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We propose a geometric phase gate of two ion qubits that are encoded in two levels linked by an optical
dipole-forbidden transition. Compared to hyperfine geometric phase gates mediated by electric dipole transi-
tions, the gate has many interesting properties, such as very low spontaneous emission rates, applicability to
magnetic field insensitive states, and use of a co-propagating laser beam geometry. We estimate that current
technology allows for infidelities of around 10−4.
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One of the important and most difficult experimental ef-
forts of quantum computation is the realization of almost
perfect two-qubit gate operations. Currently it is believed
that gate error probabilities of about 10−4 would be suffi-
ciently low to allow for so-called efficient fault-tolerant
quantum computing �1,2�. Strings of trapped ions are among
the most promising candidates for the realization of a quan-
tum computer. The lowest gate infidelity experimentally
achieved with ion quantum gates is still around 3% �3�. The
main limitations of this geometric phase gate come from
spontaneous emission and magnetic field fluctuations �3,4�.

Ion trap quantum computation can be implemented with
two alternative qubit encodings: hyperfine ground state qu-
bits and qubit states connected by optical transitions. For
hyperfine qubits, the gate operations are performed by Ra-
man coupling mediated by dipole transitions. Reference �3�
used an encoding based on such a hyperfine transition. In
such a setting, however, it is demanding to reduce spontane-
ous scattering below the required fault-tolerant level �5,6�,
because a tremendous amount of laser power is required.
Recently, the use of Raman processes on quadrupole transi-
tions was proposed for hyperfine qubits �7�. However, this
strategy requires high laser powers to achieve short gate
times.

Here, we propose a �z-type geometric phase gate on an
optical transition to overcome some of the limitations present
in the realization of �3�. For instance, the use of an optical
quadrupole transition allows one to sufficiently reduce the
likelihood of a spontaneous emission event. Also it is shown
that magnetic field insensitive states can be used for the �z

geometric gate on an optical transition. More interestingly,
the gate can be executed with a co-propagating laser beam
configuration, which reduces the errors from phase fluctua-
tions between two laser beams �4�. With hyperfine qubits, on
the contrary, only a counter-propagating scheme can be uti-
lized for the gate. Finally, the proposed gate can be directly
used as a logical two-qubit gate in dephasing-free subspaces
because of the natural suitability of phase gates for such
purposes �8�.

The gate proposed here applies to any ion-qubit states
connected by weak transitions, such as quadrupole transi-
tions of Ca+, Sr+, and Ba+. We first show that it is possible to
realize a state-dependent displacement on the optical transi-

tions with bichromatic laser radiation, and that for the most
interesting detunings of the laser fields the coupling is maxi-
mized in a co-propagating geometry. In turn, the applicability
of the gate to magnetic field insensitive states is explained.
We then extend the scheme to two ions and carefully study
the intrinsic complications leading to infidelities of the gate.
We show that these can be compensated by spin-echo tech-
niques, thus reducing the infidelities to a level of about 10−4.
We also discuss the connection between gate speed and the
probability of spontaneous emissions during one gate opera-
tion, and show that the error due to it can also be reduced to
a level of 10−4. Finally, we briefly examine other more tech-
nically relevant errors arising from fluctuations of experi-
mental parameters.

Consider a single two-level ion in a one-dimensional har-
monic trap interacting with two laser beams detuned from
the quadrupole transition of S to D. The Hamiltonian in the
interaction picture and after the rotating wave approximation
with respect to optical frequencies is given by

ĤI = �
j=1,2

�̂+��� j

2
e−i��jt+�j�ei�j�âe−i�t+â†ei�t�� + H.c., �1�

where �̂+= �D	
S�, â, and â† are the ladder operators of the
oscillator, � is the trap frequency, and � j and � j are the Rabi
frequency and Lamb-Dicke parameter of the laser with de-
tuning � j and optical phase � j, respectively.

As will be detailed below, a state-dependent displacement
operation appears by setting �1=�, �2=�−�+� ��	��. In
the Lamb-Dicke regime, at low laser intensity � j 	� j, and
ignoring terms faster than �, a second-order perturbation
yields the following effective interaction Hamiltonian:

Ĥeff,1 = ���eff

2
âe−i�t +

��eff
*

2
â†ei�t��̂z�+ LS� . �2�

Here, �eff= �
�1��−�+�/2�

��−����−�+�� −
�2��+�/2�

���+�� �
�1�2

2 e−i�L, and LS denotes
the light shifts coming from the transitions of carrier and the
first motional sidebands and is given by

� j=1,2�� j
2�̂z�− 1

4� j
− �

� j
2

4�� j+�� −
� j

2

4�� j−�� ��n̂+ 1
2 ��, where �̂z

= �D	
D �−�S	
S�, n̂= â†â, �L=�1−�2−
 /2. Neglecting LS
for the moment, the effective Hamiltonian �2� describes the
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desired state-dependent displacement operation �4�. The time
evolution operator is found to be

Û�t� = exp�−
i

�
��

0

t

dt�Ĥeff�t��

−
i

2�
�

0

t

dt��
0

t�
dt��Ĥeff�t��,Ĥeff�t��� + ¯ � �3�

from the Magnus expansion related to the Baker-Campbell-
Hausdorff formula eAeB=exp�A+B+ 1

2 �A ,B�+ ¯ �. With Eq.
�3�, the time evolution operator of Hamiltonian �2� can be

obtained by U1
ˆ �t�=e���t�â†−��t�*â��̂zei��t��̂z

2
. Here, ��t�

=
�eff

2� �1−ei�t� and ��t�= �
�eff

2� �2��t−sin��t��. The ion moves
periodically along a circular path in phase space of radius
���eff /2�� with periodicity 2
 /�, and the direction of motion
is determined by the qubit state and �L. At t=2
 /�, it returns
to the original motional state and acquires the geometrical
phase �g=2
 ��eff /2��2. The latter phase depends only on
the area enclosed by the trajectory, so both qubit states gain
the same geometrical phase independently of �L.

We now show that, for optical-transition qubits, a co-
propagating geometry maximizes the strength of the Raman
coupling �eff. For the case of hyperfine ground state qubits
connected by dipole transitions, the detunings �1, �2 must be
much larger than � in Fig. 1�a�, so �1��2=�, which im-
plies that ��eff � = �

�1−�2

� �
�1�2

2 . It is then essential, in order to
achieve a nonvanishing coupling, to use a nonco-propagating
laser beam configuration ��1��2�. With quadrupole transi-
tions, the detunings can be of the order of � without consid-
erable spontaneous emission. At the detunings �1=−�2� �

2 ,
the coupling strength ��eff � = �−

�1

�1
+

�2

�2
�

�1�2

2 is maximized at
�1=�2. The Raman coupling with those detunings are de-
picted in Fig. 1�b�. Most interestingly, the co-propagating
geometry reduces optical phase fluctuations from path insta-

bilities. Furthermore the co-propagation geometry also en-
sures that the displacement operation can be executed regard-
less of the ions’ spacing. This is in contrast to a
counterpropagating geometry where it is necessary to care-
fully control such spacings so as to have the proper laser
phase on each ion �3�.

Moreover, the symmetry of the detunings guarantees that
the light shift in Eq. �2� disappears provided that both lasers’
intensities coincide �1=�2. Thus, it is not necessary to con-
sider polarization states to equalize ac stark shifts of internal
states from the two laser beams. Finally, state-dependent
coupling is achieved without any restriction on the magnetic
field properties of the states. The scheme proposed here is,
therefore, applicable to magnetic field insensitive transitions,
e.g., the quadrupole transitions of 43Ca+ ion �9�.

Now we extend the above consideration to two ions and
study the two-qubit gate operation with the detunings
�1= �

2 − �
2 , �2=− �

2 + �
2 and the same Rabi frequency

�1=�2=�. We focus on the center of mass mode �CM�.
With two ions, the effective Hamiltonian is given by

Ĥeff,2 =
���eff�

2
�âe−i��t+�L� + â†ei��t+�L��Ŝz

+
4

3

����eff�
2

��̂1
−�/2

� �̂2
�/2� + Ô��3� , �4�

where ��eff � = 2��2

� , Ŝz= �̂1
z + �̂2

z , �̂ j
=ei�̂ j

++e−i��̂ j
−, and

�=kL cos ��z1−z2� is the laser phase difference between
both ions, where kL is the wave vector, � is the angle be-
tween kL and the trap axis, and zj is the equilibrium position
of the jth ion. The first term of Eq. �4� produces the evolu-
tion of a two-ion geometric phase gate: electronic states
�DD	 , �SS	 get both a �g=2
 ��eff /��2 phase after t=2
 /�,
whereas states �DS	 , �SD	 are not affected. At �= �2�eff, the
obtained geometric phase �g must be 
 /2 for the gate to be
maximally entangling.

The second term in Eq. �4� is a Mølmer-Sørensen �MS�
coupling �10�, which does not occur for a geometric phase
gate with hyperfine qubits. During the gate operation, the
coupling transfers the population between �DD	 and �SS	,
and between �DS	 and �SD	. Since populations do not change
in an ideal �z geometric phase gate, the MS coupling in-
creases the gate infidelity by producing population errors. We
study the effect of MS coupling by a numerical integration of
the exact Hamiltonian �1� of two ions. We sandwich the gate
with two local pulses to turn it into a controlled-NOT gate
and assess the performance of the gate through the state fi-
delity, the overlap between the final and the ideal states, us-
ing �DD	 as the input state. All other input states display the
same fidelities. As shown in the light-gray solid curve of Fig.
2�a�, the infidelities are increased to 1% around �=0.06 at
the given simulation parameters mainly due to the MS cou-
pling. By including MS coupling and keeping terms up to �2

inside the exponent of Eq. �3�, the time evolution operator
for t=2
 /� and �=2�eff can be approximated by

Û2
gate � ei�
/2��Ŝz/2�2

e−i�2
�/3���̂1
−�/2

��̂2
�/2�. �5�

Here, we can see that the MS coupling changes the popula-
tion of the final state at the end of the gate by � 2
�

3 �2, which
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FIG. 1. Schematic representation of bichromatic laser frequen-
cies to excite the motional states from �n	 to �n+1	 �a� for hyperfine
qubit states connected via dipole transitions and �b� for states of the
optical-transition qubit. To keep the figure simple, we omitted simi-
lar couplings connecting to �n−1	 to �n−2	, �n+1	 to �n+2	 and so
on. On resonance, this ladder of interactions produces a displace-
ment operation in the motional state space. In �a�, �g↓,↑	 and �e	
stand for two hyperfine ground states and an electric-dipole excited
state, respectively.
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is in agreement with light-gray solid curve of Fig. 2�a�.
By using a careful spin-echo sequence and offset detuning

�off, however, the MS coupling in the gate can be reduced.
The spin-echo sequence exchanges the populations of the

internal electronic states of both ions �ei�
/2���̂1
y+�̂2

y�� at the
middle and end of the full gate operation. The �̂z gate is
divided in two parts, and at each gate pulse the same
electronic states get a 
 /4 phase after performing a
closed circle phase space with the radius reduced by �2.
Therefore, one needs to increase �=2�2�eff for the
spin-echo sequence. Around the end of one gate pulse, the

time evolution operator can be approximated by Û2
echo

=ei�
/4��Ŝz / 2�2
e−i�2
�/3�2���̂1

−�/2
��̂2

�/2�. We have to add a 
 /2

phase to one ion �ei�
/4��̂1
z
� in order to cancel out the MS

operation. This can be shown by the following calculation:

ei�
/2��Ŝz/2�2
= ei�
/2���̂1

y+�̂2
y�Û2

echoei�
/2���̂1
y+�̂2

y�ei�
/4��̂1
z
Û2

echo.

�6�

For introducing a 
 /2 phase shift, one can either use a single
off-resonant laser or change the distance between the ions. In
Fig. 2�a�, the gray solid curve shows that the spin-echo se-
quence indeed reduces the gate infidelity due to MS cou-
pling.

Equations �5� and �6�, however, are an approximation
up to the order of �2 inside the exponent of Eq. �3�. Since

Ŝz does not commute with �̂1
−�/2

� �̂2
�/2, there is a

�Ŝz , �̂1
−�/2

� �̂2
�/2� term ��3 in the time evolution of Eq. �3�.

Those terms cannot be compensated by spin-echo pulses. In
order to reduce the effect, we can add �off to both laser fre-
quencies. The �off makes the coupling between �DD	and �SS	
off-resonant by 2�off, since the same electronic states are
connected through red detuned and blue detuned lasers.
Only the population transfer between �DS	 and �SD	 is, there-
fore, resonant and dominant in MS coupling. By taking only
resonant terms, the MS coupling in Eq. �4� leads to
4
3�� ��eff � ��̂1

+
� �̂2

−ei��+H.c. due to the offset detuning �off.

Since �̂1
+

� �̂2
−ei� commutes with Ŝz, Eqs. �5� and �6� are

valid at�3 order inside the exponent of Eq. �3�. The induced
phase error from adding �off is compensated by the spin-echo
sequence. The black solid curve in Fig. 2�a� shows that in-
cluding the offset detuning �off lowers the error to around
10−4 order even at large �.

In order to reduce the spontaneous emission during the
gate, fast gate operation is important especially for optical-
transition qubits. For the metastable states, the spontaneous
emission probability Psp during one gate is determined by the
ratio between the operation time and lifetime of the states.
The gate time of the proposed gate is similar to the �z geo-
metric phase gate with hyperfine states �3�, the MS gate
�4,10,11�, and the Cirac-Zoller gate�12–14� for the same la-
ser intensity, because in all of these cases the coupling
strength is that of the first sideband interaction. The maxi-
mum intensity is, however, limited by the off-resonant exci-
tations, �� ��1�2� � �� /2. The gate time 2
 /�=2
 / 4��2

� ,
therefore, is limited by 2
 /��. To guarantee that Psp�10−4,
for Ca+ ions the operation time has to be faster than 100 �s.
This means that it is necessary to increase � close to the
detunings ��1�2��—as shown at dashed lines in Fig. 2�b�—and
also to use large—� as shown in Fig. 2�a�.

When � is comparable to the detunings, the

direct coupling term from off-resonant excitations, Ĥd

=� j=1,2��̂1
++ �̂2

+�
�� j

2 e−i��jt+�j�+H.c., neglected in Eqs. �2� and
�4�, needs to be considered. The term mainly induces popu-
lation exchanges between electronic states. The population
error from off-resonant excitations can be described by
1− � �

�/2 �2 sin2��t /4� around t=2
 /� �10�. The infidelity can
be reduced by either precise control of system parameters,
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FIG. 2. �a� Gate error vs Lamb-Dicke fact �. The solid lines are
the infidelities obtained from a numerical integration of the full
Hamiltonian. The light gray line is obtained without spin-echo se-
quence, the gray one with spin-echo sequence and the black one
with s pin-echo sequence and offset detruing �off= �2
�20 kHz.
Here �=� /6, �= �2
�1.26 MHz are used. The dominant error is
caused by the MS coupling term. The dashed lines are infidelities
caused by spontaneous decay of the metastable D state �in the case
of Ca+�. The light gray curve is without spin-echo and gray curve
includes a spin-echo sequence. The infidelities from spontaneous
emissions are determined by the ratio between gate operation time
and life time. �b� Gates error vs Rabi frequency. The black solid line
is the infidelity as a function of Rabi frequency � with 10 �s pulse
shaping, which is 10�100 times smaller than the gate time. The
integration is executed with spin-echo sequence and �off

= �2
�20 kHz at �=0.056 and �= �2
�1.26 MHz. Here the results
are obtained by carefully controlling the phase difference between
two lasers at the second pulse of the geometric phase gate to reduce
an order of 0.1% errors. As in �a�, dashed lines indicate errors
caused by spontaneous emission.
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such as �=� /2N with N as an integer, or by pulse shaping.
By using pulse shaping, one can start and end the gate op-
eration with a fairly small � by adiabatically changing laser
intensities �14,15�. As we can see in Fig. 2�b�, the infidelity
from the direct coupling can be in the order of 10−4 up to � /4
of � by using rise and fall times of 10 �s for the pulses.

In the simulation, for a large � we observed a reduction
in the Raman coupling strength �eff proportional to �� /��2.
We believe that this reduction is due to an admixture of the
other electronic state due to, for instance, off-resonant exci-
tations. The Raman coupling �eff,S of the �S	 state has an
opposite sign as compared to the coupling �eff,D of the �D	
state, �eff,S=−�eff,D. Thus the contributions of other elec-
tronic states due to off-resonant excitations reduce the
strength of the coupling �eff proportional to �� /��2.

Furthermore, the amount of the reduction at �eff,S is
slightly dependent on �, which might come from the Debye
factor �10�. We note that the infidelities of Fig. 2�a� and 2�b�
are obtained after correcting the reduction in �eff. In experi-
ments, however, the change in �eff due to direct coupling is
not a problem at all, since the intensities of the bichromatic
lasers will be determined experimentally.

We also carefully studied other experimental imperfec-
tions, such as the intensity fluctuations of both laser beams,
positioning errors of the laser beams on the ions, fluctuations
of the laser and the trap frequency, and the occupations of the
bus mode and spectators’ modes. The proposed gate is quite

robust to those imperfections similar to the geometric hyper-
fine gate of �3�. According to our simulations, for intensity
fluctuations of about 10−2, a few tenths of kHz of laser fre-
quency fluctuations, and a few Hz trap frequency
fluctuations—less than 0.5 motional quanta of the all mo-
tional modes—allow for an infidelity on a level of 10−4.

In conclusion, we propose a �z geometric phase gate for
optical-transition qubits. The gate has a small spontaneous
emission during the operation, and can be applied to mag-
netic field insensitive states. We analyze and simulate the
gate in detail and show that the gate allows one to achieve a
high fidelity implementation. The proposed �z gates are in-
teresting not only due to the high fidelity, but also to their
applicability to decoherence-free subspace constituted by the
logical qubits �DS	 , �SD	 �8,16,17�. If we apply the laser
beams described in the paper to two physical qubits that
belong to the different logical qubits, the scheme works as
the entangling gate for the two logical qubits.
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