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Photon correlations are investigated for a single laser-excited ion trapped in front of a mirror.
Varying the relative distance between the ion and the mirror, photon correlation statistics can
be tuned smoothly from an antibunching minimum to a bunching-like maximum. Our analysis
concerns the non-Markovian regime of the ion-mirror interaction and reveals the field establishment
in a half-cavity interferometer.
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Experiments with laser-cooled trapped ions have pro-
vided important contributions to the understanding of
quantum phenomena. A single trapped ion is in fact a
model system whose internal and external degrees of free-
dom can be controlled at the quantum level: non-classical
motional states such as Fock states and quadrature-
squeezed states have been successfully engineered with
a single Be+ ion [1]; the internal levels of trapped ions
have been coherently manipulated by sequences of laser
pulses, and have been entangled with the motional state,
leading to the preparation of Schrödinger cat states [2]
and to multi-ion entangled states for quantum informa-
tion processing [3].

The internal dynamics of a laser-driven single ion or
atom is well characterized by the statistical analysis of
the measured stream of fluorescence photons, namely
by the second order correlation function G(2)(T ) [4],
i.e. the frequency of time intervals of length T between
detected photons. For a single atom trapped in free
space, this correlation function exhibits sub-Poissonian
statistics and violates the Cauchy-Schwarz inequality, i.e.
G(2)(0) < G(2)(T ). More precisely, G(2)(T ) exhibits a
minimum at T = 0 which indicates the quantum nature
of photon emission, or the projective character of photon
detection. This is defined as anti-bunching [5, 6]. On the
contrary, for a large ensemble of atoms the emitted radi-
ation exhibits classical bunching [7] fulfilling G(2)(0)≥
G(2)(T ). A smooth transition from anti-bunching to
bunching has recently been observed in a high-Q res-
onator when increasing the number of interacting atoms
[8].

The second order correlation function can be viewed
as representing the (average) dynamics of the observed
system conditioned on the emission of a photon at time
T = 0. While G(2) thereby draws on the photon charac-
ter of the emitted light, it is the wave character which is
responsible for interference phenomena, in particular for
QED effects in resonators. In this letter, we examine the
interplay of photon detection and wave interference in a
simple cavity QED experiment, by measuring the second
order photon correlation for a single trapped Ba+ ion in
a half-cavity interferometer. In this set-up part of the
resonance fluorescence of the laser-excited ion is retro-

reflected by a mirror at a distance L and focussed back
onto its source. Earlier experiments with our system re-
vealed back-action of the interferometer on the emitting
atom such as modification of its decay rate [9] and energy
shifts of the excited state [10]; even mechanical action was
observed [11]. Such effects intrinsically pertain to the in-
terference caused by the mirror. On the other hand, the
mirror induces a time delay τ = 2L/c, needed for pho-
tons to return to the ion’s position. When τ is negligible
on the time scale of the atomic dynamics, the modified
decay rate and energy shift correspond to the ”low-Q”
regime of cavity QED [12]. Here we investigate a dif-
ferent regime, when τ is comparable to the spontaneous
emission lifetime. This characterizes a non-Markovian
situation, where retardation and memory effects play a
major role: the emitted photon projects the atom, and
interference can only be established after the delay time
τ , when the atomic dynamics have already evolved sig-
nificantly [13]. This problem was first discussed theoret-
ically by Cook and Milonni [14], then by Alber [15], and
recently by Dorner and Zoller [16] with a particular em-
phasis on our experimental conditions. Our study is, to
our knowledge, the first single-atom implementation of
such a system.

We report measurements for two ion-mirror distances,
L = 67 cm and 90 cm, and find them in quantitative
agreement with theoretical predictions. Depending on
the exact position of the mirror, which we vary on the
nanometer scale, the G(2) function shows radically dif-
ferent behaviour; the time evolution of the single photon
field in the half-cavity mode is resolved, as a function of
the source position (node, anti-node, slope). In particu-
lar, we observe how the interference in the mode reflected
by the mirror builds up with increasing retardation time
T , while which-way information is continuously reduced.
A conspicuous sharp kink in the correlation curve is found
at the delay time T = τ , where which-way information
reaches zero and interference is fully established. More-
over, through varying L, the value of G(2)(0) for our sin-
gle atom can be tuned from an anti-bunching minimum
to a bunching-like maximum.

The schematic experimental set-up and the relevant
partial level scheme of 138Ba+ are shown in Fig.1. The
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FIG. 1: A single 138Ba+ ion in a Paul trap (parabola) is con-
tinuously laser-excited. A lens (not shown) and a mirror at
distance L, mounted on piezo-actuators (PZT), focus back
part of the fluorescence onto the ion. Green (493 nm) pho-
tons are detected by two photomultipliers (PMT 1 and 2)
and their arrival times are correlated with 100 ps temporal
resolution (TTSPC: Time Tagged Single Photon Counting).
A slow electronic servo loop (fringe lock) stabilises the aver-
age photocurrent and thereby permits control of the distance
L between the ion and the mirror with better than 10 nm
precision.

ion is continuously driven and cooled by two narrow-band
tunable lasers at 493 nm (green) and 650 nm (red) ex-
citing the S1/2–P1/2 and P1/2–D3/2 transitions, respec-
tively. Laser frequencies are close to resonance and inten-
sities are set below saturation. A fraction ǫ of the green
fluorescence photons is reflected by a distant mirror and
focussed back onto the ion. We analyse the G(2) cor-
relation function of the 493 nm light in the observation
channel opposite to the mirror. This light has two com-
ponents, the direct and the reflected part of the radiation
scattered by the ion, with a time delay τ between them.
For very low laser intensities, when all scattering is elas-
tic, the resulting interference of these components is ob-
served with up to 72% visibility [9] into that mode. In the
measurements presented here we use slightly higher laser
excitation rate, whereby the contrast reduces to around
50%. The interference signal can be viewed as a conse-
quence of the standing wave which forms in the mirror
mode and which leads to inhibited and enhanced detec-
tion of resonance fluorescence photons [9]. The signal
varies with the ion-mirror distance L as sin2(kflL), where
kfl is the momentum of photons emitted at 493 nm. A
fringe minimum corresponds to the ion being located at
a node of the standing wave, i.e. kflL = nπ (n being an
integer); the maximum corresponds to kflL = (n + 1

2 )π,
i.e. to the ion being at an antinode.

We note that on average there are less than 10−3 pho-
tons in the mode volume between the ion and the mir-
ror. Photodetection reveals interference which is created
by partial waves corresponding to the same individual
photon. In addition, each detection event implies state
projection of the atom and thereby exhibits its dynamical
information.

We now study the second order correlation for arrival
times of green photons. First we recall the main theoret-
ical results of Ref.[16], restricting the treatment to the
S1/2 and P1/2 levels. As shown in Fig.1, we label the
mirror-ion-detector axis as z, set the mirror position at
z = 0 and the trap center at z = L. Neglecting the mo-
tion of the ion in the trap, the field operator for green
photons in the mirror mode reads at z = L

Em(L, t) =
ǫΓ

2

ih̄

d
e−iωLt[σ−(t)θ(t)

−eiωLτσ−(t − τ)θ(t − τ)] + Nv(t) , (1)

where θ(t) is a step function centered at t = 0, Γ is the
free-space decay rate of the P1/2 to S1/2 transition, and
d its dipole oscillator strength. σ− denotes the lower-
ing operator from |P1/2〉 to |S1/2〉 and ωL the laser fre-
quency. Nv is the source free part of the mirror field, i.e.
the input state in the language of input-output theory
[17]. In Eq.(1) the interaction picture with respect to
the free part of the Hamiltonian is used, operators be-
come time dependent, and we further adopt a frame ro-
tating at the laser frequency, e.g. σ−(t) → σ−(t)e−iωLt.
Including proper commutation rules between input and
output states of the field, the second order time cor-

relation function in the mirror mode, G
(2)
m (t, t + T ) =

〈E†m(L, t)E†m(L, t + T )Em(L, t + T )Em(L, t)〉, reads

G(2)
m (t, t + T ) ∝ ‖σ−(t + T )σ−(t)

+e2iωLτσ−(t + T − τ)σ−(t − τ)

−T←֓ eiωLτσ−(t + T − τ)σ−(t)

−eiωLτσ−(t + T )σ−(t − τ)|i〉‖2 , (2)

where |i〉 denotes the initial state of the system, i.e. the
ion in the ground state |S1/2〉 and the mirror mode in
the vacuum state. The different contributions in Eq.(2)
are interpreted as follows: the first term corresponds to
the detection of two photons directly emitted towards the
detectors and separated by a time interval T ; in the sec-
ond term, these photons are both reflected by the mirror
(therefore delayed by τ) before detection. The two last
contributions describe possible detection of either first
a directly emitted photon and then a second one after
its reflection on the mirror (third term), or vice-versa
(fourth term). In the former case, for T < τ causality is
ensured by T←֓ which enforces the time ordering of the
two operators on its right hand side. These must be ar-
ranged chronologically from right to left and have to be
commuted if they are not. Consequently, in Eq.(2) dif-
ferent contributions interfere. The first two terms induce
anti-bunching around T = 0 while the two others may
counteract this usual behavior. As we show below, the
weight of each component strongly depends on the actual
position of the ion, i.e. whether it is located at a node or
at an anti-node of the mirror mode. Finally, from Eq.(2)
one obtains in the steady-state limit (t → ∞)

G(2)
m (T ) ∝ |2bP1/2

(T ) cos(2kflL)

−bP1/2
(|T − τ |) − bP1/2

(T + τ)|2 (3)
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FIG. 2: Top: Measured second order correlation function

without mirror, G
(2)
nm (circles) and its simulation calculated

from 8-level Bloch equations (line). Bottom: Correlation

function for non-interfering ion and mirror image, G
(2)
ni

, for
τ = 4.5 ns. The line is the sum of three correlation functions
as explained in the text. For the measured curves we evaluate
the time intervals between all pairs of detected photons using
a 500 ps time bin width, and then divide the data by the total
integration time (several hours) after background subtraction.

where bP1/2
denotes the occupation amplitude of the P1/2

level. In principle, it should be evaluated including the
mirror induced modifications of decay rate and energy
value of the P1/2 state [9–11]. Nevertheless, the mir-
ror back-action can be neglected for the current analysis,
with ǫ being on the order of 1.5%. Then bP1/2

is de-
duced from the density matrix time evolution consider-
ing a single Ba+ ion trapped in free space. Note that all
8 electronic sub-levels need to be accounted for in order
to accurately reproduce the exact shape of the measured
correlations [18].

In the top panel of Fig.2, we present the correlation

function in absence of the mirror, G
(2)
nm. It is obtained

using the set-up depicted in Fig.1, but with the mirror
blocked. The measurement exhibits the characteristic
anti-bunching at short time, with a null rate of coinci-

dences, G
(2)
nm(0) ≃ 0. It is accurately reproduced by our

simulations which do not require any fitting parameter,
only experimental conditions such as laser powers and
detunings [18]. The lower panel of Fig.2 shows the corre-
lation function when the mirror is included, but without
overlapping the reflected field with its source; ion and
mirror image are then spatially distinct, and there is no
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FIG. 3: Measured correlation function G
(2)
m (T ), after subtrac-

tion of the non-interfering part, for the ion placed near a node
(squares), a slope (circles) and an anti-node (crosses) of the
standing-wave mirror mode. Each data set corresponds to 3
hours of integration. The lines represent the results of our
model (Eq.(3)).

interference. The signal, G
(2)
ni (T ), corresponds to three

synchronous but non-interfering sources, shifted in time
by ±τ . The expected contributions to this signal are
the moduli squares of the three terms in Eq.(3), with-
out the cosine dependance, i.e. without interference. As
shown by the full line, their sum accurately reproduces
our measurements. In the following this signal is used
as a reference: in the model leading to Eq.(3), exper-
imental conditions are assumed ideal with 100% fringe
contrast of the green interference. Experimentally a con-
trast of 50% is observed, such that Eq.(3) only accounts
for half of the measured correlations, while the remaining

part corresponds to G
(2)
ni . Therefore in all data sets for

G
(2)
m (T ) shown below, the measured G

(2)
ni (T ) has already

been subtracted from the raw histogram data [19].

Figure 3 presents such measured second order correla-

tion functions G
(2)
m (T ) for interfering ion and mirror im-

age. We compare three relevant situations: the ion close
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to a node (kflL = 0.03π), on the slope (kflL = 0.28π)
and close to an antinode (kflL = 0.4π) of the standing-
wave mirror mode. The first notable feature is that al-
ways G

(2)
m (0) > 0. For our single trapped ion, such co-

incidence can only appear when a directly emitted and
reflected photon are simultaneously detected. This is
possible in our experiment since the delay of a reflected
photon is comparable to the time required to re-excite
the ion to the P1/2 state. The second important fea-
ture is that all situations show the same coincidence rate
G

(2)
m (0), although the relative phase (2kflL) between the

coincident direct and reflected photon fields is different
in the three situations. This demonstrates that at T = 0
one has the full which-way information about the two
photons. Consequently no interference can be observed.

We now discuss the long-time limit T ≫ τ : in Eq.(3)
the time argument of bP1/2

reduces to T and

G
(2)
m (T ) ≡ sin4(kflL)|bP1/2

(T )|2|b
(ss)
P1/2

|2, |b
(ss)
P1/2

|2 being the

steady state population of the P1/2 state. The second or-
der correlation function thus factorizes into the product
of the first order correlations at time t and (t + T ). For
the anti-node position, the interference is constructive

and G
(2)
m (T ≫ τ) is maximal. On the other hand, at the

node position the fully established destructive interfer-
ence suppresses the detection of photon pairs with long
time intervals between them, thus creating a strong ef-
fective bunching around T=0 despite the fact that we are
dealing with only a single atom.

Finally we study the correlations for short time delay
between photon detections, 0 < T ≤ τ . In this regime
memory effects are crucial, as one can see from Eq.(3),
where excited-state amplitudes at different times are su-
perimposed. The difference between the three positions
originates mainly from the weight cos(2kflL) of the first
term in Eq.(3), which corresponds to the processes where
both photons are emitted in the same direction. The two
other terms, describing processes where they take oppo-
site directions, do not depend on the mirror phase. As a
result, a conspicuous kink in all the curves at T ≈ τ is

observed. This kink marks the onset of full interference,
when no more which-way information is present.

To summarize, for a single ion trapped and laser-
excited in front of a mirror, we have presented the second
order time correlation function of emitted photons. De-
pending on the position of the ion, e.g. at a node or at an
antinode of the reflected field standing wave, very differ-
ent behaviours are shown for large distances between the
ion and the mirror. In this non-Markovian regime, the
detection of photon pairs separated by a large time inter-
val is modulated by the interference experienced by each
photon. On the other hand, coincident two photon de-
tections are insensitive to the exact position of the ion,
because interference can not be established and which
way information for each detected photon is accessible.
Consequently, when the ion is placed at a node of its
reflected fluorescence standing wave, a single photon de-
tection is prohibited by first order interference while a
joint two photon detection is allowed. This appears as
a bunched profile in the correlation function. Moreover,
our experiment highlights the role of the vacuum field in
the non-Markovian regime: the vacuum maintains proper
time causality through commutation relations which are
different from the Markovian case [16]. Our results may
also contribute to the development of control tools for
atom-photon interfaces in quantum information process-
ing [20]. In the same context, weak unwanted reflections
might cause slight non-Markovian behavior inducing cor-
relations amongst qubits, whose understanding helps lim-
iting error processes.
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