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Abstract
This thesis reports on various experiments to fully characterize and manipulate the wave-function -
regarding both internal (electronic) and external (motional) degrees of freedom - of a single Barium ion
stored in a Paul trap. The ion is laser-cooled and -excited by two fields at 493 nm and 650 nm driving
the 6 2S1/2 to 6 2P1/2 and 6 2P1/2 to 5 2D3/2 respectively confining the ion within ∼35 nm. Scattered
photons at the wavelength of 493 nm are observed perpendicular to the laser excitation direction
and sent to a Hanbury-Brown and Twiss setup consisting of a 50/50 beam splitter and two photo-
multipliers in the individual output-channels. The photocurrent contains all the information about
the electronic and motional degrees of freedom of the ion and is investigated in both the frequency
domain and in the time domain by measuring correlations between the output ports (second order or
"intensity" correlation function).

The basic physical phenomenon underlying all presented experiments is the self-interference of single
fluorescence photons in a self-homodyne configuration. A part of the fluorescence is collected with
a lens inside the vacuum, collimated and sent to a mirror placed outside the vacuum chamber (the
"distant" mirror). The back-reflected light creates a mirror image of the ion which is superimposed
with the ion yielding interference of individual fluorescence photons.

The high spatial resolution of the interference on the one hand allows to monitor the motion of
the ion in the trapping potential: A moving ion modulates the observed resonance fluorescence and a
sideband at the motional frequency appears in the spectrum of the photo-current (motional sidebands).
This information can be used to apply electronic feedback. Experiments are demonstrated, where this
feedback provides cooling below the Doppler limit.

An analysis of the photo-current in the time-domain indeed reveals this motional sidebands as well.
They appear as a modulation of the second order correlation function for times on the order of µs.
It is shown, that the stability of the trap and the motional frequencies are deduced. For short times,
on the order of ns these measurements furthermore exhibit the internal dynamics of the ion (i.e. the
emission properties or "Anti-bunching").

On the other hand the effect of the self-interference allows to perform cavity quantum electro
dynamics (QED) measurements - in a bad cavity regime. Measurements are presented, where the
relative position of the ion in the interference pattern strongly influences the detection probability of
a second photon after a first one. The investigation is carried out in the non-Markovian regime where
time-delay effects are not negligible. These measurements are the first ones to study cavity QED in
this regime.

In the last chapter an experiment is shown, where a single Barium is transformed into a pseudo
two-photon source of almost identical photon pairs. Fluorescence photons are sent to beam-splitter,
coupled into fibers and recombined on a 50/50 beam splitter to perform a two-photon interference
experiment. The degree of indistinguishability of the photons is measured to be 83%.

The thesis also reports on the implementation of a new photo-ionization scheme for Barium making
use of a resonant two-photon absorption process at a wavelength of 413 nm. Furthermore, the design,
construction, integration and operation of a new linear ion trap for Barium is described.
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Zusammenfassung
In dieser Arbeit wird von verschiedenen Experimenten zur Charakterisierung und Manipulation der
Wellenfunktion eines in einer Paul-falle gespeicherten Barium Ions berichtet. Dabei werden sowohl
interne (elektronische), als auch externe (Bewegungs-) Freiheitsgrade untersucht. Das Ion wird in
der Paul-Falle mit Hilfe zweier Laser bei 493 nm (6 2S1/2 nach 6 2P1/2) und 650 nm (6 2P1/2 nach
5 2D3/2) bis nahe an den quantenmechanischen Bewegungsgrundzustand gekühlt und auf ca. 35 nm
lokalisiert. Gestreute Photonen bei 493 nm werden im rechten Winkel zur Laserausbreitungsrichtung
aufgesammelt und werden an einen Hanbury-Brown und Twiss Detektor geleitet. Dieser besteht aus
einem 50/50 Strahlteiler und zwei Photonenzählern in dessen Ausgangskanälen. Der gemessene Pho-
tostrom trägt die gesamte Information über die elektronischen und die Bewegungszustände des Ions,
die Analyse erfolgt sowohl im Frequenzraum als auch zeitaufgelöst durch die Messung von Korrela-
tionsfunktionen, speziell die Korrelationsfunktion zweiter Ordnung ("Intensitäts"-korrelation).

Das wichtigste physikalische Phenomen das allen präsentierten Experimenten zu Grunde liegt, ist
die Selbstinterferenz einzelner Fluoreszenz-Photonen. Realisiert wird dies durch eine Rückreflexion von
Photonen, die von einer Linse innerhalb der Vakuumkammer aufgesammelt werden. Ein kollimierter
Strahl aus Fluoreszenz-Photonen wird an einem Spiegel ausserhalb der Kammer zurückreflektiert. Als
Folge entsteht ein Spiegelbild des Ions, dass mit dem eigentlichen Spiegelbild überlagert wird, um
Eigen-Interferenz einzelner Photonen zu erzeugen.

Die hohe räumliche Auflösung des Interferenzmusters erlaubt es einerseits die Bewegung des Ions im
Fallenpotential sichtbar zu machen: Durch die Oszillation wird die Resonanzfluoreszenz exakt bei der
Oszillationsfrequenz moduliert. Eine Spektralanalyse des Photostroms zeigt sogenannte Bewegungs-
bänder als Spitzen bei der Oszillationsfrequenz. Dadurch liegt die Bewegung des Ions als elektronisches
Signal vor, das nach Signalbearbeitung auf das Ion zurückgekoppelt werden kann. Es werden Exper-
imente gezeigt, in denen man mit Hilfe solcher Rückkopplungen eine zusätzliche, rein elektronische
Kühlung unter das Doppler Limit für das Ion erzeugen kann. In einer zeitlich aufgelösten Analyse
des Photostromes können die Bewegungsbänder auch als Modulation der Korrelationsfunktion zweiter
Ordnung auf einer Zeitskala von µs beobachtet werden. Diese Messungen werden herangezogen, um
die Stabilität des Fallenpotentials zu bestimmen. Zusätzlich kann man auf kurzen Zeitskalen von ns
auch die interne Dynamik des Ions beobachten.

Andererseits können mit Hilfe der Selbst-interferenz auch Experimente zur Resonator Quanten-
Elektrodynamik ("cavity QED") durchgeführt werden, wobei die Güte des Resonators natürlich sehr
klein ist. Es werden Messungen basierend auf der Intensitäts-Korrelationsfunktion gezeigt, in denen
die relative Position des Ions in der Stehwelle der Selbst-Interferenz die Emissionswahrscheilichkeit
von Photonen stark beeinflusst. Die Untersuchungen werden unter nicht- Markov’schen Bedingungen
durchgeführt, also Bedingungen, bei denen Retardierungseffekte nicht vernachlässigt werden können.
Erreicht wird dies durch eine entsprechend grosse Entfernung des rückreflektierenden Spiegels. Unter-
suchungen von "cavity QED" in diesem Regime werden hier zum ersten Male gezeigt.

Im letzten Kapitel wird ein Experiment beschrieben, bei dem aus einem einzelnes Barium Ion - eine
Einzelphotonenquelle - eine Pseudo Zwei-Photonenquelle identischer Photonen erzeugt wird. Dazu
wird die Fluoreszenz an einem Strahlteiler separiert und an einem 50/50 Strahlteiler wieder überlagert,
um den Effekt der Zwei-Photonen Interferenz zu messen. Dadurch kann die Ununterscheidbarkeit
dieser Photonen mit einem Kontrast von 83% bestimmt.

Zusätzlich zeigt diese Arbeit eine neue Methode zur Photo-ionisation von Barium mit Hilfe eines
resonanten Zwei-photonen Prozess bei einer Wellenlänge von 413 nm. Weiters wird auch das De-
sign, der Aufbau, die Integration und die Arbeitsweise einer neuen, linearen Falle für Barium Ionen
beschrieben.

iii



iv



Contents

1 Introduction 1

2 Paul traps 7
2.1 The operating principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Ring Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The linear Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Ion crystals in a linear trap and equilibrium postions . . . . . . 12
2.3.2 Normal modes of oscillation . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Stability of normal modes . . . . . . . . . . . . . . . . . . . . . 14

3 Light-matter interaction 15
3.1 The Barium ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Excitation spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Three-level system . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Eight-level system . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Second order correlation function for a single ion: Antibunching 26

3.5 Resonance Fluorescence: Spectrum . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Spectrum of an atom at rest . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Spectrum including motional sidebands . . . . . . . . . . . . . . 30
3.5.3 Measurement of the spectrum in a "Self-homodyne" setup . . . 31

4 General Experimental Setup 37
4.1 The old setup: A summary . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The new linear trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Design parameters . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Vacuum vessel, optical access and magnetic field . . . . . . . . . 42

4.3 Combined Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Laserfields and light distribution . . . . . . . . . . . . . . . . . . 47
4.3.3 Counting electronics . . . . . . . . . . . . . . . . . . . . . . . . 49

v



5 Trap operation 51
5.1 Photo-Ionization procedure . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Micromotion compensation . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Excitation spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Self-Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Measurement of the radial sidebands . . . . . . . . . . . . . . . . . . . 60

6 Quantum feedback cooling 63
6.1 Quantum mechanical model: A summary . . . . . . . . . . . . . . . . . 64

6.1.1 Homodyne current . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.3 Energy vs. gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 The semiclassical model . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.1 The single ion harmonic oscillator and Doppler cooling . . . . . 67
6.2.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3 In-loop and Out-loop spectra of motion . . . . . . . . . . . . . . 70

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Feedback electronics . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.3 Sideband detection . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.4 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.5 Motional energy and comparison of the models . . . . . . . . . . 80

7 Time-resolved measurements of motional sidebands 85
7.1 The experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Photon correlations vs. interference of single-atom fluorescence in a half
cavity 91
8.1 The experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Quantum interference from photons emitted by a single ion 99
9.1 Quantum description of a beam splitter . . . . . . . . . . . . . . . . . . 100

9.1.1 Input and Output states . . . . . . . . . . . . . . . . . . . . . . 101
9.1.2 Hong-Ou-Mandel (HOM) Dip . . . . . . . . . . . . . . . . . . . 102
9.1.3 Evaluation of the coincidence counts/rate . . . . . . . . . . . . . 103
9.1.4 A classical light field . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 A single-ion two-photon source . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



9.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2.4 A comparison to parametric down conversion . . . . . . . . . . 110

10 Summary and conclusion 111

Bibliography 113

vii



viii



1 Introduction

From the beginning of natural science, the understanding of the interaction between
matter and light was one of the most challenging problems. In particular the under-
standing of the nature of light constantly played a dominant role and was also the
starting point for the development of quantum theory.

Already Descartes (1596-1650) was dealing with the nature of light and suggested
light to be a "pressure transmitted through a perfectly elastic medium" [1]. Throughout
the following centuries, the wave-theory of light carried by an elastic "aether" medium
whose particle follow classical mechanics was the commonly accepted interpretation of
light. Despite the inadequate understanding of light, many problems of optics were
discovered during that time, such as the law of reflection in 1621 by Snell (1580-1626),
the principle of the least time for light propagation in 1657 by Fermat (1601-1665) or the
observation of the Newton rings by Boyle (1627-1691) and Hooke (1635-1703). Sir Isaac
Newton (1642-1727) contributed to the understanding of the spectral composition of
white light in 1666 and the understanding of the phenomenon "color". But Newton was
one of the first to recognize experiments supporting a purely corpuscular theory of light.
Huygens’ (1629-1695) principle of elementary waves and the double-slit experiments
performed in 1801 by Young (1773-1829) moreover made their contribution to the
general acceptance of the wave-nature of light. It was up to MacCullagh, Faraday
(1791-1867) and Maxwell (1831-1879) to develop concepts predicting the possibility of
purely electromagnetic, propagating waves, without the necessity of a carrier medium,
in contradiction to the aether theory. Following measurements, e.g. by Hertz (1857-
1894), proved light to be an electromagnetic wave. But still, even with this new theory,
in particular effects of light-matter interaction such as absorption and emission of light
could not be explained sufficiently. To this end, initiated by Fraunhofer’s (1787-1826)
discovery of the absorption lines in the sunlight, the advent of spectroscopy as a new
scientific discipline, played (and still plays) a crucial role for investigations of the atomic
structure and light-matter interaction.

But even the experimental analysis could not answer the question of how light is
produced and destroyed. Based on Planck’s (1858-1947) introduction of energy quanta
in 1900, the origin of quantum theory, Niels Bohr’s (1885-1962) model of the atom
could reproduce atomic spectra and thus provide an interpretation of the origin of light
emission. On the other hand, Einstein interpreted Planck’s energy quanta in 1905 as
real light particles (the "photons") and reintroduced the concept of the particle na-
ture of light. The concept was experimentally proved by the photo-electric effect, for
which Einstein became a Nobel-laureate in 1921, and by the Compton-effect in 1923.

1



1 Introduction

From that point on, the interpretation of light as a wave and as a particle became
more and more accepted. It was up to the famous scientists of that decades to develop
this concept and formulate it in the frame of quantum mechanics, starting with de
Broglie (1892-1987) who suggested in his doctoral thesis in 1924 to apply the wave-
nature to matter as well, followed by the Pauli (1869-1955) exclusion principle in 1925.
Schrödinger (1867-1961) developed his wave-mechanics to describe the behavior of the
particle wavefunction and Born (1882-1970) and Bohr formulated their interpretation
of that results in 1927 (Copenhagen interpretation). In the same year Heisenberg (1901-
1976) presented the uncertainty principle. Finally, Paul Dirac (1902-1984) introduced
the Bra-Ket notation and the formalism for field quantization of electromagnetic radi-
ation, the foundations of quantum optics. The developments of that decades opened
an entire new era in physics.

A very big step for the overwhelming success of quantum optics was the invention of
the laser. Based on an analysis of the exchange of energy between atoms and thermal
radiation, Einstein already discovered the effect of stimulated emission in 1917. It took
around 40 years until the concept of light amplification by stimulated emission radiation
was realized with a ruby laser by Theodore Maiman in 1960. A lot of disciplines
and techniques such as laser-spectroscopy or laser-cooling were born, taking benefit
from the advantageous properties of laser light, the most important one being the
laser’s optical coherence. Up to that time, only Hanbury Brown and Twiss dedicated
their research to optical coherence by analyzing stelar light in two-photon coincidence
counting experiments. The coherence and the spectral density of laser-fields made
them ideal instruments to investigate the wave-nature of light as well as light-matter
interaction in a very controlled way. Rapid technical progress provided several types of
laser-sources based on gas-mixtures, dyes, solid states or semiconductors covering the
entire spectral range from Infra-red to deep Ultra-violet.

Almost at the same time of the invention of the laser concepts for isolating single
to a few particles were worked out. Erwin Schrödinger was claiming in 1952 "... we
never experiment with just one electron or atom or (small) molecule ...". But already
one year later W. Paul invented the quadrupolar mass-filter [2]. A modification of
this device became the famous Paul trap (or "high-frequency cage") for ions [3], which
should allow to store charged particles over a long time.

Almost 20 years later Wineland and Dehmelt proposed schemes for cooling trapped
particles [4] with the aid of laser light, before Wineland, Drullinger and Walls [5]
together with Neuhauser et al. [6] were the first to report on trapping of single, laser-
cooled particles in 1978 (Magnesium and Barium ions). From that time on, laser-cooled
ions in a Paul trap became almost ideal systems to study fundamental properties of
quantum physics, in particular the atomic structure or quantum-mechanical properties
of the emitted light, as well as for investigating new frequency-standards. In the 90’s on
a new realm of quantum optics with trapped ions was initiated by a letter from Cirac
and Zoller [7], the field of quantum information processing or quantum computation
(with ions) grow. Ions, and also other well isolated systems, are thereby carrying
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quantum bits, which are mostly realized by meta-stable internal states. Information
writing and read-out is done with a narrow-band laser source.

While nowadays many groups world-wide are working in the field of quantum infor-
mation processing with the goal of building a "quantum computer", the experiments
described in this thesis are still dedicated to the fundamentals of quantum optics, in
particular to the interaction of light and matter at the quantum scale, i.e. single-atom
single-photon interaction. In recent years, this field became increasingly important
since light-matter interfaces are the most important building blocks of a quantum net-
work, a network where quantum states between distant sites [8,9] should be transferred.
In this context, single atoms/ions serve as ideal quantum memory, as static quantum
bits (qubits), whereas photons are ideal carriers of quantum information [10], so-called
flying qubits. To this end, recent key experiments studied various aspects of atom-
photon interfacing: The production of ideal photon pairs with atoms trapped in an
optical cavity [11], single photon emission from a single-atom cavity system [12], en-
tanglement of a emitted photon with a collective excitation in atomic ensembles [13,14]
or real-time conditional control through a photonic channel of two distant atomic en-
sembles [15]. While atomic ensembles and atom-cavity systems usually don’t pro-
vide optimal conditions for quantum information processing, it turned out, that single
trapped ions are ideal candidates for static qubits in quantum networks offering prop-
erties such as long coherence times, long storage times, flexible state manipulation [16]
and analysis schemes. A first milestone towards the interfacing of trapped ions and
photons has been demonstrated by entangling the state of fluorescence photons and
the internal state of a trapped ion [17,18]. Very recently, entanglement of single-atom
quantum bits at a distance was shown [22].

It is thus the full characterization and control of the quantum state of a trapped
ion, which allows one to observe the dynamics of the light-matter interaction at a
quantum scale. In particular, the internal dynamics, i.e. the time-evolution of the
atomic dipole, of a laser-driven single ion gives information about the interaction. It is
well characterized by the statistical description of the measured stream of fluorescence
photons, namely by the second order correlation function g(2)(τ) [23]. It describes
the probability of detecting a photon at time τ after detecting one at time τ=0. This
intensity-intensity correlation function allows one to classify different types of light:
For a single atom trapped in free space, a so-called anti-bunching is observed [24, 25].
The correlation function g(2)(τ) exhibits a minimum at τ = 0 which indicates that
the emission of a second photon immediately after the first one is very unlikely. This
describes that a photon emission event projects the ion into the ground state from where
it has to be re-excited. Anti-bunching can not be explained by classical physics and
thus defines non-classical light. By contrast, for a large ensemble of atoms the emitted
radiation exhibits classical bunching [26]. This effect can for instance be observed in a
thermal light beam.

The second order correlation function can also be used to monitor the oscillations
of an ion in the Paul-trap potential. They appear as modulations in the correlation
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function at long time delays τ , which quantify the so-called motional or external
states.

Another approach to quantify and control the quantum state of a system are feed-
back operations, which control the state of the system by applying a signal derived
from a measurement. In the case of a quantum control, a detection, signal processing
and actuation are performed by another quantum system [27], while in conventional
cases of feedback, all steps are basically classic.

In this thesis experiments are described pertaining to two categories of measurements:
quantum feedback and correlation measurements of resonance fluorescence. Regardless
of the experimental necessities the investigations are concerned with essentially three
basic components: A single ion, a single photon and a single mirror. The basic
phenomenon underlying all measurements presented here is the self-interference of
single fluorescence photons.

At the heart of the experiment is a single Barium ion stored in a Paul trap, laser-
cooled by two fields at 493 nm and 650 nm and localized to within ∼35 nm. Its storage
time is on the order of days to weeks. The scattered light at the wavelength of the laser-
fields is investigated in either the time- or the frequency domain. It is this resonance
fluorescence that carries all the information about both the internal and the external
states of the atom and light-matter interaction. A part of the fluorescence is sent to
a mirror where it is back-reflected to the ion resulting in interference, more precisely,
in a self-interference of single fluorescence photons [28]. This phenomenon opened the
door to new experiments dealing with cavity quantum electro dynamics (QED) in the
bad cavity limit, i.e. the influence of the presence of the mirror on the internal states
of the ion are weak, but measurable [29]. Additionally, the high spatial resolution of
the interference standing wave enables one to measure the position of the ion and, as a
consequence, to deduce the motion of the ion following a homodyne detection scheme.
This technique was used to study the influence of the mirror on the external states of
the ion [30], i.e. the mechanical force the mirror "exerts" on the ion. Later, the photo-
current was used as a source for various types of feedback: Feedback to the oscillation
phase and to the oscillation amplitude of the ion, as will be reported in this work.

The thesis is structured as follows: Chapter 2 discusses the operation principle of a
generic Paul-trap focussing on different realizations, a ring-trap and a linear trap. Ion
strings, their stability and oscillation modes are discussed. The next chapter, Chapter 3,
summarizes the important theoretical tools such as the 8-level Bloch equations, compu-
tation of excitation spectra and the spectrum of resonance fluorescence. Furthermore,
the mathematical concept of correlation functions, their applications to physics and a
general discussion of classes of light is contained as well as the mathematical picture
for the self-interference and the measured photo-current in a homodyne configuration.

The two subsequent chapters describe the experimental setup. Chapter 4 is focussing
on the hardware consisting of two basically independent ion traps and three shared
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laser-systems. The first ion-trap, a ring trap, was already built in the late 90’s [31]
and is still fully operational. It is referred to as the "old setup". By contrast, the
"new setup" consists of a linear trap which was constructed and integrated during
the work for this thesis. The operation of both traps is described in ch. 5. Using the
installation and calibration measurements of the new trap system, the daily lab-routine
of an experiment-preparation is described.

The discussion of the various experiments start with ch. 6, a text-book experiment
for quantum feedback. The measurements described were reported in [32] and are pub-
lished in [33]. Based on the self-interference, the real-time observation of the ion motion
serves as a source for electronic feedback. Measurements leading to feedback cooling
as well as feedback heating of the ion are described and compared to both a quantum-
mechanical and a semi-classical model summarized/derived in the sub-sections before.

The following chapters are "correlation measurements of resonance fluorescence" in
various regimes and setups. Chapter 7 shows investigations of the correlation function
focussing on the external states of the ion. Essentially, studying modulations of the
correlation function gives information on the motion of the ion, the trap stability and
the phase-relation of normal modes. It is shown, that correlation measurements thus
reveal the dynamics of all degrees of freedom of the ion’s wave-function, on time-scales
from nano- to milli-seconds.

A quite similar setup is used for the experiment presented in Chapter 8. Second
order correlations of resonance fluorescence photons are measured for a big distance
between the ion and the mirror, on the order of one meter. The time delay introduced
by a photon round-trip is not negligible compared to the time-scales of the system and
prominent memory effects appear. These measurements are the first studies of cavity
QED in this regime and prove the theoretical predictions of Uwe Dorner and Peter
Zoller exclusively developed for this experiment [34].

Chapter 9 deals with the phenomenon of quantum interference. Two-photon inter-
ference of resonance fluorescence photons is performed by splitting the photon stream
into two channels, couple them to individual optical fibers and recombine them on a
50/50 beam splitter.

The results are summarized in Chapter 10 followed by a discussion for future prospects
of this experiment.
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2 Paul traps

A basic requirement for performing quantum optics experiments with a single atomic/
ionic system is the confinement of individual particles and suppression of unwanted
coupling to the environment. For charged particles, Paul-traps named after W. Paul
turned out to be ideal systems. All realizations of Paul-traps employ a combination
of static and dynamical potentials to confine particles via the coulomb interaction.
Most commonly used systems are ring traps or linear traps making use of quadrupolar
potentials allowing for long storage times of up to months.

The chapter first gives an introduction into ion trapping in a very general way fol-
lowed by a discussion of ring traps and linear traps, where ion strings and their prop-
erties are studied. Ion traps are extensively treated in [35], requirements for trapping
ions as subjects of quantum optics experiments are studied in [36]- [38]. A detailed
description of traps used in Innsbruck can be found in [31], [39]- [42] and [44].

2.1 The operating principle

Following Paul, a trap creates a quadrupolar potential which can be decomposed into
a static and a dynamical, time-dependent part:

Φ(x, y, z, t) =
U

2
(αxx

2 + αyy
2 + αzz

2)

+
Urf

2
cos(Ωrf t)(α′xx

2 + α′yy
2 + α′zz

2), (2.1)

where U is a D.C. voltage and Urf denotes the amplitude of the radio-frequency voltage
with Ωrf . The parameters α

(′)
i describe the geometry. The potential has to fulfill the

Laplace equation, ∆Φ = 0, leading to restrictions for the geometric factors

αx + αy + αz = 0

α′x + α′y + α′z = 0. (2.2)

From that it is obvious that a charged particle can only be trapped in all dimensions
by a superposition of static and dynamic potentials. The choice of the geometric
parameters allows one to describe different kinds of traps studied below.

The motion of a single charged particle in a quadrupolar potential is decoupled in
the spatial coordinates and the classical equation of motion is given by the Mathieu
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2 Paul traps

differential equation. In one direction ri (i = x, y, z) one finds

d2ri

dξ2
+ [ai − 2qi cos(2ξ)]ri = 0, (2.3)

where

ξ =
Ωrft

2
, ai =

4|e|Uαi

mΩ2
rf

, qi =
2|e|Urfα

′
i

mΩ2
rf

. (2.4)

The variables ai and qi are the stability parameters defining regions in the (ai,qi) space,
where stable solutions of the differential equations of motion exist. Stable solutions in
a mathematical sense are associated with stable trajectories of a charged particle in the
dynamical potential. In lowest-order approximation, (|ai|, q2

i ¿ 1), the ion trajectory
can be found as

ri(t) ∝ cos(ωit)
(
1− qi

2
cos(Ωrft)

)
, (2.5)

where

ωi = βi
Ωrf

2
, βi =

√
ai +

q2
i

2
. (2.6)

Thus the motion of the ion along one direction consists of two parts, one oscillating
at the frequency ωi ¿ Ωrf (for βi ¿ 1) called secular motion and one oscillation at
the driving frequency Ωrf with an amplitude reduced by a factor of qi/2 and therefore
calledmicromotion. In most of the experimental situations the micromotion part can be
neglected and the trajectory of the ion in all three dimensions is a harmonic oscillation
with frequencies ωi in a so-called pseudo-potential Ψ (secular approximation) with

eΨ =
1

2
m

∑
i

ω2
i r

2
i . (2.7)

The depth of the pseudo-potential well is determined by

Di =
1

2
mω2

i r
2
0,i , (2.8)

where r2
0,i is the electrode to trap-center distance. Typical well depths are on the order

of tens of eV, thus making loading from a thermal beam of atoms possible.
Trapped ions are typically confined at a final temperature given by the environment,

i.e. 300K. This "high" kinetic energy of the ion can be reduced by laser cooling.
A semiclassical discussion of this process can be found in [48]. Laser cooling benefits
from a net momentum transfer during absorption of photons with a directed momentum
and spontaneously emitted photons with random momentum direction. The process
is able to cool the motion such that their kinetic energy becomes comparable to ~ωi,
the motional energy quantum. For a quantum description one defines creation and
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o

Figure 2.1: Realizations of Paul traps: Left: A radiofrequency (RF) applied to a ring
with 2r0 diameter and two tips at a distance 2z0 held at ground potential
(GND) form a 3D dynamical confinement. Right: Four rods with a diagonal
spacing of 2r0 and a pairwise applied RF-voltage form a two-dimensional
dynamical potential along the z-axis. Two electrodes held at a static po-
tential of Ucap ’close’ the linear configuration in the z-direction.

annihilation operators (r̂i...position, p̂i...momentum) for the trapped ion [39]:

â†mi
=

√
mωi

2~
r̂i +

i√
2m~ωi

p̂i

âmi
=

√
mωi

2~
r̂i − i√

2m~ωi

p̂i (2.9)

The Hamiltonian of this system is

H =
∑

i

p2
i

2m
+

1

2
mω2

i r
2
i = ... =

∑
i

~ωi

(
â†mi

âmi
+

1

2

)

=
∑

i

~ωi

(
n̂i +

1

2

)
, (2.10)

where n̂i is the number operator of the harmonic oscillation in the trapping potential.
The spread of the wave function of the state with 〈n̂〉 = n is then given by

〈n|r̂i|n〉 1
2 = 〈0|r̂i|0〉 1

2

√
2n + 1 =

√
~

2mωi

√
2n + 1, (2.11)

with
√
~/(2mωi) being the spread of the ground state wave function. For a trapped

Barium ion with secular frequency of ωi/2π = 1MHz the ground state wave packet is
≈ 6nm, for n = 15 the ground state wave packet is ≈ 35 nm.
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Figure 2.2: Dynamical trapping potential in the ring trap from Eq. (2.12) for different
phases Ωrft = 0, π/3, 2π/3, π in a), b), c) and d). Note the stronger
confinement in the z direction.

2.2 The Ring Trap

One possible realization of a Paul trap is to use a ring with diameter 2r0 and two tips
along the z-axis with a distance of 2z0, typically on the order of millimeters. The left
panel in Fig. 2.1 shows such a configuration. Secular motion in the ring plane along the
x- and y-axis (z-axis) are called radial (axial) modes. For such a system the geometrical
parameters are [36] αx = α′x = αy = α′y = −2αz = −2α′z and αx = 2/(r2

0 + 2z2
0), thus

this configuration allows dynamical trapping in all three dimensions. For a choice of
U = 0, a merely dynamical trapping potential is obtained

Φ(x, y, z, t) =
Urf

r2
0 + 2z2

0

cos(Ωrf t)(x2 + y2 − 1

2
z2). (2.12)

The shape of such a potential is depicted in Fig. 2.2. For a given time t, the saddle-
potential confines the ion in one direction, e.g. in the x-direction in panel a). In panel
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2.3 The linear Trap

d) the confinement is just in the z-direction. For a saddle-potential whose oscillating
frequency is "fast enough", the ion is kept in an effective pseudo-potential as described
above. "Fast enough" in this respect is described by proper stability parameters in-
cluding the mass, charge, the geometry of the trap and the radio-frequency properties.
For the choice of U = 0, ai = 0 and

qx = qy =
2|e|Urf

m(r2
0 + 2z2

0)Ω
2
rf

qz = −2qx (2.13)

βx = βy =
1√
2

qx βz =
1√
2

qz = − 2√
2

qx . (2.14)

In the lowest stability region defined by 0 < q . 0.9, a charged particle oscillates along
the x, y and z axis with frequencies

ωx = ωy =
qxΩrf

2
√

2
ωz =

|qz|Ωrf

2
√

2
=

qxΩrf√
2

. (2.15)

For typical values of q ∼ 0.3, the radial oscillation frequencies are ωx = ωy ≈ 10% Ωrf ,
the axial frequency are ωz ≈ 20% Ωrf .

Since ai is vanishing for U = 0, the radial oscillation frequencies are degenerate. How-
ever, experiments mostly show slightly different frequencies of the two radial modes,
which is due to geometrical imperfections of the trap. A frequency measurement can
quantify this effect.

2.3 The linear Trap

Another possible realization is an electrode configuration displayed in the right panel of
Fig. 2.2. It consists of 4 rods, where one diagonal pair is connected to a DC-potential,
mostly to ground-potential, and the second pair to a radio-frequency source. Two
endcaps close the potential at the end of this linear configuration with the aid of DC
potentials (Ucap). The confinement is thus realized with a dynamical potential in the
two radial directions x and y and with a static potential in the axial direction z. The
geometry parameters fulfill [36] α′x = −α′y and α′z = 0 yielding a potential

Φ(x, y, z, t) =
Urf

r2
0

cos(Ωrf t)(x2 − y2), (2.16)

where U = 0 as before and 2r0 is the distance between two diagonal electrodes. The
potential parameters are

qx = −qy =
2|e|Urf

mr2
0Ω

2
rf

qz = 0 (2.17)

βx = −βy =
qx√
2

βz = 0. (2.18)
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The secular motion in the radial direction reads

ωx = ωy =
qxΩrf

2
√

2
, (2.19)

as before. In the axial direction z the ion is confined by applying a voltage Ucap to the
endcaps. A harmonic potential is assumed following

1

2
mω2

zz
2
0 = κeUcap, (2.20)

where z0 is the half distance between the end caps and κ is a geometry factor describing
the penetration of the field at the trap center. The axial motion thus is

ωz =

√
2κeUcap

mz2
0

, (2.21)

and is independent of the confinement in the radial direction. The pseudo potential,
however, is slightly weakened by the defocusing effect of the axial confinement, such
that the radial frequencies are modified:

ωx,y → ω′x,y =

√
ω2

x,y −
1

2
ω2

z . (2.22)

Anyway, this effect is usually on the order of some percent and can be neglected for
the experiments performed in this work.

2.3.1 Ion crystals in a linear trap and equilibrium postions

The linear trap configuration is in particular advantageous for storing more than one
ion without exhibiting additional micro-motion. Detailed studies of ion strings in linear
Paul traps can be found in in [37], [46] and [47]. For a radial confinement stronger than
the axial confinement, the ions are forming linear strings. In such a case the ions
"see" the axial harmonic potential and the repulsive coulomb potential of other ions.
Denoting the equilibrium positions of the ions with zm and zn one obtains [37]

Ψ′ =
N∑

m=1

m

2
ω2

zz
2
m +

N∑

n,m=1,n6=m

e2

8πε0

1

|zm − zn| . (2.23)

The N ions arrange themselves at equilibrium positions z
(0)
m , where the potential has

its minimum, i.e. [
∂Ψ′

∂zm

]

zm=z
(0)
m

= 0, (2.24)
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axial modes radial modes

comcom

stretch rocking

zig zagegyptian

Figure 2.3: Oscillation modes of a three ion crystal in axial and radial direction. The
principal mode is the center-of-mass mode (COM).

This equation can be solved analytically for N = 2 and N = 3, for higher N numerically.
Setting the trap center at z = 0, the equilibrium postions of N ions are

N = 2 : −
(

1

2

)2/3

l

(
1

2

)2/3

l

N = 3 : −
(

5

4

)1/3

l 0

(
5

4

)1/3

l (2.25)

N = 4 : − 1.44 l − 0.45 l 0.45 l 1.44 l

where

l =

(
e2

4πε0Mω2
z

)(1/3)

(2.26)

is the characteristic length of the trap. For typical values of ωz = 2π · 1MHz and using
Barium atoms l ∼ 2.9 µm yielding an ion distance of ∆z = 3.7 µm for N = 2 and
∆z = 3.2 µm for N = 3 ions.

2.3.2 Normal modes of oscillation

The individual ions in a crystal oscillate about their equilibrium positions

zm(t) = zm(0) + qm(t). (2.27)

The oscillations take place in the radial and the axial direction and are shared by all
ions since the Coulomb interaction provides a coupling among them. They are called
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2 Paul traps

common modes or also bus-modes for quantum computation purposes. The system
behaves similar to masses coupled by springs, where either the center-of-mass is oscil-
lating, but the relative distance of the ions stays constant (center-of-mass mode, COM)
or vice versa (breathing or rocking mode). Additionally, there exists an intermediate
oscillation scheme called axial egyptian and radial zig zag mode. Figure 2.3 gives an
overview of the different oscillation types. The oscillation frequencies of the center-of-
mass modes are in both the radial and the axial directions identical to the single ion
frequencies shown above1. Extensive studies of other oscillations in linear traps can for
instance be found in [41,42].

2.3.3 Stability of normal modes

The ions just form a linear string, if the radial confinement is much stronger than the
axial. If this condition is violated a linear-to-zig-zag phase transition in the ionic crystal
takes place. Indeed, micro-motion and thus excessive heating appears and disturbs ideal
measurement conditions. From Ref. [45] and [46] one finds

(
ωz

ωx,y

)2

crit

= αNβ, (2.28)

where α = 2.53 and β = −1.73 are determined using simulations [45]. This formula is
valid for ion numbers N up to 1000 and can be used to estimate the axial frequency
while observing the phase transition, such that

ωz =
√

αNβ ωx,y. (2.29)

For instance, for a measured radial frequency of ωx,y/2π=1 MHz of a crystal with three
ions, a phase-transition takes place at at an axial frequency of ωx,y/2π ≈ 620 kHz, for a
5 ion crystal at ωx,y/2π ≈ 400 kHz. Note that the experiments (simulations) performed
in Ref. [46] yield α = 3.23 +0.06

−0.2 (2.94± 0.07) and β = −1.83± 0.04 (−1.80± 0.01).

1This approximation does not hold for very large ion numbers N > 10, where the oscillation frequency
depends on the number of ions.
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3 Light-matter interaction

3.1 The Barium ion

Neutral Barium (Gr. barys, heavy) is a soft and metallic element which belongs to
the earth alkaline group. It oxidizes very easily and is only found in combination with
other elements. It is used as a getter in vacuum tubes. Besides the 7 stable isotopes
listed in table 3.1 39 radioactive isotopes and isomers are known to exist.

The single ionized Barium, especially 138Ba+, played an important role in the history
of ion trap experiments. It was one of the first atomic ions trapped and observed.
Several properties of Barium 138 make this element suitable for ion trapping: The
electron configuration is the one of Xenon with an additional electron in the 62S1/2

state yielding an alkaline-like level-scheme. Additionally, due to the vanishing nuclear
spin, I = 0, the level scheme does not exhibit any hyperfine splitting. While not all
wavelengths for addressing the five lowest lying levels (Fig. 3.1) are easy to produce,
the relevant electronic transitions for an efficient laser-cooling are in the visible range
(see Fig. 3.2), thus easy to handle and to detect. The three relevant levels form a
Λ configuration depicted in Fig. 3.2 a). Furthermore, the weight of Barium makes
it resistant to background collisions in a vacuum environment and allows for longer
storage times.

The generic three-level system is converted into an effective 8-level system when a
weak magnetic field is applied. The electronic states split up according to the Zeeman
effect and the level schemes become more involved. In all measurements presented in
this work, a geometrical configuration was used, where the polarization (linear) and
the propagation direction is perpendicular to the magnetic field axis.

In the following, a summary of the formalism of the optical Bloch equations is given
to be able to make predictions for the photon emission properties and statistics of a
laser driven single Barium ion.

Isotope 130Ba 132Ba 134Ba 135Ba 136Ba 137Ba 138Ba
nuclear spin I in ~ 0 0 0 3/2 0 3/2 0
abundance in % 0.1 0.1 2.4 6.6 7.3 11.3 71.7

Table 3.1: Stable Barium isotopes and their natural abundance [49,50].

15



3 Light-matter interaction
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Figure 3.1: Scheme of the lowest atomic levels in 138Ba+. Wavelengths are given in
nano-meters [50].
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Figure 3.2: Relevant levels and transition wavelengths for Ba+. Figure a) defines the
notation used for the Bloch equations. A weak magnetic field B lifts the
energetic degeneracy of the Zeeman substates and thus creates an 8 level
system depicted in Fig. b). Possible transitions are shown for a linear
polarization of the light field perpendicular to the magnetic field applied.

transition λair [nm] Γnat [MHz] A [108 s−1]
62S1/2 ←→ 62P1/2 493.4007 15.1 0.953
62P1/2 ←→ 52D3/2 649.898 5.3 0.310

Table 3.2: The relevant transitions in the Barium ion, the transition wavelengths, nat-
ural linewidths and the Einstein coefficients [50].
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3.2 The Bloch equations

3.2 The Bloch equations

The source for all experiments described in this thesis is the radiation emitted by a
laser-excited ion. Thus, in the following chapter a description of the interaction of
an atom and two laserfields in terms of the Bloch equations is given. For clarity the
dynamics of a three-level system is studied before extending the model to the realistic
eight-level system. Figure 3.2 is illustrating the notations used. A general analysis of
this problem can for instance be found in [23] or in [51], while an analysis applied to
Barium ions is found in [52].

The Hamiltonian: Atom, light field and dipole interaction

The complete Hamiltonian of this system consists of three parts describing the atom,
the field and the interaction between them:

Ĥ = Ĥatom + Ĥfield + Ĥint. (3.1)

The atomic Hamiltonian fulfills the equation

Ĥatom|a〉 = ~ωa|a〉, (3.2)

where |a〉 are the atomic eigenvectors denoted with a = 1, 2, 3 for a three-level sys-
tem (62S1/2, 62P1/2 and 52D3/2 in the case of the Ba+) and ωa are the atomic Bohr
frequencies. Ĥatom then reads

Ĥatom =
3∑

a=1

|a〉〈a|~ωa (3.3)

and can be written in a matrix representation with respect to the basis a = 1, 2, 3 →
(1, 0, 0), (0, 1, 0) and (0, 0, 1) leading to

Ĥatom = ~




ω1 0 0
0 ω2 0
0 0 ω3


 . (3.4)

The zero point of the energy is chosen at the level |2〉 which modifies the Hamiltonian
to:

Ĥatom = ~




ω1 − ω2 0 0
0 0 0
0 0 ω3 − ω2


 . (3.5)

The atom is coupled to two laser fields at 493 nm and 650 nm driving the |1〉 to
|2〉 and |3〉 to |2〉 transitions, respectively. The laser field is described as a classical
monochromatic wave,
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3 Light-matter interaction

~Eg(t) = < (Eg0 e−iωgt) · ~εg, ~Er(t) = < (Er0 e−iωrt) · ~εr. (3.6)

Here, the index g describes the laser field at 493 nm (green) and r describes the tran-
sition at 650 nm (red). Eg0 is the amplitude, ~εg the polarization vector and ωg the
angular frequency.

In the following it is assumed that the laser fields only interact with the electric
dipole moment of the atom (dipole approximation), higher order electric or magnetic
moments are neglected. The interaction Hamiltonian under this assumption reads

Ĥint = − ~D · ~E, (3.7)

where ~D represents the atomic dipole operator. Since the transition from state |1〉 to |3〉
is dipole forbidden the state |3〉 is assumed to be stable and the atom-laser interaction
can be written in the matrix representation

Ĥint = ~




0 Ωg

2
e+iωgt 0

Ωg

2
e−iωgt 0 Ωr

2
e−iωrt

0 Ωr

2
e+iωrt 0


 , (3.8)

where
~Ωg := ~εg · ~Dg · E0g ~Ωr := ~εr · ~Dr · E0r. (3.9)

The frequency Ωg(r) are the Rabi frequencies and describe the coupling strength between
the atom and the field. For simplicity the Rabi frequency can be expressed in terms of
the saturation parameters Si,

Sg =
Ωg

Γg

Sr =
Ωr

Γr

. (3.10)

Finally, the complete "coherent Hamiltonian" in matrix representation reads:

Ĥ = ~




ω1 − ω2
Ωg

2
e+iωgt 0

Ωg

2
e−iωgt 0 Ωr

2
e−iωrt

0 Ωr

2
e+iωrt ω3 − ω2


 . (3.11)

Applying a unitary transformation is changing into a frame rotating at the laser
frequencies. In the matrix representation the transformation reads:

U =




e−iωgt 0 0
0 1 0
0 0 e−iωrt


 . (3.12)

Performing the transformation modifies the Hamiltonian resulting in a final and sim-
plified Hamiltonian for the three-level system coupled to two laser fields

Ĥ′ =




∆g
Ωg

2
0

Ωg

2
0 Ωr

2

0 Ωr

2
∆r


 , (3.13)
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3.2 The Bloch equations

where the abbreviations are introduced according to the atomic Bohr frequencies:

∆g = ωg − (ω2 − ω1), ∆r = ωr − (ω2 − ω3). (3.14)

Density operator formalism, spontaneous decay

Up to now, spontaneous decay of the state |2〉 or other decoherent effects were not
considered. Since the system is no longer in a pure state, the density matrix formalism
is used. The atomic density operator in the basis |a〉 reads

ρ̂ =
∑

a,b=1,2,3

ρa,b|a〉〈b|. (3.15)

Diagonal elements of the density operator (ρ̂ii...i = 1, 2, 3) are the expectation values
for finding the ion in one of the states (occupation probability) and thus Trace(ρ̂) = 1.
The off-diagonal elements describe coherences, i.e. superpositions of quantum states.

The dynamics of the system is described by the equation of motion for the density
operator, i.e. the Master (Liouville) equation. Dissipative processes, such as spon-
tanous decay or finite laser linewidths, have to be described as a coupling to reservoirs,
the system transforms into an open system. However, it can be shown, that the master-
eqution in Lindblad-form is the trace-preserving description for dissipative systems and
reads

dρ′

dt
= − i

~
[H′, ρ′] + Ldamp(ρ). (3.16)

where the density matrix is written in the rotating frame. The second term in this
equation describes all possible damping terms and reads

Ldamp(ρ) = −1

2

∑
m

[Ĉ†
mĈmρ + ρĈ†

mCm − 2ĈmρĈ†
m]. (3.17)

For a three-level atom, the Ldamp(ρ) - term describes the damping introduced by spon-
taneous emission as a rate times a projector for the transition, i.e.

Ĉg =
√

Γg|1〉〈2| Ĉr =
√

Γr|3〉〈2|, (3.18)

and the finite laser linewidth introduced by the operators:

Ĉlg =
√

δlg|1〉〈1| Ĉlr =
√

δlr|3〉〈3|, (3.19)

where δlg and δlr describes the laser linewidths of the green and the red laser respec-
tively. In summary, the Ĉm operators allow one to include all incoherent processes like
spontaneous emission and finite laser linewidths.
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3 Light-matter interaction

Bloch equations

The final Hamiltonian, the density operator ρ′ and the damping terms1 Ldamp can now
be inserted into Eq. (3.16). Matrix multiplication leads to a set of linear equations
(the optical Bloch equations) of the form

−̇→ρi =
∑

j

Mij
−→ρi , (3.20)

where the density operator is transformed into a vector

−→ρ = (ρ11, ρ12, ..., ρ87, ρ88). (3.21)

This system of linear equations has a unique solution,

−→ρ (t) = exp(Mt)−→ρ (0), (3.22)

where −→ρ (0) describes the initial condition, e.g. the atom is in the groundstate at
t = 0 → ρ11(0) = 1, ρ22(0) = 0, and ρ33(0) = 0. Here a normalization is introduced,
such that the sum of occupation probabilities equals one for all times, i.e.

∑
i

= ρii = 1 ∀t. (3.23)

Moreover, for deriving excitation spectra only the steady state solution is of interest,
where ρ(∞) = const and ρ̇ = 0. For the solution one of the Bloch equations is replaced
due to the normalization condition (3.23) and the system of equations

0 =
∑

j

Mij
−→ρi , (3.24)

can be solved by diagonalizing the Matrix on the right side numerically (or analytically
in certain cases).

3.3 Excitation spectroscopy

3.3.1 Three-level system

Excitation spectroscopy is performed by recording fluorescence photons as a function
of the detuning of one cooling laser. With the three-level system given in Fig. 3.2 a)
the excited state |2〉 decays either into the ground state |1〉 associated with an emission
of a green photon at 493 nm or into the metastable state |3〉 together with an emission

1The damping terms remain unchanged under the transformation.
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3.3 Excitation spectroscopy

of a red photon at 650 nm. The total rate of photon emission, Ntot, is proportional to
the population of the excited state ρ22, such that

Ntot = Γg ρ22 + Γr ρ22. (3.25)

In a photon counting experiment different filters select the desired photon wavelength,
normally in our experiment the green fluorescence is investigated. Count rates are
typically measured within a time window of 100ms up to 1 s. This justifies an evaluation
of the excited state population in the steady state limit, where ρ̇ii(t) ≡ 0, since 1/Γr,g

∼=
10− 1000ns.

Figure 3.3 shows such an evaluation of the excited state population ρ22 in the steady
state limit plotted as a function of the detuning of the repumping 650 nm laser, while
the detuning of the cooling laser at 493 nm is kept constant. This excitation spectrum2

of a three-level Λ system shows a prominent dip occurring at equal detuning of the
driving laser fields, i.e. ∆g = ∆r. Apparently, with such conditions the population of
the excited state vanishes and the ion does not emit photons. This feature is called
dark resonance and is understood as the creation of a coherent superposition of the
states |1〉 and |3〉. The Bloch equations can be solved analytically and yield a density
operator in the steady state

ρss =



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
 . (3.26)

As expected, the population of the excited state, ρ22, vanishes. States |1〉 and |3〉
share the population (see middle plot of Fig. 3.3) and the non-vanishing off- diagonal
elements show the coherent oscillations between the two states. For ideal conditions,
i.e. vanishing laserlinewidths, the dark resonance dip should go down to zero. This is
not true for a finite linewidth of the driving laser fields, such that dark resonances are
a good measure for the latter.

3.3.2 Eight-level system

The three-level system discussed so far is mainly of academic interest for the mea-
surements presented in the frame of this work. In an experimental situation, weak
magnetic fields are applied to prevent optical pumping into the extreme Zeeman states
|D3/2,mF = ±3/2〉 and to define the quantization axis. The magnetic field lifts the
degeneracy of the electronic states and splits up the Zeeman substates resulting in an
8-level scheme (Fig. 3.2). As a consequence, the number and the position of the dark

2The shape of the spectrum is identical for measuring green or red photons. However, the count
rates scale according to Eq.(3.25).
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Figure 3.3: Excitation spectrum for a three-level system calculated from the Bloch
equations. The parameters are chosen for typical experimental conditions:
Sg = 1, Sr = 3, ∆g/2π = −20 MHz, δlg/2π = δlr/2π = 10 kHz.

resonances changes with respect to the three-level system and depends on the angle
between the magnetic field and the polarization of the laser field.

The optical Bloch equations can be generalized to an eight-level system, but become
involved. The magnetic field enters the model through

u =
µB| ~B|
~

, ∆ωZee = mjgju, (3.27)

with the Bohr magneton µB and the Zeeman splitting ∆ωZee of the substates in
frequency units. Following the same formalism a detailed analysis is given in [52].
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Figure 3.4: Excitation spectrum for a single Ba+ ion calculated from the eight-level
Bloch equations. The parameters are chosen for typical experimental con-
ditions: Sg = 1.15, Sr = 2.2, ∆g/2π = −25 MHz, δlg/2π = δlr/2π =
40 kHz, u/2π = 2.3 MHz, α = 95◦.

Similar to the three-level system excitation spectra can be obtained by evaluating
the population (see Fig. 3.2 b) ) of the excited states |3〉 = |P1/2,mF = −1/2〉 and
|4〉 = |P1/2, mF = 1/2〉 in the steady state limit as a function of the laser detuning.
The measured photon emission rate is thus proportional to

Ntot,8L ∝ ρ33 + ρ44. (3.28)

All experiments presented in this work were performed in a geometrical configuration,
where the angle between the magnetic field and the polarization of the laser field is
90◦. The Bloch equations predict an excitation spectrum with 4 dark resonances for
this case, as shown in Fig. 3.4.

Measuring excitation spectra is of fundamental importance for calibrating the exper-
iment, since the shape of the spectra sensitively depends [52] on the laser intensities
(Rabi frequencies), laser detunings and linewidths, the magnetic field and the angle
between the magnetic field and the electric polarization.
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3 Light-matter interaction

3.4 Correlation functions

3.4.1 Introduction

The statistical properties of a light field are characterized with a set of correlation
functions of different moments. In general, the degree of r-th order coherence is defined
as [23,51]

g(r)(r1t1, ..., rrtr; rr+1tr+1, ..., r2rt2r) = (3.29)
〈: E∗(r1t1)...E

∗(rrtr)E(rr+1tr+1)E(r2rt2r) :〉
[〈|E(r1t1)|2〉...〈|E(rrtr)|2〉〈|E(rr+1tr+1)|2〉...〈|E(r2rt2r)|2〉]1/2

, (3.30)

where E is the electric field and (ri, ti) denotes a space-time point, "::" denotes time and
normal ordering. Experimentally, the first- and second order coherence are of greatest
importance. The lowest order of coherence is [51]

g(1)(r1t1, r2t2) =
〈: E∗(r1t1)E(r2t2) :〉

[〈|E(r1t1)|2〉〈|E(r2t2)|2〉]1/2
. (3.31)

The g(1)-function describes the ability of light fields to interfere, i.e. g(1)(r1t1, r2t2) =
1(0) describes a first-order coherent (incoherent) light-field. A measurement of the fields
at the same point in space (r1 = r2) but at different points in time (t1 = t, t2 = t+ τ)
reduces Eq.(3.31) to

g(1)(t, t + τ) ≡ g(1)(τ) =
〈: E∗(t)E(t + τ) :〉

〈E∗(t)E(t)〉 . (3.32)

Thus a function measuring the interference contrast as a function of the time-difference
τ is obtained. The g(1)(τ)-function is moreover of fundamental interest for determining
the spectrum of a light field, since its Fourier-transform is the spectral distribution

S(ω) =
1

2π

∫ ∞

−∞
g(1)(τ)eiωτdτ . (3.33)

In the same way we determine

g(2)(t, t + τ) ≡ g(2)(τ) =
〈: E∗(t)E∗(t + τ)E(t + τ)E(t) :〉

〈E∗(t)E(t)〉2 . (3.34)

This correlation function measures the second-order coherence of a light field, also
called intensity correlation function, since I(t) ∝ E∗(t)·E(t), where I(t) is the intensity
operator of a light field. The intensity can be measured with analog devices, such as
photodiodes, or with photon counting elements, such as photomultipliers (PMT), for
weak fields. For an experimental interpretation we write the correlation function in
terms of count rates N . Equation (3.34) can be rewritten
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Figure 3.5: Illustration of a Hanbury-Brown and Twiss measurement setup (top),
schematic correlation functions (left) and photon stream pictures of dif-
ferent light fields. The cases a), b) and c) correspond to thermal light,
coherent laser light and non-classical light emitted by an ion.

g(2)(τ) =
〈: I(t)I(t + τ) :〉

〈I(t)〉2 =
〈: N(t)N(t + τ) :〉

〈N(t)〉2 . (3.35)

This equation describes the temporal fluctuations of the light field. Here, it is implicitly
assumed that first order interference can be neglected. However, ch. 7 and 9 show
experiments, where is assumption is not fulfilled.

Experimentally, a second order correlation function is obtained by measuring the
intensity at time t and at a later time t+ τ normalized to an average intensity squared.
This measurement is realized in a Hanbury-Brown and Twiss setup depicted in Fig.
3.5, where the light is directed to two PMT’s via a beam splitter. Correlations are
obtained by comparing the arrival time of two photons statistically. A normalization is
applied, such that g(2)(∞) = 1. For classical light fields one finds the Cauchy-Schwarz
inequalities

g(2)(0) ≥ 1 and

g(2)(τ) ≤ g(2)(0). (3.36)
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3 Light-matter interaction

The inset in Fig. 3.5 shows the second order correlation function for different light
fields. For thermal light (case a) ) the second order correlation for τ = 0 is two and gets
smaller for larger τ , depending on the coherence time τcoher of the light source. After
the detection of one photon there is a higher probability of detecting another photon
with a small time delay τ than with a larger one. This behavior is called bunching.
Photons preferably arrive in packets of two or more photons as illustrated in the photon
stream picture. It reflects the bosonic nature of light and strong intensity fluctuations.
For laser light (case b) ), the correlation function g(2)(τ) = 1 for all τ , no intensity
fluctuations are observed. This indicates a long coherence time. A photon stream of
such a source has a constant flux, and photons do not show any correlation. Case
c) is indicating a non-classical correlation function with g(2)(0) < 1, where photons
never appear in packets of two. This so-called Anibunching is observed for instance
observed in a stream of photons emitted by an ion.

3.4.2 Second order correlation function for a single ion:
Antibunching

A measurement of the second order correlation function is based on the detection of
two photons. The observation of the first photon emitted by the ion projects the
ion to the ground state. As a consequence, the ion is not "able" to emit a second
photon after the first one, it needs to be re-excited by the driving laser-field. As a
consequence, fluorescence photons never appear in packets of two, they always arrive
as single photons. This effect is called Antibunching and is a signature for non-
classical light. The second order correlation function in this case is g(2)(0) = 0, since the
probability of emitting a second photon right after the first one is 0. This violates the
inequality (3.36) for classical light fields and proves the non-classical emission statistics.

Formally, the correlation function can be evaluated by inserting electric field oper-
ators. For simplicity, a two-level system with excited state |g〉 and |e〉 is assumed in
the following. Resonance fluorescence photons emitted by the ion are associated with
an atomic decay described by the operator σ−(t) = |g〉〈e| to create an electric field at
time t of the form

Ê(t) = ξe−iωLtσ−(t)Θ(t). (3.37)

Here, ξ is a constant amplitude, ωL the laser frequency and Θ(t) a step function at
t=0, i.e. Θ(t < 0) = 0 and Θ(t ≥ 0) = 1. It is assumed that photons are just elastically
scattered. The correlation function of first and second order take the form of
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3.5 Resonance Fluorescence: Spectrum

g(1)(τ) =
〈: Ê†(t)Ê(t + τ) :〉

〈Ê†(t)Ê(t)〉
(3.38)

g(2)(τ) =
〈: Ê†(t)Ê†(t + τ)Ê(t + τ)Ê(t) :〉

〈Ê†(t)Ê(t)〉2
, (3.39)

or in terms of the atomic operators

g(1)(τ) =
〈: σ+(t)σ−(t + τ) :〉

〈σ+(t)σ−(t)〉 (3.40)

g(2)(τ) =
〈: σ+(t)σ+(t + τ)σ−(t + τ)σ−(t) :〉

〈σ+(t)σ−(t)〉2 . (3.41)

The emission properties of a continuously laser driven ion are governed by the laser
parameters. The Bloch equations serve as a complete set of equations for a quantitative
description. It can be shown applying the quantum regression theorem [23, 52], that
the correlation function of fluorescence photons at steady state limit reduces to

g(2)(τ) =
ρ22(τ)

ρ22(∞)
. (3.42)

The diagonal matrix element ρ22(τ) has to be evaluated with the initial conditions
ρ22(0) = 0, ρ11(0) = 1 and ρ12(0) = ρ21(0) = 0.

In the following experiments 8 internal states (see Fig. 3.2 b) ) are considered for
the Barium-ion electronic structure. The procedure described above also applies for
this case, such that the correlation function for the 493 nm fluorescence on the |S1/2〉
to |P1/2〉 transition is obtained by

g(2)(τ) =
ρ33(τ) + ρ44(τ)

ρ33(∞) + ρ44(∞)
=

|bP1/2
(τ)|2

|bP1/2
(∞)|2 , (3.43)

where the bP1/2
denotes the occupation amplitude of the P1/2 level [34]. Figure 3.6

shows a correlation function for a single Ba+ ion. One clearly observes the antibunching
property, i.e. g(2)(0) = 0. The increase of the probability for measuring a second photon
is mainly governed by the intensities of the driving laser fields.

3.5 Resonance Fluorescence: Spectrum

The measurement of resonance fluorescence is one of the most important analysis tools
in quantum optics. It allows one to study the interaction between light and matter
described by the Bloch equations for both internal and external degrees of freedom.
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Figure 3.6: Second order correlation function for a single Ba+ ion calculated from
the eight-level Bloch equations. Note the non-classical property of anti-
bunching. The parameters are: Sg = 1.15, Sr = 2.2, ∆g = −25 MHz, ∆r =
−5 MHz, δlg = δlr = 40 kHz, u = 2.3, α = 95◦.

Right from the beginning of ion trap experiments the investigation of resonance fluo-
rescence was one of the most important goals. Single ions are ideal systems for such
investigations, in particular Ba+ ions played a crucial role [53].

There are several ways to observe resonance fluorescence. One was already introduced
to the reader as excitation spectroscopy, where the fluorescence of an ion is measured
as a function of the detuning of one laser field. Another approach is to measure the
spectral properties of resonance fluorescence with the help of a spectrum analyzer in
different types of heterodyne or homodyne setups.

3.5.1 Spectrum of an atom at rest

The spectrum of resonance fluorescence for a single two-level atom driven by a laser-
field was first predicted by Mollow in 1969 [54] and then measured by Schuda, Stroud
and Herscher in 1974, in the group of Ezekiel in 1975 with sodium atoms and by H.
Walther [57].

In a low excitation regime, the spectrum only shows an elastic peak centered at
the frequency ωL of the incident laser which has the same spectral distribution as the
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Figure 3.7: Fraction of the elastic (coherent) scattered light as a function of the laser-
power (Rabi-frequency in units of Γ). Black: Saturation parameter defined
in [55].

laser. For high excitation intensities three inelastic contributions centered at ωL and
at ωL ± ΩR show up and form the so-called "Mollow-Triplet", where ΩR is the Rabi
frequency. The appearance of the "sidebands" at ωL ± ΩR are a consequence of the
coupling of the atom and the quantized light field states (dressed states) due to dipole
interaction (a.c. Stark shift). The height of the peaks centered at ωL ± ΩR are 1/3 of
the height of the inelastic central peak.

The fraction of elastic and inelastic radiation in a two-level system is for instance
calculated in [55]. There, the saturation parameter

s =
Ω2/2

∆2 + (Γ2/4)
(3.44)

is defined. Ω, ∆, are the Rabi-frequency and the detuning, Γ is the transition linewidth.
The contributions of elastic (coherent) and inelastic (incoherent) scattering then read

〈Icoh〉 =
1

2

s

(1 + s)2

〈Iincoh〉 =
1

2

s2

(1 + s)2
(3.45)

〈Itot〉 = 〈Icoh〉+ 〈Iincoh〉.
Figure 3.7 shows the variation of each component as a function of the laser-intesity,
i.e. the Rabi-frequency in units of the linewidth Γ (c.f. Eq. 3.10). The red (blue)
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curve shows 〈Icoh〉 (〈Iincoh〉), the thick, green curve shows the fraction of 〈Icoh〉 in the
emitted radiation. As stated above, for low laser-powers almost all scattering is elastic.
Experiments performed in this work use laser-powers with Ω/Γ ≈ 1 such that more
than 80 % of the scattering is elastic. For clarity, the black curves shows the saturation
parameter defined in Eq. (3.44). Note, that the saturation parameter as defined above
is valid for three-level systems, for an eight-level system, the respective Clebsch-Gordan
coefficients have to be included in the Rabi-frequency

A detailed investigation of the resonance fluorescence spectrum of a single Ba+ ion
under strong excitation at 493 nm and and a weak red (650 nm) excitation can be found
in [58].

3.5.2 Spectrum including motional sidebands

We consider a two-level atom with excited state |e〉 and ground state |g〉 coupled to
a laser field with frequency ωL. The ion in the trapping potential oscillates at secular
frequencies denoted by ωx, ωy, ωz and at the micro-motion Ωrf . In the following, the
ion-motion is assumed to be merely one dimensional along x with frequency ωx. The
motion of the ion is quantized and associated with a quantum number n denoting the
motional state |n〉. The composite electronic-motional states are denoted by |n,eg 〉.

When the ion is irradiated, there is a possibility of changing its motional state during
the emission of a photon. This corresponds to a situation drawn in Fig. 3.8. A change
in the motional quantum can happen via two different quantum paths: First, the atom
is excited on the |n, g〉 to |n, e〉 transition and spontaneously decays into the states
|n±1, g〉 associated with photons altered in frequency by one quantum of motion. The
second option is a transition from |n, g〉 into |n± 1, e〉 state followed by a spontaneous
emission without changing the quantum number. In the spectrum, three different
Lorentzian contributions appear centered at ωL and at ωL ± ωx. Transitions with
∆n = 0 at the center ωL are called "carrier transition", whereas the transition centered
at ωL + ωx (ωL − ωx) is called the blue (red) sideband transition.

For a regime where the extension of the ion’s ground state wave-packet a0 is much
smaller than the wavelength λ of the laser field, i.e. the Lamb-Dicke regime with
η = 2πa0/λ ¿ 1, calculations show ( [36, 59, 60]), that the coupling strength of the
different sidebands relative to the carrier coupling given in Rabi frequency Ω0 is given
by

Ωn,n−1 = Ω0

√
n η

Ωn,n+1 = Ω0

√
n + 1 η. (3.46)

Thus, the height of the (first) motional sideband is a factor of η ¿ 1 smaller than the
carrier. The relative heights of the blue and the red sidebands reflect the population
difference of the trap levels |n〉 and can be used to determine the ion’s energy measured
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Figure 3.8: Level scheme of a two level atom in a harmonic potential coupled to a laser
field. |n, g〉 describes the atom in state with n quanta of motion and in the
electronic ground state. Arrows denote laser stimulated transitions, wavy
lines show spontaneous emission processes [59].

as motional excitation 〈n〉. For an ion approaching the ground state of the trapping
potential, the red sideband’s amplitude vanishes [61]. Moreover, the width Γ of the
sideband is given by half the laser cooling rate (for a two-level system) and is of interest
for the measurements shown in the next chapter.

In reality, the ion oscillates in 3 dimensions and the overall spectrum consists of the
carrier, the 3 red and the 3 blue sidebands. Additionally, the ion exhibits a micro-
motion part at the driving frequency of the trap, which gives another contribution to
the resonance fluorescence spectrum. Figure 3.9 shows a schematically a spectrum of
resonance fluorescence .

So far all the transitions are assumed to be narrow, i.e. the lifetime of the decay-
ing state is sufficiently long. This assumption holds for instance for the quadrupole
transition |S1/2〉 to |D5/2〉 in 40Ca+ with an associated linewidth of 1Hz, but not for
dipole transitions with linewidths of several tens of MHz, which is the case for the
|S1/2〉 to |P1/2〉 transition in 138Ba+ at 493 nm wavelength. The width of the carrier
conceales the motional sidebands and investigations of the spectral distribution of the
fluorescence are tricky. Nevertheless, throughout the history of the experiment pre-
sented here, some clever ideas have made this investigations possible. In the following,
one of this methods is presented.

3.5.3 Measurement of the spectrum in a "Self-homodyne"
setup

A measurement of the spectrum of resonance fluorescence requires a tuneable and
narrowband filter in front of the detector. In some experiments (e.g. in [58]) Fabry-
Perot interferometers were used to scan the collected fluorescence light but with a
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Figure 3.9: Schematic spectrum of the resonance fluorescence of a trapped ion. Side-
bands appear at the motional frequencies of the ion (macro motion) and
at the frequency of the trap drive (micro motion). Ω0 and η describe the
coupling of a laser field to the carrier and to the sidebands.

limited spectral resolution on the order of MHz. Fabry-Perot interferometers appear
to be a proper tool for measuring coarse features in the spectrum, such as the Mollow
triplet.

A method with a much higher resolution was realized in 2000 by making use of a
heterodyne setup [62]. The principle relies on a beat-signal between the resonance
fluorescence and a local oscillator ωlo detuned by several tens of MHz with respect to
the driving laser field for the ion (ωfluo). The carrier transition and the entire spectrum
is thus shifted to an easy to access frequency range at ωfluo − ωlo. The measurements
could even show the elastic carrier peak of the Rayleigh scattering and was only limited
by the resolution bandwidth of the spectrum analyzer.

A quite similar method is discussed in the following. By setting the difference fre-
quency of the local oscillator to zero one would obtain a spectrum of the resonance
fluorescence with a carrier at zero frequency. In the literature, this is referred to as
homodyning. While the experimental setup can be smaller than in a heterodyne con-
figuration, one still needs an interferometric setup similar to the one presented in [62].

Throughout this work the spectrum of the resonance fluorescence is measured with
the help of a "self-homodyne" setup making use of a high resolution single photon
interference. Figure 3.10 depicts such a quite simple but effective setup consisting of a
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Figure 3.10: The self-homodyne setup. The fluorescence of the ion is back-reflected
by a distant mirror thus creating interference. (x′, y′, z′) is the laboratory
coordinate system, (x, y, z) the trap system.

single ion and one mirror.
The ion localized at the trap center (z = L) is illuminated by a laser-field and emits

fluorescence into 4π solid angle. Two opposite channels allow for detection, one through
the lens L2, which directs a collimated beam to a distant mirror (z = 0) mounted on a
piezo transducer. Through lens L1 the ion and its mirror image can be observed. For
a perfect alignment interference of the partial waves of single resonance fluorescence
photons is observed. The piezo translation stage allows for scanning the interference
pattern and thus modulates the measured intensity. Along the mirror-detector axis the
electric field created by the ion reads

Ez(t) =
√

εΓg sin(kg(L + ẑm))σ−(t) , (3.47)

where ε is the fraction of solid angle collected, Γg is the P1/2-S1/2 spontaneous emission
rate and kg the corresponding photon momentum. L is the distance between the ion
and the mirror and σ−=|S1/2〉〈P1/2| is the Pauli lowering operator with a time evolution
σ−(t)=σ−e−iωLt and ωL the excitation laser frequency. The operator ẑm is the position
operator of the ion relative to the center of the trap. More precisely, since the trap
axis is tilted by an angle θ with respect to z′, zm corresponds to the projection of x, y
and z along z (x, y and z denote the coordinates of the ion in the trapping potential
basis). The ion position operator is ẑm(t)=Aωt(ame−iωtt+a†meiωtt). am and a†m are the
bosonic operators associated with the motion of the ion in the trap, at the frequency3
ωt, and Aωt is a normalization factor.

The measured intensity is calculated via the first order correlation function

〈I(t)〉c = 〈E†
zEz〉c(t) = Tr〈E†

zEzρc(t)〉. (3.48)

3ωt is used as a general notation for one of the oscillation frequencies ωx,y,z
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The index "c" is referring to conditional dynamics [75,76] counting for a measurement
induced projection of the system into the ground-state. Inserting (3.47) into (3.48) one
obtains

〈I(t)〉c = εΓg〈sin2(kg(L + ẑm))〉c(t)〈σ+σ−〉c(t) (3.49)

On one hand the measured intensity is modulated by the distance between the mirror
and the ion (L), and on the other hand it is modulated by the motion of the ion in the
trap denoted by ẑm. It can be shown [76] that neglecting the motion of the ion and
assuming a constant ion-mirror distance L leads to an intensity

〈I(L)〉c = γ sin2(kgL), where (3.50)

γ = εΓg

Ω2
g

4∆2
g + Γ2

g

(3.51)

is the optical pumping rate into the mirror channel, Ωg denotes the Rabi frequency and
∆g the laser detuning. The average photocurrent thus exhibits a modulation induced
by the variation of the ion-mirror distance. According to Fig. 3.11 the bottom of the
intensity fringes corresponds to the ion being at a node of the mirror field, i.e. kgL=
nπ (n being an integer), the maximum of the fringes correspond to the situation where
kgL= (n+1/2)π (antinode of Ez).

Including the ion motion the photocurrent reads

〈I(t)〉c = γ 〈sin2(kg(L + ẑm))〉c(t). (3.52)

In the Lamb-Dicke regime η = 2πz0/λ ∼ 0.07 ¿ 1 (z0 denotes the r.m.s. size of the
trap ground state) the motional sidebands have intensities reduced by the Lamb-Dicke
parameter η relative to the elastic component of the fluorescence. One can then expand
exponentials, e.g. eikgbzm = eiη(bam+ba†m)≡1+ iη(am +a†m). The average position of the ion
can be fixed by setting kgL= (n+1/4)π, i.e. on the maximum slope of the interference
fringes. In this particular case

〈I(t)〉c =
γ

2
〈1 + 2η(am + a†m)(t)〉c + o(η2) (3.53)

In a frame rotating with the laser frequency, the green fluorescence then consists of
a strong elastic component at zero-frequency (the constant contribution in Eq. (3.53)
and a second contribution a factor of η weaker than the carrier and proportional to
the position operator of the ion, z̃m ≡ am + a†m. The second term thus contains the
information of the ion motion and the motional sidebands in the frequency domain.

This situation is indeed reminiscent of homodyne detection, where a strong local
oscillator (the elastic scattering) beats with a weak signal close in frequency (the mo-
tional side-bands) allowing for a detection of motional sidebands, though the carrier
transition due to the linewidth of 15 MHz would conceal the motional sidebands.
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3.5 Resonance Fluorescence: Spectrum
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3 Light-matter interaction
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4 General Experimental Setup

All measurements reported in this thesis were done with the so-called old trap, a ring
trap. While this system is still in operation, an additional linear trap was set up to
increase the variety of applications of the experiment. As a first point, this chapter
gives a summary of the old setup used for the experiments including the ring trap,
the cooling lasers and the detection setup. Special constructions for the individual
measurements are discussed in the according chapters. As a second point, this chapter
contains all important operational and geometrical parameters for the new trap and
the new setup.

4.1 The old setup: A summary

In this part the old setup is discussed, i.e. the ion trap, the two laser systems at 493
(green) and 650 nm (red) and the detection setup.

A very detailed description of the setup can be found in [31], here a summary should
suffice. The vacuum chamber plotted in 4.1 (reproduced from [44]) of the old setup
has a spherical shape with two opposite CF-150 viewports for observation and 6 CF-36
viewports with 3 independent directions for laser-cooling. Two Barium ovens point
towards the center of the trap as well as an e-gun system which is equipped with
electron optics. The Paul trap and the compensation electrodes are mounted on the
top flange and are thus hanging upside down. For a better orientation we define the
main laser cooling direction as x′ and the observation direction as z′. Note, that the
trap coordinate system is denoted with x, y and z according to the oscillations ωx, ωy

and ωz.
The miniaturized Paul trap consists of a ring electrode with 2r0=1.4mm inner di-

ameter made out of a 0.2mm molybdenum wire and two endcap electrodes with the
same wire diameter and a distance of 2z0=1.4mm (see Fig. 4.1). The latter are usually
at ground potential (but can be used for additional external fields), whereas the ring
electrode is connected to a radio frequency drive at Ωrf/2π ∼ 20MHz and an ampli-
tude of URF ∼ 500 Vpp. The dynamical electric field creates a pseudopotential of a well
depth of approximately 50 eV in which the ion can be held over weeks. The quasi-free
secular (or macro) motion of the ion is decomposed into three normal modes along the
trap coordinate axis x, y and z. The first two are radial modes and have measured
values on the order of ωx/2π ∼ 1MHz and ωy/2π ∼ 1.2MHz, the motion along z is
the axial mode and has a measured frequency of ωz/2π ∼ 2MHz. In the following
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Figure 4.1: Sketches of the old setup: a) Vacuum vessel (reproduced from [44]). b)
The Paul trap and the orientation of the three cooling laser directions.
c) Observation and analysis: PZT...piezo, L1...macroscope, L2...Halo-lens,
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4.2 The new linear trap

these modes will be referred to as the "X" (x), "Y" (y) and "Z" (z) sidebands. Addi-
tionally to the secular motion a micromotion part modulated at the drive-frequency of
Ωrf/2π = 20MHz is superimposed on the trajectory of the ion in the trap. Through all
the measurements it is compensated for the micromotion so that it can be neglected.

The cooling laser fields are mode overlapping and sent through the trap along
−→
k

parallel to the x′ axis with the polarization vector −→ε perpendicular to
−→
k and parallel

to the y′ axis (see Fig. 4.1 b) ). For optimal laser cooling three different directions
can be used to illuminate the ion, called "main", "front"- and "back"-beam. A weak
(about 2G) homogenous magnetic field

−→
B along the z′-axis prevents optical pumping

among the 5 D3/2 sub-states and defines the quantization axis.
The fluorescence of the ion is observed along the z′ axis (perpendicular to the prop-

agation of the laser light fields and parallel to the
−→
B field) in two opposite directions,

i.e. the back and the front channel as depicted in Fig. 4.1 c). For the experiments
discussed in Chapter 5 to 7 the front channel is the only observation channel. The light
is collected through a large viewport with a macroscope (Wild Modell M400, F]=2,
L1), focused onto a pinhole with 600µm diameter and is sent to one of the photo-
multipliers (PMT1 or PMT2) after passing a spectral filter, a focussing lens and a
50/50 beam-splitter. In the mirror channel the light is collected with a high quality,
custom-made lens (Linos Halo 25/04) inside the vacuum chamber (L2). It is mounted
on a stainless steel tube fixed on a vacuum bellows. The lens is designed to collect light
from a large solid angle (numerical aperture of 0.4, working distance 10mm) and to
minimize wavefront distortion. The quality of the wavefront was measured to be better
than λ/10 peak-to-valley to perform interference measurements. One drawback of the
old setup is the mounting of this lens. The orientation of the lens depends on three
screws with 120◦ angular separation pressing against the vacuum chamber. Turning
one of the screws changes the lens orientation in all three dimensions thus making the
alignment complicated.

For analysis, two photomultipliers measure the photo-current and send the pulses to
different measurement devices such as spectrum analyzers, counters and correlators.

4.2 The new linear trap

As described in Chapter 2 a linear trap configuration offers the possibility of storing
more than one ion without obtaining excessive micromotion. A logical consequence
of the measurements performed in [28], where interference effects of one ion with its
mirror image were studied, is to increase the number of ions in the trap. Measurements
described in [62] showed a reduced contrast of this interference effect by virtue of an
excessive micro-motion. In a linear trap this effect can be excluded and further analysis
is possible. Moreover, an integration of the new trap into the already existing setup
opens the door to new measurements dealing with quantum networks and coupling of
two traps.
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4 General Experimental Setup

4.2.1 Design parameters

For the sake of clarity, the most important parameters and relations derived in Chapter
2.3 are summarized. The parameters are the radial frequency ωx = ωy = ωrad, the
stability parameter q and the axial frequency ωz = ωax. Additionally, the Lamb-Dicke
parameter η is listed, where the angle φ is between the laser propagation and the
oscillation axis:

ωrad =
qΩrf

2
√

2
, (4.1)

q =
2|e|Urf

mr2
0Ω

2
rf

, (4.2)

ωax =

√
2κeUcap

mz2
0

, (4.3)

η = cos φ k

√
~

2mω
. (4.4)

A comparison to the linear 40Ca+ trap

The design of the linear trap used with 40Ca+ trap is described in the thesis of S.
Gulde [40] and has the following geometry: The half distance between the radial trap
electrodes r0 = 0.8mm, the half distance between the tip electrodes is z0 = 2.5mm.
The trap is operated at a drive-frequency of Ωrf/2π = 23.4MHz. Measurements of
the radial frequency with a RF-power of 12W yield ωrad/2π = 4.35MHz and thus a
stability parameter of q ≈ 0.5. As a consequence the amplitude of the RF field has
to be Urf ≈ 1500V. Measurement in the axial direction yields ωax/2π = 1.7MHz for a
DC-Voltage of Ucap = 2000V, from which the field penetration factor κ ≈ 0.075 can be
estimated. A Lamb-Dicke factor of η ∼ 7% is measured for the axial confinement.

If the same trap is loaded with 138Ba+, the radial frequency scaling with 1/m will
be reduced by the mass ratio 40/138 ∼ 30%. The axial frequency is reduced by the
square-root of the mass ratio

√
40/138 ∼ 55%. The results obtained from the equations

above are: qBa ≈ 0.15, ωrad,Ba/2π = 1.3MHz and the axial frequency ωax,Ba/2π =
0.92MHz. The effect of loading species with different mass is thus changing the trap
frequency drastically. However, the extension of the ground-state wave-packet relative
to the wavelength, i.e. the Lamb-Dicke parameter η, is just altered slightly in the axial
direction such that η ∼ 8%. To obtain the same trapping frequencies in the radial
direction the RF amplitude Urf would have to be on the order of 5.2 kV and the cap
voltage Ucap even higher at around 6 kV.
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Figure 4.2: Geometry of the trap: Dimensions are given in mm, angles in degrees.
"Top", "bottom" and "side" denote the pairs of compensation electrodes.

The final design

To avoid the use of such high voltages the trap geometry was changed slightly. To this
end the most efficient way is to downsize the trap. As can be seen from the equations
above, the radial oscillations scale with 1/r2

0 such that reducing the distance of the trap
electrodes is very efficient. In addition, the optical access and machining limitations
have to be considered. The axial frequency grows linearly with 1/z0, then half-distance
between the tip electrodes, but even more important: For instance a reduction of z0 by
a factor of 2 allows for a reduction of the voltage Ucap by a factor of 4 (to obtain the
same axial frequency.)

Considering the limitations for optical access and manufacturing the parameters were
chosen to be

r0 = 0.7 mm

z0 = 2.2 mm

With this geometrical parameters and a driving frequency of Ωrf/2π = 15.1MHz the ra-
dial frequency is calculated to be ωrad/2π = 2.45MHz (corrected ωrad/2π = 2.33MHz,

41



4 General Experimental Setup

see Eq. 2.22) for an RF-amplitude of Urf = 1500 V and a corresponding q = 0.45. The
axial frequency becomes ωax/2π = 1.05MHz for a voltage of Ucap = 2000 V . Thus we
obtain a Lamb-Dicke parameter of η ∼ 7.5% in the axial direction.

Figure 4.2 is depicting the geometry of the trap in a detailed way: A 3D-image
visualizes the setup, while different projections of individual ports show the dimensions
given in millimeters. Light grey indicates macorr pieces1 arranged by milling machines,
while dark grey pieces are made up of stainless steel and are manufactured by a wire
erosion machine.

The thin wires denoted with "top", "side" and "bottom" are electrodes used for
compensating for all effects leading to a displacement of the ion from the dynamical
minimum ("compensation electrodes"). Such effects can be stray fields or machining
imperfections. To obtain a symmetric penetration of the compensation voltage ap-
plied to the electrodes without constraining the optical access, pairs of electrodes are
attached to the same DC-potential.

A photograph of the trap is shown in the top panel of Figure 4.3. Note that the trap
is mounted upside down in the final experimental setup. The white macorr pieces are
used to fix the electrodes at different potentials. Most of the connections are done with
copper-beryllium inline clamps.

4.2.2 Vacuum vessel, optical access and magnetic field

At the heart of the experiment is the trap, two Halo-lenses inside the vacuum, two
Barium ovens, an electron emitter ("e-gun") and the respective electric feed-throughs.
For alignment and installation purposes, all parts are mounted on a single CF-200
flange, while all other ports of the vacuum chamber are equipped with viewports.
Figure 4.3 is presents a photograph of the experiment flange, Fig. 4.4 shows sketches
of the entire vacuum vessel both in 3D and as 2-dimensional projections.

The experiment flange is attached to the main vacuum chamber which consists of an
octagon and a six-way cross for vacuum-service ports. To reach and maintain a pressure
on the order of 10−11 mbar (UHV) the chamber was pumped out by a turbo-pump
during baking of up to 150◦C for one week. An ion pump and a Titan-sublimation (Ti-
sub) pump are able to maintain the pressure after removing the turbo-pump system.
Moreover, Barium itself is known as a "getter" such that Barium-emission from the oven
supports the pumping systems. A vacuum gauge provides a measure of the pressure
inside the chamber that is in the 10−11 mbar range. Ions can be stored over 2-3 days
in the linear trap without any laser cooling. The octagon, i.e. the main experiment
chamber, offers 8 CF-63 ports and 2 CF-200 ports. The experiment flange is attached
to the top CF-200-port, such that the experiment is hanging upside down. This allows
us to mount the helical resonator [40] for the radio-frequency drive on top of the trap.

1This ceramic material is a very good thermal and electric insulator with very low outgassing rates
making it perfect for UHV applications. Its operation temperature can be up to 1000◦C.
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4.2 The new linear trap
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Figure 4.3: Top: Photograph of the new, linear trap illuminated with a laser-pointer.
Bottom: Photograph of the experiment flange before integration into the
vacuum chamber. The main components are the linear trap and the ob-
servation (Halo-) lenses mounted on x, y, z-translation stages. The steel
tubes are the two Barium ovens.
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4.2 The new linear trap

For clarity, we define a lab coordinate system with the axis x′′, y′′, z′′ and their re-
spective unit vectors −→e x′′,y′′,z′′ . The relative statements of place right and left are valid
for an observer looking along the x-axis: We denote x′′ as the main laser-cooling di-
rection such that the wavevector

−→
k is parallel to x′′. The (linear) polarization of the

incoming laser is oriented along the y direction and observation is done along the z′′-
directions defining the quantization axis. We furthermore define the horizontal plane
as the (x′′, z′′)-plan parallel to the experiment flange and a vertical plane spanned by
(x′′, y′′).

The linear trap is mounted at an angle of 22.5◦ out of the horizontal (x′′, z′′) plane, but
with the trap axis in the vertical (x′′, y′′)-plane shown in the middle and the bottom
panel of Fig. 4.4. The orientation is chosen to create projections of all oscillation
directions of the ion in the trapping potential onto the cooling laser. While the linear
trap operated with Calcium described in [40] is rotated in the horizontal plane, the
here used rotation in the vertical plane allows for the observation of atoms/ions along
the z-direction with lenses as close as 12mm to the trap center, i.e. 2mm away from
the outside margin of the trap. Note, that the trap coordinate system, usually denoted
with x, y, z (with z describing the trap axis), does not coincide with the lab system.

The orientation of the trap is crucial for a proper observation of resonance fluores-
cence. To take benefit from observation lenses inside the vacuum chamber in particular,
the observation lenses have to fulfill several requirements: On the optical side the lens
should collect as much fluorescence as possible and should be able to create a colli-
mated beam. In particular for interference measurements another strong prerequisite
are low wave-front abberations. The lenses should have an AR-coating for the im-
portant wavelengths. Material-wise the production of the lens and its housing has to
consider UHV compatibility which also includes resistivity against baking of the sys-
tem. Moreover, the lenses should be manufactured such that a beams going through
the 45◦ viewports are not blocked by the lenses. Most of the requirements are already
met using a custom made Halo-lens used in the old setup [44], where this configuration
was tested to be suitable for high contrast interference measurements. Thus, the lens
design was reproduced with some slight modifications. For clarity, the parameters of
the lens are a focal length of f = 25mm and a numerical aperture of 0.4, the lens
collects a fraction of the solid angle of ε ∼ 4%. At a working distance of 11.8mm at
a wavelength of 493 nm the lens can be mounted as close as 1.8mm to the trap. The
mounts of the lenses in the new setup were modified to allow for optical access from 45◦
and were anti-reflection coated for the wavelengths 493 nm, 650 nm and for 1.7µm for
future experiments. Positioning of the lenses is modified as well: While in the old setup
the lens is held with a long metal tube fixed on a bellows with three interdependent
and coarsely operating screws, the new setup is making use of piezo-translation stages
(ANP x,y,z 100, Attocube) which allow for positioning the lenses along the directions
x′′, y′′, z′′ with very high precision below 50 nm.

The optical axis of the Halo-lenses coincides with the z′′-axis so that the observation
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name usage in plane orientation along
main laser horizontal −→ex′′

45◦ left laser horizontal −→ex′′ +
−→ez′′

45◦ right laser horizontal −→ex′′ −−→ez′′

top laser vertical −−→ey′′

top front laser vertical ^(top front, top) = −38◦

top back laser vertical ^(top back, top) = 38◦

left observation horizontal −−→ez′′

right observation horizontal −→ez′′

bottom observation vertical −→ey′′

Table 4.1: Optical access to the new trap

is along the "left" and "right" channels. Both of them are equipped with custom-made
λ/10 surface quality view-ports to guarantee low wave front abberations. The two
observation channels are used in two different ways as shown in the bottom panel of Fig.
4.4. In left channel the collected fluorescence light can be sent to either an intensified
CCD camera (Andor Luca), to a PMT or both by making use of a switch box, where a
rotatable wheel inserts different mirrors. Both paths are spectrally filtered (Interference
filter, Semrock FF01-494/20-25, transmission @493±10 nm>90%, suppresion 1e-8), the
PMT path moreover has an adjustable rectangular slit for spatial filtering followed by
a lens to focus onto the PMT aperture. The imaging of the ions is done in a simple way
by displacing the left Halo-lens "L1" to a working distance of 14mm from the trap.
Thus a magnification M on the order of M ∼13 is obtained corresponding to an object
distance of s0 = 27mm and an imaging distance of s1 ∼ 333mm and a resolution of
1.3µm per pixel. For typical ion distances of 4µm the distance between individual ions
is sufficient, i.e. single ions can be distinguished. For laser addressing experiments the
magnification should be increased. On the right side, the Halo lens is positioned in
order to produce a collimated beam, i.e. the ion is in the exact focal point of the Halo-
lens "L2". The calculated working distance for this is 11.8mm from the trap center.
The collimated beam of ∼ 20mm in diameter passes the high-quality view-port and
can either be sent to an optical fiber (via flip-mirror Mfiber) after passing a telescope
for beam size matching or to a back-reflecting mirror for interference measurements as
presented below (MIF).

For generating a weak magnetic field three pairs of Helmholtz coils are available, two
of them in the horizontal plane, one in the vertical palne. We denote them with "pair
1,2" and "pair vert". The configuration allows for a compensation of the earth magnetic
field as well as for a deliberate orientation of the magnetic field in the horizontal
direction. In a standard configuration the field is set parallel to the z′′-axis, i.e. along
the direction of observation.

All other vacuum ports are equipped with standard fused-silica view ports with
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anti-reflection coating for the wavelengths 493, 650 and 1762 nm. To allow for optical
access in all directions, three CF-16 viewports and one CF-200 in the vertical plane and
another 6 CF-64 in the horizontal plane are mounted. Table 4.1 list gives an overview
of the optical ports and their properties and should be compared to Fig. 4.4.

For loading of ions in the trap a beam of neutral atoms is sent to the trap center,
where the ionization takes place. Two stainless steel tubes of 6 cm length, 3mm diam-
eter and 0.2mm wall thickness are filled with Barium grains and heated by a current
of around 4A through it. The tip of the ovens are plugged into holes drilled into one of
the macor holders to guarantee a rigid construction and to make sure, that the center
of the trap is hit. For low atom flux, the geometrical dimensions of the oven define the
collimation of the atomic beam. Investigations showed, that collimation below 1mm
is not advisable, since first the atom flux is reduced and second baking of the oven
can cause slight derivations from the original target point. More details and investiga-
tions of this design are presented in [43]. The ionization procedure is realized with a
photo-ionization process as described below. As a back-up system an electron emitter
(BaO-disc ES-015, Kimble-physics) is installed for creating ions via electron impact
ionization.

4.3 Combined Setup

4.3.1 Arrangement

Figure 4.5 shows a schematic of the actual status of the combined lab system. On the old
optical table 1 the two ion trap system are placed together with the entire lasersystem at
493 nm and the photoionisation-lasersystem at 413 nm, while the 650 nm laser-system
was already moved to the new table 2. This table also carries the interferometer
mounted on an additional breadboard for a later move. One clearly recognizes, that at
this intermediate stage of the combined system development, the placement of lasers
and experiment vessels is mixed. The final goal is to have all lasers on the optical table 2
and the two traps together with the interferometer on table 1. This has the advantage,
that for example radio-frequency pick-ups and other noise-sources can be suppressed.
However, the system is fully operational at this stage. A lab computer (not shown)
controls the wavelength of the cooling lasers, and is the interface for ion-imaging and
analysis of the fluorescence photocurrent.

4.3.2 Laserfields and light distribution

The three lasersystems used at this stage, i.e. 493 nm, 650 nm and 413 nm, are dis-
tributed to both traps, where it was decided to send the same wavelengths to both of
the traps. Thus the distribution is just done with the help of polarizing beam split-
ters and half-wave retardation plates. A detailed description of the generation of the

47



4 General Experimental Setup

lasersystem

650 nm

Interferometer

IF
Linear

trap

Ring

trap

986 nm

493 nm

SHG

MTS

Optical table 1Optical table 2
PI-lasersystem

413 nm

distribution

650 nm

Figure 4.5: Schematics of the combined setup including two traps and the laser-systems.

laserfields at 493 nm and 650 nm is given in [64], we here just present an overview.
The light field at 493 nm is generated with a homebuild 986 nm diode laser in

Littman-Metcalf configuration locked to a reference cavity with a Finesse of about
1000. The second harmonic is generated in a KNbO3 crystal placed in one focus of
a bow-tie cavity for 986 nm light. The output at 493 nm is locked using Doppler
free modulation transfer spectroscopy (MTS, see [65]) to a Te2 resonance after being
frequency-shifted by ∼ 400MHz in a double-pass configuration. This laser drives the
6S1/2 to 6P1/2 in the Barium level scheme. Out of the 30mW produced power after the
doubling cavity up to P493=400µW are used for illuminating the ions. Another AOM
controls the detuning of the laser. The light field is intensity controlled to 1% and has
a line width smaller than 60kHz. The light is distributed to the individual traps with
two single-mode, polarization maintaining optical fibers.

The second light field at 650 nm serves to quench the meta-stable D3/2 state and is
generated by a commercially available diode laser system (Toptica DL100) in Littrow
configuration. Part of the 10mW output power is used for stabilizing the frequency
of the light field to a cavity with Finesse of about 1000 within less than 100 kHz.
The remaining power is coupled into a single-mode, polarization maintaining optical
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fiber and guided to the optical table 1. There, another distribution stage couples into
two additional fibers guiding light to the traps and distributes light to the wavelentgh
analysis tools, i.e. a commercially available Fizeau-wavemeter with 10MHz accuracy
and a hollow cathode. The light field is intensity stabilized and can be detuned with
the help of a double pass AOM. In total, up to P650=400µW of light at 650 nm is
available to illuminate the ion and to drive the transition from 5D3/2 to 6P1/2.

Another commercially available laser-diode system from Toptica (DL 100) generates
light for photoionisation at 413 nm. The output of this grating-stabilized system
is directly guided through air to one of the traps after passing a pinhole for mode-
cleaning. This light field is neither frequency nor intensity stabilized. Its wavelength is
determined by the aid of the Fizeau-wavemeter which is sufficient for fast and efficient
loading. Around 2mW of blue power is needed to be sent to the individual traps to
guarantee fast loading times. More details about the photoionization-process can be
found in Chapter 5.

4.3.3 Counting electronics

Photon counting is done with photomultipliers (PMT, Hamamatsu H7421-40) selected
for a minimal quantum efficiency of 40% at 500 nm and a maximal dark count rate of
75 cps. The experiment is equipped with 4 of these devices, one per trap and two for a
Hanbury-Brown and Twiss setup in the interferometer. A single photon detection event
is converted into a TTL pulse with a pulse-length of 45 ns by the PMT electronics. The
TTL pulses pass through a TTL to NIM converter, a discrimation stage (LeCroy 821)
and are then distributed to a photoncounter (LeCroy 3615) and to a time-to-digital
converter (TDC, LeCroy 4204 and 3588 Histogram Memory). The photon counts are
typically integrated over a time of 100 ms and monitored on the Lab View control
programm. The photocurrent can optionally be investigated in the frequency domain
by use of a spectrum analyzer (Rohde & Schwarz, FSP 13). Most of the data acquisition
in Chapter 4 is done in the frequency domain for which the LabView Programm also
controls the settings and read-out the of the spectrum analyzer data.

The photocurrent can also be investigated in a time-resolved measurement, i.e. mea-
suring the arrival time of the photons. As already described before, a Hanbury-Brown
and Twiss setup is used to split the photons into two channels and correlations between
the channels are obtained. There are two ways to do so as illustrated in Fig. 4.6: In
the "so-called" histogram mode a start and a stop channel is defined. An electronic
circuit starts a time measurement triggered with the first photon in the start channel
and stops it with the second one in the stop channel. The time between these two
successively detected photons is calculated and written into a histogram. Doing this
measurement repeatedly yields a histogram with the number of measured correlations
as a function of different time delays with a predefined resolution. There are several
drawbacks of this way of measuring photon correlations. First, the time resolution of
the histogram is chosen before the measurement and can not be changed at a later
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Figure 4.6: Illustration of the "histogram" mode and the time tag mode for correlation
measurements.

stage. This postprocessing is not possible. The method is furthermore not efficient in
terms of statistics. It has to be made sure, that the stop channel nstop has a higher
count-rate than the start channel nstart. Otherwise a time measurement is started, but
a stop photon never arrives. The devise registers an overflow count. The number of
correlations measured is given by the number of start photons nstart since the correla-
tions are merely obtained between one and one photon. In particular, the probability
of measuring long time intervals is exponentially decreasing since a stop photon yields
the electronics to be reset and starts another measurement. The operation principle of
the TDC device from above is working like that. Because of the drawbacks, in the mea-
surements reported here the TDC is used for micromotion compensation (correlation)
measurements only.

A more elaborate way to measure photon correlations is to rate the time of photons
in a stream, i.e. the arrival time and the channel of each photon is noted down into a
binary file (PicoHarp 300, PicoQuant). Using these raw data, one is able to calculate
the correlations in the following way. The time of photon 1 in channel 1 is taken
and compared to photon 1 in channel 2, then with photon 2 in channel 2 and so.
Then photon 2 of channel 1 is taken and correlations with all photons from channel
2 are obtained. Indeed, the outcome is a histogram as well, but the raw data are
still available and postprocessing is possible. Measurements between two channels are
called "cross-correlations" in contrast to "auto-correlations", where just one channel
is investigated. The resolution of the time measurement can be as low as 4 ps. The
statistics is much more efficient, since each photon is correlated with all others, in
particular long time intervals can be measured and no statistical corrections have to
be applied. Theoretically, the number of correlations can be as high as nstart × nstop,
but in a realistic situation, the time window of the correlations is limited to a certain
region of interest.
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5 Trap operation

This chapter gives an overview on the basic steps for operating both traps. The work-
ing procedures for preparing the new trap for experiments is almost identical to the
old trap. Aside from the principal distinction of both traps regarding geometry and
dynamical confinement, differences concern the observation of ions only. The following
measurements are all done in the new trap setup and prove it to be fully operational.
Indeed, identical measurements are performed with the old setup when preparing it for
an experiment. The structure of this chapter follows the daily lab-routine.

5.1 Photo-Ionization procedure

The first step for an ion trap experiment is the production of ions inside the trap volume
or transport of ions into the trapping zone. In experiments performed in our group,
ions are produced by sending a beam of neutral atoms through the trap center, where
an ionization process takes place. Most commonly used methods are either based on
a photo-ionization process or an electron impact-ionization process. Both possibilities
differ dramatically in their respective properties and efficiencies. Until 2005, electron
impact ionization was used for the old setup before the photo-ionization was introduced.

Extensive studies of photo-ionization vs electron impact ionization are described e.g.
in [40] and [43] focussing on the linear trap experiment operating with Calcium in
Innsbruck. The results of these studies showed overwhelming advantages of loading
with a photo-ionization process summarized in the following points:

• Loading-efficiency: up to 5 orders of magnitude higher.

• Isotope selectivity.

• Suppresses the production of patches and stray fields on the trap electrodes and
mounts. As a consequence, compensation fields are constant in time.

• Adjustment: Ionizing laser beam can be installed from outside, laser system can
eventually be replaced without breaking the vacuum.

• No heating inside the vacuum chamber.

From this it appears natural to implement photo-ionization procedures in every ex-
periment. In fact, following our line of work most of the ion trapping experiments
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Figure 5.1: Level-scheme of neutral Barium (not complete). Level energies in cm−1,
wavelength in air given in nm. The grey area denotes the continuum

world-wide are trying to implement such procedures for ion production. One big limi-
tation is the availability of apropriate lasers for the production of the right wavelength.
For economic reasons it is advisable to use cheap and easy to handle diode laser systems.

As an example, the work reported in [40] relies on a resonant two-photon process to
ionize neutral Calcium. Here, a resonant excitation from the ground-state 1S0 to the
1P1-state with a laser-field at 423 nm is followed by an excitation into very high lying
Rydberg states with 390 nm radiation and a subsequent field ionization in the trapping
potential produces the Calcium ions. As suggested in [43], the same method could be
applied for Barium as well. In this case, one would need to produce wavelengths at
553.7 nm and 417 nm or lower (see Figure 5.1), which are currently only available with
dye lasers. This option was rejected for economic reasons mentioned above.

Several other methods for photo-ionization were studied and are briefly summarized
here:

Non-resonant one-photon process with 224 nm radiation.

This method relies on a direct ionization with one photon at a wavelength of lower
than 238 nm, the ionization limit. One possibility to produce this wavelength would be
an HeAg gas-laser emitting at 224 nm. In reference [66] the efficiency of such a process
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5.1 Photo-Ionization procedure

is studied by studying the absorption spectra of BaI and an absorption cross-section
of lower than 1 × 10−18 cm2 is measured. Obviously, this method could be optimized
by using laser-fields being detuned to auto-ionization resonances1, but would require a
tunable laser-source in the deep UV. Moreover, handling deep UV in a lab can be very
tricky and expensive.

Non-resonant two-photon process with 473 nm radiation

An alternative way of using deep UV-radiation is to employ two photons with half the
frequency. The ionization limit on the order of 238 nm could in principle be reached
by using two photons with 476 nm. Looking at commercially available laser-systems,
sources at 473 nm seem to be an appropriate choice, systems at 405 nm seem to be
even more efficient. In fact, measurements in [66] show a higher atomic absorption
cross section for this process of 2.4× 10−18 cm2. From [67], where such a process was
applied to Calcium, we find an estimation for the laser-parameters needed: Intensity
I ∼ 108 W/m2, pulse-length τ ∼ 10ns and a power of 25 kW. This values should be
reachable for a proper focussing and photo-ionization should be possible.

Though these photo-ionization processes have been shown to be working, their prin-
ciple is based on a (first-order) non-resonant process and is thus not very efficient. We
will now consider possible ways for photo-ionization including one resonant excitation.

Resonant two-photon process with 791 nm radiation

During the work of this thesis another group published an ionization scheme in [68].
The method relies on two laser-fields, one resonant with the intercombination line from
1S0 to the 3P1-state (see Fig. 5.1) and another one at a wavelength of 337.1 nm to
ionize the 3P1-state. The light fields are produced by a diode-laser and a nitrogen gas-
laser. Isotope-selective loading, reasonable loading times and easy laser setups prove
this scheme to be very practical.

Resonant two-photon process with 413 nm radiation

The photo-ionization scheme presented and used in this work is comparable to the
scheme presented above, though motivated by the work presented in [69]- [74]. The
first, resonant step utilizes an intercombination line, from the 1S0 to the 3D1-state. As
illustrated in the level-scheme in Fig. 5.1, the 3D1-state is already "high" enough to be
ionized by another 413 nm photon. Thus, this method requires just one laser source
making this method even more practical, very cheap and efficient.

1An autoionization-process corresponds to an excitation of both valence electrons, where the overall
energy of both electrons is higher than the first ionization energy. One electron transfers the
energy to the other one and ionization takes place. Therefore, resonances in the "continuum" can
be found, as measured in [66].
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Figure 5.2: Left: Loading rate of Barium-ions as a function of laser-wavelength at
413 nm at a constant oven-temperature of 550K. The 0 denotes the offi-
cial value for the center wavelength of 413.24266 nm. P413=0.7mW. Right:
Loading rate of Barium ions vs. laser power.

In reference [69] it is claimed, that this method of photo-ionization can be realized
using a pulsed laser source with the following parameters: Repetition rate ∼10Hz,
linewidth δf ∼15GHz, pulse duration τpulse ∼5 ns, a focus of 0.02 cm2 and a pulse
power of Ppulse ∼2µJ. From this a peak power of 2 ×104 W/cm2 in 15GHz bandwidth
is obtained. In a CW mode, the same intensity is achieved for P∼10mW and a focus
of∼10µm, but the spectral bandwidth is at least 3-4 orders of magnitude lower. This
estimation indicates, that a CW laser-field with even lower power should be sufficient
to perform photo-ionization following this scheme. Moreover, it can be found from
[50], that the intercombination line has a center wavelength of 413.24266 nm and a
linewidth of 240 kHz.

The light-field at 413 nm is provided by a Toptica DL100 diode laser-system. After
the feedback of the grating and a pinhole configuration for beam-shaping a laser-power
of up to P413 ∼2.5mW is available to be sent to one of the traps. Additionally, the light
can be sent to a Fizeau-wavemeter with 10MHz resolution. In front of both traps, the
photo-ionization (PI) beam is superimposed with the green and the red light and is
sent through the trap along the main channel. In both cases, this configuration is not
Doppler-free since the atomic beam is pointing towards the laser-direction with a tilt
of 17◦(40◦) for the new (old) setup2. From that it is already apparent, that the laser-
field has to be slightly detuned to count for the Doppler-shift induced by the velocity
of the ions. Calculations, e.g. see [43], are yielding an average Doppler-shift on the
order of 600MHz for Barium atoms at a temperature of 550K and a "peak" velocity

2However, a Doppler-free configuration could easily be installed.
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5.2 Micromotion compensation

Figure 5.3: CCD images of one, two and three ions on the same region of 54 × 39
pixels. Bottom right: Ion string and its mirror image (270 × 195 px).

v=
√

2kT/m ∼ 250m/s for which the light-frequency field has to be decreased to
maintain full resonance. The calculated frequency shift matches the measured deviation
from the literature transition wavelength within the accuracy.

Figure 5.2 presents loading rates obtained in the new trap as a function of the
detuning from the center wavelength given in the literature. The shift of the resonance
is clearly observable. Typical loading rates are on the order of several ions per minute
for a constant pressure close to but lower than 10−10 mbar. Apparently, the accuracy
of the wavemeter of 10MHz is absolutely sufficient to set the optimum wavelength for
loading. The right panel of Fig. 5.2 shows the loading efficiency as a function of the
laser-power.

After the loading process, in the majority of the cases one ion is caught in the trap
and can be observed. An inverted image of the CCD camera of one, two and three ions
is shown in Fig. 5.3, the right bottom plot shows a string of several ions together with
its mirror-image as a preparation for interference measurements as described below.

5.2 Micromotion compensation

In Chapter 2 it was shown, that the trajectory of the ion consists of two parts, one
called the secular motion oscillating in the Pseudo-potential and one oscillating at the
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Figure 5.4: Micromotion compensation measured by the photon-photon correlation
method.

drive-frequency, the micro-motion. This motion can not be laser-cooled, its relative
amplitude can just be minimized by placing the ion in the exact minimum of the radio-
frequency potential. Displacements can arise from geometrical imperfections and stray
fields, but are usually compensated by using additional electrodes. Thus, after loading
one (or several) ions into the trap the micro-motion has to be compensated.

In the setup discussed here, the compensation electrodes are realized by three pairs
of electrodes named "top", "bottom" and "side" (cf. Fig. 4.2). Measuring and com-
pensating the micro-motion can be done in very different ways:

• Coarse compensation: Since micro-motion is caused by a displacement of the
ion from the dynamical trap minimum a rough way to minimize the micromotion
is to lower the trap potential and look for a displacement of the ion on a CCD
camera. Therefore, the ion position is marked at a high RF power (7-10W).
Displacements of the ion while lowering the trapping potential is compensated
for by adding voltages to the compensation electrodes. This procedure can be
already sufficient for a lot of applications. In any case, it is a very good starting
point, for other methods studied below.

The method indeed relies on a measurement of the (relative) position of the ion
in the trap in all the relevant directions. In the setup presented here, the position
of the ion along the observation direction (z”-axis in Fig. 4.4) is in principle not
visible. But since the imaging lens produces a very tight focus, a displacement of
the ion is observed as a change of the size of the ion spot, which is sufficient for
a coarse compensation in this direction.

• Correlations: Trap-drive ↔ fluorescence: This method relies on correla-
tions between the trap drive and the fluorescence photons. The displacement
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of the ions due to the micro-motion modulates the emitted fluorescence at the
drive-frequency due to the Doppler-effect. This modulation can be measured by
correlating a fluorescence photon (start) with a TTL pulse obtained from the
trap drive (stop) in the TDC "histogram" correlator (see ch. 4). More details
can for instance be found in [31, 40]. This way of compensating micro-motion
contributions is mainly used for the old setup.

• Correlations: Photon ↔ photon: The modulation of the fluorescence can
indeed also be seen by measuring photon-photon correlations in the fluorescence.
Especially, in a setup, where (g2(τ)) correlation functions are investigated, this
method is apparently the first choice. Beside that, the all optical determination
of the micro-motion is automatically ignoring radio-frequency noise or pick-up
effects, which might play a role. Moreover, the micro-motion contribution can be
integrated into the eight-level Bloch equations such that quantitative measure-
ments of the velocity amplitude can be deduced from both excitation spectra and
correlation measurements. This method is in constant use for both trap systems.

• Minimizing the micromotion sidebands: The same modulation as discussed
above is also visible in the frequency domain as "micro-motion sidebands", when
performing spectral analysis of the fluorescence. The micro-motion can be com-
pensated for by minimizing the sideband height3. This method is routinely used
in the 40Ca linear trap experiment in Innsbruck.

Figure 5.4 shows the measurements for micro-motion compensation in the linear trap
after a coarse compensation using the photon-photon correlation method. The plots
shows measurements of the correlation function g2 for times up to 1µs obtained by
placing one PMT on the observation channel "right" additionally to the one placed
on the left. In addition to the anti-bunching feature for time t = 0 the micro-motion
induced modulation of the fluorescence is clearly visible in the left plot. A Fourier
transform of the g2-function shown in the inset proves the modulation frequency to be
equal to the drive frequency of the trap. On the right panel, an optimally compensated
micro-motion reveals a flat line.

The micro-motion compensation has to be done once after installation of the setup.
The values for the compensation voltages stay constant in time, in particular, if photo-
ionization is used for loading ions. The proper compensation voltages differ for different
tip voltages, most likely as a consequence of an off-axis alignment of these electrodes.
The ion thus feels a tip-induced potential in the radial direction, for which it has to be
compensated for.

3Here, also higher order sidebands have to be considered. They can also be observed with the
correlation methods.
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Figure 5.5: Excitation spectrum of Barium. The parameters are: Sg = 0.95, Sr =
2.5, ∆g/2π = −13 MHz, δg/2π = δr/2π = 200 kHz, u/2π = 4.1 MHz, α =
95◦. Offset and proportionality factor are adjusted to simulate detection
conditions.

5.3 Excitation spectra

After loading ions into the trap (and micro-motion compensation) the next step is to
determine the main experimental parameters, i.e. laser intensities and detuning. A
very efficient way for this is to record excitation spectra by observing the fluorescence
rate of green photons (493 nm) as a function of the detuning of the red repumping light
at 650 nm. Excitation spectra can of course also be obtained by detuning the green light
or looking at the red fluorescence. Such investigations can for example be found in [52].
However, the standard routine in this experiment is first to roughly tune in all lasers,
such that the green laser-field has a negative detuning between -30 and -20MHz and the
red field has just a slight detuning by a few MHz. As a next step, the intensities of both
laser-fields are adjusted for a maximum count-rate and are then slightly decreased to
avoid saturation. From that starting point, the red laser can be scanned over the dark
resonances as described in Chapter 3. The model based on eight-level Bloch equations
is used to determine all important parameters, in particular parameters which slightly
change from day to day, such as the laser intensities. Other parameters entering the
model are laser detunings, the magnetic field, the laser linewidth and the angle between
the magnetic field and the polarization.

Figure 5.5 shows an excitation spectrum obtained from the new trap. The parameters
are set to typical values with a low green laser power of Sg = 0.95 and a relatively high
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Figure 5.6: Fringes by self-interference of fluorescence photons in the new trap.

red laser-power with Sr = 2.5.

5.4 Self-Interference

After the standard operation values for intensities and detunings are set, the next step
is to create self-interference of the fluorescence photons4. The procedure is identical
for both traps.

The Halo lens "L2" inside the vacuum chamber creates a collimated beam with
20mm diameter, which passes through a high quality vacuum window. The beam is
back-reflected by a dielectric mirror (the "distant" mirror) placed at a distance of L
with respect to the trap center and mounted on a high precision piezo translation stage
(Physical Instruments, P-762-TL, down to 1 nm resolution). The collimated beam is
then focussed onto the ion creating a mirror image which can be superimposed with
the ion itself. The mirror is coated such that 99% of the green fluorescence is back
reflected, whereas fluorescence at the wavelength of 650 nm (emitted on the 6P1/2 to
5D3/2 transition) is transmitted and can optionally be used for further analysis.

For a perfect overlap, interference is observed. Its pattern can be scanned by applying
a voltage ramp to the Piezo-stage. The count-rate as a function of time (or as a function

4The experiment described in Chapter 9 does not need this step
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of relative ion-mirror distance) is recorded and plotted in Fig. 5.6. The interference
is measured in the new trap setup and shows a visibility of 42% without back-ground
subtraction as representing a typical experimental situation. Visibilities as high as 72%
were measured during this work. According to Eq. (3.49) and Fig. 3.11 the relative
distance between minimum and maximum in the interference pattern corresponds to
120 nm. This measurement proves the high quality of the optics integrated into the
new trap-system, i.e. the lens used inside the vacuum chamber, the vacuum window
and the mirror used for back-reflection.

As was shown in [28], this interference effect is not a classical interference, but a self-
interference of fluorescence photons. The probability of having two interfering
photons in the setup at the same time is as low as 10−4. This effect is the most
important requirement for almost all measurements performed on this experiment and
in particular the presented experiments in this thesis.

5.5 Measurement of the radial sidebands

The self-interference can for example be used to determine the motional sidebands of
the ion in the trapping potential as pointed out in Chapter 3. For that purpose the so-
called "ion-interferometer" has to be stabilized. This is done by actively stabilizing the
relative distance between the ion and the mirror with the help of the Piezo-translation
stage. A LabView control programm compares the measured photon count rate of
the PMT1-channel with a set-value and provides an error signal. A PI controller
(proportional integrative controller, SRS SIM960, denoted as "Fringe Lock") regulates
and stabilizes the measured count-rate. On a short time scale the ion is oscillating
with the secular frequencies and is thus scanning the standing wave of the interference.
This leads to an amplitude modulation of the fluorescence which can be observed in
the frequency domain.

Figure 5.7 shows the results of this measurement. The left panel depicts the radial
secular frequencies centered at 1.675MHz and at 1.706MHz after averaging over 500
traces. The sidebands are superimposed on a noise pedestal with frequency dependent
power, which is subject of further investigations. The right panel shows the micro-
motional sideband centered at the drive-frequency of the new trap. The measurements
were done at a radio-frequency power of 7W. The micro-motion sideband in this mea-
surement is centered at the Ωrf =15.088MHz. In this setup configuration, the axial
motion cannot be visualized. The axial motion has no projection along the standing
wave of the interference.

For clarity, it should be mentioned, that the measurement of the radial sidebands
is not trivial. Without the trick of the self-interference the carrier would conceal the
radial sidebands. The self-interference, or in other words the self-homodyning produces
a beating between carrier and sideband contributions compareable to measurements
performed in [44]. As a consequence, the sideband contributions become visible.

60



5.5 Measurement of the radial sidebands

15,080 15,085 15,090 15,095 15,100

-80

-75

-70

-65

-60

-55

-50

-45

1,670 1,680 1,690 1,700 1,710 1,720
-71,0

-70,5

-70,0

-69,5

-69,0

-68,5

-68,0

-67,5

-67,0

p
o
w
e
r
in
d
B
m

technical frequeny in MHz technical frequeny in MHz

Figure 5.7: Radial sidebands (left) and micro-motional sidebands in the new trap.
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6 Quantum feedback cooling

This chapter reports on an experimental demonstration, where the motion of a single
ion in a Paul trap is manipulated by means of electro-mechanical feedback. A real-
time measurement of the position of the ion based on a self-interferometer setup is
source for creating feedback of various kinds. Both electronic feedback cooling of the
ion below the Doppler limit (cold damping) and feedback excitation is measured and
investigated by two different theoretical models, one based on classical physics and
one based on quantum-mechanics. Moreover, studies inside and outside the feedback
loop were performed by coupling out a part of the resonance fluorescence with a beam-
splitter. As will be discussed in detail, feedback observations change dramatically
depending on a inloop or outloop readout. The presented measurements are successive
to experiments described in [32] with a focus on studying different feedback phases.

The key to these feedback experiments is the interference of single resonance flu-
orescence photons established in the "self-homodyne setup" described in Chapter 3.
The high spatial resolution of the latter allows one to observe the motion of the ion
in the trapping potential, more precisely, the ion position is permanently monitored.
This information is transformed into an electronic signal and is subsequently used to
create a feedback signal applied to electrodes of the ion trap. Proper electronic feed-
back enables one to influence the motion of the ion leading to additional heating or
cooling. The feedback operation is quantum-noise limited (shot-noise) and depends on
the collection efficiency of the experimental setup. It will be shown, that an effective
cooling of 30% below the Doppler limit is achieved.

Viktor Steixner, Peter Rabl and Peter Zoller developed a quantum-mechanical model
for exactly the experiment described here [76]. The most important results of this
letter are summarized and discussed in the first section followed by a semiclassical
model presented in section 2. Measurements for all types of feedback together with a
comparison of the models is found in the last section. The most important results for
feedback cooling are summarized in [33].

The experiment presented in this chapter is stimulated by a variety of experiments
and theoretical treatises, where feedback control of various systems is investigated [80]-
[91].
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6 Quantum feedback cooling

6.1 Quantum mechanical model: A summary

6.1.1 Homodyne current

As mentioned, the key to the feedback experiments is the homodyne setup and the self-
interference of fluorescence photons. In Chapter 3, the intensity of the photo-current
measured in such a configuration in the Lamb-Dicke limit was derived in Eq. (3.53), i.e.

〈Ic(t)〉 =
γ

2
〈1 + 2η(am + a†m)(t)〉c + o(η2), where (6.1)

γ = εΓg

Ω2
g

4∆2
g + Γ2

g

,

is the optical pumping rate into the mirror channel, Ωg the Rabi frequency and ∆g the
laser detuning, as before. The index "c" denotes observables obtained from the condi-
tional density matrix. It describes, that each photon count implies a quantum jump of
the ion wave function, i.e. a projection into the ground state. The green fluorescence
consists of a strong elastic component at zero-frequency (the constant contribution in
Eq.(6.2)), and motional side-bands of the order of η which are proportional to the
position operator of the ion, z̃m ≡ am +a†m. As mentioned before, this situation is rem-
iniscent of homodyne detection, where a strong component (elastic scattering) beats
with a weak one (elastic scattering). Following the formalism of homodyne detection
of diffusive processes [75], the measured photocurrent reads

I(h)
c (t) =

γ

2
+ γη〈z̃m〉c(t) +

√
γ

2
ξ(t) , (6.2)

where ξ(t) is a Gaussian white noise function satisfying 〈ξ(t)ξ(t′)〉= δ(t − t′). This
term arises from the measurement process itself and describes the shot-noise of photon
counting experiments. In the diffusion approximation the Poissonian distribution is
replaced by a Gaussian (white noise) distribution of the stochastic variable ξ(t). The
noise fundamentally limits the sensitivity of photo detection and the quality of quantum
feedback operations.

6.1.2 Feedback

In Eq.(6.2) it is shown, that the measured photocurrent continuously follows the mean
position of the ion along z, 〈z̃m〉c. This information can be used to manipulate the
motion of the ion, for instance to further cool it below the Doppler limit, by means of
electronic feedback.

The feedback circuit used in the experiment is depicted in Fig. (6.2). The photocur-
rent I

(h)
c is first mixed with a local oscillator of variable frequency and phase (ωlo and

ϕ respectively), and then sent to a band pass filter centered at ωf/2π= 10.7 MHz.
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The signal is finally mixed again with the local oscillator, amplified and sent back to
the trap electrode. The transfer function of the band pass filter is denoted by Z(ω).
Considering all electronic transformations done to the measured photo-current (signal),
the feedback current reads

Ifb,c(t) = G′
qmcos(ωlot)

∫ t

−∞
dt1Z̃(t− t1) cos(ωlot1 + ϕ)I(h)

c (t1) (6.3)

where G′
qm is the gain of the amplification stage and Z̃(t) the Fourier transform of Z(ω).

For a clear separation of dynamics, i.e. the bandwidth of the filter B in the feedback
circuit much larger than the cooling rates of the motion of the ion, the feedback current
can be expressed as [76]

Ifb,c(t) = G′
qm

(
γη〈Xϕ〉Ic(t) +

√
γ

2
Ξ

)
cos(ωlot). (6.4)

In (6.4) the first term, 〈Xϕ〉=Tr{Xϕρ̃c(t)}, is the expectation value of the quadrature
component

Xϕ ≡ ameiϕ + a†me−iϕ , (6.5)

in a rotating frame. Xϕ thus determines the different types of feedback applied, either
proportional to the momentum or to the position of the ion. For instance, for ϕ=
-π/2, feedback is identical and opposite to the momentum operator of the ion, pm ≡
i(am−a†m), as shown later. The second contribution in Eq.(6.4) describes the Gaussian
noise passing through the band pass filter and reads

Ξ(t) =

∫ t

−∞
dt1Z̃(t− t1)cos(ωlot1 + ϕ)ξ(t1) . (6.6)

This white noise contribution deriving from ξ is the limitation for the reported feedback
experiments . It is spectrally flat over a frequency range of B and plays a crucial role
for all feedback phases, ϕ. This noise Ξ is indeed systematically fed back to the ion
which then heats up the motion of the ion. Thus, the measurements performed are
expected to be shot-noise limited.

6.1.3 Energy vs. gain

The theory developed by Steixner and coworkers employs the formalism of the stochas-
tic Schrodinger equation to express the photocurrent. Based on a general quantum
feedback formalism [80], a quantum feedback master equation for the motion of the
trapped ion is derived. This allows oneto study the dynamics and limits of quantum
feedback cooling. One of the most interesting observables in this system is the energy
of the ion and changes of the energy during feedback operations. This quantity is mea-
sured as a function of the gain Gqm of the feedback circuit. In ion trap experiments the
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6 Quantum feedback cooling

energy is measured in terms of motional quantum numbers nphn. At Doppler cooling
conditions the initial phonon number is nphn,i, typically on the order of nphn,i ≈ 15.
The energy of the ion in units of nphn as a function of the feedback-gain Gqm and the
feedback phase ϕ taken from [76] is

〈nphn〉ϕss =
nphn,i − 1

2
(4nphn,i − 1)ηγ̃Gqm sin ϕ

(1− ηγ̃Gqm sin ϕ)(1− 2ηγ̃Gqm sin ϕ)

+
1
8
γ̃G2

qm[1 + 4γ̃η2(2nphn,i + 1− 2 sin2 ϕ)]

(1− ηγ̃Gqm sin ϕ)(1− 2ηγ̃Gqm sin ϕ)
(6.7)

−
1
8
ηγ̃2G3

qm sin ϕ

(1− ηγ̃Gqm sin ϕ)(1− 2ηγ̃Gqm sin ϕ)
,

where γ̃ = γ/Γg is the normalized coupling rate into the mirror channel. The equation
is structured in powers of Gqm and is evaluated for certain feedback phases below.

6.2 The semiclassical model

In this section a semiclassical theory describing feedback control of the motion of the
ion is presented. First, the motion of a trapped and laser cooled ion is modelled
as a harmonic oscillator coupled to a thermal reservoir, i.e. the cooling laser field.
The motional spectrum of the oscillator shows a Lorentzian profile. Consequently,
feedback will be introduced in terms of a force derived from the motion of the ion.
The analysis includes noise and an arbitrary feedback phase for a general application.
Motional spectra inside and outside the feedback loop are calculated. Additionally,
the corresponding oscillator energy as a function of the feedback gain is derived, which
allows a comparison to the quantum-mechanical model shown before. In a later stage
the generally derived equations will be discussed focussing on a feedback for cooling
purposes ("cold damping").

The model presented here relies on the measurement of the (relative) position of the
ion. Indeed, this is guaranteed by the homodyne measurement resulting in interference
allowing for a high spatial resolution. The semiclassical approach provides a very
intuitive access, the ability to determine spectra inside and outside the feedback loop
is very close to the experimental work and is moreover essential for determining the
feedback phase. The model presented here is based on the work reported in [32,81,95]
and partly reproduces the cited work for the sake of clarity. Moreover, the model
is applied to our experimental conditions and generalizes the approach in terms of
implementing an arbitrary feedback phase and noise contributions.
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6.2 The semiclassical model

6.2.1 The single ion harmonic oscillator and Doppler cooling

An ion held in a Paul-Trap is a very well isolated harmonic oscillator. As for any
macroscopic system, the thermal environment determines the energy of the oscillator,
i.e. following the equipartition theorem, each motional degree of freedom is driven
by a thermal random force, i.e. the Langevin force. In the system studied here, the
thermal bath is the ensemble of cooling laser fields. The dynamics of laser cooling is
decribed in [48] in terms of light pressure forces induced by absorption and emission
events. There, an expansion of the light pressure force in the velocity is leading to a
frictional damping term describing the interaction between an oscillating ion and the
laser (thermal) bath.

As a consequence, the motion of the single trapped ion under Doppler cooling con-
ditions can be approximated by a driven harmonic oscillator coupled to a reservoir
leading to the following equation of motion

r̈ + Γṙ + ω2
t r = FL(t)/m , (6.8)

where Γ is the damping or cooling rate of the oscillator, ωt the angular frequency of
its mechanical oscillations, m the mass of the oscillator and FL(t) the Langevin force
describing spontaneous emission of photons. We denote the position of the ion by a
general and for simplicity one-dimensional r. The position of the ion as a function of
the frequency can be expressed in terms of the mechanical susceptibility of an oscillator
χ(ω), and reads

r(ω) = χ(ω)FL(ω) , (6.9)

where ω is the frequency variable. Squaring the frequency components is leading to
the spectral density of motion

Sr(ω) = |χ(ω)|2SFL
(ω) =

SFL
(ω)

m2

1

(ω2
t − ω2)2 + Γ2ω2

, (6.10)

where SFL
(ω) = |FL(ω)|2 is the energetic spectral density of the Langevin force, and

can be calculated with the help of the mechanical susceptibility of an oscillator χ(ω)
by using the Fluctuation-Dissipation Theorem (FDT) [92] yielding

SFL
(ω) =

~ Im{χ(ω)}
|χ(ω)|2 coth

(
~ω

2kBT

)
. (6.11)

For kBT À ~ω (classical regime) ω can be neglected in Eq. (6.11) and the spectrum
of the Langevin force becomes constant in frequency space. By introducing SFL

into
Eq. (6.10) one obtains

Sr(ω) = |χ(ω)|2SFL
(ω) =

2ΓkBT

mω2
t

1

4∆2 + Γ2
. (6.12)
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6 Quantum feedback cooling

We have considerd the region close to resonance, i.e. ω2
t − ω2 ≈ 2ωt∆ and ωt ≈ ω,

where ∆ = ωt − ω is defined as the detuning. The spectrum of a single trapped and
laser cooled ion thus has a Lorentzian profile.

The temperature of the thermal bath driving the ion motion is determined by the
balance of laser-induced cooling and spontaneous heating process. It is connected to
the thermal energy E0 of the ion by

E0 = ~ΓP,tot/2 = kBT0. (6.13)

ΓP,tot is the total linewidth of the radiative transitions from the P1/2 to the S1/2 state
and the P1/2 to D3/2 state for the Ba+ ion (see Fig.3.1). E0 can be expressed in terms
of the phonon number expectation value, 〈nphn〉, for a quantized oscillator to provide
a comparison to the quantum-mechanical approach.

The mean position variance can be calculated by integrating the spectral density
Sr(ω) over ω and represents the equipartition theorem; it reads:

〈r2〉 =
1

2π

∫ ∞

−∞
Sr(ω)dω =

kBT0

mω2
t

. (6.14)

For convenience the spectral power density of the motion can be presented as

Sr(ω) =
2〈r2〉Γ

4∆2 + Γ2
. (6.15)

After having derived the spectrum of motion of a Doppler cooled ion in a Paul trap,
we want to study the behavior of the system under feedback.

6.2.2 Feedback

In the language of the semiclassical model, the motion of the ion is observed as a
modulation of the homodyne photocurrent at the trap frequencies ωt yielding sidebands
in the frequency domain (described by Eq. (6.15)). As can be seen from Eq. (6.2), the
modulation appears only for a high precision measurement of the position of the ion.
Since a comparison between the quantum mechanical and the semiclassical descriptions
will be made at a later stage, the position of the ion is denoted by zm(ω) in the following,
the projection of the position coordinate of the ion onto the mirror axis, instead of the
general notation r(ω). Regardless of the realization of any back-action, the feedback is
described as an additional force acting on the ion’s motion leading to

zm,FB(ω) = χ(ω)[FL(ω) + FFB(ω)] . (6.16)

The feedback force can be written in a general form like

FFB(ω) = ωΓGme−iϕ(zm,FB(ω) + sin(ω)) , (6.17)
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6.2 The semiclassical model

where G is the feedback gain and ϕ the phase of the feedback loop. Additionally, a
noise contribution, sin(ω) being the noise amplitude present inside the feedback loop,
is formally introduced. The feedback driving the ion motion thus consists of one part
generated by the position measurement and a second part guided by an inherent existing
(shot-) noise. Inserting Eq. (6.17) into Eq. (6.16) leads to

zm,FB(ω) =
FL

1/χ(ω)− ωΓGme−iϕ
+

ωΓGe−iϕsin

1/χ(ω)− ωΓGme−iϕ
.

Following the procedure of the previous subsection and introducing the feedback vari-
ables

ΓFB = Γ−GΓ sin ϕ

∆FB = ∆− ΓG

2
cos ϕ , (6.18)

results in modified spectra. Mixed contributions, i.e. contributions proportional to
FL · sin vanish due to a missing correlation. The spectrum under feedback conditions
then reads

Szm,FB =
2〈z2

m〉Γ + SinΓ2G2

4∆2
FB + Γ2

FB

. (6.19)

The variable Sin = |sin|2 describes the spectral density of the noise in the in-loop
channel. The spectrum of the oscillator under feedback still stays Lorentzian, but with
a modified width and detuning. Comparing Eq. (6.15) and Eq. (6.19) clearly shows,
that the feedback adds a noise contribution being proportional to gain squared, G2.

Now the dependence of the energy of the ion oscillator as a function of the feed-
back gain, G, should be discussed. The position variance under feedback conditions is
obtained by evaluating the integral

〈z2
m,FB〉 =

1

2π

∫ ∞

−∞
Szm,FB dω =

= 〈z2
m〉

Γ

ΓFB

+
SinG

2

2

Γ2

ΓFB

, (6.20)

and inserting this equation into the energy of the harmonic oscillator. Normalizing to
the zero gain energy leads to

EFB (G)

E0 (G = 0)
=

m

kT
ω2

FB

(
〈z2

m〉
Γ

ΓFB

+
SinG

2

2

Γ2

ΓFB

)
, (6.21)

where we have defined a new oscillation frequency

ωFB = ωt − GΓ

2
cos ϕ. (6.22)
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6 Quantum feedback cooling

Equation (6.21) contains all the information about the energy of the ion oscillator as a
function of the feedback gain. Furthermore it describes several kinds of feedback, i.e.
different feedback phases. Obviously, since the energy depends only on the average of
the position measurement, 〈z2

m〉, a noise contribution coming along with the position
measurement averages out and does not change the energy dependence. Nevertheless, in
a realistic situation, the instantaneous position has indeed an additional noise term, in
the present derivation denoted as sin. This property yields distinct situations inside and
outside the feedback loop, since the intrinsic noise is also part of the driving feedback
force (see Eq. (6.17)). The effect of these two different situations can be especially
observed in the spectra of motion, because to obtain the spectra amplitudes have to
be added up before squaring . This circumstance will be discussed in the following.

6.2.3 In-loop and Out-loop spectra of motion

The measured position is comprised of two parts, the precise position and a noise term.
This yields

zm,FB,in−loop(ω) = zm,FB(ω) + sin. (6.23)

Inserting Eq. (6.16) into the equation above clearly shows, that the noise amplitude
sin in Eq. (6.23) has to be added with a term ∝ Ge−iϕsin coming from Eq. (6.17).
Therefore, depending on the phase, a cancelling and even a reduction of the noise in the
in-loop spectrum can take place (Fig.6.4). This effect is for example observed in closed
opto-electronic loops [96] and was coined "anti-correlated state of light". Squaring the
position modulus, |zm,FB,in−loop(ω)|2, and applying the same approximations as before
provides the spectrum measured inside the feedback loop. It reads

Szm,FB,in−loop(ω) =
2〈z2

m〉Γ + (4∆2 + Γ2)Sin

4∆2
FB + Γ2

FB

. (6.24)

We additionally introduce a new variable, A, a fitting parameter proportional to the ex-
perimental Signal-to-Noise ratio (SNR), A = 2〈z2

m〉/ΓSin at resonance. Reformulating
Eq. (6.24) finally leads to

Szm,FB,in−loop(ω) =
4∆2 + (1 + A)Γ2

4∆2
FB + Γ2

FB

. (6.25)

By contrast, the out-loop spectrum, Szm,FB,out−loop, is determined by summing up the
already evaluated spectrum under feedback conditions (6.19) and a noise term, which
is not correlated with the shot-noise produced inside the feedback loop, i.e.

Szm,FB,out−loop(ω) = Szm,FB + Sout . (6.26)

As a consequence, the out-loop spectrum of motion never shows a noise reduction
making this signal an ideal measure to evaluate the energy of the ion motion as a
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6.3 Experiment

function of the feedback gain. On the other hand, the in-loop spectrum does show a
noise reduction. This makes the in-loop signal unsuitable to measure the energy of the
ion oscillator, but - as being sensitive to the phase - a proper way to determine the
kind of feedback applied. Therefore, the in-loop spectra are of deep interest as a direct
measure of the feedback phase, as will be shown later.

6.3 Experiment

6.3.1 Experimental Setup

The barium ion is laser-cooled by the two light-fields at 493 nm and 650 nm wavelength.
The green fluorescence is collected with the Halo-lens L2, and sent to the distant
mirror situated at a distance of L ≈ 25 cm. Lens L1 collects both the directly emitted
and the reflected light, focusses it onto a pinhole and sends it a 50/50 beam splitter.
Transmitted light is detected by photo-multiplier one (PMT1), reflected light by PMT2.
Photon counting and experiment control is done following the description in Chapter
4. Spectrum analyzers (FSP) investigate the measured photo-current in the frequency
domain.

The signal of PMT1 is used to stabilize the ion mirror distance with high precision
(fringe lock) by acting on the piezo-translation stage (PZT). Moreover, a copy of that
signal is used for the electronics (red box) creating the feedback sent to the ion. Thus,
this channel is defined as the inloop channel. The observation in the outloop chan-
nel allows for feedback independent analysis. All parameters are controlled, set and
recorded with a LabView programm (PC).

6.3.2 Feedback electronics

The aim of the feedback electronics (see Fig.6.2) is to control the amplitude and
the phase of the input signal, i.e. the photocurrent. The latter consists of an RF-
modulation at the ion’s oscillation frequency ωt/2π (sideband) above the shot noise.
The input signal is first low-pass filtered. To select a sideband, it is then mixed with
a Local Oscillator (LO) wave at a frequency of 10.7 MHz + ωt/2π to match to the
central frequency (10.7 MHz) and the bandwidth (30 kHz) of a band-pass filter (IF
10.7 MHz). The amplitude of the signal is amplified with a fixed gain (AD-829) and is
controlled with a bi-phase variable attenuator to avoid phase shifts for variable gain.
The signal is then mixed down to its initial frequency with the same but phase-shifted
(2x SPH-16) LO wave. A low pass filter cancels signals appearing at the frequency sum
of the mixing products. A buffer amplifier at the output is finally used to match the 50
Ohm output impedance to the total impedance of the end cap electrodes of the trap
at the sideband frequency.
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Figure 6.1: Schematics of the setup: For details see text.

6.3.3 Sideband detection

The motion of the ion in the trapping potential can be decomposed into the three nor-
mal modes with frequencies ωx, ωy and ωz along xt, yt and zt in the RF pseudo potential.
All these oscillations change the position of the ion on a sub-wavelength thus leading
to a modulation of the resonance fluorescence at these frequencies. Equation (6.2) de-
scribes the different contributions observed in the photocurrent as a function of time.
The most interesting is the first term in Eq. (6.2), γη〈z̃m〉c(t), containing the real-time
position measurement (∝ 〈z̃m〉c(t)) of the ion, where of course all the three motional
contributions can enter. This term is, as describing the first motional sideband, a factor
of η weaker than the carrier transition. Additionally, the photocurrent carries Poisson
noise (shot noise), modelled as Gaussian white noise in Eq. (6.2), (

√
γ
2
ξ(t)), whose

origin is the photon stream statistics.
In the frequency domain, a strong carrier at zero frequency and three motional

sidebands ωx, ωy, ωz displaced from the carrier are superimposed on a noise pedestal
spectrally flat over the entire observed range, i.e. the shot noise level. Figure 6.3 shows
a typical photocurrent spectrum zoomed at the frequencies of interest, ωx/2π ∼ 1MHz
(X-sideband) and ωy/2π ∼ 1.2MHz (Y-sideband). The spectra are normalized to the
shot noise level and are taken with all the fluorescence coupled into the PMT1 channel.
Analyzing the spectra enables one to determine the laser cooling rate Γ, i.e. the width
of the sideband, and the motional energy of the ion, E0, given by the area under the
sideband. In Fig. 6.3 the excitation is done with the main beam (see Fig. 4.1) leading
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Figure 6.2: Schematics of feedback electronics. The photocurrent modulated at fsb
(signal in) is mixed to a frequency at 10.7MHz (M1), filtered and mixed
down again (M2) with the same local oscillator whose phase can be altered
generating a phase shifted signal at fsb.

to an equal cooling rate of the X- and Y-sideband on the order of 450Hz, whereas the
motion along z ("Z-sideband") is not observable due to an optimal cooling process.

6.3.4 Feedback

The information of the position and the motion of the ion is used to apply electronic
feedback. While different feedback phases are presented to give a complete analysis,
the main subject is to study feedback leading to a reduction of the ion’s energy, i.e.
electro-mechanical cooling.

The feedback was described quantum-mechanically in section 6.1 in terms of the
feedback current (Eq. (6.4)) containing the operator 〈Xϕ〉Ic(t) counting for different
phases. Additionally,

√
γ
2
Ξ, describes the shot noise present in an experiment based

on photon counting. In the semiclassical model the feedback is described as different
forces (Eq. (6.17)) depending on a phase factor. As in the quantum mechanical model,
we also find a noise term, denoted as sin.

The feedback phase plays a dominant role in the following experiments. It originates
from the phase of the ion motion and needs to be stable over several feedback operations.
By comparing the cooling ratio, Γ/2π ≈ 400Hz, and the ratio of feedback determined
by the bandwidth of the loop filter, B/2π = 30 kHz, one can see, that this requirement
is fulfilled. Furthermore, the phase of the feedback applied to the ion needs to be
precisely determined. A callibration relying on the inloop-spectra will be shown in the
following section.

In addition, the feedback current contains all components of the motion of the ion,
i.e. all visible secular sidebands. By mixing the input signal with the right frequency of
the local oscillator, a desired sideband is selected on which feedback is acting on. Thus
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Figure 6.3: X and Y- sideband (from the left) for Dopplercooling with the mainbeam (Z
sideband not observable). The spectra are normalized to shot-noise. The
sidebands show roughly the same heights corresponding to equal cooling
conditions. Parameters: Γx/2π = 470 ± 20Hz and Γy/2π = 420 ± 20Hz,
RBW=10Hz.

the presented feedback operations are one-dimensional. Spectra are typically recorded
within 20 to 30 seconds depending on the resolution (typically 10 Hz) and the number
of averages (typically 150).

In-loop spectra and phase determination

The inloop-spectra described by Eq.(6.25) determine the feedback phase experienced
by the ion. This phase can also be evaluated by pure electronic analysis. A combination
of both methods was used in the experimental work.

Figure 6.4 shows In-loop spectra for different feedback phases, i.e. ϕ = −π/4, −π/2,
5π/4, π. Furthermore the relevant sideband without any feedback applied (no FB,
G = 0) is shown in the top middle of the figure array. The plot shows that the
measured phase-dependent changes in the In-loop spectra are nicely reproduced by
the semiclassical calculations. The case ϕ = −π/2 offers, due to symmetry reasons, a
proper measure for the overall feedback phase the ion experiences. Taking this phase
as a calibration and measuring the electronic phase shift of the circuit allows for a
determination of the phase within ±3◦.

In the following different cases of feedback should be selected. The systematic analy-
sis first shows the results of a quantum-mechanical approach followed by the semiclas-
sical investigation. After a comparison, experimental In-loop and Out-loop results are
shown for different feedback gains.
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Figure 6.4: Sidebands recorded inside the feedback loop (inloop) for different feedback
phases. The case of a π/2 feedback phase is shown in figure 6.6. The full
line shows the result of Eq. (6.25) for A=0.6, 0.35 < G < 0.6 and varying
phases.

Feedback with phase (−π/2)

This case refers to the so-called cold damping, where oscillators are damped by apply-
ing a viscous force, i.e. a force proportional and opposite to the velocity of the ion.
The signal derived from the measurement is proportional to the position, as described
in Eq. (6.4). For ϕ = −π/2, Xϕ ≡ ameiϕ + a†me−iϕ, the operator defining the kind of
feedback, becomes Xϕ = i(a†m − am), proportional and opposite to the momentum op-
erator, pm ≡ i(am− a†m), as desired. In the quantum-mechanical model the normalized
energy of the ion written in terms of the mean phonon number reads (cf. Eq. (6.27))

〈nphn〉−π/2
ss

nphn,i

=
nphn,i + 1

2
ηγ̃(2nphn,i − 1)Gqm + 1

8
γ̃G2

qm

nphn,i(1 + 2ηγ̃Gqm)
. (6.27)

In the semiclassical description one finds the dependence for the energy of the ion under
feedback operation by evaluating Eq. (6.21) for the phase −π/2. In that case Eq. (6.21)
becomes

Eϕ=−π/2 (G)

E0 (G = 0)
=

1

1 + G
+

1

A

G2

1 + G
. (6.28)

The first term in the energy relation shows a 1/(1+G) dependence leading to a reduction
of the energy for an increasing gain. The second term weighted by G2 describes a
driving of the ion’s motion by the intrinsic noise. These two competing terms lead to
a decreased energy for low gains and an increasing energy for high gains dominated
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Figure 6.5: The X-sideband under feedback operation with optimal phase (-π/2): The
three figures on top are recorded inside the feedback loop (inloop), the
lower ones outside the feedbacl loop (outloop). We measure linewidths of
ΓG=0/2π = 635(30)Hz, ΓG=1.3/2π = 650(30)Hz, ΓG=8.7/2π = 1340(100)Hz
in the outloop spectra. No frequency shift is measured.

by noise feedback. One finds a similar behavior in Eq.(6.27). One term proportional
to 1/(1 + const G) describing cooling and a term ∝ G2/(1 + const G) describing the
heating due to noise. While the classical approach depends just on one parameter, A,
the q.m. models keeps track of all individual, experimental parameters.

Evaluating Eq.(6.18) shows the physical properties of this kind of feedback. The
damping rate and the detuning are modified, such that

ΓFB = Γ(1 + G)

∆FB = ∆ , (6.29)

leading to an increased damping rate with increasing gain, whereas the detuning re-
mains unchanged, i.e. no frequency shift is observed. This implies, that this kind of
feedback provides cooling of the ion oscillator by increasing the friction force, a force
being proportional but opposite to the velocity of the ion.

The results of this special feedback operation is shown in Fig. 6.5 for observing the
signal inside the feedback loop (upper row) and for outside (lower row), respectively.
While in the top, right plot of Fig. 6.5 a noise reduction caused by an electronic can-
celling of the shot noise and its feedback can be clearly observed, the bottom most
right plot of Fig. 6.5 does not show the noise reduction anymore, thus revealing pure
damping of the ion motion. An increase of the damping rate, Γ, with an increasing
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Figure 6.6: The X-sideband under feedback operation with phase (π/2): The top
figures show inloop spectra, the lower ones outloop spectra. The mea-
sured linewidths (outloop) are ΓG=0/2π = 740(40)Hz and ΓG=3.1/2π =
400(20)Hz. No frequency shift is measured.

gain is observed, but no frequency shift.

Feedback with phase (π/2)

The feedback discussed here is a feedback proportional to the momentum operator as
in the case of feedback with phase −π/2, but with opposite sign. This can be seen by
evaluating Xϕ ≡ ameiϕ +a†me−iϕ for π/2, i.e. Xϕ = i(am−a†m), thus a feedback leading
to heating is expected. The ion energy vs gain relation from Eq. (6.27) reads

〈nphn〉π/2
ss

nphn,i

=
nphn,i − 1

2
ηγ̃(2nphn,i − 1)Gqm + 1

8
γ̃G2

qm

nphn,i(1− 2ηγ̃Gqm)
. (6.30)

Only for Gqm < 1/(2ηγ̃) the quantum mechanical theory predicts a steady-state. One
finds a 1/(1− const G) and a term ∝ G2/(1− const G).

The energy relation derived from the semiclassical model for that case reads

Eϕ=π/2 (G)

E0 (G = 0)
=

1

1−G
+

1

A

G2

1−G
. (6.31)

The first term proportional to 1/(1−G) already shows an increase of the ion’s energy for
low gains. Moreover, a singularity at G = 1 yields a diverging energy in the theory, thus
forbidding a steady state for all gains under this feedback condition. This phenomenon
is also predicted by the quantum-mechanical approach. The damping rate is modified,
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6 Quantum feedback cooling

ΓFB = Γ(1 − G), which leads to a decrease in the interaction (cooling) rate of the
oscillator and the thermal bath of the laser field. ∆FB = ∆ remains unchanged as in
the case of −π/2.

Figure 6.6 demonstrates the experimental results. The inloop measurements show
an excessive "heating" of the ion explained by the inverse effect of noise cancellation
shown before. The outloop measurements show a reduction of the sideband width as
a function of the gain, while the area under the sideband is increasing. No frequency
shift is observed.

Feedback with phase (π) and (0)

For a feedback with phase π one finds Xϕ ∝ am+a†m. Thus a feedback force proportional
to the position of the ion z̃m ≡ am + a†m is applied. The q.m. derivation yields (cf.
Eq. (6.27))

〈nphn〉πss
nphn,i

= 1 +
1

8

γ̃G2
qm

nphn,i

[1 + 4η2γ̃(2nphn,i + 1)], (6.32)

whereas the semiclassical prediction is

Eϕ=π(G)

E0 (G = 0)
= 1 +

G2

A
. (6.33)

Both theoretical approaches show a quadratical dependence of the ion’s energy as a
function of the gain, though the semiclassical derivation just has one proportionality
factor. The feedback parameters can be evaluated with the help of Eq.(6.18). The
damping rate and the detuning under such conditions read

ΓFB = Γ

∆FB = ∆ +
ΓG

2
. (6.34)

Thus, the damping rate remains unchanged, but ∆FB is increased which describes a
shift of the oscillation frequency, as expected. Figure 6.7 shows the sideband measured
outside the feedback loop. The width of the sideband (Γ) is ΓnoFB/2π = 510(20)Hz and
ΓG=1.3/2π = 495(20)Hz, thus describing an almost constant damping rate. Moreover,
Fig.6.7 is already indicating a slight frequency shift on the order of δf = 2kHz under
feedback operation. Figure 6.8 shows the frequency shift as a function of the electronic
gain obtained for a series of five datasets. The errorbars indicate statistical deviations.

The case of a feedback with phase (0) is comparable to the case of phase (π). While
the damping rate Γ remains unchanged, a frequency shift can be measured as well, i.e.
∆FB = ∆ − ΓG

2
. Thus, the results of such a feedback induces a negative frequency

shift.
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Figure 6.7: The X-sideband under a feedback operation with phase π measured outside
the feedback loop. The sideband Γ remains unchanged, however a frequency
shift of 2 kHz is measured (see also Fig. 6.8).

Calibration of the feedback gain

The amplitude of feedback applied to the ion is determined by the gain parameter.
Experimentally, the purely electronic gain Gel - as being proportional to the overall,
real gain - is used. In the presented analysis, G is introduced as the gain for the
semiclassical model, Gqm (G′

qm = Gqm/η) for the quantum-mechanical. In the following,
we will discuss, how these parameters relate.

We assume G = a · Gel, where a is a (constant) conversion factor. Equation (6.29)
describes the increase of the damping rate as a function of the gain under a feedback
operation with phase (−π/2). Rearranging this expression leads to

ΓFB(Gel)

ΓnoFB

= a ·Gel − 1. (6.35)

Measuring the increase of the damping rate ΓFB as a function of the electronic gain
(see Fig.6.9) yields a conversion factor of a = 0.13(2) between the electronic gain Gel

and the realistic gain G used for the semiclassical model.
On the other hand, a derivation in Ref. [76] results in

ΓFB(G)

ΓnoFB

=
2 εnphn

1 + α
· Gqm

η
− 1, (6.36)

where ε = 0.006 is the fraction of the solid angle collected (including the detector
quantum efficiency), η = 0.07 the Lamb-Dicke parameter and α = 2/5 the dipole pa-
rameter. Together with feedback with phase (π) comes a frequency shift, δf , expressed
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Figure 6.8: Frequency-shift of outloop spectra as a function of the electronic gain under
π-phase feedback operation. A shift of 2kHz per electronic gain-unit is
measured.

in Ref. [76]

δf ·Gel =
γη

2
· Gqm

η
. (6.37)

The parameter γ ≈ 40 kHz is defined in Eq. (6.2). A frequency shift of 2 kHz yields
Gqm

η
≈ 1.3Gel, inserting this into Eq. (6.36) results in Gqm ≈ 0.19 · Gel. We then

conclude, that G ∼ Gqm and that the overall gain experienced by the ion is about one
order of magnitude smaller than the pure electronic gain.

6.3.5 Motional energy and comparison of the models

In this section both theories, the semiclassical and the quantum-mechanical, are con-
fronted with data measured in feedback experiments with different phases.

The mean phonon number of the ion oscillator is nphn ≈ 17 and is thus in a regime,
where both theories are valid. Thereby, the Lamb-Dicke limit sets an upper limit for the
application of the quantum-mechanical theory. Both theories in combination provide
full understanding of such an experiment at the boundary of classical and quantum-
mechanical physics. Semi-classical physics delivers an intuitive picture, but at the cost
of loosing track of individual experimental parameters. In our case the parameter A
(∝ SNR) determines the experimental environment, but is a fitting parameter. On the
other hand, the quantum-mechanical theory gives a quantitative understanding of the
experiment and provides access to all kind of experimental parameters, e.g. the fraction
of the solid angle collected by the observation lenses or the mean phonon number nphn

at the Doppler cooling limit. The latter allows one to calibrate the ion’s vibrational
energy in absolute numbers.

Figure 6.10 shows the vibrational energy of the ion oscillator as a function of the
electronic feedback gain for three different feedback phases (−π/2 (a), π (b), π/2 (c)).
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Figure 6.9: The linewidth of outloop spectra as a function of the electronic gain, a
measurement supporting Eq. (6.29). A conversion factor between electronic
and real gain is determined: G = 0.13 ∗Gel.

The vibrational energy is normalized to the case without feedback, i.e. Gel = 0. The
figures show measured data together with the semiclassical model (Eqs. (6.28), (6.31)
and (6.33)) and the quantum-mechanical prediction (Eqs. (6.27), (6.32)).

Firstly for feedback damping (feedback phase of −π/2, Fig.6.10(a)) we measure a
cooling of the ion below the Doppler limit by∼ 30 %. We observe an agreement between
the measurement and both theories for small gains Gel. The data support both theories
within the measurement error bars. The semiclassical model shows a more pronounced
cooling at higher gain (0.63 @ Gel = 1.6) compared to the quantum-mechanical case
(0.68 @ Gel = 1.3). This can be explained by the state-destructive nature of a quantum
measurement, which is not considered in the semiclassical approach. For higher gain,
the semiclassical model shows a stronger heating of the ion by the measurement induced
noise. From the quantum-mechanical model we can deduce a mean photon occupation
number for the laser cooled Ba+ ion of nphn ≈ 17.

Secondly, Fig.6.10(b) shows feedback leading to heating of the ion motion. Once
again, we observe agreement (within the error bars) between the measurement and both
theories for a small gain. Both theories show a quadratic increase of the ions energy
as the feedback gain is increased. A better agreement between the measurements
and the quantum-mechanical theory can be found by "applying" a feedback signal
with a detuning δ of δ ≈ Γ in the quantum-mechanical model. This is shown in the
inset of Fig.6.10(b), where the vertical line describes a singularity introduced by the
frequency detuning. The quantum-mechanical model looses its validity at this point,
the semiclassical still grows quadratically with Gel. Another remarkable feature is
shown in this plot. The data-points at Gel > 1.3 clearly show a saturation of the ion
energy for high gains. This effect can be explained by a competition of two effects, the
driving feedback field and the confining trap potential.
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6 Quantum feedback cooling

In the case of a feedback with phase π/2 shown in Fig.6.10(c) we can observe a
similar behavior. The measurement clearly shows , that the energy of the ion is not
increased, even for higher gains. On the contrary, both theories suggest a rapid increase
of the ion’s energy for small gains and show singularities at Gel = 0.6 (Gel = 1) in the
quantum-mechanical (semiclassical) description.

To summarize, we find good agreement between measurements and both models
for feedback with phase −π/2 and phase π. In addition, experimental results show a
saturation effect setting limits for a "self excitation" of the ion oscillator, which is not
included in either theory.
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Figure 6.10: The (normalized) energy of the ion as a function of the feedback gain
for different phases, −π/2 (a), π (b) and π/2 (c). The green, full line
describes the quantum-mechanical model, the blue, coarse dashed line
shows the result of the semiclassical theory, the fine dashed line shows the
line of unity. Only the phase of −π/2 is leading to feedback damping. The
parameters used for the quantum-mechanical model are identical for all
three plots: η = 0.06, nphn = 17, ε = 0.06, δ = 0 (Γ in the inset of (b)).
The parameters for the semiclassical model: A = 9 in (a) and A = 0.6 in
(b) and (c).
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7 Time-resolved measurements of
motional sidebands

This chapter presents time-resolved measurement of the motion of a single Barium-
ion making use of second-order time correlations of fluorescence photons. By beating
the fluorescence with itself in a "self-homodyne" configuration, radial sidebands are
visible in the time-domain. The second-order correlation function turns out to be a
very powerful tool: At the nanosecond time-scale, the correlations describe the internal
structure of the ion wave-function and the anti-bunching in the resonance fluorescence
is quantitatively reproduced. On the other hand, for microseconds time-scale, the
correlations show the motional degrees of freedom. Thus, (radial) motional modes and
their relative coherence are measured with a time-resolution down to 1 ns thus proving
the stability of the ion trap.

From Chapter 3, in particular Eq. (3.52), it is apparent, that the photocurrent mea-
sured in the "self-homodyne" configuration contains information about the motion of
the ion. Observations shown in Fig. 5.7 or in Chapter 6 evidently demonstrate this in
the frequency domain where motional sidebands are clearly visible. Indeed, a time-
resolved measurement of the same photocurrent reveals motional degrees of freedom
too.

7.1 The experimental setup

The experimental setup is shown in Fig. 7.1. The Barium ion is laser-cooled by the two
lasers at 493 nm (green) and 650 nm (red) wavelength. The lasers have frequencies close
to resonances and intensities below the saturation thresholds. The ion-trap operating
with typical parameters confines the Barium ion to oscillate at trap frequencies of about
ωx/2π ≈ 1MHz, ωy/2π ≈ 1.2MHz and ωz/2π ≈ 2 MHz in the radial (x and y) and
axial (z) modes of motion. The trap coordinate system is denoted with (x, y, z) and
the lab coordinate system with (x′, y′, z′) as before.

In this experiment, only the green part of the resonance fluorescence is studied. The
distant mirror situated L ≈ 25 cm away from the ion retro-reflects the fluorescence
collected through the Halo-lens L2. Overlapping the ion and its mirror image creates
the self-interference as described in Chapter 3. Scanning the piezo-mechanical mounts
for the mirror scans this interference with a visibility as high as 72 % for very weak
laser excitation [28]. The analysis presented in the following was obtained for slightly
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Figure 7.1: Sketch of the experimental setup: L1...macroscope, L2...Halo-lens in-
side the vacuum, PZT...piezo translation stage, PMT...photomultiplier,
DSC...discriminator, Time TAG...correlator, HBT...Hanbury-Brown and
Twiss setup.

higher excitation intensities so that the contrast reduces to about 50 %. Using a
mean photo-current as set-point, L is fixed in these experiments such that the ion is
located at the slope of its reflected fluorescence standing wave: The mirror position is
controlled with a precision of 10 nm by the mean of a servo loop acting on a piezo-
mechanical positioning (fringe lock). The second-order correlation function is measured
in a Hanbury-Brown and Twiss configuration (HBT) including a 50/50 beam splitter
and two photo-multipliers. The photons detected by the two photomultipliers are time
tagged according to their arrival time in an auto correlator (TAG in Fig. 7.1). Second-
order time correlations among these events are then calculated. Unlike methods where
merely time intervals between successively detected photons are correlated, the time
tag method has no statistical influence on the count rate (pile-up effect) and needs
no systematic corrections [97]. Finally, detected correlations are normalized so that
g

(2)
z′ (∞) → 1.

In a corpuscular picture, green fluorescence photons can take two paths along the
mirror-detector axis before reaching the photo-detectors: either they are emitted di-
rectly towards the detectors or they are emitted towards the mirror and then detected
after reflection. The distance between the ion and the mirror sets the time delay,
τ = 2× L/c ≈ 1.5 ns, between these paths.
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7.2 The Model

7.2 The Model

Now the second-order time correlations of green fluorescence photons should be inves-
tigated with a particular focus on the secular motion of the ion. The mirror is placed
at z′= 0, the center of the trap is at z′ = L. The position operator of the ion relative
to the center of the trap is denoted by ẑm ∝ (am + a†m); am and a†m are bosonic op-
erators associated to the motion of the ion. The trap axis is tilted with respect to z′

by approximately 45◦, zm in fact corresponds to the projection of x, y or z along z′.
Along the z′ axis, the field operator for green photons then reads (cf. Eq. (3.47))

Ez′(t) =
√

εΓg sin(kg(L + ẑm))σ−(t), (7.1)

where Γg is the P1/2-S1/2 spontaneous emission rate and kg the corresponding pho-
ton k−vector at 493 nm. In Eq. (7.1), σ−=|S1/2〉〈P1/2| is the lowering Pauli operator,
associated to the creation of a photon. Moreover, when writing Eq. (7.1) it is implic-
itly assumed that this experiment is carried out in the Markovian limit 1. The time
delay induced by the mirror, T , is in fact much smaller than the dynamics of the
system, namely the spontaneous emission lifetime of the P1/2 state, τ ¿ 1/Γg, and
the timescales associated with laser interactions, τ ¿ 1/Ω, 1/|∆L|, Ω and ∆L being
the laser excitation and detuning respectively. Along the z′–axis, the second-order
correlation function is defined by

g
(2)
z′ (t, t + τ) ∝ 〈E†

z′(t)E
†
z′(t + τ)Ez′(t + τ)Ez′(t)〉. (7.2)

In the following experiments, at the Doppler limit the mean phonon number for
the motional states of the ion is n ≈17, resulting in an effective η

√
n ≈0.3. η =

2πa0/λ ∼ 0.07 is the Lamb-Dicke parameter, a0 denotes the r.m.s. size of the trap
ground state. In such a regime, the motional sidebands have intensities reduced by the
effective Lamb-Dicke parameter, relative to the elastic component of the fluorescence.
It is thus satisfied to expand exponentials (cf. Chapter 3), e.g.

eikgbzm = eiη(bam+ba†m) ≡ 1 + iη(am + a†m) + o(η2). (7.3)

For the ion placed at the slope of the mirror standing wave, i.e. kgL=π/4, the oscillating
term in Eq. 7.1 is expanded into

sin(kg(L + ẑm)) = sin(kgL + η(âm + â†m))

= sin(kgL) cos(η(âm + â†m)) + cos(kgL) sin(η(âm + â†m))

=
1√
2
[cos(η(âm + â†m)) + sin(η(âm + â†m))]

=
1√
2
[1 + η(âm + â†m)− η2

2
(âm + â†m)2 + ...] (7.4)

1The non-Markovian interaction between the ion and its reflected fluorescence is studied in the next
chapter
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The field operator for green photons can be rewritten,

Ez′(t) =
√

εΓg ĉmσ−(t), (7.5)

with
ĉm =

1√
2

(
1 + η(âm + â†m)− η2

2
(âm + â†m)2

)
. (7.6)

From equations (7.1-7.6) the deduced normalized second-order correlation function at
lowest order in η is

g(2)
z (t, t + τ) ∼= (1 + 2η〈am + a†m〉)g(2)(t, t + τ) , (7.7)

where g(2)(t, t + τ) denotes the usual normalized second order correlation function for
a single trapped ion. In order to accurately reproduce the exact shape of the measured
correlations, γ(2) is evaluated considering the 8 relevant electronic levels for the ion
internal states [63]. The second term, proportional to 〈am + a†m〉, shows that the
g(2)–function is modulated by the motion of the ion. This modulation arises from
the self homodyne configuration of the experimental setup. Finally, for continuous
laser excitation, Eq. (7.7) is evaluated at steady state, i.e. for t → ∞, such that
g

(2)
z (t, t + τ) → g

(2)
z (τ).

7.3 Results

In Fig. 7.2 the measured second-order photon correlation function for a ion-mirror dis-
tance of L ≈ 25 cm is presented. It is obtained after subtracting the contributions from
non-interfering ion and mirror image. In the following only the coherent part of the
interaction between directly emitted and reflected fluorescence photons, i.e. the signal
described by Eq. (7.7) (see Chapter 8 for details) is considered. Apart from the usual
photon anti-bunching at τ = 0, for time intervals τ greater than 1/(2πΓg), a modula-
tion induced by the motion of the ion is resolved in the g(2)–function , as previously
discussed. In the experimental setup, every secular modes of motion, namely one axial
and two radial ones, can contribute. Indeed, these have non-vanishing projections along
the z′− axis. In addition, the micro-motion which appears due to the trap drive at
20MHz, can also be projected along z′. However, the amplitude of the micro-motion
is reduced to operate in the most stable trap region, the observed modulation in the
g(2)–function is then only due to the secular motion of the ion.

For this geometry, laser-cooling is more efficient along the axial direction z than along
the radial ones. Therefore, the amplitude of the axial motion is reduced compared to
the one of the radial modes. The modulation of the correlation function is then mainly
governed by the sum of projections of the radial modes. As shown in Fig. 7.2, slow
and fast frequency components are resolved. The slow component reflects the beat-
frequency between the two radial modes of motion, separated by ≈164 kHz for our trap.
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Figure 7.2: Second-order time correlation function for time intervals τ up to 20 µs: The
experimental data are shown as (red) dots, the theoretical predictions for
the same parameters as a black, solid line. The modulation of the g(2)–
function reveals the two frequencies of the motional sidebands along the
radial directions. Inset: Photon-antibunching for short times τ up to 50 ns.
Experimental data are displayed with a 1 ns time resolution.

A Fourier transform of the correlation function shown in Fig. 7.3 thereby exhibits the
exact frequencies, ωx/2π = 1.034(1)MHz along the x axis and ωy/2π = 1.198(1)MHz
along the y axis. Note that the vanishing contrast of the modulation (for τ ≈ 500 µs)
limits the accuracy of the central frequency measurement.

A de-phasing between the radial modes of motion of the ion is observed. The am-
plitude of the beat signal presented in Fig. 7.2 diminishes exponentially with a time
constant equals to 1.64 ms. This reveals that the phase of each radial mode diffuses due
to laser-cooling. Such observation is confirmed by independent measurements of radial
sidebands [30]. On the other hand, the central frequencies of the two radial modes
do not drift within the experimental precision. More precisely, up to τ ≈500µs, no
difference between the frequencies used in the model and the ones of the radial modes
deduced from the correlation function is resolved: Figure 7.3 demonstrates good agree-
ment between the data and the theoretical predictions for τ ≈160µs. The analysis in
fact yields an upper limit for the frequency drift of the trap potential, about 2 kHz
per 30 min (the overall measurement time). Note that measurements performed with
the same trap show drifts of the radial frequencies on the order of 600Hz per 30 min-
utes [30].

In summary, this measurement shows that second-order correlation functions ob-
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7 Time-resolved measurements of motional sidebands

Figure 7.3: Top: The second-order time correlation function for τ ≈ 160 µs. The data
(red points) and the theoretical predictions still coincide thus revealing the
trap stability (Experimental data are displayed with a 1 ns time resolution)
Bottom: Spectrum of the correlation function which shows the two radial
sidebands. Other frequency components are suppressed by at least three
orders of magnitude.

tained in a homodyne configuration can reveal both internal and external dynamics of
a single trapped-ion. At short time intervals between photon emissions (nanoseconds),
the ion internal dynamics governs the correlation function while for longer time inter-
vals (microseconds), the motion of the ion modulates the correlation function. In the
latter case, the ion probes its surrounding potential such that the g(2)–function can be
used to characterize the stability of the trap potential.
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8 Photon correlations vs.
interference of single-atom
fluorescence in a half cavity

This chapter describes an experiment to investigate photon correlations for a single
laser-excited ion trapped in front of a mirror. The measurements were performed in
the old trap. Unlike the measurements presented in chapter 7 the ion-mirror distance is
on the order of one meter. This "half-cavity" system is thus studied in a non-Markovian
regime, i.e. a regime where the time delay picked up during a photon round-trip is not
negligible compared to the relevant time scales present in this system, e.g. the lifetime
of the excited state. Thus, significant memory effects appear. Varying the relative
distance between the ion and the mirror on a nm scale, i.e. positioning the ion in
the node or anti-node of the standing interference-wave, photon correlation statistics
can be tuned smoothly from an antibunching minimum to a bunching-like maximum.
This analysis reveals the field establishment in a half-cavity interferometer and thus
gives also insight into cavity-QED physics. Moreover, the measurements confirm the
predictions made in a theoretical paper published by Uwe Dorner and Peter Zoller
in [34]. The experiments presented here are published in [98].

8.1 The experimental setup

The schematic experimental set-up is shown in Fig. 8.1. The ion is continuously driven
and cooled by the two narrow-band lasers at 493 nm (green) and 650 nm (red) exciting
the S1/2–P1/2 and P1/2–D3/2 transitions, respectively. A fraction ε of the green fluores-
cence photons is reflected by the distant mirror placed at z = L and focussed back onto
the ion. The g(2) correlation function of the 493 nm light is analyzed in the observation
channel opposite to the mirror in a Hanbury-Brown and Twiss setup (see Fig. 3.5). The
photon-pulses are discriminated and correlated using the time-tag method (TTSPC),
according to Fig. 4.6, with a specified temporal resolution is 4 ps. For the measure-
ments the time intervals between pairs of detected photons is evaluated using a 500 ps
time bin width, and then divide the data by the total integration time (several hours)
after background subtraction. A slow electronic servo loop (fringe lock) stabilizes the
average photocurrent and thereby permits control of the distance L between the ion
and the mirror with better than 10 nm precision.
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Figure 8.1: Experimental setup: Piezo-actuators (PZT), photomultipliers (PMT 1 and
2), TTSPC: Time Tagged Single Photon Counting.

The measured light has two components, the direct and the reflected part of the
radiation scattered by the ion, with a time delay T between them. For very low laser
intensities, when all scattering is elastic, the resulting interference of these components
is observed with up to 72% visibility [28] into that mode. In the measurements pre-
sented here slightly higher laser excitation parameters are used, whereby the contrast
reduces to around 50%. The interference signal can be viewed as a consequence of
the standing wave which forms in the mirror mode and which leads to inhibited and
enhanced detection of resonance fluorescence photons [28]. The signal varies with the
ion-mirror distance L as sin2(kgL), where kg is the momentum of photons emitted at
493 nm, according to Eq. (3.52). A fringe minimum corresponds to the ion being lo-
cated at a node of the standing wave, i.e. kgL = nπ (n being an integer); the maximum
corresponds to kgL = (n + 1

2
)π, i.e. to the ion being at an antinode (cf. Fig. 3.11).

Note that on average there are less than 10−3 photons in the mode volume between
the ion and the mirror. Photodetection reveals interference which is created by partial
waves corresponding to the same individual photon. In addition, each detection event
implies state projection of the atom and thereby exhibits its dynamical information.

8.2 The model

Now the second order correlation for arrival times of green photons should be inves-
tigated. Theoretical studies of such a system can be found in Ref. [34]. Here, the
main theoretical results, restricting the treatment to the S1/2 and P1/2 levels, should be
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Figure 8.2: Space-time diagram for the four different contributions in Eq.(8.2). Repro-
duced from [34].

recalled. As shown in Fig. 8.1, the mirror-ion-detector axis is labelled as z, the mirror
is positioned at z = 0 and the trap center at z = L1. The "round-trip" time a photon
needs to cover the ion-mirror-ion distance is denoted with T , the time difference be-
tween two correlated photons is denoted with τ . Neglecting the motion of the ion in
the trap, the field operator for green photons in the mirror mode (index m) at z = L
reads

Em(L, t) =
εΓg

2

i~
d

e−iωLt[σ−(t)θ(t)− eiωLT σ−(t− T )θ(t− T )] , (8.1)

where θ(t) is a step function centered at t = 0, Γg is the free-space decay rate of the
P1/2 to S1/2 transition, and d its dipole oscillator strength. σ− denotes the lowering
operator from |P1/2〉 to |S1/2〉 and ωL the laser frequency. In Eq.(8.1) the Heisenberg
(interaction) picture is used, such that operators are presented in a rotating frame
σ−(t) → σ−(t)e−iωLt. Including proper commutation rules between input and output
states of the field, the second order time correlation function in the mirror mode,
g

(2)
m (t, t + τ) = 〈E†

m(L, t)E†
m(L, t + τ)Em(L, t + τ)Em(L, t)〉, reads

g(2)
m (t, t + τ) ∝ ‖σ−(t + τ)σ−(t)

+e2iωLT σ−(t + τ − T )σ−(t− T )

−T←↩e
iωLT σ−(t + τ − T )σ−(t)

−eiωLT σ−(t + τ)σ−(t− T )|i〉‖2 , (8.2)

where |i〉 denotes the initial state of the system, i.e. the ion in the ground state |S1/2〉
and the mirror mode in the vacuum state. The different contributions in Eq. (8.2)
are visualized in Fig. 8.2 and interpreted as follows: the first term corresponds to the
detection of two photons directly emitted towards the detectors (case a) ) placed at

1For simplicity the lab coordinate system is here denoted with x, y, z.
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8 Photon correlations vs. interference of single-atom fluorescence in a half cavity

z = d and separated by a time interval τ ; in the second term (case b) ), these photons
are both reflected by the mirror situated at z = 0 and therefore both delayed by T
before detection. The two last contributions describe possible detection of either first a
directly emitted photon and then a second one after its reflection on the mirror (third
term, case d) ), or vice-versa (fourth term, case c) ). In the former case, for τ < T
causality is ensured by T←↩ which enforces the time ordering of the two operators on
its right hand side. These must be arranged chronologically from right to left and
have to be commuted if they are not. Consequently, in Eq.(8.2) different contributions
interfere. The first two terms induce anti-bunching around τ = 0 while the two others
may counteract this usual behavior. As we show below, the weight of each component
strongly depends on the actual position of the ion, i.e. whether it is located at a node
or at an anti-node of the mirror mode. Finally, from Eq.(8.2) one obtains in the steady-
state limit (t →∞)

g(2)
m (τ) ∝ |2bP1/2

(τ) cos(2kgL)− bP1/2
(|τ − T |)− bP1/2

(τ + T )|2 (8.3)

where bP1/2
denotes the occupation amplitude of the P1/2 level. In principle, it should

be evaluated including the mirror induced modifications of decay rate and energy value
of the P1/2 state [28]- [30]. Nevertheless, the mirror back-action can be neglected for
the current analysis, with ε being on the order of 1.5%. Then bP1/2

is deduced from
the density matrix time evolution considering a single Ba+ ion trapped in free space.
Note that all 8 electronic sub-levels need to be accounted for in order to accurately
reproduce the exact shape of the measured correlations [63]. Figure 8.3 shows a plot
of Eq. (8.3) for a delay time T = 1/Γg ∼ 7ns and for three different positions Node
(kgL = 0), Slope (kgL = π/4) and Anti-node (kgL = π).

8.3 Results

In the left panel of Fig. 8.4, the correlation function in absence of the mirror, g
(2)
nm, is

presented. It is obtained using the set-up depicted in Fig. 8.1, but with the mirror
blocked. The measurement exhibits the single-ion characteristic of anti-bunching at
short time, with a null rate of coincidences, g

(2)
nm(0) ' 0. It is accurately reproduced by

the simulations described in chapter 3 and do not require any fitting parameter, only
experimental conditions such as laser powers and detunings [63].

The right panel of Fig. 8.4 shows the correlation function when the mirror is included,
but without overlapping the reflected field with its source; ion and mirror image are
then spatially distinct, and there is no interference. The signal, g

(2)
ni (τ), corresponds to

three synchronous but non-interfering sources, shifted in time by ±T ("non-coherent
addition"). The expected contributions to this signal are the moduli squares of the
three terms in Eq. (8.3), without the cosine dependance, i.e. without interference, it
reads

g(2)
m (τ) ∝ 2|bP1/2

(τ)|2 + |bP1/2
(|τ − T |)|2 + |bP1/2

(τ + T )|2. (8.4)
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Figure 8.3: Calculated second order correlation function for a two level system for a
delay time of T=7ns. Details in the text.

As shown by the full line, their sum accurately reproduces the measurements. In the
following this signal is used as a reference, as discussed below.

Figure 8.5 is presenting raw data of measured second order correlation functions,
where both g

(2)
m (τ) and g

(2)
ni (τ) are contributing. Two different ion-mirror distances of

L ∼ 65 cm and ∼ 90 cm are shown in the left and right panel. The corresponding
delay-times are T = 4.5ns and T = 6 ns respectively, comparable to the excited state
lifetime of 1/Γg ≈ 7ns. For each distance three different situations are studied, the ion
being at a Node position (blue, line and square), at the slope (red, line and circles) or at
an Antinode position (green, line and circles) of the standing wave. Prominent features
appear at τ ∼ 0, whose visibility is a function of the overall ion-mirror distance.

In the model leading to Eq. (8.3), experimental conditions are assumed to be ideal
with 100% fringe contrast of the green interference. Experimentally a contrast of merely
50% is observed, such that Eq. (8.3) only accounts for half of the measured correlations,
while the remaining part corresponds to g

(2)
ni . Therefore in all data sets for g

(2)
m (τ) shown

below, the measured g
(2)
ni (τ) has already been subtracted from the raw histogram data.

Limited interference contrast arises from inelastic scattering, imperfect mode-matching
of direct and reflected light, and relative motion between ion and mirror.

Figure 8.6 presents the normalized second order correlation functions g
(2)
m (τ) for

interfering ion and mirror image. As above, three relevant situations are studied: the
ion close to a node (kgL = 0.03π), on the slope (kgL = 0.28π) and close to an antinode
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Figure 8.4: Left: Measured second order correlation function without mirror, g
(2)
nm (cir-

cles) and its simulation calculated from 8-level Bloch equations (line).
Right: Correlation function for non-interfering ion and mirror image, g

(2)
ni ,

for T = 4.5 ns. The line is the sum of four correlation functions as explained
in the text.

(kgL = 0.4π) of the standing-wave mirror mode. The first notable feature is that always
g

(2)
m (0) > 0. For the single ion trapped in front of a mirror, such coincidence can only
appear when a directly emitted and reflected photon are simultaneously detected. This
is possible in this experiment since the delay of a reflected photon is comparable to the
time required to re-excite the ion to the P1/2 state.

The second important feature is that all situations show the same coincidence rate
g

(2)
m (0), although the relative phase (2kgL) between the coincident direct and reflected
photon fields is different in the three situations. This demonstrates that at τ = 0
interference can not be observed yet.

Another interesting feature appears in the long-time limit τ À T : in Eq.(8.3) the
time argument of bP1/2

reduces to τ and

g(2)
m (τ) ≡ sin4(kgL)|bP1/2

(τ)|2|b(ss)
P1/2

|2, (8.5)

where |b(ss)
P1/2

|2 is the steady state population of the P1/2 state. The second order cor-
relation function thus factorizes into the product of the first order correlations at time
t and (t + τ). For the anti-node position, kgL = π/2, the interference is constructive
and g

(2)
m (τ À T ) is maximal. On the other hand, at the node position the fully estab-

lished destructive interference suppresses the detection of photon pairs with long time
intervals between them, thus creating a strong effective bunching around τ=0 despite
the fact that only a single atom is investigated. Studying the long-time limit is in fact
reminiscent of high finesse cavity QED.
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Figure 8.5: Measured second order correlation function for a delay time of T=4.5 ns
(left) and T=6ns (right).

Finally, the correlations for short time delay between photon detections, 0 < τ ≤ T
are studied. In this regime memory effects are crucial, as one can see from Eq. (8.3),
where excited-state amplitudes at different times are superimposed. The difference
between the three positions originates mainly from the weight cos(2kgL) of the first
term in Eq. (8.3), which corresponds to the processes where both photons are emitted in
the same direction. The two other terms, describing processes where they take opposite
directions, do not depend on the mirror phase. As a result, a conspicuous kink in all
the curves at T ≈ τ is observed. This kink marks the onset of full interference, when
no more which-way information is present.

To summarize, the second order time correlation function shows dramatically differ-
ent results depending on the position of the ion, e.g. at a node or at an antinode of the
reflected field standing wave. The detection of photon pairs separated by a large time
interval is modulated by the interference experienced by each photon. Coincident two
photon detections are insensitive to the exact position of the ion, because interference
can not be established. Consequently, when the ion is placed at a node of its reflected
fluorescence standing wave, a single photon detection is prohibited by first order inter-
ference while a joint two photon detection is allowed. This appears as a bunched profile
in the correlation function which reveals the transient regime of the field establishment
in the half cavity interferometer. The quasi-bunching effect can be increased with the
ion-mirror distance.
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8 Photon correlations vs. interference of single-atom fluorescence in a half cavity

TT

g

Figure 8.6: Measured correlation function g
(2)
m (τ), after subtraction of the non-

interfering part, for the ion placed near a node (squares), a slope (circles)
and an anti-node (crosses) of the standing-wave mirror mode. Each data
set corresponds to 3 hours of integration. The lines represent the results of
Eq. (8.2).
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9 Quantum interference from
photons emitted by a single ion

In this chapter an experiment is discussed, where the single Ba+ ion is converted into
a pseudo two-photon source by splitting its resonance fluorescence, delaying part of
it, and recombining both parts on a beam splitter. A Hong-Ou-Mandel two-photon
interference is observed with a contrast reaching 83 %. The spectral brightness of this
two-photon source is quantified and compared to parametric down conversion devices.

Site a Site b

photon

Figure 9.1: A quantum network: Two static quantum bits (e.g. atoms with excited
state |e〉 and ground state |g〉) at site a and b are connected via flying,
photonic q-bits.

As mentioned in the introduction, two photon interference is a basic component
in a "quantum network" (Fig. 9.1), where atoms/ions are static qubits and photons
are the flying qubits. Schemes proposed in [106, 111] describe possible ways to entan-
gle two atoms in such a network by measuring emitted photons via a beam-splitter,
i.e. measurement-induced entanglement. Its efficiency highly depends on the indistin-
guishability of the emitted photons, which can be characterized directly by two-photon
interference. The effect of two-photon interference was observed for the first time in
1987 by Hong, Ou and Mandel [115] studying a parametric down conversion system,
more recent studies were done with atoms in dipole traps [113] and two ions in remote
traps [105]. Similar experiments were performed with an atom-cavity system [108] and
quantum dots [109].

Here, the phenomenon of two-photon interference is studied for photons emitted
from just one ion. It is shown, that this setup is a pseudo two-photon source of
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ch 2
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ch 4

output

tbs

rbs ch 3

input

Figure 9.2: A 50/50 beamsplitter and its input and output channels (ch). rbs and tbs
are the reflection and transmission coefficients.

reasonable quality, i.e. with high spectral brightness, as will be discussed later. A
possible application would be entanglement distribution following a scheme proposed
in [104].

In the first part, a general introduction into the quantum description of a beam
splitter and the phenomenon of two-photon interference is discussed. The general
analysis is then applied to the case where single photons emitted by the Ba+ ion are
sent to a 50/50 beam splitter. Finally the experimental results are discussed. This
work is summarized in [107].

9.1 Quantum description of a beam splitter

At the heart of a two-photon interference setup is a 50/50 beam splitter. Following the
notation of [110] and [115] this optical device is described with two input ports (denoted
with 1 and 2) and two output ports (3 and 4), as shown in Fig. 9.2. In classical physics
two coherent incident light beams with complex amplitude α1 and α2 interfere at the
beam splitter according to a linear transformation B (2 x 2 transformation matrix)
creating the output amplitudes α3 and α4

(
α1

α2

)
= B

(
α3

α4

)
. (9.1)

In quantum optics the complex amplitudes correspond to bosonic operators for the
different ports, i.e. â1, â2 for the input ports and â3, â4 for the output ports respectively.
The linear transformation at the beam splitter is also valid for the quantized field, i.e.

(
â1

â2

)
= B

(
â3

â4

)
. (9.2)
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9.1 Quantum description of a beam splitter

The bosonic operators fulfill the commutation rules

[âi, â
†
j] = δij , [âi, âj] = [â†i , â

†
j] = 0. (9.3)

The transformation matrix B has to be unitary (B−1 = B†) to provide conservation of
energy and to ensure the correct commutation rules. We choose

(
â1

â2

)
=

(
tbs irbs

irbs tbs

) (
â3

â4

)
, (9.4)

where rbs and tbs are the (field) reflection and transmission coefficients of the beam
splitter (index bs), such that

r2
bs + t2bs = 1 . (9.5)

The coefficients rbs and tbs are considered to be the same for all polarizations. Moreover,
the number operator n̂i = â†i âi can be used to express the energy conservation

n̂1 + n̂2 = n̂3 + n̂4. (9.6)

An alternative choice of the beam-splitter transformation matrix is used in [110], it
reads

B =

(
tbs rbs

−rbs tbs

)
. (9.7)

9.1.1 Input and Output states

First, we study an input state with one photon in mode 1 and one in mode 2, i.e. a two
Fock-state. We assume that both photons are in the horizontal polarization mode. The
states are obtained by applying creation operators to the vacuum state1 |0〉 = |0〉1⊗|0〉2

|Ψin〉 = â†1â
†
2|0〉1|0〉2 = |1〉1|1〉2. (9.8)

The transition from input state to output state |Ψout〉 is described by the beam-splitter
transformation, i.e. Eq. 9.4. It is equivalent to the evolution of the input operators
(Heisenberg picture). Substituting the creation operators in Eq. (9.8) yields the output
state

|Ψout〉 = (tbsâ
†
3 − irbsâ

†
4)(−irbsâ

†
3 + tbsâ

†
4)|0〉

= (−irbstbs(â
†
3)

2 − irbstbs(â
†
4)

2 − r2
bsâ

†
4â
†
3 + t2bsâ

†
3â
†
4)|0〉 (9.9)

The first two terms correspond to states where the two input photons both go into
the same output channel, i.e. one photon is transmitted and the other one is reflected.
The other two options, where one photon appears in either output port, correspond to
1Note that the two particles in two different input modes are identical in the case of bosons.
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9 Quantum interference from photons emitted by a single ion

a transmission or reflection of both photons. For photons of identical polarization, e.g.
|H〉, these two cases are indistinguishable, both create a state |1〉3,H |1〉4,H . Formally,
we can write â†4, â

†
3 = â†3â

†
4 due to the commutator relation for independent bosonic

modes [â†i â
†
j] = 0. Equation (9.9) then reads

|Ψout〉 = (−irbstbs(â
†
3)

2 − irbstbs(â
†
4)

2 + (t2bs − r2
bs)â

†
3â
†
4)|0〉 (9.10)

For a 50:50 beam splitter rbs = tbs = 1/
√

2 the amplitude for the |1〉3,H |1〉4,H state
vanishs. The unitarity of the transformation matrix B ensures opposite sign for both
photons reflected and the transmitted. We obtain an output state for indistinguishable
photons of

|Ψout〉 =
−i√

2
(|2〉3|0〉4 + |0〉3|2〉4), (9.11)

where −i is a global phase. To summarize, two incoming, indistinguishable photons
will always leave a 50:50 beam splitter together in the same output port. This ef-
fect is also called coalescence of photons and can be used to measure the degree of
indistinguishability of the photons.

This behavior is not observed for (incoming) photons with different polarizations.
The last two terms for the output state in Eq. 9.9, i.e. the reflection and transmission
of both photons lead to distinguishable states. That is why these probability ampli-
tudes can not be subtracted in this case. We distinguish the photon operators with
a polarization index H and V . Photons are assumed to be horizontally (vertically)
polarized in mode 1 (2), respectively leading to an input state

|Ψin〉 = â†1,H â†2,V |0〉 = |1〉1,H |1〉2,V . (9.12)

The same procedure as before yields a state

|Ψout〉 = (irbstbsâ
†
3,H â†3,V + irbstbsâ

†
4,H â†4,V − r2

bsâ
†
4,H â†3,V + t2bsâ

†
3,H â†4,V )|0〉, (9.13)

where the photons in the output ports remain distinguishable by their polarization.
As a consequence, |1〉3|1〉4 output-states do not vanish for the case of distinguishable
photons and correlations are measured.

9.1.2 Hong-Ou-Mandel (HOM) Dip

Thus, a possible characterization of the output state of a beam splitter is to measure
correlations, i.e. the joint probability of detecting a photon in both of the output
channels. For that, a photon counting device (e.g. photomultipliers (PMT) or avalanche
diodes (APD)) is used. A two photon state like |2〉3|0〉4 creates one click in one PMT,
the dead-time of the PMT prevents from detecting the second photon. Only states with
one photon in each output channel like |1〉3|1〉4 (or |1〉3,H |1〉4,V , |1〉3,V |1〉4,H) create clicks
in both PMT’s at the same time (coincidences), regardless of the polarization of the
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9.1 Quantum description of a beam splitter

input photons. Since states with identical polarizations show the effect of coalescence,
one would expect a continuous drop of the coincidence rate down to 0 as the input
photons become "more and more" identical. Here, all properties of photons play a role:
Frequency, coherence length, polarization or the spatial mode they occupy. In the case
discussed here, photons vary in polarization only, since they are emitted by the same
ion.

The effect of a drop in the coincidence rate as a consequence of two photon inter-
ference is called Hong-Ou-Mandel (HOM) interference in honor to the people, who
performed this type of experiments for the first time in 1987 [115].

9.1.3 Evaluation of the coincidence counts/rate

The evaluation of the coincidence rate corresponds to the measurement of correlations.
Mathematically, one has to evaluate the second-order correlation function among chan-
nel 3 and 4. Introducing different times for the photon detection and using the usual
normalization procedure we can define the correlation function written in terms of
bosonic field operators of the output modes

g(2)(t, t + τ) =
〈â†3(t)â†4(t + τ)â4(t + τ)â3(t)〉
〈â†3(t)â3(t)〉〈â†4(t)â4(t)〉

. (9.14)

The correlation function describes the coincidence rate as a function of the time delay
between the photon detection. For τ = 0 it gives the detection rate of two photons
arriving at the same time.

9.1.4 A classical light field

For example, an input field with amplitude E0 in both input channels is considered.
The input channel 2 has an arbitrary phase relative to channel 1, i.e. E0e

iφ, but the
fields are supposed to have the same polarization. The input fields are transformed
according to

E3 = tbsE0 + irbsE0 eiφ E4 = irbsE0 + tbsE0 eiφ (9.15)

The correlation function at time τ = 0 reads

g(2)(0) =
1
2π

∫ 2π

0
〈E†

3E
†
4E4E3〉dφ

〈E†
3E3〉〈E†

4E4〉
(9.16)

=
1
2π

∫ 2π

0
〈|E0|4 − |E0|4sin2φ〉dφ

1
2π

∫ 2π

0
〈|E0|2 − |E0|2sinφ〉〈|E0|2 + |E0|2sinφ〉dφ

. (9.17)

For a fluctuating phase the integral yields sin φ = 0 and sin2 φ = 1/2. As a consequence
g(2)(0) = 1/2 for a random phase. Note that for a given phase ϕ = 0 the correlation
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Figure 9.3: Sketch of the experimental setup: Fluorescence photons are collected in two
single mode optical fibers and send to the interferometer. PBS...polarizing
beam splitter, TAC...time acquisition card

function is g(2)(0) = 1, while for φ = π/2 the correlation function is g(2)(0) = 0, i.e. no
correlations are measured. In this case the relative phase between the incoming fields
leads to a destructive interference in one of the output arms. Therefore, the intensity
is nulled and correlations can not be measured.

The simple quantum description of a beam splitter does not include any discussion
about how the photons are generated. In the following it will be shown how photons
emitted from a single ion can be used as input of the beam splitter.

9.2 A single-ion two-photon source

9.2.1 Setup

Figure 9.3 shows a 3D-sketch of the experimental setup used for this experiment, Fig. 9.4
gives a more detailed overview. The green resonance fluorescence of the Barium ion is
collected with the Halo-lens inside the vacuum chamber (cf. ch. 4), passes a telescope
for beam size matching and a polarizing beam splitter, which splits the light into equal
amplitudes. The two output channels are coupled to single mode optical fibers of 4
and 6 meters length, respectively. This length difference introduces a time delay of T=
10 ns. The polarization of the photons is controlled by a combination of a polarizing
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Figure 9.4: Detailed experimental setup. Top: Fluorescence photons are collected in
two single mode optical fibers and guided to the interferometer (IF). Po-
larization is controlled using the combination of a polarizing beam splitter
(PBS) and half wave-plates. At the fiber outputs, photons are vertically
polarized by Glan-Thompson polarizers (hatched discs). Single photon ar-
rival times are monitored with a Time Acquisition Card (TAC) with up to
100 ps resolution.

beam splitter (PBS) and half wave-plates. At the fiber outputs, photons are vertically
polarized by Glan-Thompson prisms to cancel polarization fluctuations of the fiber
transmission. Single photon arrival times are monitored in a Hanbury-Brown & Twiss
setup with sub-nanosecond time resolution. Auxiliary beams guiding coherent laser
light are used for adjusting the interferometer.

The exciting laser intensities are adjusted such that the second order photon correla-
tions at T become large. The height of the first optical nutation (cf. ch. 3) is controlled
by laser intensities and can be arbitrary large for the Ba+ ion’s complex level struc-
ture [63]. The introduced time delay is chosen to meet the first optical nutation, where
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9 Quantum interference from photons emitted by a single ion

the probability to produce 2coincident photons is increased.

9.2.2 The model

Neglecting the motion of the ion, in a frame rotating at the laser frequency, ωL, the
green photon field radiated by the ion reads

Êi(t) = ξe−iωLtσ−(t)θ(t), (9.18)

where ξ represents a constant amplitude and θ is a step function centered at t=0. The
lowering Pauli operator from |P1/2〉 to |S1/2〉, σ−, is associated with a single photon cre-
ation. The 4 and 6 meter fibers are attached to the entrance ports of the interferometer
labelled with "1" and "2". The incoming photons all have a vertical polarization, the
two output ports are denoted "3" and "4". Adopting the notation used in the previous
sections with field transmission (tbs) and reflection (rbs) coefficients, the field operators
in the output arms "3" and "4" read

Ê3(t) = tbsÊi(t− α)eiφ + irbsÊi(t− α− T )

Ê4(t) = tbsÊi(t− α− T ) + irbsÊi(t− α)eiφ, (9.19)

where α takes into account the delay between emission and collection of green photons
and can be set to zero without loosing generality. The time-argument T is couting for
the delay picked up in the long fiber. The fields at the two input ports have here been
directly expressed in terms of Êi. The phase φ corresponds to random fluctuations
between the output fields of the two fibers. Although the two output modes are in
an identical polarization state and are overlapping with a precision of ≈ 5 − 10µm
for the 3 mm beam diameter, the detection setup does not allow for a sub-wavelength
mechanical stability which justifies the introduction of φ. For a 50/50 beam splitter
rbs = tbs = 1/

√
2 and the fields in the two output arms can then be written

Ê3(t) =
1√
2

[Êi(t)e
iφ + iÊi(t− T )]

Ê4(t) =
1√
2

[Êi(t− T ) + iÊi(t)e
iφ] . (9.20)

We can now evaluate the correlations measured in output arms, i.e. calculate

g(2)(t, t + τ) ∝ 〈Ê†
4(t)Ê

†
3(t + τ)Ê3(t + τ)Ê4(t)〉 . (9.21)

After inserting Eq. (9.20) and (9.18) into (9.21), evaluating the steady state limit
(t → ∞) and averaging over all the possible values for φ ∈ [0, 2π], the second-order
correlation function reads

g(2)(τ) ∝ 2|bP1/2
(τ)|2 + |bP1/2

(|τ − T |)− bP1/2
(τ + T )|2, (9.22)
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9.2 A single-ion two-photon source

where bP1/2
denotes the occupation amplitude of the P1/2 level, as described in Chapter

3. For the case that the two input modes Ê1 and Ê2 do not interact, e.g. if they are
not spatially overlapping or if their polarization is different, the normalized correlation
function then reads

g
(2)
ni (τ) ∝ 2|bP1/2

(τ)|2 + |bP1/2
(|τ − T |)|2 + |bP1/2

(τ + T )|2. (9.23)

In the following two-photon interference experiments, a mixture of interacting and non
interacting correlations is measured. These have respective weights governed by the
interference contrast, V , yielding a measured correlation function,

g(2)
meas(τ) ∝ V g(2)(τ) + (1− V )g

(2)
ni (τ) . (9.24)

9.2.3 Results

One fiber

In the inset part of Fig. 9.5 the normalized second order correlation function is presented
when one of the two fibers is blocked. The usual single ion g(2)-function is measured
and shows an almost ideal anti-bunching (g(2)(0)=0.02(2) with no background subtrac-
tion) and a large optical nutation (g(2)(13ns)=3.0(3)). The measurement is used for
calibration purposes.

Two fibers: Incoherent addition

Figure 9.5 also shows the normalized second order correlation when the two fiber output
modes are not overlapping at the beam splitter, i.e. the non-interacting case or "inco-
herent addition"2. The black line shows the theoretical prediction based on Eq.(9.23).
Second-order photon correlations are well reproduced by the dashed lines representing
the three delayed, but non-interacting correlation functions from Eq. (9.23) centered
at τ=0 and τ=±T , respectively. Experimental data are presented with a 500 ps res-
olution and the corresponding variance obtained from shot noise (Poisson statistics
at all times τ). Moreover, the number of measured photon pairs with zero time-delay,
g

(2)
ni (0)= 1.3(1), is higher than the normalization (g(2)

ni (∞)=1), i.e. the average intensity
squared. This proves a successive conversion of a single ion into a bright source of two
coincident photons.

Two fibers: Optimal overlap

The normalized second order correlation function for an optimum overlap of the two
fiber output modes is presented in Fig. 9.6. Compared to Fig. 9.5, a large drop in the
coincidence rate is observed with a measured value of 0.21(5). The experimental data
2This situation could also be reproduced with orthogonal polarization inputs.
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τ

τ

Figure 9.5: Normalized second order correlation function when the two fiber output
modes are not overlapping. Data points correspond to an accumulation of
one hour. The black line shows the theoretical prediction, g

(2)
ni , using exper-

imental parameters. Inset: Normalized second order correlation function
when one fiber output mode is blocked. The red line presents the solution of
the Bloch equations for the experimental parameters. Note the amplitude
of the optical nutation.

are obtained after 30 minutes of accumulation and presented with 500 ps resolution.
The corresponding variance is obtained from shot noise (Poisson statistics at all times
τ). In fact, long integration times limit the contrast of the measured two-photon inter-
ference. A drift of about 5-10 % of the interference contrast has been observed within
1-2 hours, most likely as a consequence of mechanical instabilities of the interferometer.

For a perfect destructive two-photon interference one would expect g(2)(0) = 0. In
Eq. (9.22), the first term (dashed line in Fig. 9.6) represents the contribution from
correlations between photons emerging from the same source (the same fiber). For a
single ion/atom this contribution vanishes at τ=0 as shown in the inset of Fig. 9.5. The
second term in Eq. (9.22) (dashed-dotted line in Fig. 9.6) describes the destructive
interference between the amplitudes associated with successive photon detections at
times {t; t + |τ − T |} and {t; (t + τ + T )}. These two contributions are identical at
τ = 0, consequently the coincidence rate vanishes. This is then a result of both the
anti-bunching nature of photon emission and the destructive interference of two-photon
state amplitudes, i.e. the Hong-Ou-Mandel dip. Without the latter, the second order
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τ

τ

Figure 9.6: Normalized second order correlation function for an optimum overlap be-
tween the fiber output modes. The solid line shows the result of our predic-
tions for V = 83% , i.e. g

(2)
meas ∝ 0.83g(2) + 0.17g

(2)
ni . The first contribution

splits into two parts: The first term of Eq. 9.22 shown as the red, dashed
line, and the second term drawn as the green, dashed-dotted line. Back-
ground contributions, i.e. g

(2)
ni , are described by the dotted line.

correlation function is not necessarily anti-bunched (see for instance Fig. 9.5)
The measured second-order correlation function still shows a non-vanishing value at

τ=0. These detected coincidences have two components: one part is due to accidental
correlations between stray-light and fluorescence photons and the other part is given
by the fraction of distinguishable photons which are detected. The first contribution
is measured to be 3 % and is neglected in Fig. 9.6. The second part derives from
imperfect optical alignment such as partial or unmatched mode overlap between the
two fiber outputs. From the situation where the two fiber output modes are completely
distinguishable – Fig. 9.5 with g

(2)
ni (0)= 1.3 (1) – one can conclude that the degree of

indistinguishability of the photons detected, i.e. the two photon interference contrast
(V ), is equal to 83(5) % without subtracting accidental counts. Finally, the line-shape
of the observed two-photon coalescence shows a peculiar statistical behavior almost
completely characterized by the g(2) – correlation function, i.e. by the statistics of
photon emission. The coherent excitation process shows up as an oscillatory behavior
(optical nutation) in the correlation function. The two-photon coalescence reveals a
similar effect, as can be seen in Fig. 9.6 and/or Eq. (8.3).
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9.2.4 A comparison to parametric down conversion

The generated "single-ion two-photon source" system has to be compared to Parametric
down-conversion setups (PDC), the model system for producing entangled photon pairs.
PDC photons exhibit a spectral linewidth of the order of 50 GHz [114]. Associated with
a rate of ≈ 3 106 pairs/s, a spectral brightness reducing to at most 50 pairs/s per MHz
is deduced. In our measurements, a rate of ≈ 1 pair/s is achieved, at a detection
rate of ≈ 2x104 photons/channel/s including all detection losses. Elastically scattered
photons have a linewidth of few 10 kHz and then exhibit a spectral brightness about 50
pairs/s per MHz. Inelastically scattered photons have a linewidth of 15.7 MHz yielding
a spectral brightness of ≈ 0.1 pairs/s per MHz. This rate can be increased by at least
an order of magnitude since the optical nutation in the correlation function can reach
≈ 20 for appropriate laser excitations [63]. Furthermore, in the new setup two high
halo-lenses collecting a total solid angle of 8 % are installed. These should allow to
enhance the spectral brightness by another order of magnitude. Inelastically scattered
photon-pairs could then reach a spectral brightness of ≈ 20 pairs/s per MHz like typical
PDC based devices. Based on atomic ensembles, the most efficient two-photon source
has been demonstrated with a spectral brightness as high as 5x104 pairs/s per MHz [11].

In summary, splitting the resonance fluorescence, delaying part of it and recombining
both parts on a beam splitter, allows one to efficiently produce almost ideal two-photon
pairs. The spectral brightness obtained is shown to be comparable with parametric
down-conversion devices. Fluorescence photon pairs are therefore candidates to achieve
entanglement distribution protocols. The success of the latter however requires a high
photon-ion coupling efficiency which can be reached combining an optical cavity and
high numerical aperture optical lenses. Thus, this analysis will be of interest when
single atoms and resonance fluorescence photons are at the node of quantum networks.

110



10 Summary and conclusion

This work reported on a selection of textbook experiments performed with a single,
laser-cooled Barium ion stored in a Paul trap, a ring trap. Quantum optic experiments
of two categories were carried out: Quantum feedback experiments and quantum cor-
relation measurements in various setups. In parallel, a new, linear trap setup was
constructed, integrated into the old setup and proved to be fully operational by show-
ing ion images, compensation of micromotion, excitation spectra, self-interference of
single resonance fluorescence photons and motional sidebands of the ion. Furthermore,
a new, simple and highly efficient photo-ionization method was implemented used for
both trap setups.

In a first experiment, quantum feedback to the single ion was demonstrated. Based on
a homodyne setup, the self-interference of single resonance fluorescence photons allowed
us to measure the position and thus the motion of the ion as an electronic signal. Proper
feedback processed in an electronic circuit was influencing the motion of the ion, from
feedback heating to feedback cooling. The latter proved to provide a shot-noise limited,
one-dimensional electronic cooling below the Doppler limit, down to 70% of the ion’s
initial energy. Results were obtained by comparing motional spectra and ion-energies
under different feedback operations. A comparison to a quantum-mechanical model
resulted in an estimation of the mean phonon number of the vibrational states.

Moreover, second order correlation measurements of the resonance fluorescence of
the ion in front of the mirror were investigated. For a short ion-mirror distance, the
correlation function was demonstrated to be a perfect tool for investigating all degrees of
freedom of the ion, its internal and external degrees. Thereby, the correlation function
was used to study the dynamics of the ion covering a temporal range from nano-seconds
to milli-seconds with a resolution of 1 ns and less. Anti-bunching was observed for short
times, while modulations of the second order correlation function at bigger times were
interpreted as a time-resolved measurement of the secular sidebands of the ion. The
analysis was used to determine the motional sidebands and to prove the trap stability.

Second order correlation functions for an increased ion-mirror distance were inves-
tigated later. The analysis considered a non-Markovian regime, i.e. a regime, where
retardation effects played a crucial role. The delay-time introduced by a photon-round
trip towards the mirror and back was on the order of the lifetime of the excited state
(7 ns) for an ion-mirror distance of almost one meter. The observation of photon pairs
was shown to be influenced by the relative placement of the ion in the standing wave
of the self-interference. These measurements proved the establishment of a standing
wave in a half-cavity.
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10 Summary and conclusion

In the last experiment, Hong-Ou-Mandel interference of fluorescence photons of the
Barium ion was shown. The phenomenon of two-photon interference was used to de-
termine the degree of indistinguishability of the photons. The setup proved to produce
two-photon pairs of reasonable spectral brightness taking benefit of the low bandwidth
of fluorescence photons compared to down-conversion photon-pairs.

The effect of two-photon interference plays an important role for quantum networking
as being the measure of indistinguishability which several protocols of entanglement and
state transfer rely on [106, 111]. While possible realizations of deterministic quantum
network operations rely on pulsed measurements, preparation and detection schemes
[22], a fundamentally different "coupling" of two ions in two remote traps appear to
be more suitable for the present experimental setup. As a logical step it is apparent
to extend the feedback experiments shown in this work and in [32] to the case of two
traps, i.e. coupling the mechanical properties of the two "harmonic oscillators" (the
ions) in two distant traps. In particular, the oscillation phase of ion 1 and ion 2 could be
stabilized. Moreover, influencing the oscillation amplitude, similar to the case studied
in ch. 6, appears to be a proper tool to transfer energy from one ion to the other. Even
a coupling to other oscillators, e.g. nano-mechanical oscillators, could be a challenging
system to study coupled oscillators at/in the quantum regime.
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