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Molecules made of two fermionic atoms are “cobosons”—a contraction for “composite bosons.” These
molecules “feel” each other not only through interactions between atoms, but also through the Pauli exclusion
between their fermionic components. In order to point out the importance of this Pauli exclusion in cold atom
physics, we have calculated here the energy change of N identical cobosonic molecules when a similar
molecule, made of atoms having possibly different spin states, is added. Due to the difference in the number of
fermion exchanges with a molecule having zero, one, or two atoms identical to the ones already present in the
system, we may think that this energy change can take three different values, even for spin-independent
interatomic interactions. We actually find that the energy change, in the Born approximation, is exactly the
same at all orders in density, when the added molecule has two or just one atom identical to the ones already
there. In other words, the scattering length is predicted to be the same if the added molecule can have
exchanges with one set of fermionic components or with two sets. This unexpected equality, which of course
holds for spin-independent interactions only, results from a subtle balance in the fermion exchanges. To prove
it, we make use of a recent extension of the composite-exciton many-body theory we have constructed, to any
type of cobosons, the physical understanding of the various exchange processes being enlightened by the Shiva
diagram representation �so named because of the multiarm structure reminiscent of the Hindu god Shiva� of
this many-body theory.
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A few years ago, a significant breakthrough was made in
the many-body physics of quantum particles: Through the
study of interacting excitons, which are composite bosons
with an electron and a hole for fermionic components, a
formalism �1�, free from any mapping to an ideal boson sub-
space, was constructed, and a simple visualization of the
physical processes taking place between excitons was pro-
posed through the so-called “Shiva diagrams,” in reference
to the multiarm Hindu god Shiva, as they have a multiarm
structure �2�.

Very recently �3�, this exciton many-body theory was ex-
tended to include any type of “cobosons”—a contraction for
“composite bosons”—made of two different fermions. The
purpose of this extention is to possibly study the many-body
physics of cold atoms or molecules, using the same concepts.

This coboson many-body theory relies on two sets of 2
�2 scatterings �4,5�: The “interaction scatterings” and the
“Pauli scatterings” �see Figs. 1�a� and 1�b��. The first ones
correspond to interactions between the fermionic compo-
nents of the cobosons, the “in” and “out” cobosons being
made with the same fermion pairs. The Pauli scatterings cor-
respond to fermion exchange between cobosons, without any
fermion interaction. These Pauli scatterings between two co-
bosons allow us to generate all possible fermion exchanges
between any number of cobosons, these multiple exchanges
being represented by Shiva diagrams like the one of Fig.
1�c�. Note that, as the Pauli exclusion principle is N-body by
essence, it is reasonable for the theory to make fermion ex-
changes between more than just two cobosons appear.

It is commonly thought that atomic cobosons should be-
have very differently from excitons because of the large mass

difference which exists between the fermionic components
of these cobosons. While a large center-of-mass mass tends
to support the representation of atoms or molecules as local-
ized objects �all the components of the associated wave
packets essentially having the same energy at the tempera-
ture scale�, this is no more true for ultracold quantum par-
ticles: Their center of mass, now having a plane wave as
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FIG. 1. �a� Direct interaction scattering �dir between two co-
bosons, resulting from interactions between their fermions. �b� Pauli
scattering �2 between two cobosons. �c� Shiva diagram for fermion
exchange between three cobosons. This Shiva diagram represents
the coefficient �3 appearing in the recursion relation �3.2� between
the FN’s. In all diagrams, the fermionic atoms � are represented by
a solid line, while the fermionic atoms � are represented by a
dashed line.
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wave function, is delocalized over the whole sample just as
in the case for excitons, so that fermion exchanges between
atomic cobosons are now possible, even in the very dilute
limit.

The importance of fermion exchanges between excitons
in the absence of Coulomb interaction between carriers, ap-
pears very clearly in semiconductor optical nonlinearities
�6,7� as they provide the dominant terms for all effects at
large photon detuning: Indeed, unabsorbed photons interact
with a semiconductor through virtual excitons to which they
are coupled. These virtual excitons are felt by the excitons
present in the sample through both Coulomb interactions and
the Pauli exclusion principle. While Coulomb scatterings are
energylike quantities, Pauli scatterings are dimensionless.
This makes them dominate the semiconductor response to a
photon field at large detuning, due to a bare dimensional
argument, since the relevant energy denominators are de-
tuned energies.

In other physical effects �8–10�, the Pauli exclusion prin-
ciple generates Coulomb exchange terms as large as the Cou-
lomb direct terms—or even larger when the direct terms can-
cel �8� such as for Coulomb processes in which one coboson
stays unchanged.

In order to show that fermion exchanges are also of im-
portance for ultracold atomic cobosons, we study here the
energy change of N identical molecules made of two fermi-
onic atoms, � and �, when a similar molecule made with
atoms in possibly different spin states, �� and ��, is added.

�i� For ���� and ����, the added molecule “feels” the
previous ones through the interactions between its atoms
��� ,��� and any of the atoms �� ,�� of the N molecules
already present in the sample.

�ii� For ��=� and ��=�, very many exchanges with the
fermionic components of the molecules present in the sample
can take place in addition to these interatomic interactions,
since there is no way to know with which atoms the added
molecule is really made of.

�iii� In the intermediate case, ��=� and ���� �or ��
�� and ��=��, the number of possible exchanges is
strongly reduced compared to �ii�, but a certain amount still
remains since there is no way to know which one of the
�N+1� atoms � is bound to the added atom ��.

In order to focus on the effects of the Pauli exclusion
principle, we, in the following, consider that the interactions
between fermionic atoms do not depend on their spin states.
This makes the difference between the energy changes in the
cases �i�, �ii�, and �iii� entirely due to fermion exchanges
associated to the Pauli exclusion principle. For interatomic
interactions depending on spin, a part of the energy-change
difference—the naïve one—would come from a difference in
the interactions. This would partly shade the subtle balance
in fermion exchanges which makes the energy changes for
�ii� and �iii� exactly equal when these changes are only due to
the Pauli exclusion principle.

To show this effect in the case of excitons, we must start
with N excitons made of one type of electrons and one type
of holes. Such a state is easy to produce by the absorption of
N circularly polarized photons in a quantum well. The result-
ing bright excitons, with a total spin �S=1� in the case of �+

photons, are made of heavy holes with a spin �+3/2� and

conduction electrons with a spin �−1/2�. By absorbing a �+
or a �− photon, it is quite simple to add to these bright
excitons �S=1�, either the same bright exciton, or a bright
exciton with opposite spin �S=−1�, its two carriers being
then different from the ones already present in the sample. It
is less trivial to add an exciton having one different carrier
only. Indeed, excitons made of heavy holes �+3/2� and elec-
trons �+1/2� have a total spin S=2 so that they are not
coupled to light. We can think of adding a light-hole exciton,
the one made of electrons �+1/2� and light holes �+1/2�
being coupled to �+ photons. However, these excitons have a
very short lifetime since, in quantum wells, light holes spon-
taneously decay towards heavy holes which have a lower
energy. Consequently, it seems to be not easy to experimen-
tally show that the energy changes are exactly equal when
the added exciton has two or just one of its carriers identical
to the ones present in the sample. The situation seems more
favourable with atomic cobosons.

The experimental observation of Bose-Einstein condensa-
tion of molecules in ultracold trapped Fermi gases of 6Li and
40K �11� now offers a very unique route towards precise
investigations of condensed matter problems. Two research
directions have essentially been subsequently pursued. On
the one side, degenerate spin polarized fermions are studied.
These correspond to controlled amounts of two selected dif-
ferent spin states of a fermionic atom interacting via so-
called tunable Feshbach resonances. Very recently, a phase
separation has been demonstrated when imbalanced spin
populations interact �12�. On the other hand, ultracold atomic
mixtures are also generating a lot of interest and open new
perspectives. Quantum degenerate atomic mixtures have
been obtained very recently �13�, first in the case of Bose-
Fermi mixtures which should allow for efficient ways to in-
vestigate three-body collisions �14�. Ultracold heteronuclear
fermionic molecules could also be used to probe spectacular
effects related to the Pauli exclusion principle, as the one
described here. Indeed, an appropriate choice of three dis-
tinct fermion species, with coincident or sufficiently close
Feshbach resonances, would satisfy the previously men-
tioned cases �i�, �ii� and �iii� at a fixed applied magnetic field.

The energy of N cobosonic molecules �� ,�� plus one
cobosonic molecule ��� ,��� is here calculated, in the Born
approximation, as the mean value of the system Hamiltonian
H in a state ��N;g� made with N individual ground state mol-
ecules 0 constructed on �� ,�� plus one ground state mol-
ecule 0g constructed on ��� ,���, with g= �0,1 ,2� for mol-
ecule having 0,1 ,2 atoms identical to the ones of 0 �this
makes 02�0�. Following Keldysh and Koslov �15�, the state
��N;g� is the ground state of these �N+1� cobosonic mol-
ecules at zero order in interactions. Let us however stress
that the concept of “zero order” here is somewhat tricky
because, as there is no clean way �16� to write the interac-
tions between composite quantum particles as a potential
V—due to possible fermion exchanges between composite
bosons—there is no clean way to define an unperturbed
Hamiltonian, and thus a ground state at zero order in V. It is
however reasonable to think that an order in the interactions
has to be associated with an order in the coboson density. We
are going to show that this �N+1�-molecule state indeed
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leads to the expected ground state energy at zero order in
density, namely, �N+1�E0, with E0 being the ground state
energy of a molecule in any of the three states 0g, indepen-
dent of g for interatomic interactions independent of spin.

The Hamiltonian expectation value is easy to calculate
using the four commutators on which the coboson many-
body theory is based. It ultimately reads in terms of interac-
tion and Pauli scatterings, the physics involved in the various
terms being readily seen from their Shiva diagram represen-
tations.

For spin independent interactions between fermions, the
difference between the energy changes can only come from
the difference in the number of exchanges between the added
cobosonic molecule and the ones already present. It turns out
that, for g=1 or g=2, the increase in the number of ex-
changes appearing in the Hamiltonian matrix element calcu-
lated in the ��N;g� state is exactly compensated by the in-
crease in the number of exchanges appearing in the
normalization factor of this ��N;g� state; so that we end with
two energy changes only: one when no exchange takes place,
i.e., when the two added atoms are different from the ones of
the N molecules present in the sample, and one when ex-
changes exist, i.e., when one or two atoms are identical to
the ones already there.

To experimentally verify this somehow counterintuitive
behavior, the investigated cobosonic molecules must have a
high stability against inelastic collisional processes. In the
present work, inelastic collisions have been neglected to em-
phasize the role played by the Pauli exclusion principle in
the physics of ultracold heteronuclear molecules. In a two-
component cold Fermi gas, our case �ii�, dimers with a large
positive scattering length are weakly bound, their spatial ex-
tension largely exceeding the extension of deep bound states.
A relaxation in the latter, which limits the lifetime of the
molecular gas, would require at least three fermionic atoms
with interatomic distances of the order of the size of deep
bound states. As two atoms are necessarily identical, co-
bosonic molecules are highly stable against collisional pro-
cesses in the dilute limit �17�. The effective scattering length
between identical dimers has been already calculated in this
regime �18�. In the case �iii� that we consider here, the added
molecule has only one fermion identical to the ones building
the other molecules. Atom-dimer inelastic scatterings are
therefore potentially efficient. However, for low enough den-
sities, atomic hyperfine states can have a lifetime reaching a
few tens or even a few hundreds of milliseconds �19�. This
should allow to experimentally probe the role of the Pauli
exclusion principle in these systems. Since our work predicts
an identical energy change in the cases �ii� and �iii� in the
Born approximation when inelastic collisions are neglected,
interacting weakly bound dimers should exhibit identical ef-
fective scattering lengths when they have just one or two
fermions in common.

The paper is organized as follows.
In Sec. I, we briefly recall the main results of the coboson

many-body theory which are necessary to calculate the en-
ergy of �N+1� composite molecules with intermolecular ex-
changes included in an exact way.

In Sec. II, we calculate the energy change when the co-
bosonic molecule 0g is added to a system only having one

molecule 0. Although we expect the change induced by in-
teractions to be extremely small in the large sample limit,
since the probability for the two molecules to be close
enough to significantly interact is vanishingly small, this
very simple calculation allows us to grasp some important
aspects of the problem.

In Sec. III, we calculate the same energy change when
one cobosonic molecule 0g is added not to one but to N
molecules 0. For that, we first have to calculate the normal-
ization factor of the �N+1�-molecule state ��N;g�. We show
that it easily reads in terms of the one for N identical co-
bosonic molecules 0, for all three values of g. We then cal-
culate the diagonal matrix element of the Hamiltonian in this
state ��N;g� and we visualize the obtained result in terms of
Shiva diagrams, to grasp the physics involved. From this
Hamiltonian matrix element and the state normalization fac-
tor, it is then straightforward to derive the Hamiltonian ex-
pectation value for N cobosonic molecules 0 plus one co-
bosonic molecule 0g having zero, one, or two atoms identical
to the ones of the molecules 0. This allows us to prove that
these expectation values are indeed equal when one or two
atoms are the same.

I. FORMALISM

We consider molecules made of two fermionic atoms �
and � having a spin degree of freedom. It is convenient �3� to
introduce two complete basis for these fermionic atoms,
aK�

† �v� and bK�

† �v�, where K� stands for an orbital index k�

and a spin index s� for the fermion �, while K� stands for an
orbital index k� and a spin index �� for the fermion �.

The expansion on this atomic basis of a molecular eigen-
state �I�=BI

† �v� allows us to write its creation operator as

BI
† = �

K�,K�

aK�

† bK�

† 	K�,K��I� . �1.1�

If the �I�’s are eigenstates of the system Hamiltonian, they
also form a complete set for one-atom-pair states; so that the
atom-pair operators in the same way read in terms of the
molecular operators as

aK�

† bK�

† = �
I

BI
†	I�K�,K�� . �1.2�

A. Pauli scatterings

From Eqs. �1.1� and �1.2�, it is easy to derive the first two
key equations of the coboson many-body theory �3,5�,
namely,

�BM,BI
†� = �M,I − DMI, �1.3�

�DMI,BJ
†� = �

P

	� P J

M I � + 	�M J
P I �BP

† . �1.4�

The Pauli scattering 	� P J
M I

� of two cobosonic molecules
from the “in” states �I ,J� to the “out” states �M , P�, that
emerges from these commutators, is shown in Fig. 2�a�. For
interatomic interactions independent of spins, the molecular
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wave functions are spin independent. The Pauli scattering
then splits into a spin part and an orbital part. Let us set I
= �i ,si ,�i�, where i stands for the orbital index of a molecule
made of one atom � with spin si and one atom � with spin
�i. As, in 	� P J

M I
� shown in Fig. 2�a�, the molecule M has the

same atom � as I and the same atom � as J, this scattering
differs from zero for sm=si and �m=� j only. In the same
way, we must have sp=sj and �p=�i for 	� P J

M I
� to differ

from zero. The orbital part of this scattering is readily ob-
tained in a standard way from the diagram of Fig. 2�a�, by
taking the “in” wave functions and the complex conjugates
of the “out” wave functions with their respective atomic vari-
ables. This leads to �5�

	� P J
M I � = �sm,si

�sp,sj
��p,�i

��m,�j
�� p j

m i � ,

�� p j
m i � =� dr�dr�dr��dr��
m

* �r�,r���
p
*�r�� ,r��
i�r�,r��

�
 j�r�� ,r��� . �1.5�

One important property of the deviation-from-boson operator
DMI is

DMI�v� = 0, �1.6�

as readily found by making Eq. �1.3� act on vacuum �v�.

B. Interaction scatterings

To get the two other key equations of this coboson many-
body theory, we start with

�H − EI�BI
†�v� = 0, �1.7�

for molecular states �I� eigenstates of the system Hamil-
tonian, and we introduce �3,5� the creation potential VI

† of the
cobosonic molecule I through

�H,BI
†� = EIBI

† + VI
†. �1.8�

The interaction scattering from two cobosons in the “in”
states �I ,J� to two cobosons in the “out” states �M , P� then
follows from

�VI
†,BJ

†� = �
M,P

�dir� P J
M I �BM

† BP
† . �1.9�

It is shown in Fig. 2�b�. For interactions between fermions
independent of their spins, �dir� P J

M I
� splits, as the Pauli scat-

terings, into a spin part and an orbital part. It is readily ob-
tained from Fig. 2�b� as

�dir� P J
M I � = �sm,si

��m,�i
�sp,sj

��p,�j
�dir� p j

m i � ,

�dir� p j
m i � =� dr�dr�dr��dr��
m

* �r�,r��
p
*�r�� ,r���

�
i�r�,r��
 j�r�� ,r����v���r�,r��� + v���r�,r���

+ v���r�,r��� + v���r�� ,r��� . �1.10�

The bracket of Eq. �1.10� just corresponds to the direct in-
teractions between the fermions of the cobosons I and J, the
“out” coboson M being made of the same fermion pair as the
“in” coboson I.

One important property of the creation potential VI
† is

VI
†�v� = 0, �1.11�

as readily found by making Eq. �1.8� act on vacuum.

C. Many-body effects

In order to calculate many-body effects between cobosons
in an easy way, it is convenient to use similar commutators
with N cobosons. They are obtained �1,8� by the iteration of
Eqs. �1.3�, �1.4�, �1.8�, and �1.9�.

The ones for fermion exchanges read

�DMI,BJ
†N� = NBJ

†N−1�
P

	� P J

M I � + 	�M J
P I �BP

† ,

�1.12�

�BM,BI
†N� = NBI

†N−1��M,I − DMI�

− N�N − 1�BI
†N−2�

P

	� P I
M I �BP

† , �1.13�

while the ones for fermion interactions are given by

�VI
†,BJ

†N� = NBJ
†N−1�

MP

�dir� P J
M I �BM

† BP
† , �1.14�
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FIG. 2. �a�: Diagram for the Pauli scattering 	� P M
J I

� defined in
Eq. �1.5�. �b� Diagram for the direct interaction scattering
�dir� P M

J I
� defined in Eq. �1.10�. �c� Diagram for the “in” exchange

interaction scattering �in� P M
J I

� defined in Eq. �2.6�.
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�H,BI
†N� = NBI

†N−1�EIBI
† + VI

†�

+
N�N − 1�

2
BI

†N−2�
MP

�dir� P I
M I �BM

† BP
† .

�1.15�

These four commutators of course reduce to the key ones
for N=1. They actually constitute the basic equations from
which all the many-body physics of composite bosons can be
derived, with fermion exchanges included in an exact way.

D. The problem at hand

We consider N identical molecules 0 made of fermionic
atoms � and � having a spin s and � respectively, the cre-
ation operator of these molecules being B0

†. The Hamiltonian
expectation value in such a state reads �8�

	H�N =
	v�B0

NHB0
†N�v�

	v�B0
NB0

†N�v�
. �1.16�

To these N molecules, we add a similar molecule 0g having
its atoms with spins s� and �� possibly different from �s ,��.
The Hamiltonian expectation value in this �N+1�-molecule
state reads

	H�N;g =
	�N;g�H��N;g�
	�N;g��N;g�

=
	v�B0

NB0g
HB0g

† B0
†N�v�

	v�B0
NB0g

B0g

† B0
†N�v�

,

�1.17�

with 	H�N;2 reducing to 	H�N+1 since 02�0.
In the Born approximation, the energy change induced by

the added molecule is simply given by

	H�N,g − 	H�N = E0 + EN;g �1.18�

since, for spin independent interatomic interactions, the mo-
lecular energy does not depend on spin, so that E0g

=E0.
EN;g comes from the interactions between the cobosonic

molecule 0g and the N cobosonic molecules 0 already
present. For g=0, i.e., for s��s and ����, these interac-
tions reduce to direct interactions between molecules, while
for g=2, i.e., s�=s and ��=�, and for g=1, i.e., �s�=s ,��
��� or �s��s ,��=��, these interactions also include ex-
changes between the two sets of fermions, or between one
set only. Consequently, EN;g should a priori take three differ-
ent values depending on the relative values of �s� ,���and
�s ,��.

In order to have a simple understanding of the problem,
let us start with N=1.

II. ENERGY CHANGE FOR N=1

For molecular states BI
† �v� being eigenstates of the Hamil-

tonian, we have, due to Eq. �1.7�, 	v �B0B0
† �v�=1 while

	v �B0HB0
† �v�=E0, so that

	H�1 = E0. �2.1�

For two molecules, we readily find �3,5�, by pushing BM to
the right according to the commutators �1.3� and �1.4�,

	v�BPBMBI
†BJ

†�v� = �M,I�P,J − 	� P J
M I � + �M ↔ P� .

�2.2�

Due to Eq. �1.5�, the Pauli scattering 	� 0g 0g

0 0
� reduces to

���,��� o o
o o

� while the Pauli scattering 	� 0 0g

0g 0
� reduces to

�s�,s�� o o
o o

�. We then end with

	v�B0B0g
B0g

† B0
†�v� = 1 + �s�,s���,� − ��s�,s + ���,����o o

o o � .

�2.3�

Dimensional arguments show that �� o o
o o

� is a dimensionless
parameter of the order of �a /L�3, where a is the molecule
extension and L the sample size. Consequently, �� o o

o o
� is a

vanishingly small parameter in the large sample limit. For a
cobosonic molecule having a relative-motion wave function
equal to �e−r/a /��a3�, its precise value �5� is �� o o

o o
�

= �33� /2��a /L�3.
In the same way, the diagonal matrix element of the sys-

tem Hamiltonian H in this two-molecule subspace is ob-
tained by pushing H to the right according to the commuta-
tors �1.8� and �1.9�. This leads to �8�

	v�B0B0g
�H − 2E0�B0g

† B0
†�v� = �

MP

�dir� P 0
M 0g

�
�	v�B0B0g

BM
† BP

† �v� . �2.4�

So that, by using Eq. �2.2�, we end with

	v�B0B0g
�H − 2E0�B0g

† B0
†�v� = �dir� 0 0

0g 0g
� + �dir�0g 0

0 0g
�

− �in� 0 0
0g 0g

� − �in�0g 0
0 0g

� .

�2.5�

�in� P J
M I

�, shown in Fig. 2�c�, corresponds to an interaction
scattering between the “in” cobosons I and J followed by a
fermion exchange, so that M ends by having the fermion �
of I and the fermion � of J. Its orbital part is given by �3�

�in�o o
o o � =� dr�dr�dr��dr��
o

*�r�,r���
o
*�r�� ,r��

�
o�r�,r��
o�r�� ,r����v���r�,r��� + v���r�,r���

+ v���r�,r��� + v���r��,r��� . �2.6�

This leads to rewriting Eq. �2.5� in terms of orbital scatter-
ings as

	v�B0B0g
�H − 2E0�B0g

† B0
†�v� = �1 + �s�,s������dir�o o

o o �
− ��s�,s + ���,���in�o o

o o � .

�2.7�

Due to dimensional arguments, �dir� o o
o o

� and �in� o o
o o

� are
energylike quantities of the order of E0�a /L�3. Let us note
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that, as readily seen from Eq. �1.10�, the direct scattering
�dir� o o

o o
� reduces to zero if the attraction between �� ,�� is as

large as the repulsion between �� ,�� and �� ,��—as for the
Coulomb interaction between the electrons and the protons
of two hydrogen atoms, or between the electrons and the
holes of two excitons. For hydrogen atoms or excitons hav-
ing a relative motion wave function equal to �e−r/a /��a3�,

the exchange-interaction scattering is given �8� by �in� o o
o o

�
= �−26� /3��e2 /2a��a /L�3.

The Hamiltonian expectation value in a state with
one molecule 0 and one molecule 0g having its fermions in
the same orbital states as the ones of 0, but in a possibly
different spin state, follows from Eqs. �2.3� and �2.7�. It
reads

	H�1;g = 2E0 +
�1 + �s�,s���,���dir�o o

o o � − ��s�,s + ���,���in�o o
o o �

1 + �s�,s���,� − ��s�,s + ���,����o o
o o �

� 	H�1 + E0 + E1;g. �2.8�

This shows that the interacting part of the energy change when one cobosonic molecule 0g is added to one cobosonic molecule
0, can take two values only, namely,

E1;g =��dir�o o
o o � for g = 0, i.e., for �s� � s, �� � ��,

�dir�o o
o o � − �in�o o

o o �
1 − ��o o

o o �
for g = �1,2�, i.e., for�s� � s,�� = ��,�s� = s,�� � ��,�s� = s,�� = �� .

�2.9�

The fact that the added molecule feels the two atoms of the
molecule already present by the Pauli exclusion principle, or
one atom only, has no effect on this energy change.

Note that since �, �dir and �in go to zero as �a /L�3 in the
large sample limit, E1;g also goes to zero in this limit: If we
only have two molecules in an infinitely large sample, the
energy change induced by their interactions is vanishingly
small, as physically reasonable. We however expect that, if
one molecule is now added to a set of N molecules, the terms
in �a /L�3 will appear with a N prefactor; so that the energy
change induced by interactions has to depend on the mol-
ecule density through the dimensionless parameter

 = N�a/L�3, �2.10�

which is the relevant parameter of all many-body effects be-
tween composite quantum particles. Let us show it by calcu-
lating the energy change when one molecule 0g is added to N
identical molecules 0.

III. ENERGY CHANGE FOR LARGE N

To obtain this change, we have to calculate the normal-
ization factors of the states with N and N+1 cobosonic mol-
ecules as well as the diagonal matrix elements of the Hamil-
tonian in these molecular states.

A. Normalization factor

In previous works �20,21�, we have shown that the nor-
malization factor of N identical cobosons reads

	v�B0
NB0

†N�v� = N ! FN, �3.1�

where FN, which differs from 1 due to fermion exchanges
between cobosons, is exponentially small in macroscopic
samples. Using Eqs. �1.12� and �1.13�, it is possible to derive
the recursion relation which exists between these FN’s. It
reads �21�

FN = �
n=1

N

�− 1�n−1 �N − 1�!
�N − n�!

�nFN−n. �3.2�

The coefficients �n in this recursion relation come from fer-
mion exchanges between n cobosons 0. They just correspond
to Shiva diagrams �2� like the one of Fig. 1�c�, with n cobo-
son lines instead of 3, all the “in” and “out” cobosons being
cobosons 0. This leads to �2=�� o o

o o
�, while 1 is replaced by

�1 for convenience. Due to dimensional arguments, these
�n’s are of the order of �a3 /L3�n−1, making the prefactor of
FN−n in Eq. �3.2� of the order of n−1. Consequently, in the
large N limit, the expansion of FN−1 /FN, deduced from Eq.
�3.2�, appears as an  expansion �21�

fN =
FN−1

FN
� 1 + N�2 + N2�2�2

2 − �3� + O�3� = f̃�� .

�3.3�

In order to calculate the normalization factor when one
cobosonic molecule 0g is added to these N molecules 0, we
make use of Eq. �1.3� to get
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	v�B0
NB0g

BMg

† = 	v�B0
N�BMg

† B0g
+ �0g,Mg

− D0gMg
� , �3.4�

where BMg

† creates a cobosonic molecule in an orbital state
m, its fermionic atoms having the spins of the molecule 0g,
so that �0g,Mg

reduces to �o,m.
Using Eq. �1.13�, we can rewrite the first term of Eq. �3.4�

as

	v�B0
NBMg

† B0g
= 	v��N�0,Mg

B0
N−1

− N�N − 1�B0
N−2�

P

	�0 P
0 Mg

�BP�B0g

= �g,2	v��N�o,mB0
N

− N�N − 1�B0
N−1�

p

��o p
o m �BP2�B02

,

�3.5�

since �0,Mg
=�g,2�o,m while 	� 0 P

0 Mg
� differs from zero for Mg

and P having their two fermionic atoms with the spins of 0.
The last term of Eq. �3.4� is calculated using Eq. �1.12�,

	v�B0
ND0gMg

= N	v�B0
N−1�

P

	� 0 P

0g Mg
� + 	�0g P

0 Mg
�BP

† ,

�3.6�

the bracket being equal to zero for g=0, to �� o p
o m

� for g=1
and to 2�� o p

o m
� for g=2.

If we now insert Eqs. �3.5� and �3.6� into Eq. �3.4�, we
find that, when the two atomic spins of the added molecule
are different from the spins of 0,

	v�B0
NB00

BM0

† = �m,o	v�B0
N. �3.7�

We also find that the states when exchanges exist between
the two sets of atoms or between one set only, are linked by

	v�B0
NB01

BM1

† =
1

N + 1
	v�B0

N+1BM2

† . �3.8�

By setting m=0 in the above equations, we readily obtain
the normalization factor of �N+1� cobosonic molecules as

	v�B0
NB0g

B0g

† B0
†N�v� = �N ! FN for g = 0, i.e., �s� � s,�� � ��

N ! FN+1 for g = 1, i.e., �s� = s,�� � ��or�s� � s,�� = ��
�N + 1� ! FN+1 for g = 2, i.e.,�s� = s,�� = �� .

� �3.9�

This, in particular, shows that the normalization factor for
�N+1� cobosonic molecules having exchanges between their
�N+1� fermionic atoms � and between their �N+1� fermi-
onic atoms �, is �N+1� times larger than the normalization
factor when exchanges exist between the �N+1� fermionic
atoms � only,

	v�B0
N+1B0

†N+1�v� = �N + 1�	v�B0
NB01

B01

† B0
†N�v� . �3.10�

Due to the same counting of atom exchanges, this relation
can be generalized, according to Eq. �3.8�, as

	v�B0
N+1BM2

† ��N� = �N + 1�	v�B0
NB01

BM1

† ��N� , �3.11�

for any state ��N� made of N pairs of atoms. The above
relation is the key on which is based the main result of the
present paper.

B. Matrix element of the Hamiltonian

We now turn to the matrix elements of the system Hamil-
tonian between cobosonic molecular states.

1. States with N cobosonic molecules 0

In a previous work �8�, we have calculated the Hamil-
tonian matrix element when all the cobosons are in the same

state. Due to the commutator �1.15�, we readily find

	v�B0
N�H − NE0�B0

†N�v� = RN/2,

RN = �
MP

	v�B0
NB0

†N−2BM
† BP

† �v��dir� P 0
M 0 �N�N − 1� .

�3.12�

RN is represented by the diagram of Fig. 3�a�: Two cobosons
0 among the N cobosons 0 interact to give the cobosons M
and P. These cobosons �M , P� can then exchange their fer-
mions with the remaining �N−2� cobosons 0 in all possible
ways to give back N cobosons 0. The factor N�N−1� appear-
ing in Eq. �3.12� or in the diagram of Fig. 3�a� comes from
the number of ways to choose the two cobosons 0 which
interact, among N.

The density expansion of RN, shown in Fig. 3�b�, is ob-
tained by passing BM

† , or BP
† , over B0

N according to Eq. �1.13�.
This expansion readily leads to �8�

RN = 	v�B0
N−2B0

†N−2�v��N�N − 1��2N�N − 1��
+ 	v�B0

N−3B0
†N−3�v��N�N − 1��N − 2��3N�N − 1��N − 2��

+ ¯ . �3.13�

So that, using Eq. �3.1�, we end with
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RN = N ! �FN−2�2N�N − 1� + FN−3�3N�N − 1��N − 2� + ¯ � .

�3.14�

The �n’s correspond to the connected diagrams �2� between n
cobosonic molecules 0, in which enters one interaction scat-
tering �dir. The N-dependent factors in Eq. �3.13� again
come from the number of ways to choose these n molecules
0, among N. Figure 4 shows the two first �n’s. From this
figure we readily find

�2 = �dir�o o
o o � − �in�o o

o o � . �3.15�

2. States with N cobosonic molecules 0 plus one cobosonic
molecule 0g

In order to calculate the H matrix element when a co-
bosonic molecule 0g is added to N cobosonic molecules 0,
we first use Eq. �1.8�. This leads to

	v�B0
NB0g

�H − �N + 1�E0�B0g

† B0
†N�v�

= 	v�B0
NB0g

�B0g

† �H − NE0� + V0g

† �B0
†N�v� . �3.16�

We then use Eq. �1.14� to calculate V0g

† B0
†N �v�. By noting that

�dir� P 0
M 0g

� is a direct interaction scattering, we end with

	�N;g�H − �N + 1�E0��N;g�

= 	v�B0
NB0g�B0g

† �H − NE0�B0
†N

+ N�
m,p

�dir� p o
m o �BMg

† BP2

† B0
†N−1��v� . �3.17�

To go further, it is necessary to differentiate the cases in
which atom exchange can or cannot take place.

C. Energy change in the absence of atom exchange

When the added molecule is a molecule 0g=0, i.e., a mol-
ecule made of two atoms with spins different from the ones
of the molecules 0, no exchange takes place between the
added molecule and the molecules present in the system.
Making use of Eq. �3.7�, we then get the matrix element of
the system Hamiltonian in this ��N;g=0� state, given in Eq.
�3.17�, as

	�N;0�H − �N + 1�E0��N;0�

= 	v�B0
N�H − NE0�B0

†N�v�

+ N�
p

	v�B0
NBP2

† B0
†N−1�v��dir�p o

o o � . �3.18�

The second term of the above equation is shown in Fig. 5�a�.
It corresponds to a direct interaction between the added mol-
ecule 00 and one of the N molecules 0 already present, the N
in front of the sum of Eq. �3.18� coming from the number of
ways to, among N, choose the molecule 0 which interacts

0

0 0
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0
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N
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0
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+ ...

N
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M
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(b)

FIG. 3. �a� Shiva diagram representing RN, defined in Eq. �3.12�.
It corresponds to the interaction part of the Hamiltonian expectation
value for N cobosonic molecules 0. �b� Density expansion of RN,
given in Eq. �3.13�. As explained in Ref. �2�, it is obtained from the
diagram �a� by extracting the �N−2�, �N−3� , . . . cobosonic mol-
ecules 0 which are not involved in Pauli scatterings with the co-
bosonic molecules �M , P� resulting from the interactions of two
molecules 0. According to Eq. �3.1�, these extracted parts give �N
−n� !FN−n. The N factors appearing in these diagrams come from
the number of ways to, among N, choose the cobosonic molecules 0
involved in the scatterings.

0

0

0

0
2

0

0

0

0

0

0

0

0
= _

0

0

0

0

3

00

0

0

0

0

0

0

0

0

0

0

0

0

=

_

(a)

0

0

0

0

0

0

_

0

0

0

0

0

0

+ +

(b)

FIG. 4. �a� Shiva diagrams for �2, appearing in Eq. �3.13�. It
corresponds to direct and exchange interactions between two co-
bosonic molecules 0 giving back these 0 states. �b� Shiva diagrams
for �3. We see that �3 contains processes in which one of the three
cobosonic molecules 0 conserves its fermionic atoms as well as
processes in which all the three cobosonic molecules are involved
in fermion exchanges.
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with 00: Since the two fermionic atoms of the molecule 00
are different from the ones of the molecules 0, the added
molecule 00 can feel the molecules 0 by fermion interactions
but not by the Pauli exclusion principle, i.e., fermion ex-
changes.

If we now use the normalization factor of the state ��N;0�
given in Eq. �3.9�, we find

	H�N;0 − 	H�N = E0 + EN;0,

EN;0 =

�
p

	v�B0
NBP2

† B0
†N−1�v��dir�p o

o o �N

	v�B0
NB0

†N�v�
. �3.19�

As for RN in Eq. �3.12�, we calculate the density expan-
sion of the above sum by passing BP2

† over B0
N according to

Eq. �1.13�. We find that the dominant term of this sum,
shown in Fig. 5�b�, is equal to N2�dir� o o

o o
��N−1� !FN−1, the

additional factor N coming from the number of ways to,
among N, choose the molecule 0 which results from the scat-
tering, by direct interactions, of the two molecules 00 and 0.

All this leads to a density expansion of the energy change
when no atom exchange takes place given by

EN;0 =
N2�dir�o o

o o ��N − 1� ! FN−1 + ¯

N ! FN

� N�dir�o o
o o � + O�2� . �3.20�

Note that the leading term of this energy change, of the order
of , reduces to zero if the attraction between fermions

�� ,�� is as large as the repulsion between �� ,�� and
�� ,��—as in the case of Coulomb interaction between fer-
mions having opposite charges—since we then have
�dir� p j

i i
�=0, as seen from Eq. �1.10�. It is possible to show

that this cancellation in fact remains at any order in density.
This result, not obvious at first, tells that there is no energy
change, in the Born approximation, for systems having an
�� ,�� attraction as large as the �� ,��, �� ,�� repulsions,
when fermion exchanges do not exist between the added
molecule and the ones present in the sample.

D. Energy change in the presence of atom exchanges

1. Exchanges within the two sets of fermionic atoms
or within one set only

Making use of Eq. �3.11� in Eq. �3.17�, we readily find

	�N;1�H − �N + 1�E0��N;1� =
1

N + 1
	�N;2�H − �N + 1�E0��N;2� .

�3.21�

So that, due to the link between the normalization factors
given in Eq. �3.10�, we simply have

	H�N;1 = 	H�N;2. �3.22�

This proves that, within the Born approximation, the energy
changes are equal at any order in density if exchanges exist
between the two sets of fermionic atoms or between one set
only: The increase of atom exchanges appearing in the
Hamiltonian matrix element is exactly balanced by the same
increase of atom exchanges appearing in the normalization
factor, this balance existing at any order in density—a result
far from intuitive.

2. Precise calculation of this energy change

Since 	H�N;2= 	H�N+1, we can calculate this energy change
as �	H�N+1− 	H�N−E0�. Equations �1.16�, �1.18�, �3.1�, and
�3.12� allow us to write it as

EN;1 = EN;2 =
RN+1

2�N + 1� ! FN+1
−

RN

2N ! FN
. �3.23�

By using the density expansion of RN given in Eq. �3.14�,
the energy change when exchanges between molecules take
place thus appears as

EN;1 = EN;2 = ��2A2�N� + �3A3�N� + ¯ �/2, �3.24�

where we have set

An+1�N� =
FN−n

FN+1

�N + 1�!
�N − n�!

−
FN−1−n

FN

N!

�N − n − 1�!
.

�3.25�

In order to calculate the density expansions of this quan-
tity, it is convenient to note that it also reads

N
0

0

00

0

0

00

(a)

P

N-1
0

0

0

00

0

0

0

00

(b)

N

NN

FIG. 5. �a� Shiva diagram representing the second term of Eq.
�3.18�, the added cobosonic molecule 00 having its two fermionic
atoms with spins different from the ones of the cobosonic molecule
0. �b� Dominant term of the density expansion of the diagram �a�, as
obtained by extracting the �N−1� cobosonic molecules 0 not in-
volved in the exchange process with the cobosonic molecule 0 in-
teracting with 00. The N factors are the number of ways to, among
N, choose the cobosonic molecule 0 interacting with 00.
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An+1�N� = 
�n + 1�
FN−n−1

FN
+ �N + 1��FN−n

FN+1
−

FN−1−n

FN
�

�
N!

�N − n�!
. �3.26�

The density expansion of the ratio FN−2 /FN appearing in
A2�N� is obtained by noting that

FN−2

FN
=

FN−1

FN

FN−2

FN−1
= fN� fN −

� fN

�N
+ ¯ � . �3.27�

If we then use the density expansion of fN= f̃�� given in Eq.
�3.3�, this ratio reads as

FN−2

FN
� f̃��
 f̃�� −



N
f̃��� + ¯  . �3.28�

In the same way, the leading term of the ratio dif-
ference �FN−1 /FN+1−FN−2 /FN� appearing in A2�N� reads as

2 f̃�� f̃��� /N, so that the second term of A2�N� is smaller
than the first one by a factor of the order of .

By using Eqs. �3.3� and �3.15�, it is then easy to show that
the leading term of the energy change given in Eq. �3.24�
reduces to

EN;1 = EN;2 � N
�dir�o o
o o � − �in�o o

o o � + O�2� ,

�3.29�

the term in 2 coming from the first factor of A3�N�, the

second factor of A2�N�, and also the fact that f̃��=1
+O��.

It is actually possible to recover the above result by noting
that, for large N,

E0 + EN;2 = 	H�N+1 − 	H�N =
�	H�N

�N
. �3.30�

The RN expansion given in Eq. �3.14� then leads to

	H�N = N
E0 +
N

2
�2 + O�2� . �3.31�

The energy change of Eq. �3.29� readily follows from Eqs.
�3.15�, �3.30�, and �3.31�.

When comparing Eq. �3.29� to Eq. �3.20�, we see that an
additional contribution to the energy change, namely,
−N�in� o o

o o
�, appears when atom exchanges are possible be-

tween the added molecule and the molecules present in the
sample, as physically expected. Less expected is the fact that
this additional contribution is the same when exchanges exist
between one set or between the two sets of fermionic atoms,
due to an exact balance, at any order in density, between the

increase in the number of exchanges entering the H matrix
element and the increase in the number of exchanges enter-
ing the state normalization factor. This leads us to predict
that the scattering lengths for molecules having one or two
atoms with the same spin are, in the Born approximation,
equal.

It is of importance to recall that, by calculating the energy
change through the expectation value of the Hamiltonian in
the state ��N,g�, we, by construction, get this change at first
order in fermion interactions, so that we calculate it in the
Born approximation. To obtain this energy change at second
order in fermion interactions, we would have to use the �N
+1� coboson state at first order in the interactions, this state
differing from a bare coboson product ��N;g�, due to the in-
teractions between cobosons which have then to be included
at first order. The procedure to derive this first order state has
not been found yet, due to major difficulties �12� in properly
handling exchanges between composite quantum particles,
which makes the system Hamiltonian not possible to write as
H0+V, with V being a potential between composite quantum
particles. We are going to address this difficult problem in
the near future.

IV. CONCLUSION

We have studied the effect of the Pauli exclusion principle
in a mixture of cobosonic molecules made of two fermionic
atoms through the energy change of N identical molecules
when a similar molecule made of fermionic atoms, with pos-
sibly different spins, is added. To focus on the consequences
of the Pauli exclusion principle, the calculation presented
here is restricted to interactions between atoms independent
of their spins, inelastic scatterings being neglected. In spite
of the larger number of atom exchanges when the two atoms
of the added molecule are identical to the ones already
present, we find that the energy change calculated in the
Born approximation is exactly the same as the one when the
added molecule only has one fermionic atom identical to the
ones present in the sample. Such an exact balance in fermion
exchanges, which exists at any order in density, is certainly
not easy to guess. Its proof relies on a very careful calcula-
tion of this energy change, with the consequences of the
Pauli exclusion principle included in an exact way. As a con-
sequence, this work predicts the equality, within the Born
approximation, of the scattering lengths for molecules made
of one or two atoms having same spin.

The present work makes use of the recent extension �3� of
the exciton many-body theory �1� to any type of composite
bosons, the Shiva diagram representation �2� of this many-
body theory allowing an easy understanding of the physics
involved in the various terms.
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