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We present detailed derivations, various improvements and application to concrete experimental data of spin
squeezing inequalities formulated recently by some of us �Phys. Rev. Lett. 95, 120502 �2005��. These inequali-
ties generalize the concept of the spin squeezing parameter and provide necessary and sufficient conditions for
genuine two-, or three-qubit entanglement for symmetric states, and sufficient condition for general N-qubit
states. We apply our method to theoretical study of Dicke states, and, in particular, to W states of N qubits.
Then, we analyze the recently experimentally generated seven- and eight-ion W states �Nature 438, 643
�2005��. we also present some details concerning this experiment. Finally, we improve criteria for detection of
genuine tripartite entanglement based on entanglement witnesses.
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I. INTRODUCTION

Experimental generation and characterization of entangle-
ment on macroscopic or mesoscopic scales seem to be one of
the necessary prerequisites of scalable quantum information
processing. A spectacular progress has been achieved re-
cently in the area of quantum correlated systems of atoms
and, in particular, macroscopic atomic ensembles �1�. The
main goal of these studies is to achieve an efficient quantum
interface between light and atoms with spin, or pseudospin
internal states, using the generalized quantum Faraday effect.
Such settings already allowed one to demonstrate entangle-
ment of distant atomic objects �2�, or deterministic memory
for light �3� that can be retrieved using quantum teleportation
�4�. Entanglement between light and atoms, and between at-
oms themselves plays, of course, essential role in these ex-
periments.

It worth stressing that the light-atoms interface based on
using the quantum Faraday effect does not only allow one to
measure and detect atomic states. It also provides a tool for
manipulations and engineering of quantum fluctuations of
atomic spins. The latter possibility might be of fundamental
importance for the future implementations of distributed
quantum information processing. In particular, the methods
of atomic ensembles can be carried over to another rapidly
developing area of ultracold atomic gases. Here, the interest
would be to measure characterize, and finally, engineer quan-
tum fluctuations of the total atomic spin in spinor ultracold
gases �for a review see �5�� that has been intensively studied
since the seminal theory papers of Ho �6� and Ohmi and
Machida �7�, as well as the experiments performed by the
MIT group on optically trapped sodium Bose-Einstein con-
densates �BEC� �8�. Particularly interesting are prospects of
applications of these methods to strongly correlated states of
spin ultracold gases in optical lattices �9�.

Yet another rapidly developing related area is that of
quantum information processing with trapped ions. After the
first works, in which the three- and four-ion GHZ state �10�
and three-ion W and GHZ states �11� have been generated
�12�, in recent experiments the tomography of six-, seven-,

and eight-ion W states has been performed �13�, and the
six-ion GHZ state has been generated �14�.

The problem of characterization of the generated forms of
multipartite entanglement �15�, or more generally, of charac-
terization of many-body quantum correlations is thus of es-
sential importance for the investigations of such mesoscopic
systems. One of the possible ways to achieve it, is to mea-
sure the total spin �or pseudospin� of atoms �or ions� and its
quantum fluctuations, which is, of course, possible by per-
forming state tomography. The central role in this approach,
applied to atomic ensembles, has been played thus far by the,
so-called spin-squeezing parameter �2, introduced by Kita-
gawa and Ueda �16�. As it was shown in Refs. �17,18�, it
provides a sufficient entanglement criterion for atomic en-
sembles. On top of that, �2 is particularly appreciated by
experimentalists since: �i� it has a clear physical meaning, �ii�
it can be relatively easy measured, �iii� it is defined by a
simple operational expression, and �iv� it provides a figure of
merit for atomic clocks. However, until our recent Letter �19�
no further investigations to relate �2 to other concepts of
quantum information have been carried out.

The present work is a substantially extended version of
Ref. �19�. Apart from the expanded theoretical analysis, we
present here a detailed description of the ion-trap experiment
of Ref. �13�, to which output we apply our inequalities.

Let us first recall that in Ref. �19� we have generalized
and connected the concept of spin-squeezing parameters to
the theory of entanglement witnesses �20�, i.e., such observ-
ables W that have non-negative averages for all separable
states and there exists an entangled state � such that
tr��W��0. In order to derive the generalized spin-squeezing
inequalities, we have proposed a general method of express-
ing state averages of the appropriate entanglement witnesses
in terms of the macroscopic spin operators

Ji = �
a=1

N
1

2
�a

i , i = 1,2,3 �1�

�we work in the units �=1�. Here by �i we denote Pauli
matrices, indices a ,b ,c. . . enumerate the particles of the en-
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semble, and �a
i =�i � 11. . .â. . .N �hat over the index denotes

that it is omitted�. It is worth recalling at this place that in the
standard terminology �16� a state of a spin-J system is called
spin squeezed if there exists a direction n, orthogonal to the
mean spin �J�, such that

�2 =
2��Jn

2�
J

�1, �2�

where Jn=n ·J.
Our method works as follows: we begin with considering

symmetric states of N qubits first, i.e., states � that satisfy

P�P = � , �3�

where P is an orthogonal projector onto the symmetrized
product of individual qubit spaces Hs=Sym�C2 � ¯ � C2�
�Sym denotes symmetrization�. It is known that for symmet-
ric states of two and three qubits the necessary and sufficient
condition for separability of a quantum state is equivalent to
the positivity of partial transpose �PPT� of the state. For two
qubits, the PPT condition is, in fact, the necessary and suffi-
cient condition for separability of arbitrary �also nonsymmet-
ric� states �21�; for symmetric states of three qubits this result
has been shown in Ref. �22�. The knowledge of the necessary
and sufficient separability criterion allows us to derive the
complete families of generalized spin squeezing inequalities,
which provide necessary and sufficient conditions for genu-
ine two-, or three-qubit entanglement for symmetric states.

Our inequalities at the same time provide a sufficient con-
dition for entanglement of general, i.e., not necessarily sym-
metric, states of N qubits �23�. The results of Ref. �19� imply
also that, if we somewhat broaden the standard notion of spin
squeezing �2�, then for spin-J systems represented as a col-
lection of 2J qubits, spin squeezing becomes equivalent to
the bipartite entanglement among the qubits �see also �18�
where the implication in one direction was obtained�. We
also derive and discuss improved with respect to Ref. �19�
versions of somewhat simpler spin squeezing inequalities
that provide sufficient conditions for genuine three-qubit en-
tanglement.

To prepare the necessary data for the analysis of the out-
put of the experiment from Ref. �13�, as well as to show how
to obtain our inequalities for concrete purposes, we present
in this paper a very explicit derivation of the inequalities for
the, so-called Dicke states �24�, sometimes also called gen-
eralized W states. We show step by step how to derive the
inequalities probing genuine two- and three-qubit entangle-
ment of this states. We also calculate all the necessary data
for checking seven- and eight-qubit W states, which are of
particular interest for us.

In the part of our work dedicated to the experiment, we
present a detailed description and analysis of the experimen-
tal production and state tomography of six-, seven-, and
eight-particle W states of trapped ions, first reported in Ref.
�13�. Here, we describe the details of the production of the
states in an ion trap, dedicated to quantum information pro-
cessing �25�. We explain the step-by-step generation algo-
rithm that was implemented in the experiment. We then ex-
plain how the state tomography was performed and show the

full reconstructed density matrix of the seven-qubit W state.
We analyze the experimental imperfections as well. Finally,
we apply our spin-squeezing inequalities to the experimental
data to confirm the presence of two- and three-qubit en-
tanglement in the generated states.

Let us stress that all of the proposed novel inequalities,
analogously as the previously known squeezing parameter:
�i� have a clear physical meaning in terms of generalized
squeezing and entanglement conditions, �ii� can be relatively
easy measured, and �iii� are given by complex but elemen-
tary expressions. Although in this paper we apply our theo-
retical tools to a fully restored density matrix from Ref. �13�,
it is very important to understand that these tools require
measurements of low-order moments of the total spin fluc-
tuations only. Hence, checking of our inequalities can be
relatively directly performed in large systems, such as atomic
ensembles, where, in general, quantum tomography is not
feasible.

We also note that recently Tóth et al. have also derived
various types of entanglement criteria based on entanglement
witnesses and on the uncertainty of collective observables,
such as the total spin or energy �26�. These criteria are useful
to detect the, so-called cluster states and many-body singlet
states, but they may also be used to detect the Dicke states
discussed in this paper.

The work is organized as follows: in Secs. II and III we
revise the derivation of two- and three-qubit entanglement
criteria. We give some calculational details as well as correct
versions of Eq. �17�–�19� from Ref. �19�. These results are
very general and apply to any system of qubits in any state:
from few ions through atomic ensembles to ultracold spinor
gases. In Sec. IV, we specify our inequalities to a concrete
example of experimentally accessible Dicke states and show
how to construct our criteria in this case. In particular, we
provide here explicit data for the case of seven- and eight-
qubit W states, preparing the input data for the analysis of
the experiment of Ref. �13�. Section V is devoted to a de-
tailed description of this experiment. We apply here our in-
equalities to the analysis of the output of this experiment,
confirming the presence of two- and three-qubit entangle-
ment. Section VI is dedicated to the construction of simpli-
fied witnesses detecting genuine three-qubit entanglement,
improving the similar witnesses we constructed earlier in
Ref. �19�. The simplified witnesses, unfortunately, are not
very useful for W states, since they detect entanglement only
for a low number of qubits. That is why we do not use them
for analysis of the experimental data of Ref. �13�. We sum-
marize our results in Sec. VII.

II. DETECTION OF BIPARTITE ENTANGLEMENT

In this section, we present a detailed derivation of gener-
alized squeezing inequalities that detect two-qubit entangle-
ment. The aim is to use the quantum fluctuations of the total
spin, whose low moments can be relatively easily measured,
as an indicator of entanglement. The results obtained in this
section, as well as the method itself, have a very general
character and can be used for arbitrary systems of qubits in
any quantum state.
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Let us recall that a multiqubit state � possesses two-qubit
entanglement if for some qubits a and b the reduced density
matrix

�ab = tr1..â..b̂..N� �4�

is entangled. The PPT criterion �21� implies that �ab is en-
tangled if and only if there exists a vector ��� such that

trab��ab������T1� � 0, �5�

where transpose is defined with respect to the standard basis
�0�, �1�. As � we can take any eigenvector of �ab

T1 correspond-
ing to a negative eigenvalue.

According to our general strategy, we first consider sym-
metric states, as then we can obtain a convenient parametri-
zation of ���. In the two-qubit case, we can take advantage of
the low dimensionality and use the explicit form of �ab

T1. Let
us first fix the basis of each qubit space by �z�0�= �0�,
�z�1�=−�1�. Then, we have that

�T1 = 	
�0 � �* 	

�* �1 
* �*

� 
 �1 �

	 � �* �2


 , �6�

where �0 ,�1 ,�2 ,	�R. It is easy to check that vectors of the
type

��� = ��00� + �01� + *�10� + ��11�, �,� � R �7�

are preserved by �T1, and, since they have three independent
parameters �we take them to be normalized, although it is not
important for the condition �5��, it is possible to find a solu-
tion of the eigenvalue equation. Hence, the negative eigen-
value vector in the inequality �5� must be of this form. From
Eq. �7�, it follows that the matrix ��� of coefficients of ��� is
hermitian

��� = � � 

* �
� , �8�

and hence, we can diagonalize it by some Ũ�SU�2�
�modulo U�1� phase rotation�

��� = Ũ†�Ũ . �9�

Note that due to the normalization of ���, the eigenvalue
matrix � can be put in the following form:

� = 	sin
�

2
0

0 ±cos
�

2

, − � � � � � . �10�

Rewriting Eq. �8� explicitly in the basis and using Eq. �10�,
we finally obtain the following parametrization from Ref.
�19�

��� = U*
� U��0�, ��0� = sin

�

2
�00� + cos

�

2
�11� , �11�

where U= ŨT, and we have fixed the overall phase. The pa-
rameters � , ,� from the decomposition �7� are now en-
coded into � and U. Using the above parametrization in-
equality �5� takes the following form:

trab��abU � U��0���0�T1U†
� U†� � 0. �12�

In order to rewrite the condition �12� with the total spin
operators �1�, we first recall that ��0���0�T1 can be decom-
posed into Pauli matrices, as it was done in Ref. �19�. Then,
the adjoint action of SU�2� in the inequality �12� induces a
SO�3� rotation R of the Pauli matrices: U�iU†=Ri

j�
j �here

and throughout the work we sum over the repeated indices�.
We will denote the axes of the rotated frame by k , l ,n.

Since in the symmetric case we currently consider all the
reductions �ab are of the same form, we can sum the in-
equalities �12� over all pairs of qubits: ��ab�=�a=1

N−1�b=a+1
N ,

without affecting the inequality sign. However, before we do
so, we extend ������T1 from the space of the qubits ab to the
full Hilbert space of N qubits by: ���ab���T1 = ������T1

� 11..â..b̂..N. Then, we obtain that

�
�ab�

trab��ab������T1� = tr��
�ab�

���ab���T1� . �13�

Now we can plug the Pauli matrix decomposition of ������T1

into Eq. �13�, and using the identity,

�
�ab�

�a
i

� �b
i = 2�Ji�2 −

N

2
, �14�

obtain the desired form of the condition �5�, i.e., a symmetric
state � possesses bipartite entanglement if and only if there
exist −����� and U�SU�2� /U�1�, such that the follow-
ing inequality holds:

sin ���Jk
2� + �Jl

2� −
N

2
� − �N − 1�cos ��Jn�

+ �Jn
2� +

N�N − 2�
4

� 0, �15�

where all the averages are taken with respect to the full state
�.

In case of a general, i.e., not necessarily symmetric, state
� observe that, if there exist −����� and U
�SU�2� /U�1� the same for all pairs of qubits, and such that
the sum �13� is negative, then there must be at least one pair
ab for which trab��ab������T1��0, and, hence, the state �

possesses bipartite entanglement. Thus, the condition �15� is
also a sufficient condition for bipartite entanglement for gen-
eral states.

For a given negative eigenvalue vector ���, the left-hand
side of the inequality �15� is completely determined. How-
ever, we can also treat it as a function of the parameters of
���, and as such it can be optimized. In particular, keeping
the frame k , l ,n fixed, we can search for the minimum with
respect to �. Let us call this minimum �0. Clearly, if the
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inequality �15� is satisfied for some �, then it will be also
satisfied for �0, and vice versa. Hence, it is enough to check
the condition �15� only for �0. Performing the minimization,
we obtain that

sin �0 = −

�Jk
2� + �Jl

2� −
N

2

���Jk
2� + �Jl

2� −
N

2
�2

+ �N − 1�2�Jn�2

�16�

cos �0 =
�N − 1��Jn�

���Jk
2� + �Jl

2� −
N

2
�2

+ �N − 1�2�Jn�2

, �17�

and the inequality �15� becomes

�Jn
2� +

N�N − 2�

4
����Jk

2� + �Jl
2� −

N

2
�2

+ �N − 1�2�Jn�2.

�18�

As a result, we arrive at the following �19�:
Criterion for bipartite entanglement. If there exist mutu-

ally orthogonal directions k, l, n such that the inequality �18�
holds, then the state � possesses bipartite entanglement. For
symmetric states the above condition is both necessary and
sufficient.

In the latter case, due to the equality,

�Jk
2� + �Jl

2� + �Jn
2� =

N�N + 2�
4

, �19�

the criterion �18� can be simplified to

4��Jn
2�

N
� 1 −

4�Jn�2

N2 . �20�

The relation of the criterion �18� to the standard spin-
squeezing condition �2� is the following. Spin-J state can be
equivalently represented as a symmetric state of N=2J qu-
bits. Intuitively, spin squeezing should refer to the existence
of nonclassical correlations among the qubits �16�. Indeed,
the criterion �20� provides a rigorous proof for this intuitive
picture, as, on one hand, if the condition �2� is satisfied, then
the inequality �20� is satisfied as well, since in this particular
case �Jn�=0 and J=N /2. Hence, spin-J squeezed states pos-
sess two-qubit entanglement �18�. On the other hand, if we
broaden the standard definition of spin squeezing �2� and
allow the direction n to be arbitrary, then we also obtain the
converse statement: the condition �20� implies the existence
of a spin component Jn, such that ��Jn

2��J /2. Note, how-
ever, that from the condition �20� it does not follow that the
direction of squeezing n is orthogonal to �J�. Thus, we ob-
tain a more general type of squeezing. In Sec. IV, we will
show somewhat extreme examples of state, for which n is
actually parallel to the mean spin.

III. DETECTION OF TRIPARTITE ENTANGLEMENT

In the previous section, we have shown that the presence
of bipartite entanglement is detected by the second-order
moments of the total spin. Given our methods, it is natural to
expect that the tripartite entanglement should be detectable
by third-order moments of J. In this section we derive the
corresponding generalized squeezing inequalities in the most
generic form, valid for arbitrary quantum states of systems of
qubits.

As in Sec. II, we begin with considering symmetric states
first. Recall that the PPT criterion still works for the tripartite
reductions �abc of such states �22�, and there are two families
of potential negative-eigenvalue vectors of �abc

T1 �19,27�

��� = A � B � B�GHZ3� , �21�

��� = A � U � U�W3� . �22�

Here, matrices A ,B�SL�2,C�, U�SU�2�, and �GHZ3�
= �1/�2���000�+ �111��, �W3�= �1/�3���001�+ �010�+ �100��.
The action of SL�2,C� on the Pauli matrices in the decom-
position of ������T1 now induces restricted, i.e., orientation
and time-orientation preserving, Lorentz transformations:

A*��AT = ��
���, B��B† = L�

���, �0 = 1 �23�

�Greek indices run through 0…3�, and the PPT condition
takes the following form:

trabc��abc������T1� =
1

8
K��trabc��abc�

�
� �

� ��� � 0

�24�

�note the summation convention�. Tensor K�� reads

K����,L� = �0
�L0

L0
� + �0

�L3
L3

� + �1
�L1

L1
�

+ 2�3
�L0

��L
3

��� − �1
�L2

L2
� + 2�2

�L1
��L

2
���

�25�

for the GHZ family �21�, and �28�

K����,R� =
1

3
�3�0

�R0
R0

� − 3�3
�R3

R3
� + 2�0

�R0
��R

3
���

+ �3
�R0

R0
� − �0

�R3
R3

� − 2�3
�R0

��R
3

���

+ 4�1
�R0

��R
1

��� + 4�1
�R1

��R
3

���

− 4�2
�R0

��R
2

��� − 4�2
�R2

��R
3

���

+ 2�0
�R1

R1
� + 2�3

�R1
R1

� + 2�3
�R2

R2
�

+ 2�0
�R2

R2
�� �26�

for the W family �22�. Here, R�
� is the four-dimensional

embedding of the rotation generated by U from Eq. �22�, and
the parentheses around indices denote symmetrization, e.g.,
A�ij�= �Aij +Aji� /2. Note that the relativistic notation is used
only for our convenience. We could have as well put all the
indices at the same level as we are not going to lower or rise
them with the Minkowski metric.
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Next, we sum the inequalities �24� over all triples of qu-
bits: ��abc�=�a=1

N−2�b=a+1
N−1 �c=b+1

N , just like we summed the in-
equalities �12� in Sec. II,

�
�abc�

K��trabc��abc�
�

� �
� ���

= K��tr� �
�abc�

�a
�

� �b


� �c
�� . �27�

Because of the symmetry condition �3�, we can rewrite Eq.
�27� as follows:

K��tr�P �
�abc�

�a
�

� �b


� �c
�P†� �28�

and observe that due to the action of P, we can substitute
�a

�
� �b


� �c

� with the symmetrized product �a
��

� �b


� �c
��.

This finally allows us to rewrite Eq. �28� with the total spin
operators Ji �supplemented by an artificial “time component”
J0= �N /2�1 for compactness of the notation�, because of the
identity

3 �
�abc�

�a
���

� �b


� �c
��� = 4J���JJ��� − 6f ���

�J���J���

+ 2f ���
�f ������

�J� − f ���
�f ������

�J�.

�29�

The symmetrization above is taken with respect to �� and
�� separately, and square brackets around Greek indices de-
note antisymmetrization, e.g., A�ij�= �Aij −Aji� /2. The con-
stants f�

� are defined through: ����= f��
���. Their numeri-

cal values are as follows: f�0
= f�0

=��
, f ij

�=i�l�
ijl�l

�
+�ij�0

�. Substituting Eq. �29� into Eq. �28� leads us to the
followings �29�:

Criterion for tripartite entanglement. A symmetric state �
possesses genuine tripartite entanglement iff there exist two
restricted Lorentz transformations �, L, or a restricted Lor-
entz transformation � and a rotation R, such that

X��� � K�����2�J�JJ�� − 3f�
��J���J���� + f�

�f ����
��J��

− 1
2 f�

�f ����
��J��� � 0 �30�

holds, with K�� given by Eq. �25� or �26�.
For a general state �, we could, as in Sec. II generate a

sufficient entanglement condition by applying the same wit-
ness ������T1, with ��� given by Eq. �21� or �22�, to all tri-
partite reductions �abc. However, then we cannot use the
symmetry arguments as we used in Eq. �28�, and directly
apply the identity �29�. Instead, we construct from the fami-
lies �21� and �22� different witnesses, given for the W family
�22� by

1
3 ��AUU�W3��W3�A†U†U†�T1 + �UAU�W3��W3�U†A†U†�T2

+ �UUA�W3��W3�U†U†A†�T3� , �31�

�we have omitted tensor product signs, �, for compactness�,
and analogously for the GHZ family �21�. We then apply the
witnesses �31� to all tripartite reductions of �, which effec-
tively leads to the substitution of K�� by K���� in Eq. �27�

�30�. Hence, we can use Eq. �29� again and arrive at the
condition �30�.

The price to pay, apart from the mere sufficiency of the
condition �30�, is that the witnesses �31� make no distinction
between biseparable tripartite reductions �which now are not
forbidden by the symmetry� and genuine three-qubit en-
tangled ones, and hence, the inequality �30� indicates only
general three-qubit entanglement. However, note that the set
of all biseparable states is closed, and hence, each genuine
three-qubit entangled state possesses an open neighborhood
consisting of only genuine three-qubit entangled states. Thus,
the criterion �30� also detects genuine three-qubit entangled
states in some open vicinity of symmetric states, but the size
of this vicinity is a priori not known �the same remark ap-
plies to the criterion �20� as well�. We will partially solve this
drawback using another witnesses in Sec. VI.

IV. AN EXAMPLE: DICKE STATES

There exists a famous and experimentally accessible fam-
ily of symmetric states, called Dicke states �24�

�32�

�“perm” stands for all possible remaining permutations�,
which are generalizations of N-qubit W states �WN�

�WN� = ��N,1� . �33�

Dicke states correspond �in spin-1
2 language� to a fully sym-

metric flip of k out of N spins. Such states appear in many
physical processes, such as superradiance, superfluorescence.
As we already mentioned, they can also be realized with
photons �where the qubits are encoded in the polarization
degree of freedom� or trapped ion systems �where the qubits
correspond to two internal states of ions�. In this section, we
specify and apply our general results of the previous sections
to the Dicke states. We explicitly construct for ��N,k� the
inequalities �18� and �30�. In particular, we derive all neces-
sary expressions for the analysis of the experimental data on
seven- and eight-qubit W states, which we will perform in
Sec. V.

For practical reasons, we choose the number of excited
qubits k to be smaller than the integer part of N /2. Also note
that alternatively the states �32� can be defined as the eigen-
states of the total angular momentum

��N,k� = �N

2
,
N

2
− k� . �34�

We first consider two-qubit entanglement. The reduced
two-qubit density matrices all have the following form:

�2 = N

k
�−1

�c0�00��00� + c1�11��11� + 2c+��+���+�� ,

�35�

where
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��+� =
1
�2

��01� + �10�� , �36�

and the coefficients are given by the following binomials:

c0 = N − 2

k
�, c1 = N − 2

k − 2
�, c+ = N − 2

k − 1
� . �37�

In the basis �00�, �11�, �01�, �10�, the partially transposed ma-
trix �2

T1 is given by

�2
T1 = N

k
�−1�

c0 c+ 0 0

c+ c1 0 0

0 0 c+ 0

0 0 0 c+

� . �38�

In the generic case, when all the constants from Eqs. �37� are
nonzero, �2

T1 has one negative eigenvalue

�− =
1

2
N

k
�−1

�c0 + c1 − ��c0 − c1�2 + 4c+
2� , �39�

as c0c1−c+
2 �0, and hence, the states �32� possess bipartite

entanglement. The normalized eigenvector corresponding to
�− is given by

��� =
1

�1 + t2
��00� − t�11�� , �40�

t =
c0 − c1

2c+
+� c0 − c1

2c+
�2

+ 1. �41�

We see that ��� is already in the Schmidt decomposed form
with respect to the chosen basis, and hence, no unitary rota-
tion U is needed. As that rotation was the only ingredient
needed to construct the spin-squeezing inequalities �18� and
�20� �because the angle � is minimized over�, we simply put
k , l ,n=x ,y ,z in them.

Although in theory both inequalities �18� and �20� are
equivalent and we could use the latter due to simplicity, the
inequality to be measured is rather �18� as in real-life experi-
ments one does not obtain perfectly symmetric states. Using
Eq. �34� we find that for the perfect Dicke states

��Jz�2� +
N�N − 2�

4
=

N�N − 1�
2

− Nk + k2, �42�

����Jx�2� + ��Jy�2� −
N

2
�2

+ �N − 1�2�Jz�2

=��Nk − k2�2 +
�N − 1�2�N − 2k�2

4
. �43�

For the experimentally interesting examples of the seven-
and eight-qubit W states �W7�, �W8�, the expressions �42� and
�43� take the following values: 15.000 and 16.155, respec-
tively, for �W7�; 21.000 and 22.136, respectively, for �W8�.

Let us now proceed with the analysis of tripartite en-
tanglement. All tripartite reductions are of the form

�3 = N

k
�−1

��0�000��000� + �1�111��111� + 3��W3��W3�

+ 3���W3���W3��� , �44�

where �W3��=1/�3��011�+ �101�+ �110��, and

�0 = N − 3

k
�, �1 = N − 3

k − 3
� , �45�

� = N − 3

k − 1
�, �� = N − 3

k − 2
� . �46�

In the basis �000�, �110�, �101�, �010�, �001�, �111�, �100�,
�011�, the partially transposed matrix �3

T1 reads

�3
T1 = N

k
�−1�

�0 � � 0 0 0 0 0

� �� �� 0 0 0 0 0

� �� �� 0 0 0 0 0

0 0 0 � � �� 0 0

0 0 0 � � �� 0 0

0 0 0 �� �� �1 0 0

0 0 0 0 0 0 � 0

0 0 0 0 0 0 0 ��

� .

�47�

In the generic case, it has two negative eigenvalues

�− =
1

2
N

k
�−1

��0 + 2�� − ���0 − 2���2 + 8�2� , �48�

�−� =
1

2
N

k
�−1

��1 + 2� − ���1 − 2��2 + 8��2� �49�

�because �0����2 and �1����2�, and thus the states
��N,k� possess tripartite entanglement as well. Since there are
two generically different negative eigenvalues, there will be
two different spin-squeezing inequalities �30�. As before, we
will generate them from the eigenvectors corresponding to
�− and �−�, which read

��� = �000� − ��1� � ��01� + �10�� , �50�

���� = �111� − ���0� � ��01� + �10�� , �51�

where

� =
�0 − 2��

4�
+��0 − 2��

4�
�2

+
1

2
, �52�

�� =
�1 − 2�

4��
+��1 − 2�

4��
�2

+
1

2
. �53�

The vectors �50� and �51� are not normalized, as the norm is
irrelevant for the PPT condition �24�. After proper rescaling,
��� and ���� can be rewritten in the desired form �22�

��� = A � 1 � 1�W3� , �54�
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���� = A� � �x
� �x�W3� , �55�

where A ,A��SL�2,C� are defined as follows:

A = ± � 0
1

��

− �� 0

,� �56�

A� = ± �i��� 0

0 −
i

���
� . �57�

Before we proceed with the construction of the inequali-
ties �30�, let us note that having the explicit forms of the
negative eigenvalues and the corresponding eigenvectors of
�3

T1, it is straightforward to calculate the sum over all triples
of qubits �24�. It is just given by

�
�abc�

trabc��abc������T1� = N

3
��−���2 = N

3
��−

2�2 + 1

3�
,

�58�

for �− and ���, and by the analogous expression for �−� and
����. However, our goal here is to express Eq. �58� using
total angular momentum, in order to make it experimentally
available and connect it with the spin squeezing.

Hence, following the procedure described in Sec. III, we
first have to find the Lorentz transformations and rotations
generated by matrices from Eqs. �54� and �55�. These trans-
formations are the following: matrix �56� generates, accord-
ing to Eq. �23�, the rotation by � around y axis, followed by
a boost along z axis,

��A� =�
� 0 0 − �

0 − 1 0 0

0 0 1 0

� 0 0 − �
� , �59�

 =
�2 − 1

�2 + 1
, � =

1
�1 − 2

. �60�

Obviously, the identity operator 1 from Eq. �54� generates
the trivial rotation; thus, we have in this case R=1. Matrix
�57� generates the rotation by � around z axis, followed by a
boost along it

��A�� =�
�� 0 0 ���

0 − 1 0 0

0 0 − 1 0

��� 0 0 ��
� , �61�

� =
��2 − 1

��2 + 1
, �� =

1
�1 − �2

, �62�

whereas �x from Eq. �55� generates the rotations by �
around x axis

R��x� =�
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 1
� . �63�

in the spaces of the second and the third qubit.
Next, from the matrices ��A�, R=1, and ��A��, R��x�, we

construct two copies of the tensor K��, according to Eq.
�26�. Finally, having K��, we construct the corresponding
parameters X��N,k�, defined in Eq. �30�, and check the three-
qubit spin-squeezing inequalities. The resulting expressions
are lengthy but straightforward, and hence, we will omit
them here. Let us stress that for the ideal, generic Dicke
states we obtain two independent inequalities, and both of
them must be satisfied. Figure 1 shows the plots of X��N,k�
as a function of N and k �31�.

Let us now analyze the N-qubit W states �WN� of Eq. �33�.
In this case, from Eqs. �45� and �46� we see that �0=N−3,
�=1, and �1=��=0. Substituting these constants into Eqs.
�48� and �49�, we obtain that there remains only one negative
eigenvalue of �3

T1 given by �−. As a consequence, states �WN�
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FIG. 1. �Color online� The �interpolated� plots of the left-hand
side of the inequality �30� corresponding to the eigenvectors ���
�top� and ���� �bottom�.
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lead to only one spin-squeezing inequality, generated by the
matrix ��A� from Eq. �59� and the trivial rotation R=1. The
parameter � from Eq. �60� is now equal to

� =
N − 3

4
+�N − 3

4
�2

+
1

2
. �64�

For the state �W7�, we obtain from the corresponding for-
mulas, that

��A� =�
1.337 0 0 − 0.888

0 − 1 0 0

0 0 1 0

0.888 0 0 − 1.337
� �65�

and X�W7�=−44.04.
For the state �W8�, the corresponding matrix is given by

��A� =�
1.529 0 0 − 1.157

0 − 1 0 0

0 0 1 0

1.157 0 0 − 1.529
� . �66�

and the parameter X�W8�=−59.88.
To better understand the meaning of the above values of

the parameter X��N,k�, let us briefly consider a less idealized
situation and mix the states �32� with the white noise

� = p��N,k���N,k� + �1 − p�
1

2N . �67�

We then calculate the parameter X��� as if the state �67�
were an experimental output: we calculate the averages of
the spin operators in Eq. �30� using the density matrix �67�,
while plugging the tensor K�� calculated for the ideal Dicke
states. Thus, X���= pX��N,k�+ �1− p�X�1 /2N�. The results
for the states �W7� and �W8� are presented in Fig. 2.

V. EXPERIMENTAL RESULTS

The aim of this section is to apply the tools developed in
Sec. IV to the recent experiment of Ref. �13�. In this experi-

ment, seven- and eight-qubit W states have been produced in
an ion trap, dedicated to quantum information processing
�25�. We begin this section by presenting necessary details of
the experiment, and follow by applications of our general-
ized squeezing inequalities.

A. Description of the experiment

Strings of up to eight 40Ca+ ions are held in a linear ion
trap capable of storing the ions for several days, a time suf-
ficiently long for creating an entangled state more than 106

times. The qubits are encoded in superpositions of the S1/2
ground state and the metastable D5/2 state of the Ca+ ions
�lifetime of the D5/2 level: 	�1.16 s�. For the atomic level
scheme, we refer to Fig. 3�a�. Each ion in the linear string is
individually addressed by a series of tightly focused laser
pulses on the �1��S1/2�mj =−1/2�↔ �0��D5/2�mj =−1/2�
quadrupole transition with narrowband laser radiation near
729 nm. Depending on its frequency, the laser couples either
the states �n�m�1�↔ �n�m�0� �carrier pulse� or the states
�n�m�1�↔ �n+1�m�0� �blue sideband pulse, laser detuned by
+�z with respect to the atomic transition, see Fig. 3�c��.
Here, n denotes the vibrational quantum number of the ion
string’s center-of-mass motion. Via sideband cooling and op-
tical pumping, the ions are prepared in the �0�m �11¯1� state.

The N-ion W states

�0�m�WN� =
1

�N
�

i

��i� ,

��i� = �0�m�xN . . . x1� ,

150

100

p

1.0

50

0.75

X

0

−50

0.25 0.50.0

FIG. 2. The plot of the parameter X as a function of the amount
of noise for noisy W states of N=7 qubits �solid line� and N=8
qubits �dashed line�.

|1 mnz=1

nz=0

(a) (b)

(c)

|1 |0 m

|0
D5/2

D3/2

S1/2

P1/2

P3/2

393 nm

397 nm

854 nm

866 nm

729 nm z

|1 m|0|0 m|0

|0 m|1 |1 m|1

FIG. 3. �a� Level scheme of Ca+. �b� Schematics of the two
lowest levels of the harmonic oscillator describing the bus mode.
�c� Joint energy level diagram of the electronic qubit levels ��1,�0��
and the phonon numbers of the ion’s motional mode used for en-
tanglement generation ��0�m , �1�m�. Carrier transitions are marked as
solid arrows, the blue sideband transition as a dashed arrow. Note
that the �0�m �0�-level does not couple to the blue sideband.
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xk = �1, if k = i

0, if k � i
� �68�

�note the reverse ordering of the qubits� are created by ap-
plying the sequence of laser pulses shown in Table I to the
ions. First, the �0�m �111¯1� state is prepared by N � pulses
on the carrier transition applied to ions number 1 and number
ten. Then, laser light coupling the �1� state resonantly to the
short-lived excited state P1/2 projects the ion string on the

measurement basis. Absence of fluorescence reveals whether
all ions were prepared in �0�. Similarly, we test the motional
state with a single blue � pulse. Absence of fluorescence
during a subsequent detection period indicates ground-state
occupation. This initialization procedure can be viewed as a
generalized optical pumping with the target state �0�m
�11…1�. If both checks were successful �total success rate
�0.7�, we continue with the �W� preparation at step �i3� in
Table I to create the state �0�m �10…0�. The entangling pro-
cedure starts by moving most of the population to the �1�m
�000…0� with a blue sideband pulse of pulse area �N

=2arc cos�1/�N� leaving 1/N of the population back in �0�m

�100…0�. Now, W states are efficiently generated by redis-
tributing the �1�m �0¯0� state population equally among the
states �0�m�0. . .01i0. . .0� i=1. . .N−1. This is achieved by
N−1 blue-sideband pulses of pulse length �i

=2 arcsin�1/�N− i�. Note that for an ion string in the mo-
tional ground state, blue-sideband pulses acting on an ion in
the �0� state have no effect. We note that this production
method scales quite advantageous, as the required sideband
pulse area increases only logarithmically. Therefore, even
large W-states can be created quite efficiently.

Furthermore, the space spanned by the states ��i� from Eq.
�68� is decoherence-free with respect to the collective
dephasing, which is the main decoherence mechanism in the
setup �32�. Therefore, the W states are quite robust and live
long. In addition, even during the creation of a W state, the
energy difference between all superpositions never exceeds
more than the one of a single qubit. Thus, the requirements
to laser frequency and magnetic field noise for a high-fidelity
generation of W states are rather modest. We discuss the
imperfections in a separate section below.

B. State tomography

Information about the N-ion quantum state is obtained by
exciting the ion string on the S1/2↔P1/2 transition �see Fig.
3�a��, and detecting the ion’s fluorescence spatially resolved
with a CCD camera state �25�. The measurement of an ion’s
fluorescence amounts to measuring the Pauli matrix �z, if �0�
and �1� are identified with the eigenstates of �z. The measure-
ment of �x��y� is accomplished by applying a suitable � /2
carrier pulse to the ion prior to the state detection �33�.

To verify the entanglement of the produced state, a mea-
surement of a witness operator, yielding a negative expecta-
tion value, would be sufficient, in principle. However, the
optimal witness is a priori not known. Therefore, it can be
advantageous to get as much information as possible about
the produced quantum state. Full information on the N-ion
entangled state is obtained via quantum state reconstruction.
For this, we expand the density matrix in a basis of observ-
ables and measure the corresponding expectation values. For
the basis, we choose tensor products of Pauli matrices: �N

iN

� . . . � �1
i1 �note the reverse ordering�. We use 3N different

bases and repeat the experiment 100 times for each basis. For
N=8, we need thus 656 100 experiments and a total mea-
surement time of 10 h. We follow the iterative procedure
outlined in Ref. �34� for performing a maximum-likelihood
estimation of �. Other reconstruction methods would also be

TABLE I. Creation of a �WN� state �N= �6,7 ,8��. The numbers
within the state vector refer to the phonon excitations of the center-
of-mass mode of the ion crystal. The electronic states are labeled �1�
and �0�. Rn

c��� denotes a carrier pulse of length � applied to the ion
n, Rn

+��� a blue-side-band pulse. �i1�,…, �i3� mark initialization
steps, �1�, …, �N� the actual entangling steps. Note that we count
the atoms from right to left.

�0�m�111. . .1�
�i1�

——→
RN

C���RN−1
C ���¯R1

C���

�0�m�000. . .0�
Check state via fluorescence

�i2�
——→

R1
+���

�0�m�000. . .0�
Check state via fluorescence

�i3�
——→

RN
C���

1
�N

�0�m�100. . .0�

�1�

——→
RN

+ �2 arccos�1/�N��

1
�N

�0�m�100. . .0�+
�N−1

�N
�1�m�000. . .0�

�2�

——→
RN−1

+ �2 arcsin�1/�N−1��

1
�N

�0�m�100. . .0�+
1

�N
�0�m�010. . .0�

+
�N−2

�N
�1�m�000. . .0�

� �
1

�N
�0�m�100. . .0�+

1
�N

�0�m�010. . .0�+ . . .

+
1

�N
�1�m�000. . .0�

�N�

——→
R1

+�2 arcsin�1/�1��

1
�N

�0�m�100. . .0�+
1

�N
�0�m�010. . .0�+ . . .

+
1

�N
�0�m�000. . .1�
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possible �35�. The procedure ensures also positivity of the
reconstructed matrix. The resulting matrix for the state �W7�
is displayed in Fig. 4, the numerical values are published in
the on-line material of Ref. �13�.

A Monte Carlo simulation is used to estimate uncertain-
ties in the density matrix elements, and in quantities derived
from it, that are due to quantum noise in the state-
reconstruction measurements: starting from the reconstructed
density matrix, we simulate the measurement process and
reconstruct up to 100 times the density matrix from these
simulated measurements. From the set of reconstructed den-
sity matrices, the spread in the expectation values of the
observable of interest can be estimated. For density matrices
close to pure states, we observe that the purity of the recon-
structed matrices often slightly decreases �for the �W� states
by �2%�. Therefore, we conclude that the reconstruction
process rather underestimates the entanglement in the experi-
mentally produced quantum states.

C. Experimental imperfections

For an investigation of the experimental imperfections
and scalability, we simulate the preparation procedure by
solving the Schrödinger equation with the relevant imperfec-
tions.

The four major sources of deviations from the ideal W
states are addressing errors, imperfect optical pumping, non-
resonant excitations, and phase noise �laser frequency and
magnetic field noise�. For the large W states, we approximate
the ions as two-level systems and include only the first three
levels of the center-of-mass excitation. For a serious analysis
of the imperfections, this is by no means sufficient as, e.g.,
no environment is included. Still the simulation time for the
generation of a �W8� state under these idealized conditions is

already 20 min on a 3 GHz processor using MATLAB. As the
computational time for the simulations scales with 4N, it is
quite demanding to include a reasonable environment or
even use a density matrix approach.

The fidelity reduction of �W6� for the different imperfec-
tions are as follows: 0.1 �addressing error�, 0.07 �off-
resonant excitations�, 0.04 �laser frequency noise
�200 Hz rms��. We note here that as opposed to, e.g., experi-
ments on teleportation �36� or the Cirac-Zoller controlled-
NOT �25�, phase noise �caused by the laser frequency noise
or magnetic field noise� contributes here much less. Another
possible error source is imperfect ground-state cooling. In-
tensity noise of the 729 laser ��Imax/ I�0.03� does not con-
tribute significantly. Finally, we experimentally observed
nonideal optical pumping, which can result in a reduction of
0.02 of the fidelity per ion. For N�6, we therefore minimize
the errors due to optical pumping and a part of the addressing
errors by checking the initialization procedure with a detec-
tion sequence �see Table I�. Because of these improvements,
the addressing error reduces the fidelity of the �W6� state by
only 0.05 and the optical pumping errors are basically ex-
cluded. Furthermore, we switched the blue-sideband pulses
adiabatically with respect to the trap frequency, such that
Fourier components at the carrier transition do not lead to
off-resonant excitations. Taking this situation into account,
the fidelity should be of the order of 0.91. Even though it is
hard to estimate the expected fidelity for N=8, it seems that
the discrepancy between the model and the experiment is
even larger for N=8. A small part of these discrepancies
could be due to the quantum projection noise in the measure-
ment process as described in the section on state tomography.
However, looking at the density matrices in detail, we ob-
serve that the �000…0� state seems always quite strongly
populated, especially for large N. Thus far, we have no good
explanation for this.

FIG. 4. Absolute values of the reconstructed density matrix of a �W7� state as obtained from quantum state tomography. Ideally, the dark
entries should all have the same height of 1

7 , the bright bars should vanish.
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D. Evaluation of the data

In Ref. �13�, it has already been shown that the states are
genuine multipartite entangled, multipartite distillable, and
also that all the reduced two-qubit states are entangled. Now
we want to apply our criteria to the experimental density
matrices �ex.

We begin with the seven-qubit states. In this case, the
fidelity of the produced states was F7=0.763. To check the
presence of bipartite entanglement, we use the inequality
�18� rather than �20�, as the experimental states are not sym-
metric due to the experimental imperfections described in
Sec. V C According to the theoretical analysis of Sec. IV
�c.f. formula �40��, the frame directions k , l ,n=x ,y ,z. We
find that:

��Jz�2� +
N�N − 2�

4
= 14.666 ± 0.016,

����Jx�2� + ��Jy�2� −
N

2
�2

+ �N − 1�2�Jz�2 = 15.148 ± 0.023,

which clearly proves the presence of bipartite entanglement
in the produced states.

Let us move to the tripartite entanglement. We evaluate
X��ex� using the Lorentz matrix �65�. We find that:

X��ex� = − 24.937 ± 0.202, �69�

and hence, the spin-squeezing inequality �30� is fulfilled.
However, as we mentioned at the end of Sec. III, the validity
of the inequality �30� only proves the presence of some form
of tripartite entanglement and a priori we do not know if it is
genuine three-qubit entanglement.

Let us now discuss the eight qubit case. Here, the experi-
mentally reached fidelity was F8=0.7215. The evaluation of
the bipartite criteria yields:

��Jz�2� +
N�N − 2�

4
= 20.462 ± 0.007,

����Jx�2� + ��Jy�2� −
N

2
�2

+ �N − 1�2�Jz�2 = 20.838 ± 0.009,

and the tripartite criterion gives

X��ex� = − 29.017 ± 0.2623. �70�

Thus, both criteria detect entanglement again.

VI. SIMPLIFIED CRITERIA FOR THE THREE-QUBIT
ENTANGLEMENT

The general form of squeezing inequalities of Secs. II and
III is complicated and remains such even when specified to
Dicke states. It is therefore desirable to derive alternative
inequalities, which are weaker, but have a simple form. In
fact, in Ref. �19� it was proposed to use less general wit-
nesses, developed in Ref. �37�, than those provided by the
PPT criterion for the 3-qubit case:

WGHZ =
3

4
1 − �GHZ3��GHZ3� , �71�

WW1
=

2

3
1 − �W3��W3� , �72�

WW2
=

1

2
1 − �GHZ3��GHZ3� , �73�

where now we allow the vectors �GHZ3� and �W3� to be
defined in an arbitrary frame k , l ,n, the same for all three
qubits. Apart from the simplicity, the advantage of such an
approach over the general criterion �30� is that the above
witnesses detect genuine three-qubit entanglement in generic
states.

We derived the spin-squeezing inequalities corresponding
to WGHZ,WW1

,WW2
using the same technique as in Sec. III:

we expressed the sums,

�
�abc�

trabc��abcWabc� = tr� �
�abc�

Wabc� �74�

with the total spin operators �1�. However, instead of using
the general formula �29�, we explicitly calculated the occur-
ring products of Pauli matrices �or in other words we used
special cases of Eq. �29��. This led us to the following suf-
ficient criteria for the GHZ-type entanglement �39�

−
1

3
�Jk

3� + �JlJkJl� −
N − 2

2
�Jn

2� +
1

3
�Jk� +

N�N − 2��5N − 2�
24

� 0, �75�

and for the GHZ or W type entanglement

�Jn
3� − 2�JlJnJl� − 2�JkJnJk� −

N − 2

2
�2�Jk

2� + 2�Jl
2� − �Jn

2��

−
N2 − 4N + 8

4
�Jn� +

N�N − 2��13N − 4�
24

� 0, �76�

−
1

3
�Jk

3� + �JlJkJl� −
N − 2

2
�Jn

2� +
1

3
�Jk� +

N2�N − 2�
8

� 0.

�77�

The witnesses �71�–�73� still have a disadvantage that in
the sums ��abc�Wabc, the identity gives the dominant contri-
bution, and hence, the bigger the system the less sensitive the
witnesses become. One possible method to partially over-
come this problem is to project the witnesses �71�–�73� onto
the symmetric subspace of the space of three qubits:

W̃GHZ =
3

4
P3 − �GHZ3��GHZ3� , �78�

W̃W1
=

4

9
P3 − �W3��W3� , �79�

W̃W2
=

1

2
P3 − �GHZ3��GHZ3� , �80�

where
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P3 = �000��000� + �111��111� + �W3��W3� + �W3���W3�� .
�81�

The factor 4
9 in the definition �79� is the maximum overlap

between �W3� and symmetric separable states �there are no
symmetric biseparable states due to the symmetry� �38�. The
criteria that such improved witnesses lead to read, respec-
tively,

−
1

3
�Jk

3� + �JlJkJl� +
N − 2

2
�Jk

2 + Jl
2� +

1

3
�Jk�

+
N�N − 2��N − 4�

12
� 0, �82�

�Jn
3� − 2�JlJnJl� − 2�JkJnJk� +

N − 2

9
25

2
�Jn

2� − �Jl
2 + Jk

2��
−

N2 − 4N + 8

4
�Jn� +

7N�N − 2��N − 4�
72

� 0, �83�

−
1

3
�Jk

3� + �JlJkJl� +
N − 2

12
�2�Jk

2 + Jl
2� − �Jn

2�� +
1

3
�Jk�

+
N�N − 2��N − 4�

48
� 0. �84�

The potential advantage of using W̃GHZ,W̃W1
,W̃W2

in-
stead of WGHZ,WW1

,WW2
manifests itself only for nonsym-

metric states. For symmetric states, both families give the

same results �apart from W̃W1
due to the factor 4 /9�, as we

can always substitute �abc with P3�abcP3 in Eq. �74�.
Let us apply the above witnesses to the Dicke states

��N,k� of Sec. IV. As one can easily see from Eq. �44�, only

WW1
and W̃W1

have a chance to detect genuine tripartite
entanglement, but not for all N and k. For example, for �WN�,
WW1

detects entanglement only for N�4, and W̃W1
—only

for N�6.

VII. CONCLUSIONS

We develop in more detail the method of detecting en-
tanglement in multiqubit systems, first introduced in Ref.

�19�, and apply it to the output of the recent ion trap experi-
ment from Ref. �13�. We also present some details regarding
that experiment. The detection method is based on the use of
entanglement witnesses together with the concept of spin
squeezing. We show, in detail and on the example, how to
obtain sufficient �or necessary in sufficient for symmetric
states� entanglement criteria for detecting two- and three-
qubit entanglement �or genuine three-qubit entanglement for
symmetric states and states sufficiently close to them�. We
use them to analyze concrete experimental data. We also pro-
vide a mathematically exact justification for the intuitive pic-
ture linking the presence of spin squeezing with the nonclas-
sical two-qubit correlations in the system. Therefore, our
criteria generalize the standard notion of spin squeezing as
the measure of entanglement in multiqubit systems.

As the concrete example, we study the family of Dicke
states and show step by step, how our method works in prac-
tice. We obtain ready-to-use expressions �65� and �66� and
then apply them to the study of the experimentally generated
seven- and eight-qubit atomic W states from Ref. �13�. In the
experimental part, we explain in detail the full state-creation
algorithm �Table I� and the state tomography procedure used
in the experiment from Ref. �13�. We also present the recon-
structed seven-qubit W state in Fig. 4 and provide the analy-
sis of the experimental imperfections.

Finally, we provide improved sufficient criteria—Eqs.
�82�–�84�, detecting genuine three-qubit entanglement, suit-
able for macroscopic systems.
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