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Scalable multiparticle entanglement of trapped ions
H. Häffner1,3, W. Hänsel1, C. F. Roos1,3, J. Benhelm1,3, D. Chek-al-kar1, M. Chwalla1, T. Körber1,3, U. D. Rapol1,3,
M. Riebe1, P. O. Schmidt1, C. Becher1†, O. Gühne3, W. Dür2,3 & R. Blatt1,3

The generation, manipulation and fundamental understanding of
entanglement lies at the very heart of quantum mechanics.
Entangled particles are non-interacting but are described by a
common wavefunction; consequently, individual particles are not
independent of each other and their quantum properties are
inextricably interwoven1–3. The intriguing features of entangle-
ment become particularly evident if the particles can be individu-
ally controlled and physically separated. However, both the
experimental realization and characterization of entanglement
become exceedingly difficult for systems with many particles. The
main difficulty is to manipulate and detect the quantum state of
individual particles as well as to control the interaction between
them. So far, entanglement of four ions4 or five photons5 has been
demonstrated experimentally. The creation of scalable multi-
particle entanglement demands a non-exponential scaling of
resources with particle number. Among the various kinds of
entangled states, the ‘W state’6–8 plays an important role as its
entanglement is maximally persistent and robust even under
particle loss. Such states are central as a resource in quantum
information processing9 and multiparty quantum communi-
cation. Here we report the scalable and deterministic generation
of four-, five-, six-, seven- and eight-particle entangled states of the
W type with trapped ions. We obtain the maximum possible
information on these states by performing full characterization
via state tomography10, using individual control and detection of
the ions. A detailed analysis proves that the entanglement is
genuine. The availability of such multiparticle entangled states,
together with full information in the form of their density
matrices, creates a test-bed for theoretical studies of multiparticle
entanglement. Independently, ‘Greenberger–Horne–Zeilinger’
entangled states11 with up to six ions have been created and
analysed in Boulder12.

We consider particles with the two levels jSl and jDl. Then an
N-particle W state

jWN l¼ðjD· · ·DDSlþ jD· · ·DSDlþ jD· · ·DSDDl

þ · · ·þ jSD· · ·DlÞ=
ffiffiffiffi
N

p ð1Þ

consists of a superposition of N states where exactly one particle is
in the jSl state while all others are in jDl (refs 6, 7). W states are
N-particle entangled states of special interest: their entanglement is
not only maximally persistent and robust under particle loss13, but
also immune against global dephasing, and rather robust against bit
flip noise. Because of this robustness, W states may lead to stronger
non-classicality14 than GHZ states11 for large numbers of particles. In
addition, they may also be used for quantum communication15–17.

The generation of such W states is performed in an ion-trap
quantum processor18. We trap strings of up to eight 40Caþ ions in a
linear Paul trap. Superpositions of the S1/2 ground state and the
metastable D5/2 state of the Caþ ions (lifetime of the jDl level:

t < 1.16 s) represent the qubits. Each ion qubit in the linear string is
individually addressed by a series of tightly focused laser pulses on
the jSl ; S1=2ðmj ¼21=2Þ$ jDl ; D5=2ðmj ¼21=2Þ quadrupole
transition employing narrowband laser radiation near 729 nm.
Doppler cooling on the fast S $ P transition (lifetime ,8 ns) and
subsequent sideband cooling prepare the ion string in the ground
state of the centre-of-mass vibrational mode18. Optical pumping
initializes the ions’ electronic qubit states in the jSl state. After
preparing an entangled state with a series of laser pulses, the
quantum state is read out with a CCD camera using state selective
fluorescence18.

The W states are efficiently generated by sharing one motional
quantum between the ions with partial swap operations (see
Table 1)8. For an increasing number of ions, however, the initializa-
tion of the quantum register becomes more and more difficult as
technical imperfections—like incomplete optical pumping—add up
for each ion. Therefore, for N ¼ 6,7,8, we first prepare the state
j0;DD· · ·Dl with N p pulses on the carrier transition18, where the 0
refers to the motional state of the centre-of-mass mode. Then, laser
light resonant with the S $ P transition projects the ion string on the
measurement basis. Absence of fluorescence indicates that all ions are
prepared in jDl. Similarly, we test the motional state with a single p
pulse on the blue sideband18. Absence of fluorescence during a
subsequent detection period indicates ground state occupation.
Success of both checks (total success rate $0.7) confirms that the
desired initial state j0;DD· · ·Dl is indeed prepared. We can then start
with the actual entangling procedure (step (1) in Table 1) and create
jWNl states (N # 8) in about 500–1,000 ms.

Full information of the N-ion entangled state is obtained via
quantum state reconstruction by expanding the density matrix in a
basis of observables19 and measuring the corresponding expectation
values. In order to do this, we employ additional laser pulses to rotate
the measurement basis prior to state detection10. We use 3N different
bases and repeat the experiment at least 100 times for each basis. For
N ¼ 8, this amounts to $656,100 experiments and a total measure-
ment time of 10 hours. To obtain a positive semi-definite density
matrix r, we follow the iterative procedure outlined in ref. 20 for
performing a maximum-likelihood estimation of r. The recon-
structed density matrix for N ¼ 8 is displayed in Fig. 1. To retrieve
the fidelity F ¼ kWNjrjWNl, we adjust the local phases such that F is
maximized (see Methods). The local character of those transform-
ations implies that the amount of entanglement present in the system
is not changed. We obtain fidelities F4 ¼ 0.85, F5 ¼ 0.76, F6 ¼ 0.79,
F7 ¼ 0.76 and F8 ¼ 0.72 for the 4-, 5-, 6-, 7- and 8-ion W states,
respectively.

The probabilistic nature of the measurement process requires an
infinite number of measurements for a perfect reconstruction of the
density matrix. In order to assess the error introduced by the finite
number of measurements (quantum projection noise), we have used
a Monte Carlo simulation to create up to 100 comparable data sets.
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These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.

For an investigation of the entanglement properties, we associate
each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuine multipartite entanglement, (2) the distillability of multipartite
entanglement and (3) entanglement in reduced states of two qubits.

First, we consider whether the production of a single copy of the
state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ

otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼

P
ipijw

bs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼
N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.

Second, we consider the question of whether one can use many
copies of the state r to distil one pure multipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
��������!
LOCC

jwl ð4Þ

is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})

Initialization Entanglement

j0;SSS· · ·Sl (1)
RþN ð2 arccosð1=

ffiffiffi
N

p
Þ

������������!

(i1)
RCNðpÞR

C
N21ðpÞ· · ·RC1 ðpÞ

��������������! 1ffiffiffi
N

p j0;SDD· · ·Dlþ
ffiffiffiffiffiffiffi
N21

p ffiffiffi
N

p j1;DDD· · ·Dl

j0;DDD· · ·Dl (2)
Rþ
N21

ð2 arcsinð1=
ffiffiffiffiffiffiffi
N21

p
Þ

����������������!

Check state via fluorescence 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ
ffiffiffiffiffiffiffi
N22

p ffiffiffi
N

p j1;DDD· · ·Dl

(i2)
Rþ1 ðpÞ
��! ..

. ..
.

j0;DDD· · ·Dl 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi
N

p j1;DDD· · ·Dl

Check state via fluorescence (N)
Rþ1 ð2 arcsinð1=

ffiffi
1

p
Þ

������������!

(i3)
RCNðpÞ
��! 1ffiffiffi

N
p j0;SDD· · ·Dlþ 1ffiffiffi

N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl

j0;SDD· · ·Dl

(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1=

ffiffiffi
n

p
Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvnÞÞ of

pulse length vn ¼ arcsinð1=
ffiffiffi
n

p
Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in

the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).
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Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.
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example, jwl ¼ jWNl) and LOCC denotes a transformation using
only local operations (with respect to the parties Ak) and classical
communication. If such a transformation is possible, we call the state
r multipartite distillable24.

Technically, multipartite distillability follows from the possibility
of generating maximally entangled singlet states jw2l¼ ðjDSl2
jSDlÞ=

ffiffiffi
2

p
between any pair of parties Ak, Al by local means24. The

latter can readily be shown for all reconstructed density matrices.
Performing measurements on all particles except k, l and restricting
to outcomes P0 ¼ jDl kDj in all cases results in the creation of a two-
qubit state rkl. The density operator rkl is distillable entangled if the
concurrence C, a measure for two-qubit entanglement25, is non-zero.
This is the case for all k, l (see Table 2), which implies that rN is
multiparty distillable entangled. We remark that in practice one
might use multiparticle entanglement purification protocols26 to
distil arbitrary entangled states.

Third, we investigate bipartite aspects of multiparticle entangle-
ment27, in particular the entanglement in the reduced states of two
qubits. For W states this is of special interest, since for these states all
reduced density operators of two particles are entangled, and the
entanglement is in fact maximal6,28. We investigate the bipartite
entanglement by tracing out all but particles k, l and obtain the
reduced density operators r 0

kl. From these density matrices, we can
now calculate the concurrence C

0

kl ¼ C(r
0

kl) as a measure for the
entanglement. For all N, we find that all reduced density operators
are entangled (see Table 2). Note that the previous results (presence
of multipartite entanglement and distillability) also imply that r
is inseparable and in fact distillable with respect to any bipartition
G1–G2 for all N.

Last, we address the scalability of our approach. Four major
sources of deviations from the ideal W states are found: addressing
errors, imperfect optical pumping, non-resonant excitations and
frequency stability of the qubit-manipulation laser (see Methods). All
of them are purely technical and thus do not represent fundamental
obstacles to increasing the number of particles. We also note that the
witnesses used to detect the multipartite entanglement do not require
knowledge of the full density matrix. In particular, only 1 þ 2N2

measurement settings are sufficient to determine the witnesses’
expectation value23. Thus the number of measurement settings
does not increase exponentially with the number of particles. Also,
the required blue sideband pulse area for a jWl state scales only with
log N (see Table 1) while the time for a pulse with a given area is
proportional to the square root of the ion crystal’s mass, that is, toffiffiffiffi
N

p
:Thus the overall favourable scaling behaviour of

ffiffiffiffi
N

p
logNopens

a way to study large-scale entanglement experimentally.

METHODS
Entanglement witness construction. Experimentally we do not create the W
state given in equation (1), but rather a W state of the more general form

j ~WN l¼ðeiJ1 jD· · ·DDSlþ eiJ2 jD· · ·DSDlþ

þ eiJN21 jDSD· · ·Dlþ · · ·þ eiðJNþpÞjSD· · ·DlÞ=
ffiffiffiffi
N

p ð5Þ

in which each ion has a different (local) phase J i. To determine the fidelity, we
adjust these phases to maximize the overlap of the experimentally created W

state with j ~WN l: These small (J i , 158) phases appear because of a residual
magnetic field gradient across the ion crystal and ac-Stark shifts induced by the
laser pulses. Importantly, these effects are found to be constant and thus could be
corrected for experimentally.

Witnesses for our experiment can be derived as follows: forN qubits we define
the N states jBSil¼ jDli^jWN21l; which consist of jDl on the ith qubit and the
state jWN21l on the remaining qubits. For the operator

Q¼ ajWN l kWN j2b
XN

i¼1

jBSil kBSij ð6Þ

we then compute the maximal expectation value for biseparable states. Since
mixed biseparable states are convex combinations of pure biseparable states, it
suffices to look at pure biseparable states, and thus we have to compute g¼

maxjwl¼jal^jblkwjQjwl for all possible bipartitions23. If we investigate a partition
where jal is a K-qubit state, it can be seen that the optimum jal is of the form
jal¼ a0jDD· · ·Dlþ b1jDD· · ·DSlþ b2jD· · ·DSDlþ · · ·þ bK jSDD· · ·Dl: Then,
from the matrix representation of Q one can deduce that the a0, b1,…,bK can
be chosen real and finally that b i ¼ b j for all i, j. A similar statement can be
proven for jbl, thus for an arbitrary number of qubits the optimization
procedure can be reduced to a four-parameter maximization with two normal-
ization constraints, which can be efficiently solved numerically. The witness is
then given by

~WN ¼ gl2 2Q ð7Þ

where l2 denotes the identity operator on the space spanned by the elements of
the computational basis which consists of jSl on at most two qubits. Adding the
term gl2 guarantees that ~WN is positive on all biseparable states. For the
entanglement detection, we used the values a ¼ 10 and then b ¼ 2.98,
g ¼ 2.2598 for three qubits, b ¼ 2.87, g ¼ 0.8316 for four qubits, b ¼ 2.35,
g ¼ 0.3760 for five qubits, b ¼ 1.94, g ¼ 0.1937 for six qubits, b ¼ 1.638,
g ¼ 0.1139 for seven qubits, and b ¼ 1.4125, g ¼ 0.0764 for eight qubits.

For N ¼ 8 we have in addition optimized the witness using local
filtering operations, that is, we applied a transformation ~W f

8 ¼ F ~W8F
† with F ¼

F1^F2^· · ·^F8: Here the Fi are operators acting on each qubit separately and
are thus local operations. Therefore the new witness ~W f

8 remains positive on all
biseparable states. Finally, all witnesses have been normalized such that their
expectation value for the maximally mixed state equals one and the local phases
have been adjusted.
Experimental imperfections. For an investigation of the experimental imperfec-
tions, we simulate the preparation procedure by solving the Schrödinger equation
with all relevant imperfections. This way, we identify four major sources of
deviations from the ideal W states: addressing errors, imperfect optical pumping,
non-resonant excitations, and laser frequency noise (including dephasing due to
magnetic field noise). The trap frequency influences these experimental imperfec-
tions diametrically: for example, to keep the addressing error reasonably low (that
is, less than 5%, where the addressing error is defined as the ratio of the Rabi
frequencies between the addressed ion and the neighbouring ion(s)), we adjust the
trap frequency such that the inter-ion distance in the centre of the ion string is
about 5mm. However, for large N the required reduction of the trap frequency
implies that the sideband transition frequency moves closer to the carrier transition
frequency. Thus the strong laser pulses driving the weak sideband transition cause
more off-resonant excitations on the carrier transition, which in turn spoil the
obtainable fidelity. Therefore we reduce the laser power for driving the sideband,
which then results in longer preparation times and leads to an enhanced
susceptibility to laser frequency noise. A compromise for the different ion numbers
N is the following set of parameters: (N ¼ 4: n ¼ 1.123 MHz, T2p ¼ 220ms),
(N ¼ 5: n ¼ 1.055 MHz, T2p ¼ 300ms), (N ¼ 6: n ¼ 0.905 MHz, T2p ¼ 350ms),
(N ¼ 7, 8: n ¼ 0.813 MHz,T2p ¼ 380ms). Here n is the trap frequency (centre of
mass) and T2p is the time for a 2p pulse on the blue sideband. The fidelity
reduction of jW6l for the different imperfections are as follows: 0.1 (addressing

Table 2 | Entanglement properties of rN

Property N ¼ 3 N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 7 N ¼ 8

F 0.824 0.846 (11) 0.759 (7) 0.788 (5) 0.763 (3) 0.722 (1)
trð ~WNrNÞ 20.532 20.460 (31) 20.202 (27) 20.271 (31) 20.071 (32) 20.029 (8)
min(Ckl) 0.724 0.760 (34) 0.605 (23) 0.567 (16) 0.589 (9) 0.536 (8)
�C 0.776 0.794 (23) 0.683 (15) 0.677 (11) 0.668 (5) 0.633 (3)
min(C 0

kl) 0.294 0.229 (21) 0.067 (12) 0.049 (4) 0.035 (4) 0.022 (3)
�C 0 0.366 0.267 (12) 0.162 (6) 0.124 (3) 0.091 (2) 0.073 (1)

First row: fidelity after adjusting local phases (see Methods). Second row: expectation value of the witnesses ~WN (for N ¼ 8, we additionally used local filters). Third and fourth row:
respectively minimal and average concurrence between two qubits after observing the jDl state on the remaining (N 2 2) qubits. Fifth and sixth row: respectively minimal and average
concurrence between two qubits after discarding the remaining (N 2 2) qubits. For completeness, we also analysed the data published previously in ref. 8 for N ¼ 3.
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error), 0.07 (off-resonant excitations), 0.04 (laser frequency noise (200 Hz
r.m.s.)). Another possible error source is imperfect ground state cooling.
Intensity noise of the 729-nm laser (DImax/I < 0.03) does not contribute
significantly. Finally, we experimentally observed non-ideal optical pumping,
which can result in a reduction of 0.02 of the fidelity per ion. In principle, this
imperfection can be eleminated by single ion detection and subsequent p

pulses on the carrier transition. Currently, for N $ 6, we reduce the errors due
to optical pumping and a part of the addressing errors by checking the
initialization procedure with a detection sequence (see Table 1).
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