly known as Rabi flops, or Rabi oscillations, pe(t,∆ = 0). On the
other hand, we can also vary the detuning ∆ for fixed pulse length t, which is often set to
the π-time tπ = π/|Ω|, and retrieve the Rabi spectrum pe(t = tπ,∆).

The forms in equations (2.20) and (2.21) are useful for fitting experimental data, as
they explicitly reveal the functional dependence observed in the data and can easily be
adjusted to include system imperfections. For data retrieved from varying the pulse length
with a target detuning of ∆ = 0, the following Rabi flop model can be used to describe
the behavior:

pe,flop(t) =
A

2
cos (Ω (t− t0)) e

−t/τ + c, (2.22)

with parameters A, t0,Ω, c, and τ . The parameters, except for Ω, account for different
imperfections in the quantum system and system calibrations. The offset c is, according
to the derived theory, ideally equal to 0.5 but can range from 0 to 1. Together with
the amplitude A ∈ [0, 2min{c, 1 − c}] and the time offset t0, these free parameters can
incorporate various imperfections such as non-zero detuning, state preparation infidelities,
and environmental noise sources such as magnetic field fluctuations. The parameter τ
represents the decay time constant of the Rabi oscillations, which typically reflects the
timescale over which the oscillation amplitude decays due to dissipative effects like relax-
ation, dephasing, or loss of coherence. Further discussion about system noise, specifically
dephasing noise, is held in section 2.2.4.

For varying the frequency and measuring the Rabi spectrum, the pulse length is set to
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2.2 Light-atom interaction

the π-time t = tπ. Inserting this into equation (2.21) leads to the model

pe,spec(∆) = A
(π
2

)2
sinc2

π
2

√
1 +

(
∆−∆0

Ω

)2
+ c, (2.23)

with parameters A,∆0,Ω, and c. The amplitude A ∈ [−1, 1] and the offset c ∈ [max{0, −
A}, min{1, 1− A}] have similar justifications as for the Rabi flop model. The detuning
offset ∆0 accounts for reference frames that are not centered around zero detuning.

Another important effect resulting from the interaction of a light field with an ion is
the AC-Stark effect. Recalling the eigenenergies from equation (2.19), they represent a
combination of the isolated atom energy, the photon energy, and the interaction energy.
For small detunings |∆|/|Ω| ≪ 1, the eigenvalues cannot be associated with a particular
eigenstate of the isolated atom but rather to a superposition of them. However, for
large detunings |Ω|/|∆| ≪ 1, the eigenenergies, which, using a Taylor expansion, can be
approximated by

λ± ≈ ℏ
2

(
−∆± |∆|

(
1 +

|Ω|2

2∆2

))
≈ ℏ

2
(−∆± |∆|) ,

can be linked to the original eigenstates and eigenenergies of the isolated atom, which
becomes evident if we consider the case of |Ω| → 0. If ∆ > 0, then λ+ = 0 and λ− = −ℏ∆.
By setting ωL = 0, it becomes evident that λ+ = 0 can be associated with the ground
state and λ− = ℏωatom to the excited state. The opposite is true for ∆ < 0.

Having identified which eigenenergy corresponds to the ground or excited state under
the given conditions, we can describe how the laser’s interaction affects the atom’s original
eigenenergies. To illustrate this, consider the following: In a more complete quantum
description of the system, the ground state would be described as the tensor product
|g⟩ |n⟩ and the excited state as |e⟩ |n− 1⟩, where n describes the number of photons in
the system. Let us consider the isolated atom energy together with the interaction energy
but disregard the laser’s photon energy. We can remove the offset in photon number by
manually adding the energy of a photon ℏωL to the excited state of an atom. This allows
us to effectively trace out the |n⟩ state and have a different point of view on how the
isolated atom reacts to solely the interaction energy. Overall, this then leads to

Eg(∆, |Ω|) = 0 +

{
λ+, if ∆ > 0

λ−, if ∆ < 0

}
= ℏ

|Ω|2

4∆
,

Ee(∆, |Ω|) = ℏωL +

{
λ−, if ∆ > 0

λ+, if ∆ < 0

}
= ℏωatom − ℏ

|Ω|2

4∆
,

where Eg and Ee are the atoms ground and excited state energy, respectively, with
interaction, disregarding the laser’s photon energy of the combined system. This point of
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view makes it clear that the interaction with the laser field introduces shifts in the energy
structure of the atom, called the AC-Stark effect or AC-Stark shift. We can define these
shifts as

ℏδg = Eg(∆, |Ω|)− Eg(∆, 0) = ℏ
|Ω|2

4∆
, (2.24)

and ℏδe = Ee(∆, |Ω|)− Ee(∆, 0) = −ℏ
|Ω|2

4∆
.

These results can be summarized as an effective Hamiltonian describing a two-level system
with far-detuned laser light as

HAC = ℏ
|Ω|2

4∆
(|g⟩ ⟨g| − |e⟩ ⟨e|). (2.25)

Since Ω ∝ E0, with E0 being the amplitude of the electric field, the AC-Stark shift is
linearly dependent on the intensity of the laser field. For detunings or Rabi frequencies
where the RWA cannot be justified, i.e., when they become comparable to the laser or
transition frequency, corrections have to be applied to the AC-Stark shift.

In the following, we will examine how the AC-Stark shift of a single energy level, as
defined in equation (2.24), is modified by the presence of multiple energy levels in real
atomic structures. A laser field can in principle interact with any energy level pair.
Even though no significant transfer of population between off-resonant energy levels is
possible, the coupling might still be noticeable via the AC-Stark effect. We can focus
on a particular eigenstate |g⟩ and analyze how the AC-Stark shift affects its eigenenergy
ℏωg. Due to the laser field, this eigenstate couples to many other eigenstates |ej⟩ with
eigenenergies ℏωej with coupling strengths (or Rabi rates) |Ωg,ej |. If we define the detunings
as ∆g,ej = ωL − |ωej − ωg|, then the total AC-Stark shift on the energy level ℏωg due to
the interaction of the atom with the laser field amounts to

ℏδg = ℏ
∑
j

sgn(ωej − ωg)
|Ωg,ej |2

4∆g,ej

.

Many of these summands, or contributions to the AC-Stark shift, can be neglected due to
the nature of the coupling (Rabi rate) and the magnitude of the detuning. In this work,
the AC-Stark shift becomes relevant in the context of the optical frequency comb with
a center wavelength of 1572 nm. For this work, the relevant energy levels that undergo
shifting are the 3 2DJ states, as some of their sublevels will be used as the ground and
excited states. Further discussion is held at the end of section 2.2.2.

The derivation throughout this section assumes that the light-atom interaction follows an
electric dipole interaction. Other common transitions are electric quadrupole or magnetic
dipole transitions. However, the only difference boils down to the definition of the Rabi
rate |Ω|, resulting in potentially different orders of magnitude of the Rabi rates. The
remaining treatment for a two-level system is analogous, as presented here.

Another assumption was that the laser field applied to the ion was of the continuous-wave
type. However, this work uses a pulsed optical frequency comb for coherently driving
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transitions. The differences in the derivation between continuous-wave and pulsed lasers
boil down to their spectra. However, when the repetition rate of the pulsed laser greatly
exceeds the Rabi rate and other relevant timescales such as the π-time, there are no
qualitative differences in the results. Further discussion on the interaction of an optical
frequency comb with an ion will be held in section 2.2.3.

2.2.2 Two-photon Raman transition

In the previous section we discussed a quantum mechanical two-level system interacting
with a laser field. If we introduce a three-level system interacting with two separate laser
fields, then a special type of transition called a Raman transition can emerge. Continuous-
wave Raman transitions are a useful tool as they allow us to drive transitions in an energy
range of up to a few GHz. The interaction emerges if we introduce two ground states,
denoted as |g1⟩ and |g2⟩, with eigenenergies ℏωg1 and ℏωg2 > ℏωg1, respectively, and a
far-off-resonant excited state, |e⟩, with eigenenergy ℏωe > ℏωg2 > ℏωg1. Furthermore,
the frequency difference of the two involved continuous-wave fields should approximately
correspond to the frequency difference of the two ground states. The described situation,
which is the special case of a Λ-configuration, is depicted in figure 2.7.

We can describe the two laser fields interacting with the three-level system analogously
to equation (2.15) as

E⃗(r⃗, t) =
1

2
E⃗1 e

i(k⃗L1·r⃗−ωL1t+ϕL1) +
1

2
E⃗2 e

i(k⃗L2·r⃗−ωL2t+ϕL2) + c.c.

As before, the amplitudes and polarizations are encoded in E⃗j, where j ∈ {1, 2}, the
propagation directions are set by the wave vectors k⃗Lj, the laser frequencies are denoted
as ωLj, and possible phases are described by ϕLj. We can take the same steps as in
section 2.2.1: applying the electric dipole approximation ei⃗kLj ·r⃗ ≈ 1, changing to the
interaction picture, and applying the rotating wave approximation (RWA). This leads to a
Hamiltonian resembling equation (2.17)

H = −ℏ|Ω1|
2

|e⟩ ⟨g1| e−i(∆1t−ϕL1−ϕΩ1) − ℏ|Ω2|
2

|e⟩ ⟨g2| e−i(∆2t−ϕL2−ϕΩ2) + h.c., (2.26)

where the coupling strengths |Ωj| are between a ground state |gj⟩ and the excited state
|e⟩, and the detunings are defined as ∆j = ωLj − |ωe − ωgj|. It is important to note that
the RWA might fail for large detunings ∆j [92]. In this case, one has to also treat the
ωLj + |ωe −ωgj| terms alongside the ωLj − |ωe −ωgj| terms. Here we assume that the RWA
is valid.

A generalization of the RWA can be applied to this expression. Derived by James and
Jerke [91], their method demonstrates how to generate effective Hamiltonians by effectively
filtering out high-frequency contributions. Taking over their assumptions, which basically
assume off-resonant couplings with |∆2 −∆1| ≪ ∆j, and then using their principal result
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|e〉

|g1〉
|g2〉

ωe

ωg1

ωg2

ωL1
ωL2

Energy/ℏ

|∆1| |∆2|

Figure 2.7: Three-level system with two fields undergoing a Raman transition.
Shown are two fields with frequencies ωL1 and ωL2 whose difference frequency
roughly equates to the difference frequency between the two ground states
with energy levels ℏωg1 and ℏωg2. The intermediate excited state with energy
ℏωe mediates the coherent interaction between the two ground states with a
strength proportional to the Raman Rabi rate ΩR. This configuration is a
special case of the Raman transition and is called the Λ-configuration. The
figure is based on equation (2.29).

by adapting its terms to our problem, leads to an effective Hamiltonian of the form

Heff =
ℏ|Ω1|2

4∆1

(|g1⟩ ⟨g1| − |e⟩ ⟨e|) + ℏ|Ω2|2

4∆2

(|g2⟩ ⟨g2| − |e⟩ ⟨e|)︸ ︷︷ ︸
=:HAC

− ℏΩR

2

(
|g2⟩ ⟨g1| e−i(∆eff t−ϕL,eff−ϕΩ,eff) + h.c.

)
, (2.27)

where the effective laser phase is defined as ϕL,eff = ϕL1 − ϕL2 + π, the effective Rabi phase
as ϕΩ,eff = ϕΩ1 − ϕΩ2, and the effective detuning as ∆eff = ∆1 −∆2. Furthermore, the
effective Rabi rate, or Raman Rabi rate, is defined as

ΩR =
|Ω1||Ω2|
2∆R

, where
1

∆R

=
1

2

(
1

∆1

+
1

∆2

)
. (2.28)

In this work the term ∆R is referred to as Raman detuning. The first two terms of
equation (2.27) are AC-Stark shifts between the ground states and the excited state since
they are in the same form as equation (2.25). On the other hand, the last term has
the same form as equation (2.17). We can transform Heff using an appropriate unitary
operator to eliminate the AC-Stark shift terms and absorb them into ∆eff , bringing the
whole Hamiltonian into the exact form as equation (2.17). Using the unitary operator
U = e−iHACt/ℏ, we arrive at the Raman Hamiltonian

HR = U †HeffU + iℏ
dU †

dt
U

= −ℏΩR

2

(
|g2⟩ ⟨g1| e−i(∆eff,ACt−ϕL,eff−ϕΩ,eff) + h.c.

)
, (2.29)
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where the AC-Stark shift-corrected effective detuning is defined as

∆eff,AC =

(
∆1 +

|Ω1|2

4∆1

)
−
(
∆2 +

|Ω2|2

4∆2

)
= (ωL1 − ωL2) +

(
ωg1 +

|Ω1|2

4∆1

)
−
(
ωg2 +

|Ω2|2

4∆2

)
.

It is apparent now that equation (2.29) leads to a coherent population transfer with
rate Ω′

R =
√

Ω2
R +∆2

eff,AC between the two ground states in terms of Rabi oscillations as
described in equations (2.20) and (2.21). However, this result does not take the AC-Stark
shift of laser 1 acting on |g2⟩ and |e⟩ and the shift of laser 2 acting on |g1⟩ and |e⟩ into
account. This is due to the fact that these terms are not present in the Hamiltonian of
equation (2.26).

Taking these interactions into account and also allowing for multiple excited states |ej⟩
with ωej > ωg2 > ωg1 (Λ-configuration) and ωej < ωg1 < ωg2 (V-configuration) leads to a
more general and realistic expression. The AC-Stark shift-corrected effective detuning
then turns into

∆eff,AC = (ωL1 − ωL2) +

(
ωg1 +

∑
j

sgn(ωej − ωg1)

(
|ΩL1

g1,ej
|2

4∆L1
g1,ej

+
|ΩL2

g1,ej
|2

4∆L2
g1,ej

))

−

(
ωg2 +

∑
j

sgn(ωej − ωg2)

(
|ΩL1

g2,ej
|2

4∆L1
g2,ej

+
|ΩL2

g2,ej
|2

4∆L2
g2,ej

))
,

while the Raman Rabi rate amounts to

ΩR =

∣∣∣∣∣∣∣∣∣∣
∑
j


(ΩL1

g1,ej
)(ΩL2

g2,ej
)∗

2∆
L(1,2)
g(1,2),e(j,j)

, if ωej > ωg2

−
(ΩL2

g1,ej
)(ΩL1

g2,ej
)∗

2∆
L(2,1)
g(1,2),e(j,j)

, if ωej < ωg1

∣∣∣∣∣∣∣∣∣∣
.

Analogous to section 2.2.1, the coherent population transfer in an experiment has again the
rate Ω′

R :=
√

Ω2
R +∆2

eff,AC. The single-beam detunings, Raman detunings, and single-beam
Rabi rates are respectively defined as

∆Ln
gk,ej

= ωLn − |ωej − ωgk|,

1

∆
L(n,m)
g(k,p),e(j,i)

=
1

2

(
1

∆Ln
gk,ej

+
1

∆Lm
gp,ei

)
,

and ℏΩLn
gk,ej

=

{
⟨ej| p⃗ · E⃗n |gk⟩ , if ωej > ωg2

⟨ej| p⃗ · E⃗∗
n |gk⟩ , if ωej < ωg1

. (2.30)

The last equation showing the single-beam Rabi rate was assumed to come from electric
dipole interactions but can be generalized to other interactions.
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We can see that a criterion for resonance of the two laser fields 1 and 2 is that their
frequency difference corresponds to the frequency difference of the two target levels while
also accounting for all possible AC-Stark shifts. The experimentally measured Raman
Rabi rate is then the result of an interference of all possible complex-valued single-beam
Rabi rates. These rates emerge from the different Raman paths involving the intermediate
states |ej⟩, which potentially accumulate different phases.

In practice, we would simplify the expression by eliminating so-called forbidden transi-
tions that do not follow the selection rules of the electronic structure and those couplings
with significantly large detunings. The selection rules for an electronic dipole transition
include a change of the azimuthal quantum number ∆L = ±1 and the change of the
projection of the total angular momentum quantum number ∆mJ = 0, ± 1. Forbid-
den transitions are further characterized by significantly slower single-beam Rabi rates
compared to the Rabi rates of allowed transitions.

In the experiments on the calcium-40 ion presented in this work, the higher ground
level |g2⟩ is the 3 2D5/2 (m5/2 = −1/2) state, while the lower ground state |g1⟩ is either the
3 2D3/2 (m3/2 = −1/2) state or the 3 2D3/2 (m3/2 = +3/2) state. Taking the selection rules
into account, we can identify that the main coupling contributions to the mentioned states
arise from the states 4 2P1/2, 4 2P3/2, and all their Zeeman substructures. The sublevels of
4 2S1/2 are coupled less efficiently to the 3 2D3/2 and 3 2D5/2 states via electric quadrupole
transitions.

2.2.3 Optical frequency comb Raman transition

The discussion in the previous section about a three-level system interacting with two
laser fields can be generalized if we replace the two laser fields with an optical frequency
comb, see figure 2.8. As established in equation (2.4), an optical frequency comb can be
represented as the superposition of several continuous-wave (CW) lasers with temporal
amplitudes |E⃗n|, frequencies

ωn = ωCEO + nωrep,

and temporal phases

φn =
∞∑
j=0

Dj

j!
(ωn − ωc)

j,

where n ∈ N0. The angular frequency ωrep is the repetition rate, the carrier-envelope offset
frequency is denoted as ωCEO, the laser’s center frequency is ωc, and Dj are the dispersion
parameters discussed in sections 2.1.1 and 2.1.2. The temporal phases are equal to the
spectral phases, and the collection of phases φn carries information about the dispersion
of the laser. Based on equation (2.4), we can describe the optical frequency comb as

E⃗(r⃗, t) =
1

2

∑
n

(
E⃗n e

i(k⃗n·r⃗−ωnt+φn) + c.c.
)
,

where n sums over all the comb teeth. The complex vector E⃗n = ϵ⃗ |E⃗n| encodes the
amplitude |E⃗n| of the individual CW components and the shared complex polarization
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2.2 Light-atom interaction

vector ϵ⃗, while the wave vector k⃗n defines the propagation direction and wavelength of
the optical frequency comb. Since each tooth is represented by a CW laser, each comb
tooth pair can, in principle, drive a Raman transition. Dispersion specifies the phase
relation between comb teeth. As we will see later, destructive interference due to the
phases between two comb teeth can reduce the effective Raman Rabi frequency.

|e〉

|g1〉
|g2〉

ωe

ωg1

ωg2

ωn

Energy/ℏ

|∆n|

ωn+N

ωn+1 ωn+1+N

ωn+2 ωn+2+N

|∆n+N|

Figure 2.8: Three-level system undergoing a Raman transition driven by an
optical frequency comb. This figure is similar to figure 2.7 with many more
laser fields at regularly spaced frequencies ωn = ωCEO + nωrep. If the energy
difference between the two ground states |g1⟩ and |g2⟩ corresponds roughly to
an integer multiple of the repetition rate ωrep of the optical frequency comb,
then a coherent Raman transition between the two ground states via the
intermediate excited state |e⟩ is possible with a strength proportional to the
Raman Rabi rate ΩR.

To arrive at an experimentally measurable Raman Rabi rate and AC-Stark shift compen-
sated effective detuning, we can follow the same procedures as in sections 2.2.1 and 2.2.2.
The steps include (i) applying the electric dipole approximation, (ii) defining the interaction
energy between light and atom, (iii) defining the single-beam Rabi rates, (iv) expressing the
total Hamiltonian, (v) treating the Hamiltonian in the interaction picture, (vi) performing
the rotating wave approximation, (vii) following the procedure described by James and
Jerke [91], (viii) transforming the Hamiltonian with a unitary to shift the AC-Stark shift
expressions into the effective detuning, (ix) applying a final unitary transformation to
eliminate the remaining time dependencies and irrelevant phases, and (x) solving the so
generated effective Hamiltonian which takes the same form as equation (2.18).

We allow for intermediate states |ej⟩ with energies ℏωej > ℏωg2 > ℏωg1 (Λ-configuration)
and ℏωej < ℏωg1 < ℏωg2 (V-configuration), where ℏωg1 and ℏωg2 are the two target
eigenenergies of the isolated atom. Another assumption made is that there exists only a
single integer multiplication factor N for which Nωrep lies within the bandwidth of the
optical frequency comb and fulfills Nωrep ≈ ωg2−ωg1. Any bigger or smaller N is regarded
as far off-resonant and is neglected in this derivation. In the case of our experiment, this
detuning amounts to integer multiples of roughly 250MHz.

The two relevant quantities emerging from this description are the AC-Stark shift-
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corrected effective detuning

∆eff,AC = Nωrep +

(
ωg1 +

∑
j,n

sgn(ωej − ωg1)
|ΩLn

g1,ej
|2

4∆Ln
g1,ej

)

−

(
ωg2 +

∑
j,n

sgn(ωej − ωg2)
|ΩLn

g2,ej
|2

4∆Ln
g2,ej

)
, (2.31)

and the Raman Rabi rate

ΩR =

∣∣∣∣∣∣∣∣∣∣∣
∑
j,n

ei(φn+N−φn)



(Ω
Ln+N
g1,ej )(ΩLn

g2,ej
)∗

2∆
L(n+N,n)
g(1,2),e(j,j)

, if ωej > ωg2

−
(ΩLn

g1,ej
)(Ω

Ln+N
g2,ej )∗

2∆
L(n,n+N)
g(1,2),e(j,j)

, if ωej < ωg1

.

∣∣∣∣∣∣∣∣∣∣∣
(2.32)

In an experiment, this optical frequency comb will induce coherent population transfer
with a generalized Raman Rabi rate Ω′

R =
√

Ω2
R +∆2

eff,AC, which, at resonance, is propor-
tional to the intensity of the optical frequency comb. The definitions of the single-beam
detunings ∆Ln

gk,ej
, the Raman detunings ∆

L(n,m)
g(k,p),e(j,i) , and the complex single-beam Rabi

rates ΩLn
gk,ej

are given in equation (2.30) if we substitute ωLn with ωn.
The expression for the AC-Stark shift-corrected effective detuning of equation (2.31)

shows again that this detuning is influenced by all possible AC-Stark shifts and that only
pairs of comb teeth separated by ωn+N − ωn = Nωrep ≈ ωg2 − ωg1 contribute to driving a
transition. The effectiveness of these contributions can be inferred from the Raman Rabi
rate expression of equation (2.32). They are set by (i) the spectral amplitudes of the two
teeth in each pair, encoded in the amplitudes of the single-beam Rabi rates, (ii) the phase
differences of the Raman paths generated by the multiple intermediate states defined by
the arguments of the single-beam Rabi rates, (iii) the Raman detunings, and (iv) the comb
teeth pairs spectral phase differences φn+N − φn.

The spectral phase difference is set by the dispersion properties of the optical frequency
comb. Possible destructive phase interferences lead to a reduction in Raman Rabi rate
and thus efficiency. This motivates the need for dispersion compensation as introduced in
section 2.1.2. Furthermore, having a broader spectral bandwidth of the optical frequency
comb allows for driving transitions with a higher energy difference. Since the ultimate goal
for our system is to drive rotational transitions in molecular ions, where such transition
frequencies typically range from 10 GHz to 10 THz, it is advantageous to have as broad a
bandwidth as possible since the rotational state transitions get larger with higher rotational
quantum numbers. This motivates self-phase modulation-induced bandwidth broadening
described in section 2.1.3.

In order to maximize the Raman Rabi rates of the transitions, it is important to
understand how dispersion induced by the optical setup affects these rates. For this we can
take equation (2.32) and assume that only one intermediate state is involved, eliminating
the need to account for phase differences in different Raman paths and enabling us to
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Figure 2.9: Coupling efficiency due to group delay dispersion. Using equation (2.33),
we simulate the relative efficiency of Raman transitions ηFL driven by an optical
frequency comb as a function of group delay dispersion D2, compared to a
Fourier-limited field. The energy difference ℏωD corresponds to the zero-field
splitting between the two D-states of a calcium-40 ion, while ℏωCaH+

J represents
rotational state differences in CaH+, where J is the rotational quantum number.
The inset shows the Fourier-limited spectrum used for this simulation, which
is based on the measured optical frequency comb (figure 3.3, final output).
The relative efficiency oscillates due to the overlap of spectral peaks and phase
interference caused by D2. The plot is symmetric around zero, unlike non-
Fourier-limited pulses.

treat the single-beam Rabi rates as real valued. This simplification is justified because we
are ultimately interested in ratios of Raman Rabi rates, as we will introduce efficiency
quantities defined by these ratios.

Another useful approximation we can perform is to assume that neighboring Raman
detunings ∆L(n+N,n)

g(1,2),e(j,j) −∆
L(n+N+1,n+1)
g(1,2),e(j,j) have a negligible change compared to the single-beam

detunings ∆L(n+N,n)
g(1,2),e(j,j) , which is justified by the single-beam detunings being on the order of

100THz while the neighboring Raman detunings change on the order of 100MHz. This
allows us to approximate ∆

L(n+N,n)
g(1,2),e(j,j) ≈ ∆ equal for all comb tooth pairs. With this, we

can rewrite the Raman Rabi rate as

Ωsim
R (φn, N) =

∣∣∣∣∣∑
n

ei(φn+N−φn)
|ΩLn+N

g1,e ||ΩLn
g2,e

|
2∆

∣∣∣∣∣ ∝
∣∣∣∣∣∑

n

ei(φn+N−φn)
En+NEn

2∆

∣∣∣∣∣ ,
where En = |E⃗n| are the amplitudes of the comb teeth. If we are only interested in relative
efficiency changes of dispersion compared to a Fourier-limited optical frequency comb, we
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can introduce the relative efficiency

ηFL =
Ωsim

R (φn, N)

Ωsim
R (0, N)

=

∣∣∑
nEn+NEn e

i(φn+N−φn)
∣∣∑

nEn+NEn

. (2.33)

This equation is used to simulate the effects of dispersion for a given spectral envelope
function. For example, the efficiency sensitivity of a Fourier-limited optical frequency
comb with a measured spectral amplitude to added group delay dispersion is shown in
figure 2.9.

Another option would be to compare the effect of the dispersion on a Raman transition
caused by two far off-resonant and in-phase CW lasers with the same total power to the
optical frequency comb. The total power of the optical frequency comb is Pcomb ∝

∑
nE

2
n,

the power of each CW laser is PCW = Pcomb/2, the corresponding amplitudes are ECW ∝√
PCW, and the CW Raman Rabi rate is given by ΩCW

R ∝ ECWECW/(2∆). This situation
can be described by the relative efficiency

ηCW =
Ωsim

R (φn, N)

ΩCW
R

= 2
Ωsim

R (φn, N)

Ωsim
R (0, 0)

= 2

∣∣∑
nEn+NEn e

i(φn+N−φn)
∣∣∑

nE
2
n

. (2.34)

Note that the single beam optical frequency comb can in principle be twice as efficient
as a pair of CW lasers with the same total power. This is due to the fact that for the
frequency comb, the full power can be used to drive each of the two Raman paths, while
for the two CW lasers, each CW laser can only drive one path [45].

2.2.4 Ramsey interferometry and spin echo

Ramsey interferometry [93, 94] and the Hahn echo sequence [95], hereafter simply referred
to as the spin echo sequence, are useful tools for extracting noise information from a
quantum system and for decoupling it from certain types of noise [96]. In particular, these
techniques help characterize dephasing noise, which refers to the loss of phase coherence in
a quantum state due to fluctuations in the system’s energy levels caused by environmental
perturbations. Coherence, on the other hand, refers to the ability of a quantum system
to maintain a well-defined phase relationship between its states, allowing for quantum
interference. In the context of dephasing, such environmental perturbations cause individual
quantum states within a set of experimental runs to accumulate different phases over time,
leading to a reduction in overall coherence and thus limiting the interaction time with the
ion. We will use the Ramsey and spin echo techniques to estimate the influence of low-
and high-frequency dephasing noise on our ion-laser system. Extracting the dephasing
timescale is important to identify possible noise sources. The noise could, for example,
originate from laser fluctuations, magnetic field fluctuations, or other environmental noise.
In this section, Ramsey and spin echo sequences are presented and modeled, including a
dephasing noise description of a quantum system.

The typical Ramsey sequence consists of a π/2-pulse whose length is π/(2|Ω|), where
|Ω| is the Rabi rate. Then a free evolution time τ , followed by a second π/2-pulse with a
variable phase ϕ with respect to the first π/2-pulse. By varying ϕ for a fixed τ and fitting
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the resulting graph, we extract the highest and lowest values, which define a quantity
called the Ramsey contrast. Plotting the Ramsey contrast as a function of τ yields a
decaying function from which the effects of noise on the system can be extracted.

However, in the single-beam setup used in this work, the optical frequency comb cannot
perform a typical Ramsey sequence, and thus the sequence must be modified. This
is because the setup involves a Raman transition where the two photons driving each
π/2-pulse cannot be individually controlled. Any phase ϕ between the first and second
π/2-pulses is canceled out, as the relevant quantity is the difference frequency between the
two photons. As such, a phase shift ϕ cannot be introduced between the pulses, since any
shift applied via an acousto-optic modulator affects both photons equally and thus cancels
out in the two-photon process (see equation (2.27) and the definition of ϕL,eff).

The modification of the Ramsey scheme involves detuning the optical frequency comb
from the two-photon resonance and varying the waiting time τ , giving rise to decaying
oscillations. However, if the detuning is too large, the Rabi oscillations lose contrast as less
population is transferred. The detuning ∆0 effectively induces a controlled time-varying
phase ∆0τ between the first and second π/2-pulses, as we will see later. Thus the envelope
of this decaying oscillation corresponds to the mentioned Ramsey contrast. The decay
constant is usually known as T ∗

2 time. It characterizes the typical dephasing timescale
of the system, accounting for all dephasing noise sources, unlike the spin echo sequence,
which mitigates certain types of noise.

Using the spin echo scheme, we can separate high-frequency (dynamic) from low-
frequency (static) components of one or more noise sources by mitigating the low-frequency
noise in a quantum system. This is done by modifying the Ramsey scheme again by
applying a π-pulse halfway during the waiting time τ . This scheme leads to a decaying
constant function with a dephasing time constant T2, which is typically larger than T ∗

2 .

The effects of the Ramsey and spin echo sequences can be modeled with the following
two-level, field-free, and rotating frame Hamiltonian:

H = 0 |g⟩ ⟨g|+ ℏ∆(t) |e⟩ ⟨e| .

Here ∆(t) represents a fluctuating detuning of the two-photon resonance frequency com-
pared to the continuous-wave laser frequency. The fluctuations could, for example, be
induced by laser fluctuations, magnetic field noise, or other dephasing-type noise sources.
We model the fluctuating detuning with a constant average ∆0 and a randomly fluctuating
part σ∆(t) with zero mean and constant variance ⟨σ2

∆⟩ as

∆(t) = ∆0 + σ∆(t).

Applying the aforementioned sequences to a qubit prepared in the state |e⟩ leads, for both
the Ramsey and spin echo cases, to the following probability of detection in the excited
state |e⟩:

pe(τ) =
1

2
(1 + ⟨cos (ϕtot(τ))⟩) , (2.35)
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where ⟨X⟩ represents the average value of a random variable X over a number of experi-
mental runs. Further, the fluctuating phase ϕtot(τ) in the Ramsey case is

ϕRamsey
tot (τ) =

∫ τ

0

∆(t) dt

= ∆0τ +

∫ τ

0

σ∆(t) dt

=: ∆0τ + ϕRamsey
rand (τ),

while in the case of spin echo it is

ϕecho
tot (τ) =

∫ τ/2

0

∆(t) dt−
∫ τ

τ/2

∆(t) dt

=

∫ τ/2

0

σ∆(t) dt−
∫ τ

τ/2

σ∆(t) dt

=: ϕecho
rand(τ).

To proceed, we need to establish several assumptions. To start, it is assumed that the
random variable X = ϕrand follows a Gaussian process, which is motivated by the Central
Limit Theorem [97], as we can assume that the underlying phase fluctuations result
from the accumulation of many independent and random contributions. Recalling that
⟨cos(X)⟩ = Re{⟨e−iX⟩}, and using the properties of the characteristic function from
probability theory, we can then equate [98, ch. 1.2]〈

e−iX
〉
= e−⟨X2⟩/2.

In both Ramsey and spin echo, inserting the above expressions into equation (2.35) leads
to an expression containing a correlation function ⟨σ∆(t1)σ∆(t2)⟩. A second assumption we
make is that this correlation function originates from stationary noise, as we do not consider
noise that changes its properties over time. Consequently, the correlations depend only
on the time difference between points and not on the absolute time. Another reasonable
assumption is that the correlation function is even, as we do not consider noise that
behaves differently under time reversal. The final assumption concerns the functional form
of the correlation function, which we assume to decay exponentially, with a free parameter
for the decay constant. This allows us to model limiting behaviors such as Markovian
noise (or white noise) [99] and quasi-static noise [100]. Overall, this leads to the following
correlation function

⟨σ∆(t1)σ∆(t2)⟩ = ⟨σ∆(t1 − t2)σ∆(0)⟩ (stationary noise)

= ⟨σ∆(t2 − t1)σ∆(0)⟩ (even)

= ⟨σ2
∆⟩ e−γ|t1−t2| (exponentially decaying noise)

=: C(t1 − t2),

where γ is an unspecified free parameter that sets the noise correlation time scale.
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With this, we have derived a model of our noise sources to have exponentially decaying
correlations. With this model, we can identify two limiting cases by adjusting the timescales.
We can retrieve Markovian noise (or white noise) if we impose the condition γτ ≫ 1,
leading to a correlation function of the form C(t) = ⟨σ2

∆⟩ δ(t) 2/γ, where δ(t) is the Dirac
delta distribution. We can also retrieve a quasi-static noise source by setting γτ ≪ 1, then
C(t) = ⟨σ2

∆⟩.
All of these assumptions lead to a common form of the excitation probability of the

two-level system for both Ramsey and spin echo sequences. We retrieve

pe(τ) =
1

2

(
1 + cos(ϕ0(τ)) e

−Γ(τ)
)
, (2.36)

where the Ramsey case is specified by

ϕRamsey
0 (τ) = ∆0τ

ΓRamsey(τ) =
⟨σ2

∆⟩
γ2

(e−γτ + γτ − 1)

≈


⟨σ2

∆⟩
γ

τ =:
τ

T ∗
2

for γτ ≫ 1 (Markovian/white noise)

1

2
⟨σ2

∆⟩ τ 2 =:

(
τ

T ∗
2

)2

for γτ ≪ 1 (quasi-static noise)
,

and the spin echo case by

ϕecho
0 (τ) = 0

Γecho(τ) =
2⟨σ2

∆⟩
γ2

(
e−γτ/2 + γ

τ

2
− 1
)

≈


⟨σ2

∆⟩
γ

τ =:
τ

T2
for γτ ≫ 1 (Markovian/white noise)

1

4
⟨σ2

∆⟩ τ 2 =:

(
τ

T2

)2

for γτ ≪ 1 (quasi-static noise)
.

As previously mentioned, the timescales T ∗
2 (Ramsey) and T2 (spin echo) are typically

used to characterize low- and high-frequency dephasing times, respectively. This can be
demonstrated through an analysis using noise power spectral densities and filter functions,
as shown in [96, 101–103], though this is not addressed here. Typically the relation T ∗

2 < T2
holds due to the fact that the spin echo technique is insensitive to low-frequency noise.

The exact definitions of T ∗
2 and T2 given above depend on the type of dominant noise

inside the system, but always characterize a 1/e decay of the excitation probability as
a function of the waiting time τ . These timescales are also called transverse relaxation
times or phase coherence times [104]. For further context, there exists a timescale T1 that
quantifies the fundamental excited-to-ground-state decay time, also called the longitudinal
relaxation process [104]. It is possible to identify the relation T2 < 2T1 with appropriate
definitions; however, there are some special cases where this inequality does not hold [105].

In this work we quantify T ∗
2 and T2 for our light-atom system involving an optical

frequency comb and a calcium-40 ion. To handle the measured data, we can adapt
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equation (2.36) to a more realistic model by allowing for a variable offset c ∈ [0, 1] and a
variable amplitude A ∈ [0, 2min{c, 1− c}] set by imperfections in the system, then

pe(τ) =
A

2
cos(ϕ0(τ)) e

−Γ(τ) + c. (2.37)
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Chapter 3
Experimental setup and optical
frequency comb characterization

This chapter builds on the theoretical concepts presented in chapter 2 and demonstrates
how they were applied in practice. The optical setup of the frequency comb is presented.
We also characterize the optical frequency comb’s parameters, such as power and group
delay dispersion, at several stages. The first part of section 3.1 discusses the optical setup
ranging from the generation of the optical frequency comb to its amplification, while
the second part of section 3.1 presents the setup that was created in the framework of
this master’s thesis, ranging from post-amplification to focusing onto the location of a
trapped calcium-40 ion. The latter setup broadens the spectrum of the optical frequency
comb via self-phase modulation using a highly nonlinear fiber, introduces amplitude
modulation of the optical frequency comb light using and acousto-optical modulator,
implements dispersion compensation via a normal fiber, and describes the light delivery to
the trapped ion. Section 3.2 presents the results of more in-depth optical frequency comb
characterization, e.g., temporal and spectral features and the power response to control
units. Note that frequencies will be represented as linear frequencies f instead of angular
frequencies ω = 2π f from this chapter onward.

3.1 Optical setup
The main focus of this work is the optical frequency comb. It is a commercial system from
Menlo Systems [106] (FC1500), and the main components are drawn in figure 3.1 under
the blue box labeled comb baseplate. This system has been used in the past by another
research group; see, for example, [88, 107–110]. Information about the comb generation
can be found in greater detail in [110, ch. 5.1] or the Menlo manual [111].

The optical frequency comb is generated in the M-Comb module and involves a fiber
ring resonator including some free-space elements, as expanded upon later. The laser is
generated using passive mode locking, as introduced in section 2.1.4. The cavity is formed
by the circular path of the fiber ring and a mirror mounted on a piezoelectric mount. A
polarizing beam splitter (PBS) and quarter-waveplate in front of the piezoelectrically-
actuated mirror serve to guide the linearly polarized light into the path that completes the
ring resonator. An optical isolator prevents any significant back reflection from traveling
back into the cavity.

An erbium-doped fiber (Er3+) inside the fiber ring acts as the gain medium, which
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amplifies the generated optical frequency comb (erbium-doped fiber amplifier or EDFA,
see [112]). The energy necessary for amplification is provided by a pump diode laser that
co-propagates with the generated frequency comb light.

Passive mode-locking can be achieved using the two waveplate pairs in front of each
fiber coupler. When the waveplate pairs compensate for nonlinear polarization rotation
in the fiber ring, minimal light is lost through the output coupler (a second PBS) at
peak intensity, allowing the system to operate in a mode-locked state. In this sense the
waveplates, the output PBS, and the fiber ring act as the modulation element (saturable
absorber) introduced in section 2.1.4. The waveplates can also be set enable continuous-
wave operation.

The remaining elements consist of the free-space optics that are used for adjusting and
stabilizing the repetition rate and the carrier-envelope offset frequency. The mirror with
the piezoelectric mount is used to modulate the length of the cavity and controls the
repetition rate. Additionally, an electro-optical modulator is used for faster (but smaller)
control of the repetition rate. The stepper motor-powered wedge is used to coarsely set
the carrier-envelope offset frequency by inducing a phase shift depending on the current
thickness of the wedge. Fine-tuning is achieved with adjustment of the pump diode current.

The system uses an aforementioned PBS to function as an output coupler, reflecting
part of the light within the cavity to an output port. At this point the optical frequency
comb has a pulse length of 74 fs, a repetition rate of about 250MHz, a carrier-envelope
offset frequency of about 20MHz, a center wavelength around 1570 nm (or 191.0 THz),
and a spectral bandwidth of 45 nm (or 5.5THz).

Part of this light is separated by a non-polarizing beam splitter and directly measured
by a fast photodiode to monitor the repetition rate. The rest of the light is fed into a
1:4 splitter. Two paths are irrelevant for this thesis as they are not used. These paths
produce 1068 nm light and visible second harmonic light for external white-light continuum
generation (HMP1068 and M-VIS modules, respectively). A third path goes into the
M-Phase module, which is responsible for monitoring the carrier-envelope offset frequency.
This module splits the comb into two branches, the second harmonic is generated in
one, and the white-light continuum is generated in the other. Both branches are then
recombined and generate a beat by interfering with each other. This beat is used to
measure and stabilize the carrier-envelope offset according to equation 2.10. The fourth
path, here called the experiment path, ultimately reaches the trapped ion.

The experiment path goes through a stage of optical intensity pre-amplification (EDFA)
controlled by the AC-1550 electronic control module. The power of the comb is amplified
from about 0.26mW to 26mW. The following description outlines a setup for chirped
pulse amplification [69] capable of amplifying the light up to 2.5 W. A 70 m long stretcher
fiber with a group velocity dispersion (GVD) of 53.8 fs2/(mmrad) (or −41 ps/(nmkm))
introduces a group delay dispersion (GDD) of 3.77 ps2/rad (or −2.87 ps/nm), stretching the
pulse in time to about 100 ps. The light then passes through an intermediate pre-amplifier
(EDFA) from Keopsys (CEFA-L-PB-LP-PM), which amplifies the light to about 100 mW.

The temporal pulse then is further stretched in time by a reflective chirped fiber Bragg
grating (CFBG, TeraXion TPSR-1575), introducing another 13.05 ps2/rad (or −9.95 ps/nm)
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Figure 3.1: Optical setup. The setup is distributed between three locations: the comb
baseplate, the amplifier baseplate, and the ion trap breadboard. The comb
baseplate generates the passively mode-locked optical frequency comb (M-
Comb module). On the amplifier baseplate, the comb is amplified up to 2.5 W
using chirped pulse amplification [69], the spectrum is broadened using self-
phase modulation, and dispersion is compensated. The light is delivered to
the calcium-40 ion on the ion trap breadboard. The three blue, red, and green
colored points described as “FROG measurement points” indicate where the
data of figure 3.3 was taken. See the main text for more details.
WDM: wavelength division multiplexer, EDFA: Erbium (Er3+) doped fiber
amplifier, CFBG: chirped fiber Bragg grating, CVBG: chirped volume Bragg
grating, HNLF: highly nonlinear fiber.

of GDD. At this point the pulse is stretched sufficiently (to about 450 ps) that its peak
intensity does not damage the gain medium of the following amplification stage (EDFA)
controlled by the AC-3 electronic control module. The AC-3 module also contains two
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3.1 Optical setup

sources of pump light at a wavelength of ∼ 975nm, enabling the amplification of the
optical frequency comb up to 2.5W.

The light then enters a free-space stage including a temporal compression, which is
achieved by a chirped volume Bragg grating (CVBG). The CVBG provides anomalous
GDD of about −16.40ps2/rad (or 12.5 ps/nm), which, together with the stretcher fiber,
the CFBG, and remaining dispersion throughout the fibers of the system, produces a
near transform-limited pulse by eliminating the accumulated GDD. The pulse now has
a duration of 745 fs, a center wavelength of 1572 nm (or 191THz), and a bandwidth of
about 8 nm (or 1.0THz). The temporal and spectral shapes are shown in the top part
of figure 3.3. As the amplifiers only amplify light efficiently over a narrow gain profile,
the bandwidth is reduced through each amplification stage in a phenomenon known as
gain narrowing [113]. This completes the first part of the setup, from which this thesis
work built on. This first part was previously used in other experiments, as cited in the
beginning of this section.

The second part of the setup was built during this master’s thesis work. It aims to
broaden the spectrum of the optical frequency comb, compensate the dispersion to recover
a Fourier-limited pulse, and align it to a calcium-40 ion in the trap. Using this setup, we
demonstrate quantum control via Raman transitions between states with energy differences
that lie within the bandwidth of the light. Concretely, we achieve a bandwidth of about
5.3 THz to drive a D-level transition on a calcium-40 ion whose energy difference is about
1.8THz.

The first stage of this new setup is the polarization-maintaining highly nonlinear fiber
(HNLF, Thorlabs PMHN5), responsible for self-phase modulation (SPM) and consequential
spectral broadening. The fiber has a nonlinear coefficient of γ = 10.7 (Wkm)−1 and a
mode field diameter of 4µm. It has a GVD of −7.54 fs2/(mmrad) (or 5.75 ps/(nmkm))
and a length of 10 cm leading to a GDD of −754 fs2/rad (or 0.575 fs/nm). However, the
SPM process itself also introduces dispersion of various orders. The temporal and spectral
properties of the optical frequency comb at this stage can be seen in the middle row of
figure 3.3. A pulse duration of 635 fs and a spectral bandwidth of 41 nm (or 5.1 THz) were
measured.

After this stage, a half-waveplate and polarizing beam splitter combination was intro-
duced (gray box in figure 3.1) to control the output power while holding the power injected
into the HNLF constant, as the power defines the light’s spectral shape. However, as we
noticed after the experiment, we observed that for different settings of the half-waveplate,
the output spectrum changed. It turned out that this stage filtered out certain spectral
components since the SPM process was effectively polarization-dependent due to the
elliptical geometry of the polarization-maintaining core in the HNLF. Due to the short
length of the HNLF (10 cm), it was not possible to align the polarization of the comb light
to the fibers fast or slow axis since the transmitted power and polarization of the comb
light were hardly affected by misalignment. As the effectiveness of SPM is different for
the fast and slow axes of the fiber, the projected polarization components of the comb
light onto the fast and slow axes experienced different amounts of SPM. As such, this
half-waveplate and polarizing beam splitter combination stage would be better to be
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3.2 Characterization of the optical frequency comb

removed as it introduces unpredictable filtering of the spectrum. The changes in the
spectral shape due to different rotations of the half-waveplate are shown in appendix D.1.

The ability to regulate power using the half-waveplate and polarizing beam splitter
combination can be replaced by the next element in the beam path: the acousto-optical
modulator (AOM) used for remotely switching the optical frequency comb on and off. The
AOM (G&H 3080-197) diffracts some of the light along a different path. This is done by
feeding the AOM an 80MHz signal at a radio frequency (RF) power of 3.5W. Lowering
this RF power also lowers the optical power sent through the first-order diffraction beam,
as later shown in figure 3.2b.

If the AOM is switched on, the optical frequency comb is sent through a 1 m long normal
fiber (Thorlabs P1-1550PM-FC-1), here referred to as dispersion compensating fiber, used
for bringing the light close to transform-limited and also guiding it on the optical table
with the ion trap. The fiber has a GVD of −23.4 fs2/(mm rad) (or 17.86 ps/(nm km)) and
thus introduces a GDD of −23400 fs2/rad (or 17.86 ps/nm).

Dispersion compensation can be achieved using the earlier described CFBG. Using the
software that controls the CFBG, we can further fine-tune dispersion, as it can slightly
change GDD and third- and fourth-order dispersion. The tunable range of the GDD is
±0.0584 ps2/rad. The tunable ranges of the different dispersion orders are not independent
from each other, as adjusting one setting sets different limits for the other settings. The
control provided by the CFBG is crucial for achieving near-Fourier-limited pulses, as
the system was observed to be particularly sensitive to the tuning range of the CFBG’s
fourth-order dispersion setting. Optimizing the dispersion orders using the CFBG control
software leads to the final temporal and spectral shape shown at the bottom of figure 3.3.
The pulse duration is shortened to 115 fs, and the final bandwidth is about 42 nm (or
5.3THz).

The 1m fiber terminates in a fiber coupler whose lens is set to be diverging to expand
the beam size for a tighter focus. A second lens with a focal length of 125 mm collects the
diverging beam and focuses it on the site of the ion in the trap, achieving a theoretical
waist diameter of 40µm on the ion. As a note, the waist could have been measured by
varying the end-cap voltages of the trap such that the potential well that traps the ion
changes its location. By measuring the drop in Rabi rate, an estimate of the waist can be
extracted. However, this measurement was not performed.

The propagation direction of the optical frequency comb light was aligned with the
direction of the magnetic field (B-field) experienced by the ion. As the light was linearly
polarized, only σ+, σ−, or σ+ + σ− transitions can be driven on the Zeeman substructure
of the calcium ion, leading to a restricted change in total angular momentum projection
quantum number of mJ = 0, ± 2.

3.2 Characterization of the optical frequency comb
The optical frequency comb setup presented in this work was characterized at various
stages. The characterization includes the optical output power as a function of the RF
power into the AOM and the AC-3 amplifier. Additionally, the frequency and temporal
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3.2 Characterization of the optical frequency comb

structure of the comb are obtained via a technique called frequency resolved optical grating
(FROG) [114, 115, ch. 9.4.4.].

The response of the laser power to the AC-3 control unit and power delivered to the
of the amplitude modulating AOM are discussed first. A setting on the AC-3 controls
how much pump light power is provided to the amplification stage. This setting can be
set on a percent scale. However, the unit is prone to damage if operated beyond 50% as
the fibers within the unit burn and break if too much pump light is sent through them.
The catastrophic consequences of operating the unit at above 50% are documented in
appendix B. The average free-space optical frequency comb power PFS is measured right
before the CVBG element. The nonlinear response of how the pump light increases the
output power PFS of the optical frequency comb as a function of the AC-3 setting as shown
in figure 3.2a.
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Figure 3.2: Power characterization of the optical frequency comb. (a) Optical
frequency comb power measured after the first fiber coupler on the amplifier
baseplate vs. AC-3 module setting. Light blue and dark blue data points
correspond to measurements from Thorlabs S132C and S425C, respectively.
An empirical fit was applied, where the parameters a and b were extracted
from a linear fit of the last data points (gray dashed line), the offset c was set
to the 0% value, and n was fitted using a generalized hyperbola model.
(b) The same data is shown with different x-axes, representing the first-order
diffraction efficiency of the comb light from the AOM vs. RF power (red) or
the amplitude setting on hte Serles software (green). The data was measured
with the Thorlabs S132C photodiode. A logistic function was fitted to both.
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3.2 Characterization of the optical frequency comb

We can also control how much RF power is provided to the amplitude modulating AOM
via the control software Serles developed by AQT [116]. The resulting optical power of
the first-order beam P1st after the AOM compared to the input optical power Pin into the
AOM, also known as diffraction efficiency, as a function of the setting in Serles is shown
in figure 3.2b. On a second horizontal scale, the Serles setting is translated into the RF
power of the 80MHz signal fed into the AOM. An optimally aligned setup would have a
maximum at a diffraction efficiency of P1st/Pin = 0.8, but this was not achieved during the
measurement of this data. On all the plots of figure 3.2, phenomenological fit functions
were used to estimate the evolution of the data.

As mentioned in the beginning of this section, the FROG technique [114, 115, ch. 9.4.4.]
was used to extract temporal and spectral profile information of the optical frequency
comb and subsequently broadened light. The FROG setup involves an autocorrelator,
where the pulsed laser beam is split into two paths where one is directed through a variable
time delay stage. The two arms are focused on a second harmonic generating crystal. The
second harmonic light is then fed into a spectrometer. The variable time delay stage can
be continuously modulated. By recording a spectrum at each increment of the time delay,
the FROG setup measures a three-dimensional data set consisting of the second-harmonic
signal as a function of time delay and frequency called a spectrogram. This data gives the
full temporal and spectral information of the analyzed light [115, ch. 9.4.4.]. As a side
note, this technique can also be extended by overlapping the laser pulse to be analyzed
with a known reference beam and generating a sum-frequency beam. In this case the
technique is known as XFROG (standing for cross-FROG).

The FROG traces were recorded using a commercial product from Mesa Photonics
(FROGscan) at various stages of the setup as mentioned throughout section 3.1. The
traces after the CVBG, the HNLF, and the dispersion compensating 1 m fiber are shown in
figure 3.3. The data at the final output stage was recorded after optimizing the dispersion
settings on the CFBG such that the optical frequency comb was close to the Fourier limit.

Compared to the initial optical frequency comb details after the CVBG, the temporal
pulse shape after the HNLF did not significantly change; however, its temporal phase did,
as demonstrated by the difference in instantaneous frequency of the pulses. Due to the
influence of SPM, the emergence of the typical instantaneous frequency shape as described
in equation (2.9) and figure 2.3 is observed. This chirping of the temporal phase caused the
spectral envelope to significantly increase from 1 THz to 5.1 THz, showing the emergence
of the typical oscillatory structure caused by SPM.

The increase in the bandwidth of the optical frequency comb without a corresponding
decrease in pulse duration indicates that the laser is no longer Fourier-limited after passing
through the HNLF. Once the laser passes through the dispersion compensating fiber (i.e.,
the final output), the pulse duration decreases significantly from 635 fs to 115 fs, as the
dominant dispersion contributions are compensated. While the fiber does not significantly
alter the spectral envelope, it modifies the spectral phase enough to compress the pulse in
time. Dispersion is challenging to fully compensate, as evidenced by the curvature of the
spectral phases in all data plots, which indicate the presence of dispersion.

It is important to note that the laser is sensitive to the changes in fourth-order dispersion
D4 tunable by the CFBG. Strong side lobes (pre- and post-pulses) can emerge if D4 is
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Figure 3.3: Temporal and spectral characterization of the optical frequency comb
at different stages. Referring to figure 3.1, FROG measurements of the
optical frequency comb have been performed after the chirped volume Bragg
grating (CVBG, top, blue), after the highly nonlinear fiber (HNLF, center,
red), and at the final output on the ion trap breadboard after dispersion
compensation (bottom, green). For the time domain, the colored curves show
the temporal intensities and the dashed gray lines show the Fourier-limited
pulses with the same spectrum. The black curves show the instantaneous
frequency (inst. freq.) of the measured data. For the frequency domain, the
colored curves show the spectral intensities and black curves show the spectral
phases. The shown temporal widths are at half of the maximum intensity while
the spectral widths are shown for selected points. The widths are indicated by
horizontal lines. A center frequency of 190.7 THz corresponds to a wavelength
of 1572 nm. FT: Fourier transformation.

47



3.2 Characterization of the optical frequency comb

not set correctly. Furthermore, the laser is less sensitive to the changes in group delay
dispersion D2 and third-order dispersion D3 tunable by the CFBG. This could be a result of
soliton behavior, where pulses preserve their shape during propagation through a medium
because of the interplay between dispersion and nonlinearity [71, ch. 5].

Furthermore, the FROG trace measured after the HNLF was compared to a simulation
that used the py-fmas package [74], see section 2.1.3, as well as the FROG trace taken
before the HNLF. This comparison is shown in figure 3.4.

General features overlap qualitatively. However, the simulated spectrum is narrower
than what was measured. It seems as if the measured high-frequency lobe may be
shortened in intensity when compared to the simulated data. The nonlinear phenomenon
of self-steepening [71, ch. 4.3.1] causes higher frequencies to evolve differently than lower
frequencies, which could explain this discrepancy. Thus, one possible explanation of the
discrepancy between the simulated and measured data is that the simulation does not
take self-steepening as strongly into account as it actually occurs. The reason for this
could lie in the usage of wrong simulation parameters, such as slightly different dispersion
parameters of the input light and wrong parameters of the Raman response function,
which is used in the simulation to include the delayed Raman contributions [71, ch. 2.3.2].
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Figure 3.4: Simulation of self-phase modulation. Spectra of the optical frequency
comb were measured before the highly nonlinear fiber (blue, input) and after
(red, output). Using the input data as a starting point of the self-phase
modulation simulation using py-fmas, the black line shows the simulated
output data with the same relevant parameters (10 cm fiber length, 1.18W
transmitted optical power, nonlinear coefficient of γ = 10.7 (Wkm)−1, and
appropriate dispersion of the fiber).
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Chapter 4
Spectroscopy results

After presenting the principles of optical frequency combs in Chapter 2 and demonstrating
how the commercial optical frequency comb was adapted for Raman experiments in
Chapter 3, we now turn to applying it in new experiments. In our research group’s main
setup [25], we are able to trap, cool, and manipulate calcium-40 ions using a Paul trap
and an arrangement of appropriate lasers. This chapter presents measurements of Raman
transitions induced by the optical frequency comb on a single trapped calcium-40 ion.

To execute such measurements, a general experimental sequence was implemented.
However, section 4.1 uses a variation of this sequence, consisting of:

1. loading of a single calcium-40 ion into the Paul trap,

2. ground state cooling of the ion to the 4 2S1/2 (m1/2 = −1/2) state using Doppler and
sideband cooling [52] techniques,

3. state preparation into the 3 2D5/2 (m5/2 = −1/2) state by population inversion using
a resonant 729 nm laser,

4. driving a 3 2D5/2 ↔ 3 2D3/2 transition using the optical frequency comb where the
used Zeeman substates used for transitions were either between m5/2 = −1/2 ↔
m3/2 = −1/2 or m5/2 = −1/2 ↔ m3/2 = +3/2, and

5. transferring the population of the 3 2D3/2 state into the 4 2S1/2 ↔ 4 2P1/2 cycling
transition using continuous-wave resonant 866 nm and 397 nm lasers for readout.

Each sequence produced a binary outcome: a bright ion or a dark ion. The former
corresponds to a successful projection of the state population from the 3 2D5/2 state into
the 3 2D3/2 via the optical frequency comb, since this population is transferred into the
4 2S1/2 ↔ 4 2P1/2 cycling transition due to the 866 nm laser. On the other hand, a dark ion
implies that the optical frequency comb either did not transfer any population or cycled
back to the 3 2D5/2 state, therefore it is also not transferred into the cycling transition.

A single result for each experimental setting consists of the collection of outcomes
gathered from repeating the described sequence Nrep = 100 times. An estimate of the
actual population (or mean excitation) p5/2 in the 3 2D5/2 (m5/2 = −1/2) state can be
found using the number of detected dark ions ndark during Nrep trials using

p5/2 =
ndark

Nrep

.
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4.1 Alignment using induced AC-Stark shift

An estimate for the uncertainty αp,5/2 in each retrieved p5/2 value can be derived from
binomial statistics and amounts to

αp,5/2 =

{√
Nrep, p5/2 /∈ {0, 1}

1/(Nrep + 2), p5/2 ∈ {0, 1}
.

The first case is also known as quantum projection noise [117], and the second case is
derived from Laplace’s Rule of Succession and avoids a diverging weight factor α−2

p,5/2 for
p5/2 = 0 and p5/2 = 1 used in regression routines.

Section 4.1 describes the alignment process of the optical frequency comb light on
the ion and reports the induced AC-Stark shift on a resonant 729 nm laser transition.
Section 4.2 shows typical transitions between the 3 2D5/2 ↔ 3 2D3/2 states and infers
the Landé g-factor of the 3 2D3/2 state from the results, and section 4.3 uses Ramsey
techniques to characterize phase noise in the system. The time frame used for taking the
measurements in this section (and appendix D) was from the 18th till the 28th of July
2024.

4.1 Alignment using induced AC-Stark shift
A rough alignment of the optical frequency comb beam through the ion trap is straightfor-
ward. However, such transmission through the trap does not guarantee a significant overlap
of the beam with the trapped ion. To maximize the overlap, one can use a technique that
involves tracking the transition frequency of a certain transition using Rabi spectra as
it is modified due to the induced AC-Stark effect, see section 2.2.1. This work uses the
transition between the 4 2S1/2 (m1/2 = −1/2) and the 3D5/2 (m5/2 = −1/2) state.

This technique requires being able to measure a resonant transition, whose transition
frequency is denoted as f729. In our case the transition is driven by a 729 nm laser. Appli-
cation of the optical frequency comb light disrupts the resonant transition proportionally
to the local intensity of the comb light on the ion, see equation (2.24). This disruption
manifests as a shift fAC with respect to the transition frequency f729 due to the AC-Stark
effect. Maximizing the shift on the transition frequency f729 + fAC indicates an optimized
overlap of the comb light with the ion.

By continuously applying the experimental sequence described in the beginning of
chapter 4, but omitting the step of driving 3 2D5/2 ↔ 3 2D3/2 transitions using the optical
frequency comb, the probed transition frequency can be tracked in real time. As a note,
this is a usual Rabi spectroscopy method used for optical clocks [118]. Simultaneously
applying an approximately aligned optical frequency comb will result in a shift |fAC| > 0
of the probed transition frequency f729. One can then update the frequency f729 to be
resonant again by adjusting it to f729 + fAC. This is done to further track changes in
the new f729 frequency induced by fine-adjusting the alignment of the optical frequency
comb. By iterating these steps, one can maximize fAC and thus optimize the overlap of
the optical frequency comb light on the ion. The result of this process is displayed in
figure 4.1.
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Figure 4.1: AC-Stark shift induced by the optical frequency comb on a 729 nm
transition. Two data sets have been measured by varying a resonant 729 nm
transition frequency on the calcium ion; one while having the optical frequency
comb turned off (blue) and one while having it on simultaneously with the
729 nm light (red). The shift in transition frequency is the AC-Stark shift
induced by the optical frequency comb.

4.2 Measurements of Raman transitions and calcium-40
3 2D3/2 Landé g-factor

Using the aligned optical frequency comb and the general experimental sequence laid
out in the beginning of chapter 4, we measured Rabi oscillations and Rabi spectra as
explained in sections 2.2.1 and 2.2.3. This section presents the principal results of this work,
presenting the characterization of typical Rabi frequencies, linewidths, optical frequency
comb-induced AC-Stark shifts, and ultimately the extraction of the Landé g-factor of the
3 2D3/2 state.

The first hurdle is to find the Raman resonance frequency by tuning the comb’s repe-
tition rate. We can estimate the required repetition rate using the previously measured
frequency separation between the two field-free D-level energies in the calcium-40 ion
(Solaro et al. [44]). There, the zero-field linear frequency difference was found to be
fSolaro = 1.819‘599‘021‘534(8)THz. Since their value is corrected to eliminate the Zeeman
contribution, we can adjust it to match our setup by introducing the Zeeman shifts
∆fZeeman,mJ

, introduced in equation (2.12).
One important quantity of the Zeeman shift is the magnetic field strength B, which was

measured to be B ≈ 3.08G = 0.308mT using a Ramsey spectroscopy technique [119, ch.
4.8.1]. The magnetic field strength was measured with the same ions that were used to
measure all the Rabi spectra. Furthermore, we need the two D-level values for the Landé
g-factors (g5/2 = 1.2 and g3/2 = 0.8). With these values we can estimate the frequency
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difference between the two target states using fSol,Zee = fSolaro+∆fZeeman,m5/2
−∆fZeeman,m3/2

.
In the experiment we used only the 3 2D5/2 (m5/2 = −1/2) state as the initial state due to
technical limitations (state preparation in other Zeeman sublevels was not yet automated).
The lower energy state was either 3 2D3/2 (m3/2 = −1/2) or 3 2D3/2 (m3/2 = +3/2).

The design repetition rate of the optical frequency comb is around frep,0 = 250MHz. We
have the ability to tune this value by changing the setpoint of the PID-controlled repetition
rate stabilization and subsequently re-locking the system. The range at which the setpoint
can be changed is at least on the order of 10 kHz. We can also shift the setpoint by smaller
values, on the order of 100 Hz, without having to re-lock the system, which is later useful
for varying the repetition rate. Any value set for the repetition rate is stabilized to the
mHz level. Thus, we adjust the repetition rate frep,0 to frep such that frep is approximately
an integer multiple of fSol,Zee fulfilling the condition for driving transitions with an optical
frequency comb (see section 2.2.3). We can estimate the repetition rate frep required to
drive the intended transition by determining how many times the base repetition rate
frep,0 fits into fSol,Zee. This can be done using N = ⌊fSol,Zee/frep,0⌋ or N = ⌈fSol,Zee/frep,0⌉
and then frep = fSol,Zee/N . The integer N was always found to be N = 7278 if the floor
function was used (⌊·⌋) and N = 7279 if the ceiling function was used (⌈·⌉). This integer
N represents the difference in comb tooth indices of two teeth that can drive the target
transition, which is only possible if their difference in frequency is approximately fSol,Zee.
The integer N is later be verified experimentally.

Having estimated the repetition rate frep that could drive a Raman transition between the
two target states, the next hurdle is to find the right order of magnitude for the repetition
rate at which such a transition shows detectable dynamics. Assuming a transform-limited
transition linewidth with a pulsetrain length of tpulse = 1ms, we can estimate the order of
magnitude to be 1/(N tpulse) ≈ 0.14Hz.

Using this estimated value for determining the range over which we vary the repetition
rate, the estimated ideal repetition rate and a long pulsetrain length of about 1ms, we
were able to find a resonance. Typical measurements obtained by varying the repetition
rate, resulting in Rabi spectra, and varying the optical frequency comb pulsetrain length,
resulting in Rabi oscillations, can be found in figure 4.2. In this figure, the retrieved fit
parameters using the model in equation (2.22) for the Rabi oscillations (left, blue) are
A = 0.988(11), t0 = −3.7(16)µs, Ω = 2π · 2.5635(17) kHz, c = 0.487(4), and τ = 7.1(3)ms.
The Rabi spectrum (right, red) was fitted using the model in equation (2.23), the resulting
fit parameters are A = −0.937(14), f0 = −861.83(5) kHz, Ω = 2π · 2.82(4) kHz, and
c = 0.980(3). A two-dimensional sweep of pulsetrain length and transition frequency was
also performed. The results can be found in appendix D.2.

In the context of equation (2.34), the Raman Rabi rate in figure 4.2 serves as a measure
of interaction efficiency in the presence of dispersion. Raman Rabi rate measurements were
performed for different group delay dispersion settings on the chirped fiber Bragg grating
and compared to predictions using measured FROG spectra. The results are presented in
appendix D.3.
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Figure 4.2: Typical coherent Raman Rabi oscillation and spectrum of the se-
lected D-level transition. The targeted calcium-40 ion transition was
3 2D5/2 (m5/2 = −1/2) ↔ 3 2D3/2 (m3/2 = −1/2). The horizontal scale on the
right plot was converted from repetition rate to actual transition frequency by
multiplying the repetition rate with N = 7278 and shifted by fSolaro to have
an experimentally verified target value at zero.

As expected, the transition frequency shown in figure 4.2 is −861.83(5) kHz+ fSolaro, far
off the reference frequency. This is due to frequency shift corrections that still need to be
applied to retrieve a zero-field transition frequency. The two major corrections we can
apply are the Zeeman shift correction and the AC-Stark shift correction.

Typical Zeeman shift corrections are done by measuring the transition frequencies
m5/2 = −1/2 ↔ m3/2 = −1/2 and m5/2 = +1/2 ↔ m3/2 = +1/2 [44, 120, 121]. According
to equation (2.12), if we take the mean of both transition frequencies, the result gives the
Zeeman-corrected frequency. This eliminates the need to precisely measure the Landé
g-factors and B-field magnitude. Also, the choice of these two particular transitions makes
the result less sensitive to magnetic field fluctuations.

This approach was not chosen in our setup since a preparation in the 3 2D5/2 (m5/2 =

+1/2) was not yet automated, rather only the preparation in the 3 2D5/2 (m5/2 = −1/2)
state. Thus, for the correction it was necessary to know the values of the two Landé
g-factors of the states: g5/2 (of the state 3 2D5/2) and g3/2 (of the state 3 2D3/2).

An experimentally measured value of g5/2 was found ([88, p. 81], see equation (2.14)),
however none was available for g3/2. An experiment was thus performed to measure
the value of g3/2. For this, the value of g3/2 was introduced in the data analysis of this
work as a variable. A probability distribution function for this variable was assumed and
updated with the data. The optimal value of g3/2 was found using the updated distribution
(posterior).
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Figure 4.3: Measurements of self-induced AC-Stark shift. To find the zero-field
transition frequency of the 3 2D5/2 ↔ 3 2D3/2 transition, various measurements
analogous to the right plot in figure 4.2 at different randomly chosen powers
of the optical frequency comb Pout at different transitions were performed.
Plotted are the evaluated center frequencies ∆0 (or f0) from equation (2.23)
of each measurement for the indicated transitions and comb teeth difference
numbers N . The y-interecepts are the estimated Stark shift-free transition
frequencies. The presented data was colored randomly in different shades of
gray to make them distinguishable. This data was Zeeman shift-corrected
using the evaluated optimal Landé g-factor of g3/2 = 0.79945. However, in
the data analysis, g3/2 was a variable. Changing the value of g3/2 shifts the
displayed data points vertically, with each displacement depending on the
B-field magnitude at the time of recording of each data point. The measured
optical power Pout is recorded from part of the comb light that was transmitted
through the ion trap.

We also simultaneously corrected for the AC-Stark shift in this optimization process.
We estimated the transition frequency as a function of the laser power. According to
equation (2.31), the effective detuning depends linearly on the magnitudes of the squared
single-beam Rabi rates, which in turn are proportional to the laser intensities or powers.
Lowering the power of the optical frequency comb lowers the contributions of all the comb
teeth at the same rate. Thus, the transition frequency depends linearly on power.

In the experiment, the power of the optical frequency comb was changed by varying
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4.2 Measurements of Raman transitions and calcium-40 D3/2 Landé g-factor

the radio frequency power delivered to the acousto-optical modulator (AOM) found in
the combs optical path. Data was collected by randomly choosing from a set of AOM
radio frequency powers, measuring the optical power Pout from a portion of the light
transmitted through the vacuum chamber, and measuring the resonance frequency of the
chosen transition. The Zeeman shift was corrected for each measured data point using the
known g5/2 value, the variable g3/2 value, and the estimated average B-field magnitude at
the time of measurement. The average B-field magnitude refers to the value and error of
a linear fit through data that shows the B-field magnitude as a function of time. This
procedure captures the time average of the measured B-field while also allowing for a
linear drift over time. Alternative ways of estimating the average B-field at the time of
each measurement are shown in appendix C.

The resulting data of the described data analysis is shown in figure 4.3. The data
was collected for the transitions m5/2 = −1/2 ↔ m3/2 = −1/2 and m5/2 = −1/2 ↔
m3/2 = +3/2, in combination with comb tooth difference indices N = 7278 and N = 7279.
The four data sets are described by a linear function due to the scaling behavior of the
eigenenergies of equation (2.19), as they depend on the detuning, which is set to zero, and
the Raman Rabi rate, which is proportional to the intensity of the light. By applying
linear fits, we can extract the transition frequency value at Pout = 0mW, retrieving the
AC-Stark shift corrected transition frequency. Up to this point, we have treated the Landé
g-factor g3/2 as a variable. However, it should be noted that these plots use the measured
optimal value for g3/2, which will soon be presented in equation (4.2).

To estimate the experimental value of the Landé g-factor g3/2, the analysis described
above was repeated for various g3/2 values. The g3/2 value was sampled from a grid of
equally spaced values close to the theoretical value of 0.8. For each grid point, the four
y-axis intercepts of the linear fits (corresponding to Pout = 0mW) were extracted. An
example of these intercepts for a single g3/2 grid point is shown in figure 4.3. We label
these intercepts, or zero-field transition frequencies, bj, where j ∈ {1, 2, 3, 4}, and their
corresponding uncertainties αb,j. These four frequencies enter a constructed likelihood
function, whose underlying probability density function was assumed to be the Student’s
t-distribution [122, ch. 8.8]. This distribution has larger tails compared to the Gaussian
distribution and is useful for a small sample size, such as our case, as we only have four
samples.

This likelihood function has the form

L(g3/2) =
4∏

j=1

tν

(
bj(g3/2)− 0

αb,j(g3/2)

)
1

αb,j(g3/2)
, (4.1)

where tν(x) is the Student’s t probability density function and ν = 3 is the number of degrees
of freedom in the problem. The degrees of freedom are the number of data points (4, bj)
minus the number of free parameters (1, g3/2). The value 0 is normally replaced by a
model function, but here our model function is Solaro’s reference value for the D-level
transition. Since we normalized our data to fSolaro, the model function value becomes 0.

The optimal value of g3/2 was chosen to be where the cumulative distribution function
of L(g3/2) equals 0.5, as this represents the median of the distribution. On the other hand,
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4.2 Measurements of Raman transitions and calcium-40 D3/2 Landé g-factor

the uncertainty margins of the optimal g3/2 value are chosen to be 0.5± σ/2, where the
value σ = erf(1/

√
2) ≈ 0.68 is based on a Gaussian distribution, and erf is the Gauss error

function. The resulting optimal Landé g-factor of the calcium-40 ions 3 2D3/2 state was
thus found to be

gexp3/2 = 0.79945(2) (4.2)

This result is 0.069 % smaller than the theoretical value of 0.8 and has a relative uncertainty
of 2.5 · 10−5. This deviation from the theoretical value is comparable to the one reported
in reference [88, p. 81]. There, the experimental value of g5/2 was found to be 0.028%
higher than the theoretical prediction (see equation (2.14)). To extract a more correct
version of gexp3/2 , we could include further corrections in the error budget [123, 124], e.g.,
second-order Doppler shift [125], blackbody radiation shift [126], second-order Zeeman
shift [127, 128], quadratic DC-Stark shift [129], and potentially other interacting lasers
inducing AC-Stark shifts. However, this was not done in this work, as their shifts and
uncertainties are likely small in comparison to the more dominant uncertainties such as
B-field fluctuations and 729 nm fiber noise.

Instead of using equation (4.1) to extract gexp3/2 , here referred to as the all-at-once method,
an alternative approach is to calculate the optimal individual Landé g-factor g3/2,j and its
uncertainty αg,j for each zero-field transition frequency bj and its uncertainty αb,j, and
then combine these values to obtain the final result. This alternative approach, referred to
as the individual evaluation method, yielded an estimated Landé g-factor of 0.799451(12),
which agrees with the all-at-once method. Ultimately, the all-at-once method combined
the data under a single statistical distribution, making it the more appropriate choice, as
it extracts information from all measurements simultaneously, while also accounting for
correlations and shared systematics that the individual evaluation method may neglect.
Nevertheless, the individual evaluation method is further compared to the all-at-once
method in appendix C, along with different interpolation methods for the B-field.

Using the extracted Landé factor gexp3/2 , we can correct the measured data for Zeeman
and AC-Stark shifts, as already shown in figure 4.3. The resulting four corrected zero-
field transition frequencies bj(gexp3/2) can be compared to their combined value, calculated
analogously to equation (C.1). By construction, this combined value overlaps with the
value found by Solaro et al. [44], as their value was used as the reference for the measured
data, which was optimized to converge toward it based on equation (4.1). These values are
shown in figure 4.4. This plot can give us insights about the magnitude of the uncertainties
in our system by looking at the magnitude of the uncertainties of the shown data.
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Figure 4.4: Zero-field transition frequencies for four experimental settings. The
colored data points are the bj values from figure 4.3. The x-axis indicates
the targeted transition and the comb teeth difference number N . Varying the
Landé g-factor g3/2 in such a way that these four data points combine to overlap
with Solrao’s et al. measurement fSolaro [44] leads to the retrieval of the optimal
g-factor value of g3/2 = 0.79945, used in this plot. The optimization is done
using the likelihood function in equation (4.1). The shaded area represents
the uncertainty of the combined value representing the standard error of the
weighted mean.

As an additional and final result in this section, we show that the index difference
between the comb teeth pairs driving the transition was indeed N = 7278 and N = 7279.
This was verified by taking the bj values from the data in figure 4.3 and transforming them
into repetition rate values frep,j . Our only assumption is that the difference in comb teeth
is 1 between b1 and b2 (corresponding to the m5/2 = −1/2 ↔ m3/2 = −1/2 transition at
frequency f−1/2) and between b3 and b4 (corresponding to the m5/2 = −1/2 ↔ m3/2 = +3/2
transition at frequency f+3/2). This is justified because we know both the repetition rate
and the approximate transition frequency with sufficient precision. Using this assumption,
we can set up the equations

f−1/2 = fCEO +N−1/2frep,1, f−1/2 = fCEO + (N−1/2 + 1)frep,2,

f+3/2 = fCEO +N+3/2frep,3, f+3/2 = fCEO + (N+3/2 + 1)frep,4.

Substituting the measured repetition rates and solving for N yields:

N−1/2 =

(
frep,1
frep,2

− 1

)−1

= 7278.005(2)

N+3/2 =

(
frep,3
frep,4

− 1

)−1

= 7278.014(11).
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The closest integer of both retrieved values is 7278, as assumed in the beginning. To obtain
an integer value of 7277 instead of 7278 from the same calculations, the repetition rates
frep,1 and frep,3 would need to be approximately 4.75Hz higher, which would result in a
transition frequency shift of about 35 kHz. This possibility can be safely discarded, as the
range of frequencies used to obtain the Rabi spectra was one order of magnitude smaller
than this shift.

As a final note, the original plan for this work was not to measure the Landé g-factor
g3/2, but rather the zero-field transition frequency of the transition 3 2D5/2 ↔ 3 2D3/2.
However, due to technical limitations and the lack of knowledge of an experimental value of
g3/2, this was not possible. Thus, we used the transition frequency measured by Solaro et
al. and took it as a reference to back out the value of gexp3/2 .

4.3 Ramsey interferometry
Another aspect of the ion and optical frequency comb interaction which can be readily
studied is quantum coherence. Quantifying phase noise in the system can be achieved
via Ramsey interferometry, both with and without spin echo. For both methods, one can
use the general experimental sequence explained in chapter 4 and adapt it to include the
Ramsey and spin echo sequences explained in section 2.2.4 using the optical frequency comb.
The transition probed in this section is 3 2D5/2 (m5/2 = −1/2) ↔ 3 2D3/2 (m3/2 = −1/2).

Due to the nature of a two-photon Raman process transition where both photons originate
from the same beam, it is not possible to implement the usual Ramsey measurement which
involves the Ramsey contrast quantity. Instead of varying the phase of the second π-pulse
for a set of waiting times τ , we vary directly the waiting time with a fixed detuning, giving
rise to decaying fringes [130] as shown on the left side of figure 4.5. The decay constant is
the same as retrieved with the Ramsey contrast method; however, it is less precise as it
involves less measured data, increasing the statistical error.

The best fitting function for the decaying envelope resembled more closely a Gaussian
decay than an exponential decay (judging by chi-squared statistics, where typical reduced
chi-square values were χ2

ν,Gauss = 1.22 and χ2
ν,exp = 1.82), indicating that the decay is closer

to being quasi-static [100] in nature rather than white noise [99]. Typical extracted decay
constants, which correspond to an amplitude reduction to 1/e, range from 0.376(18)ms
to 0.41(3)ms, indicating the dephasing timescale of the dominant low-frequency noise in
our system. The origin of this noise is likely magnetic field fluctuations at the location of
the ion. The quantization B-field is generated by a single coil, which also introduces a
significant nonlinear gradient, amplifying fluctuations in both the magnitude and direction
of the B-field. Other less significant noise sources include fluctuating ion position, laser
intensity, phase, repetition rate, and beam pointing [131].

Regarding the example data shown on the left side of figure 4.5, the detuning of the
Ramsey measurement without spin echo was manually set to 7278 · 0.6Hz = 4.367 kHz.
Fitting this data resulted in the optimal parameters A = 0.73(3), c = 0.576(5), ∆0 =
2π · 3.38(3) kHz ( ̸= 2π · 4.367 kHz), and T ∗

2 = 0.376(18)ms.

Having looked Ramsey interferometry without spin echo, we can analyze the high-
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4.3 Ramsey interferometry

frequency noise within the system by introducing spin echo. Typical results of the Ramsey
interferometry with spin echo are shown on the right side of figure 4.5. In contrast to the
results from the Ramsey interferometry without spin echo, the spin echo technique does
not require a detuning and it introduces a π-pulse in the middle of the waiting time τ .

Similarly, this data was best described by a Gaussian function (χ2
ν,Gauss = 1.58 vs.

χ2
ν,exp = 2.78), indicating again that high-frequency noise is quasi-static in nature. The

extracted 1/e decay constants range from 1.35(14)ms to 1.73(18)ms. Specifically for the
data shown on the right side of figure 4.5, the fit parameters of the spin echo measurement
were determined to be A = 0.93(4), c = 0.456(13), and T2 = 1.50(10)ms.
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Figure 4.5: Ramsey interferometry and spin echo measurements. The calcium-40
ion transition used for this measurement was the 3 2D5/2 (m5/2 = −1/2) ↔
3 2D3/2 (m3/2 = −1/2) transition. The pulse sequences used for each mea-
surement are shown on the top right of each plot. The fit functions follow
equation (2.37) with a Gaussian envelope.
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Chapter 5
Discussion and outlook

This thesis presented basic concepts of optical frequency combs, such as dispersion and
self-phase modulation, and described how they can be used to manipulate the state of
trapped ions via Raman transitions and the AC-Stark effect. These concepts have been
implemented experimentally by increasing the bandwidth of a commercial optical frequency
comb to about 5THz via self-phase modulation in a highly nonlinear fiber, compressing
the pulse duration close to the Fourier limit to about 110 fs using dispersion compensation,
and demonstrating coherent Raman transitions with a calcium-40 ion between the 3 2D5/2

and 3 2D3/2 Zeeman fine structure states separated by 1.8THz. For these transitions, if
properly compensated for dispersion, all individual comb teeth can coherently contribute
to driving the transitions.

These interactions resulted in high-contrast Rabi oscillations with rates of up to 2.8 kHz,
linewidths of about 4.5 kHz, and decay time constant of up to 7ms. In [44], a similar
experiment achieved a Rabi rate of about 4.1 kHz. To properly compare this value to our
setup, we have to adjust for the differences in detuning (our system: 155THz vs. [44]:
29THz), power (450mW vs. 90mW), and laser beam radius (∼40µm vs. 34µm) based
on equation (2.28). The performance of both of our systems is similar if we assume a laser
beam radius of 42µm in our system.

Dephasing was characterized by executing an adapted Ramsey sequence and a spin-
echo sequence, which resulted in dephasing times of 0.38ms and 1.5ms, respectively.
The dephasing limitations of our quantum system most likely stem from magnetic field
instabilities, including environmentalB-field noise. Our current configuration for generating
a magnetic field at the trapped ion’s location relies on a single coil. Implementing a
Helmholtz configuration would significantly reduce the nonlinear B-field gradient, which
amplifies B-field noise. Additionally, incorporating a stabilization unit and a magnetic
shield would further improve field stability.

In addition, the optical frequency comb was used to spectroscopically measure the Landé
g-factor of the 3 2D3/2 state to a precision of 3 · 10−5, resulting in a value of 0.79945(2).

The current state of the optical system cannot drive Zeeman transitions with a change
of projection quantum number ∆m = ±1 as the comb can only provide superpositions of
σ+ and σ− polarized photons but no π-polarized photons due to the comb being aligned
with its propagation axis along the direction of the magnetic field, see figure 5.1b. The
setup is also limited by which transition energies it can drive. The upper limit is set by the
bandwidth (5 THz) and the lower limit by the repetition rate (250 MHz). Furthermore, the
comb relies on adjusting the repetition rate for fine-tuning a resonant transition frequency.
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This is a rather slow process, especially in cases where the lock-point of the repetition rate
needs to be changed.

We would benefit from a setup with two separate branches of the optical frequency comb.
In this so-called two-beam comb setup, each path’s frequencies are individually shifted using
acousto-optical modulators (AOMs) (see figure 5.1c). Instead of adjusting the repetition
rate, the offset from a transition frequency is set by the AOM drive frequency, enabling
faster and broader tuning, as the lower limit for possible transition frequencies is set by the
linewidth of the radio-frequency signal sent to the AOMs. This technique achieves sub-kHz
lower limits. Additionally, splitting the comb allows control over π-polarization: one branch
can deliver π-polarized photons while the other provides σ-polarized photons, enabling
∆m = ±1 Zeeman transitions and access to all Zeeman sublevels. However, a disadvantage
comes from the fact that each branch is identified with a particular contribution to the
two-photon Raman process, as opposed to each comb tooth driving both upward and
downward contributions simultaneously as in the single-beam case. Since the comb’s
power is split into two, and each branch only contributes to one Raman path, the maximal
possible efficiency is halved compared to the single-beam comb setup, and it becomes
comparable to a two-beam CW (continuous-wave) Raman setup [33]. The two-beam CW
Raman setup is shown in figure 5.1a.
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Figure 5.1: Variations of this works setup. CW: continuous-wave, Comb: optical
frequency comb, AOM: acousto-optical modulator, BS: beam splitter, Raman-
shift: Raman-induced self-frequency shift, π: π-polarized light, σ±: σ+- or
σ−-polarized light, B: magnetic field.

We can extend the idea of the two-beam comb setup such that the upper limit of possible
transition frequencies is no longer limited by its bandwidth. By harvesting the effect
of the Raman-induced self-frequency shift [132–134] (Raman-shift), we can continuously
redshift the comb’s central wavelength and its spectrum due to intrapulse Raman scattering
[71, p. 4.3.3]. This effect arises from the interaction between the comb and a nonlinear
medium’s vibrational modes. By engineering the creation of Raman solitons, e.g., pulses
that maintain their shape during propagation through a medium due to a balance between
dispersion and nonlinearity [71, ch. 5], the evolution of the system becomes predictable,
and the central frequency of the optical frequency comb can be adjusted to the needs of
the experiment. An experimental demonstration can be found in [135].
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The two-beam comb setup could then be expanded into the shifted two-beam comb
setup by taking one branch of the two-beam comb and making it undergo a controlled
Raman-shift, possibly also utilizing difference frequency generation with the original comb,
see figure 5.1d. This expands the upper limit of accessible transition frequencies, as the
limit is now set by the difference in frequency of the center frequencies of the spectra plus
their combined bandwidths. As shown in [136], a Raman-shifted optical frequency comb
can even reach mid-infrared wavelengths. The target frequency of the Raman-shifted comb
can be adjusted by controlling the power sent through the nonlinear setup. The lower limit
of accessible transition frequencies is set by the difference in the center frequency difference
between the original comb and the Raman-shifted comb minus their combined bandwidths.
Additional drawbacks of this setup include the additional complexity of the system due
heavy reliance on nonlinear optics and the significant power (and thus efficiency) losses
due to the frequency conversion processes.

Note that no published setup was found that matches this description, but it is known
that NIST [137] is working on such a dual-branch frequency comb Raman to perform
vibrational transitions in CaH+. This idea might have potential for coherent control of
molecular rotational and vibrational states. The repetition rate remains constant as the
timing of each pulse is set by the source and is not influenced by nonlinear optics. The
change of the carrier-envelope offset frequency during the Raman-shifting is not relevant
for driving Raman transitions, as this frequency cancels out. A comparison of the discussed
setup options is shown in table 5.1.

Two-beam Single-beam Two-beam Shifted two-beam
Setup CW Raman [33] comb [44] comb [45, 138] comb
fmin
trans sub-kHz ∼100MHz sub-kHz spectra separation
fmax
trans ∼1GHz ∼10THz ∼10THz ∼100THz
∆m 0, ±1, ±2 0, ±2 0, ±1, ±2 0, ±1, ±2

ηmax
CW 1 2 1 1

ηCW loss none dispersion dispersion dispersion and shift

Table 5.1: Comparison between different optical Raman systems. The performance
indicators indicate the minimal and maximal accessible transition frequency
(fmin

trans and fmax
trans), the possible change in projection quantum numbers of the

two involved states (∆m), the maximal achievable efficiency compared to the
two-beam CW Raman setup (ηmax

CW , analogous to equation (2.34)), and the
reasons for efficiency losses (ηCW loss).

Methods for further increasing the bandwidth of the optical frequency comb will still
be investigated within our research group, such as increasing the length of the highly
nonlinear fiber. Our group’s next step is to implement the two-beam comb setup and
demonstrate control over rotational energy levels in molecules such as CaOH+, CaH+

or CaD+ similar to [45]. Moreover, the setup will also be used for exploring molecular
quantum error correction against noise such as black body radiation [26].
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Appendix A
Fourier transform of a pulsed laser

This appendix expands on the derivation presented in section 2.1. A general pulsetrain in
the time domain can be modeled using an envelope function, Esingle(t), which repeats with
period T , together with an oscillating function with unit amplitude, cos(ϕ(t)). This model
for the electric field is given by

E(t) = cos(ϕ(t))
∞∑

n=−∞

Esingle(t− nT ).

We simplify the analysis by setting ϕ(t) = ωct − ϕ0. To understand the Fourier trans-
formation it is helpful to introduce the Dirac comb ШT (t) and convolution (A ∗ B)(t),
where

ШT (t) :=
∞∑

n=−∞

δ(t− nT ) and A(t) ∗B(t) :=

∫ ∞

−∞
A(τ)B(t− τ) dτ.

The distribution δ(t) is called the Dirac delta function and has the properties∫ ∞

−∞
A(t)δ(t− a) dt = A(a) and δ(at) =

1

|a|
δ(t).

With these we can rewrite the model for the electric field as

E(t) = cos(ωct− ϕ0)
∞∑

n=−∞

Esingle(t− nT )

= cos(ωct− ϕ0)
∞∑

n=−∞

∫ ∞

−∞
Esingle(τ) δ(τ − (t− nT )) dτ

= cos(ωct− ϕ0)
∞∑

n=−∞

∫ ∞

−∞
Esingle(τ) δ((t− τ)− nT ) dτ

= cos(ωct− ϕ0)

∫ ∞

−∞
Esingle(τ)ШT (t− τ) dτ

= cos(ωct− ϕ0)Esingle(t) ∗ ШT (t).

In this form the analysis and interpretation using the Fourier transform

F{A(t)}(ω) = 1√
2π

∫ ∞

−∞
A(t)e−iωt dt (A.1)
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is simpler. Using the convolution theorem

F{A(t) ∗B(t)}(ω) = F{A(t)}(ω)F{B(t)}(ω),
F{A(t)B(t)}(ω) = F{A(t)}(ω) ∗ F{B(t)}(ω)

we derive

Ẽ(ω) = F{E(t)}(ω)
= F{cos(ωct− ϕ0)}(ω) ∗ (F{Esingle(t)}(ω)F{ШT (t)}(ω)).

The Fourier transform of the cosine term is known and amounts to

F{cos(ωct− ϕ0)}(ω) =
√
π

2

(
e−iϕ0δ(ω − ωc) + eiϕ0δ(ω + ωc)

)
.

On the other hand, the Fourier transform of a Dirac comb is a rescaled version of a Dirac
comb

F{ШT (t)}(ω) = Ш2π/T (ω).

For the derivation of this relation, we use the Poisson summation formula. One can
qualitatively understand this relation by concluding F{δ(t− nT )}(ω) = e−iωnT/

√
2π and

realizing that an infinite sum over n of such exponential functions would destructively
interfere everywhere except at points where ωT is an integer multiple of 2π.

Ignoring negative frequencies, the frequency domain representation of the electric field
model is

Ẽ(ω) =

√
π

2
e−iϕ0 δ(ω − ωc) ∗ (F{Esingle(t)}(ω) Ш2π/T (ω))

=

√
π

2
e−iϕ0 F{Esingle(t)}(ω − ωc) Ш2π/T (ω − ωc).
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Appendix B
AC-3 unit repair

The AC-3 control unit, which provides the 975 nm pump light for the high-power amplifica-
tion of the optical frequency comb, experienced a critical failure on 08.02.2024. The AC-3
unit was operated above its 50% setting, which caused the fibers inside the unit to burn
and break due to the too-high intensities of the pump light. The resulting damage can be
seen in figure B.1. The cause for the failure might arise from back reflections and energy
density accumulations in certain spots. These might have been caused by non-ideal fiber
splices and tight curvatures of the fiber. The unit was repaired by splicing the surviving
fiber ends together using the Vytran FFS2000PM fiber splicer. A tutorial on fiber splicing
was consequently written. Opening the AC-3 to access its circuitry or optics should now
be done with caution, as two short and unprotected optical fibers lie directly underneath
the cover.

Figure B.1: AC-3 unit failure. The optical fibers leading the pump light to the ampli-
fication system burned due to high-power operation. This unit provides the
pump light which amplifies the optical frequency comb up to 2.5W.
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Appendix C
Comparison of Landé g-factor extraction
methods

Section 4.2 extracts a value for the Landé g-factor g3/2 of the 3 2D3/2 state from measured
spectroscopic data. There were several approaches to extracting this value, each with a
slightly different result. This appendix covers the key differences.

During the analysis, the AC-Stark shift-corrected transition frequencies bj(g3/2) with
uncertainties αb,j(g3/2) were extracted as a function of a variable g3/2, where j ∈ {1, 2, 3, 4}.
The method used in section 4.2 combined these values in a single likelihood function L
(see equation (4.1)), and extracts from that the most likely g3/2 value with its associated
uncertainty αg,3/2. This method is referred to as the all-at-once method (AAOM).

A different approach to this procedure is referred to as the individual evaluation method
(IEM). Here, a Gaussian likelihood function is constructed from each bj(g3/2), αb,j(g3/2)
pair according to

LIEM
j (g3/2) =

1√
2π αb,j(g3/2)

exp

(
−1

2

(
bj(g3/2)− 0

αb,j(g3/2)

)2
)
.

For each LIEM
j (g3/2), the optimal g3/2,j with error αg,j was then calculated. The combined

value (weighted mean) and its uncertainty

gIEM3/2 =

∑4
j=1 g3/2,j α

−2
g,j∑4

j=1 α
−2
g,j

,
1

αIEM
g,3/2

=

√√√√ 4∑
j=1

α−2
g,j (C.1)

were then extracted, returning an estimate for Landé g-factor of the 3 2D3/2 state. Ulti-
mately, the AAOM was preferred over the IEM because it treats all data points as part
of a unified statistical distribution. The AAOM not only maximizes the use of available
information by analyzing all measurements collectively but also incorporates correlations
and shared systematic effects that the IEM might overlook.

At a different point in the analysis, the extraction of the instantaneous magnetic B-field
value during the time of data taking is relevant. Here, three further approaches were
pursued. Given a data set of B-field strengths at the location of the ion as a function
of absolute time, it is natural to interpolate values in between recorded data. However,
interpolation results in an increase in the spread of the data points, artificially lowering
the precision of the data. This can be explained by the fact that the method for measuring
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the local B-field value (a Ramsey spectroscopy adapted from [119, ch. 4.8.1]) involved a
729 nm laser with no fiber noise cancellation, increasing the apparent random fluctuations
in the B-field data points. To average over these fluctuations, two further approaches
were investigated: a constant and a linear fit through the B-field data points. These
fits were restricted to data sets containing time periods of no more than one day. All
three approaches for B-field extraction are compared on a sample data set in figure C.1a.
Ultimately, the linear fit approach was chosen over the constant fit as some data sets
showed significant drifts.

In total, six different values of the Landé g-factor were extracted due to the 2 ·3 different
approach combinations. All six final values are shown side by side in figure C.1b.
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(a) Sample B-field data measured by Ramsey spectroscopy
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Figure C.1: Approaches for extracting the Landé g-factor g3/2. Figure C.1a shows a
sample of B-field strength data as a function of absolute time. The three meth-
ods for extracting values in-between recorded data are shown. Figure C.1b
shows six values for the Landé g-factor g3/2 from the different method combi-
nations. The value highlighted in green is the one chosen for section 4.2.
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Appendix D
Additional data

This appendix provides supplementary data to chapter 4. The experimental sequence
described there is used for sections D.2 and D.3. Section D.1, on the other hand, shows
different spectral properties depending on the polarization of the light exiting the highly
nonlinear fiber. Section D.2 provides a 2-dimensional scan of the Rabi landscape using the
Raman-interacting optical frequency comb. Section D.3 shows data of Raman Rabi rates
as a function of the chirped fiber Bragg gratings settings.

D.1 Polarization-dependent spectra
The optical setup used in this work included a half-waveplate (HWP) and polarizing beam
splitter combination located after the highly nonlinear fiber (HNLF). See the gray box in
figure 3.1. This setup only transmitted horizontal polarization. At the time it was not
known that nonlinear effects act differently on different components of the polarization,
especially since our HNLF was polarization-maintaining. As a result, the spectral shape
and the temporal shape of the optical frequency comb changed when turning the HWP.
The frequency-resolved optical gating (FROG) data measured after the 1m dispersion
compensating fiber for different HWP settings is shown in figure D.1.

Additionally, it was observed that in order to achieve a Fourier-limited pulse, it was
necessary to adjust the fourth-order dispersion setting on the chirped fiber Bragg grating.
The differences between a non-fourth-order-compensated pulse and a compensated one are
similar to the changes shown in figure D.1. Specifically, both show the emergence of pre-
and post-pulses in the form of side lobes in the FROG trace.
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D.1 Polarization-dependent spectra
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Figure D.1: Temporal and spectral intensities for different half-waveplate angles.
The differences in the properties of the optical frequency comb are likely
caused by self-phase modulation acting differently on the comb’s polarization
components. The data was measured at the end of the optical setup for
different half-waveplate angles of the one found in the gray box of figure 3.1.
Both temporal and spectral phase information are not shown. The range
between 70◦ and 90◦ is considered near-Fourier-limited and was used for the
experiments of chapter 4.
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D.2 2D Rabi spectroscopy scan

D.2 2D Rabi spectroscopy scan
Multiple measurements have been performed on the transition between the 3 2D5/2 (m5/2 =

−1/2) and 3 2D3/2 (m3/2 = −1/2) states using the optical frequency comb and a comb-teeth
number separation of N = 7278. One of them involved a 2-dimensional (2D) scan of the
pulsetrain length tpulse of the optical frequency comb and its repetition rate frep, in a
similar fashion as shown in figure 4.2. This 2D map is shown in figure D.2 alongside two
slices, showing a Rabi oscillation and a Rabi spectrum. The model for the map is given
by 2.20. The measurement was performed to reproduce and compare to the result in [119,
ch. 4.4.].
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Figure D.2: 2D Rabi Raman map. The 2D map was taken with a resolution of
40.61µs in pulsetrain length and 0.05Hz in repetition rate (translating to
7278 · 0.05Hz = 0.3639 kHz in transition frequency). The slices shown were
taken at tpulse = 213.06µs (green) and ftrans = 0.18 kHz + fSolaro (frep =
250.013′487′03MHz, red). The data plotted here is AC-Stark shift and Zeeman
shift-corrected using the measured g3/2 value (equation (4.2)). The time taken
for the measurement was on the order of eight hours.
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D.3 Dispersion measurements

D.3 Dispersion measurements
Dispersion is an important property in systems involving ultrafast lasers such as the
optical frequency comb. As discussed in section 2.2.3, any dispersion can lead to a loss in
efficiency in driving Raman transitions. To experimentally verify this effect, we used the
chirped fiber Bragg grating (CFBG), used to stretch single pulse length in time before
amplification, to change the dispersion parameters of the optical frequency comb. This
is done by adjusting the CFBG set points thermally. For a set of group delay dispersion
settings of the CFBG, we measured the Raman Rabi rate. The results are shown in red in
figure D.3.
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Figure D.3: Efficiency drops due to dispersion. The red data shows the measured
Raman Rabi rates for different settings on the chirped fiber Bragg grating
(CFBG). The black points take the full spectral information of the comb for
each setting and use equation (2.4) to simulate an efficiency, where this result
was scaled arbitrarily to units of Rabi rate. The discrepancy could arise from
thermal drifts in the dispersion settings of the CFBG and the fact that the
data for the red and black points were taken five months apart. The tunable
range of the CFBG is 13.05 ± 0.0584 ps2/rad (or −9.95 ∓ 0.0445ps/nm),
where the values on the x-axis translate to −100 =̂ 12.9916 ps2/rad and
100 =̂ 13.1084 ps2/rad. However, this transformation was not done on the
x-axis, as it is misleading. Due to the HNLF, these group delay dispersion
values are not necessarily simply translated into the final spectrum.

There were multiple attempts to explain the data. The first attempt consisted of taking
the efficiency ηCW (see equation (2.34)) for a given reference spectra (measured at the
end of the optical path) and varying the group delay dispersion induced by the CFBG
numerically according to equation (2.5). However, this procedure predicts incorrect results
as the nonlinear effects of the highly nonlinear fiber (HNLF) depend nontrivially on the
input dispersion. As such, the dispersion after the HNLF is not trivially related to the
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D.3 Dispersion measurements

changes in the CFBG (in the sense of equation (2.5)).
The second attempt consisted of measuring the full spectral information of the optical

frequency comb (after the optical setup) for each originally used CFBG setting. This
data is then used for simulating the resulting efficiency ηCW. The comparison between
the measured data and the simulated efficiencies can be seen in figure D.3. Note that the
efficiencies have been scaled to the units of the Raman Rabi rate to match the maximum
value of the data.

While the second approach takes the nonlinear effects in the HNLF into account, the two
measurements (Raman Rabi rates and the full spectral information) were taken months
apart. The dispersion coefficients of the CFBG are influenced by thermal drifts, especially
when not directly controlled via software. Due to these drifts, the original settings used to
measure the Raman Rabi rates were not reproducible when measuring the full spectral
data for each CFBG software setting. These drifts influence all dispersion parameters:
group delay dispersion, third-order dispersion, and fourth-order dispersion. To be able to
explain the Raman Rabi rate data, we would have had to have measured the full spectral
information of the comb directly after each Raman Rabi rate measurement.
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