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Universal logic gates for two quantum bits (qubits) form an
essential ingredient of quantum computation. Dynamical gates
have been proposed1,2 in the context of trapped ions; however,
geometric phase gates (which change only the phase of the
physical qubits) offer potential practical advantages because
they have higher intrinsic resistance to certain small errors and
might enable faster gate implementation. Here we demonstrate a
universal geometric p-phase gate between two beryllium ion-
qubits, based on coherent displacements induced by an optical
dipole force. The displacements depend on the internal atomic
states; the motional state of the ions is unimportant provided
that they remain in the regime in which the force can be
considered constant over the extent of each ion’s wave packet.
By combining the gate with single-qubit rotations, we have
prepared ions in an entangled Bell state with 97% fidelity—
about six times better than in a previous experiment3 demon-
strating a universal gate between two ion-qubits. The particular
properties of the gate make it attractive for a multiplexed trap
architecture4,5 that would enable scaling to large numbers of ion-
qubits.

A system of trapped ions interacting with laser radiation is a
promising candidate for the implementation of scalable quantum
information processors1. After demonstrations of the basic inter-
actions necessary for quantum information processing3,6,7, includ-
ing the Sørensen–Mølmer gate2,8 that is universal for two ion-
qubits2 and has been used to experimentally entangle two and four
ion-qubits3, our emphasis has shifted to finding reliable ways to
scale this approach to many ions and to improve the fidelity of
all operations. Scalability may be achieved with a multi-trap
architecture4,5,9,10. Initial steps toward this goal with ion-qubits
that are shuttled between different sub-traps were recently demon-
strated11. In this Letter, we describe the mechanism and experimen-
tal implementation of a geometric phase gate between two ion-
qubits. The infidelity of entangled states produced by the gate is
about six times smaller than the best result with ions reported so
far3, making it attractive for future multi-qubit quantum infor-
mation processing.

The quantum state jWl of a harmonic oscillator with mass m and
frequency q can be coherently displaced in position–momentum
(z, p) phase space by acting on it with a classical force F0 sinðqt 2 fÞ;
resonant with the oscillator frequency12. If the force acts for time t, a
displacement by Dz and Dp in phase space is formally described
by the action of the corresponding displacement operator on jWl
(refs 4, 12, 13):

DðaÞ ¼ exp½aa† 2 a*a� with a¼ 1=ð2z0Þ½Dzþ iDp=ðmqÞ�

¼2F0z0=ð2�hÞ expðifÞt ð1Þ

where z0 ¼ ½�h=ð2mqÞ�1=2 is the spread of the oscillator’s ground

state wavefunction. The effect of two sequential displacements D(a)
and D(b) is additive up to a phase factor:

DðaÞDðbÞ ¼Dðaþ bÞ exp½i Imðab*Þ� ð2Þ

For a suitable sequence of displacements the state jWl can be
transported around a closed loop in (z, p) phase space. The phase
factors for all steps accumulate in such a way that jWl acquires a
geometric phase equal to A=�h if the loop encloses an area A (see
Methods). The acquired phase is independent of the motional
state jWl. As shown below, we can use this geometric phase to
realize a logic gate between two ion-qubits if the coherent driving
force differs for the two logical states of the ions. In our
experiments, we employ a state-dependent dipole force induced
by laser light as was used to create ‘Schrödinger-cat’ states of a single
ion14,15.

The basic idea for this phase gate was first proposed by Milburn
and is a specific case of the more general formalism described by
Milburn et al.16, Sørensen and Mølmer8 and Wang et al.17 For
our particular experiment, the qubit logical states are two 9Beþ

hyperfine ground states ðjF ¼ 2;mF ¼22l ; j # l; jF ¼ 1, mF ¼
21l ; j " lÞ: We consider a pair of ion-qubits confined together in
a harmonic trap potential. The motion of the particles is strongly
coupled by their mutual Coulomb repulsion and can be described in
terms of normal modes. Along the direction in which the two ions
are aligned in the trap (the trap axis) there are two normal modes:
the centre-of-mass mode at frequency qc, where the displacements
of both ions from equilibrium are the same, and the ‘stretch’ mode
at frequency qs ¼ 31/2qc; where the displacements are equal but in
opposite directions.

The state-dependent displacement force is implemented with
two laser beams whose frequencies (q1, q2) are detuned by D <
þð2pÞ£ 82 GHz from the 2s 2S1/2 ! 2p 2P1/2 electric-dipole tran-
sition (l < 313 nm) and have a relative detuning Dq¼ q1 2 q2 ¼
qsþ d close to the frequency of the stretch mode ðjqsj.. jdjÞ: The
electric field from the laser beams gives rise to a Stark shift of the
energies of each internal state and a corresponding electric dipole
force on each ion. We adjust the polarizations and frequencies of the
laser beams to make the average differential energy shift between
states j # l and j " l equal to zero, but on timescales 1=D ,, t ,,

1=qs; there exists a different force on each state, modulated at
frequency q s þ d. The beam directions are at right angles to each
other and the direction of their wavevector difference Dk¼ k1 2 k2

coincides with the trap axis. The trap potential along this axis was
adjusted to fulfil the condition Dkd¼ 2pp; where d is the distance

Figure 1 Phase space representation of the stretch-mode amplitude of two trapped

ions. The displacement drive moves the motional state components associated with the

j #" l and j "# l internal states around circular trajectories in phase space as indicated.

Both components acquire the same phase because the enclosed area and sense of

rotation are equal.
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between the two ions and p is an integer ðqs ¼ 2p £ 6:1 MHz; Dk <
21/2 £ 2p=ð313 nmÞ and p ¼ 9 in the experiment). In this case, the
interference pattern of the two beams has the same phase at the
position of both ions. Therefore, when the ions are in the same
internal state the dipole force driving each ion will be the same and
no differential force arises, so the stretch mode is not excited. On the
other hand, if the ions are in different internal states a differential
force exists between them, exciting the stretch mode.

Owing to the detuning d, the driving force is asynchronous with
the stretch mode frequency, but re-synchronizes after a duration
T ¼ 2p/d. During this time the state of the motion is displaced
along a circular path in phase space (see Fig. 1 and Methods),
returning to the original point in phase space after time T while
acquiring a geometric phase f¼ A=�h equal to the enclosed phase
space area. By choosing the intensity of the laser beams appro-
priately we can achieve f ¼ p/2. The evolution of the wavefunction
for the two ions can then be summarized by:

j # lj # ljWl ! j # lj # ljWl

j # lj " ljWl ! eip/2j # lj " ljWl

j " lj # ljWl ! eip/2j " lj # ljWl

j " lj " ljWl ! j " lj " ljWl¼ e2ipðeip/2j " lÞðeip/2j " lÞjWl ð3Þ

The gate is equivalent to a universal controlled p-phase gate plus
p/2 individual qubit phase shifts on the j " l states. In a given
algorithm, consisting of phase gates and single-bit rotations,
additional single-qubit operations are not necessary to correct for
these p/2 phase shifts, because they can be absorbed into the next
single-bit rotations on the qubits in question.

The 9Beþ ion-qubits are confined in a linear Paul trap11. State
preparation is performed by stimulated Raman transitions driven
by a pair of laser beams with frequency difference approximately
equal to the ground-state hyperfine frequency6. When the frequency

difference of the beams is equal to q S, we drive displacement
transitions jmsljnl$jmsljnþ 1l (that is, ms [ { #; " }) between
oscillator number states jnl that give rise to the internal-state-
dependent displacement. As long as the wavefunction spread and
normal mode excursions are smaller than the effective wavelength
2p/Dk (Lamb–Dicke regime), the displacement only depends on the
internal state, and not on the motional state jWl itself 4. In our
experiment, the ratio of the extension of the stretch-mode ground-
state wavefunction for one ion z 0s to the effective wavelength
(Lamb–Dicke parameter) was hS ¼ Dkz0s ¼ 0:19: With these
conditions and the value of D noted above we can balance the
average a.c. Stark shifts on levels j # l and j " l and make F0# ¼22F0"

(ref. 18).
Before each experiment all motional modes were cooled by

Doppler laser-cooling, followed by 40 cycles of resolved-sideband
Raman cooling that leave the centre-of-mass and stretch mode in
the ground state 99% of the time19. The two ions were then
initialized in the state W0 ¼ j # lj # ljn¼ 0l by optical pumping.
Depending on the experiment, we applied a pulse sequence
containing single ion rotations and a state-dependent displace-
ment pulse. We then detected the internal states of both ions
through state-dependent resonance fluorescence measurements20

ðj # l will strongly fluoresce while j " l will produce negligible
fluorescence).

It is impossible to observe the effect of the phase gate directly,
because what we can observe—the total fluorescence of the two
ions—is not affected by the gate operation. Accumulated phases are
most conveniently observed in an interferometer experiment. To
this end we enclosed the displacement pulse between the first two
pulses of a spin-echo pulse sequence acting on both ions: a p/2-
pulse, followed by a delay Ts, a p-pulse, an equal delay Ts and a final
p/2-pulse (see inset in Fig. 2). The spin-echo sequence was used
because it makes the qubit transitions immune to the effects of time-
varying frequency shifts occurring on timescales much longer than
one experimental cycle ($300 ms), such as those caused by ambient
magnetic field fluctuations. Because the displacement pulse and the
magnetic field fluctuations are independent (the operators for these
two processes commute), the pulse sequence is effectively equivalent
to enclosing the displacement pulse in a p/2–3p/2 Ramsey inter-
ference experiment. The first p/2-pulse transforms the state of the
ions:

W0 ¼j # lj # lj0l ! W1 ¼ 1=2ðj # lj # lþ j " lj " lþ j # lj " l

þj " lj # lÞj0l

Figure 2 State evolution upon displacement. Normalized fluorescence signal (see

Methods) after inserting a displacement pulse of variable duration into a spin-echo

experiment that is applied to the j ## lj0l state (see inset). The motional state returns to

its point of origin after every 39 ms, leading to an approximate state

221/2ðj ## l 2i j "" lÞj0l after 39 ms and to the approximate state j "" lj0l after 78 ms. The

solid line is a fit to the theoretically expected signal that also allows for an exponential

decay in contrast with detuning and decay constant as free parameters. After 39 ms,

the fitted decay constant t0 ¼ 1.3 ms predicts a contrast of 0.97, in good agreement

with the independently determined fidelity of the entangled state produced for this

gate time.

Figure 3 Parity ð½P ## þ P ""�2 ½P "# þ P #"�Þ after producing the maximally entangled

state. As fa is varied, the parity of the two ions should oscillate as cos(2fa) with the

amplitude of the oscillation equal to twice the magnitude of the density matrix element

r##;"". Each data point represents an average of 500 experimental cycles.
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With no displacement pulse applied, the subsequent p- and p/2-
pulses amount to just a rotation of each ion’s internal state by 3p/
2, so the final state was WF ¼ j # lj # lj0l; leaving both ions in the
fluorescing state. If the displacement pulse is applied for some
time t , TS after the first p/2-pulse we expect the ions to evolve
as:

W1 ! W2 ¼1=2½ðj # lj # lþ j " lj " lÞj0lþ eiFðtÞðj # lj " ljaðtÞl

þj " lj # lj2 aðtÞlÞ�

where a(t) is the amplitude of the motional state displacement on
the circular trajectory reached at time t, and F(t) is the accumu-
lated phase (see Methods). The subsequent p- and p/2-pulses will
in general return the ions not to the original state, but to a more
complicated superposition state:

W2 ! W3 ¼1/2½ðj # lj # lþ j " lj " lÞj0lþ 1/2 eiFðtÞðj # lj " l 2 j " lj " l

þj # lj # l 2 j " lj # lÞjaðtÞlþ 1/2 eiFðtÞðj " lj # l 2 j " lj " l

þj # lj # l 2 j # lj " lÞj2 aðtÞl�

fluorescing with a rate:

SðtÞ ¼ S0½P## þ 1/2ðP"# þ P#"Þ�

¼ S0/2½1þ expð2jaðtÞj
2
/2ÞcosðFðtÞÞ� ð4Þ

where S 0 is the fluorescence rate of both ions in state j # l and P# #
is the probability to be in j # lj # l. If t ¼ lT(l integer) the motional
state returns to its original position in phase space, that is,
a(lT) ¼ 0, and with the intensities of the displacement pulse
beams properly adjusted the accumulated phase is F(lT) ¼ lp/2.
Figure 2 shows the experimentally observed fluorescence for
varying lengths of the displacement pulse (circles). The fitted
function (solid line) reflects the theoretical expectation (see
Methods) and yields a decrease in contrast of about 3% at the
proper gate pulse length of T ¼ 39 ms (for d/(2p) ¼ 26 kHz).

A distinct property of quantum logic gates is that they can
produce entanglement out of initially non-entangled states. In
particular, inserting a proper p-phase gate pulse between the first
two pulses of the spin-echo method would ideally carry out the
overall transformation:

W0 ¼ j # lj # lj0l ! WP ¼ 221/2ðj # lj # l 2 ij " lj " lÞj0l ð5Þ

thereby creating a maximally entangled state. The entangled nature
of the state produced in the experiment can be revealed by applying
a final ‘analysis’ p/2(fa)-pulse, which has a variable phase fa relative
to that of the spin-echo pulses, and deducing the parity:

PðfaÞ ¼ P##ðfaÞþ P""ðfaÞ2 ½P"#ðfaÞ þ P#"ðfaÞ� ð6Þ

from the observed fluorescence histograms3. The observed pattern
will have a component that oscillates as C cos(2fa), where jCj is
equal to twice the magnitude of the density matrix element r " " ,# #
that characterizes the coherence between the j # lj # l and j " lj " l
components in the state produced3. Figure 3 shows the observed
parity signal (circles) plotted versus the phase between the spin-
echo pulses and the analysis pulse. The solid line is a cosine fit
C cos(bfa) to the observed data. The best-fit parameters give
frequency b ¼ 1.998 ^ 0.002 and contrast jCj ¼ 0:955^ 0:008:
Knowing the contrast of the measured interference pattern, we
can directly determine the fidelity F ¼ kWPjrjWPl¼ 1=2ðP"" þ
P##Þ þ jr"";## j of the produced entangled state with density matrix
r. Using the populations P"" þ P## ¼ 0:98^ 0:02; deduced from the
histogram decomposition of our entangled-state signal20 and
jr"";## j ¼ jCj/2¼ 0:477^ 0:004; the measured fidelity is F ¼ 0:97^
0:02: This is a lower bound for the actual fidelity of the prepared
state, because it also includes the infidelity introduced by imperfect

optical pumping to the initial j # lj # lj0l state and imperfect
detection.

Although the phase gate is formally the same as the Sørensen–
Mølmer gate8 in a rotated basis, it has some technical advantages.
For example, the phase gate has reduced sensitivity to magnetic field
fluctuations, because it does not involve spin flips, as was the case
for the gates demonstrated previously3,6. Because the displacement
drive has an interaction strength that is equal to the first-sideband
interactions used in the Cirac–Zoller1 and Sørensen–Mølmer8 gates
(up to factors close to unity), the gate speed for a given laser
intensity is about the same. However, for a given fidelity goal, the
gate speed can be made greater than in the Cirac–Zoller and
Sørensen–Mølmer gates, because the fidelity of those gates is limited
by off-resonant contributions of the stronger spin-changing
carrier transition8,21 that is absent in the displacement drive (see
Methods).

Like the Sørensen–Mølmer gate, individual ion addressing is not
required during the gate (in any of the gates discussed, individual
qubit rotations can be accomplished when the ions are spatially
separated) and the accumulated phase depends only on the path
area, not on the exact starting state distribution, path shape,
orientation in phase space, or the time it takes to traverse the closed
path. This insensitivity to the starting state means that, within the
Lamb–Dicke regime, ground-state cooling is not required for
accurate gate operations. The main sources of gate error in our
experiment are fluctuations in d and fluctuations in the Raman-
beam intensity (both roughly at the 1% level) and a spontaneous
emission probability of about 2.2% in each run of the experiment to
create the state in equation (5). If frequency drift and intensity
errors could be reduced to the order of 1023 and spontaneous
emission suppressed (by using a different ion species18), the
expected gate infidelity is of the order 1024, the asymptotic
threshold value required for fault-tolerant quantum computation22.
The gate has an additional technical advantage over other gates in
the context of quantum computing in multiplexed traps4,5 where
logic ions will be sympathetically cooled with a separate cooling
ion before gate operations. In general, the normal-mode ampli-
tudes on each ion will be different, making it technically more
difficult to obtain equal laser beam couplings, as required in the
Sørensen–Mølmer gate2,3,8. Equal coupling is not required for a
general geometric phase gate because the extra phases on each
qubit can be absorbed into previous or subsequent single-qubit
rotations. A

Methods
Geometric phase shift
The geometric phase shift is due to coherent displacement along an arbitrary path. By
dividing an arbitrary path into short straight sections Daj; j¼ {1;N} and repeatedly
invoking equation (2), the total operation can be written as:

Dtotal ¼DðDaNÞ…DðDa1Þ ¼D
X

j
Daj

� �
exp i Im

XN

j¼2
Daj

Xj21

k¼1
Dak

� �
*

n oh i
ð7Þ

Going to the limit of infinitesimal steps by replacing Da j with da yields:

Dtotal ¼Dð

ð
½da=dt�dtÞ exp½iF�; with F¼ Im{

ð
a* ðtÞ½da=dt�dt} ð8Þ

If the path P is closed, then:

Dtotal ¼Dð0Þ exp½iF�; and F¼ Im{

ð
P a* da}¼ 1=�h

ð
A dz dp¼ A=�h ð9Þ

In the last step we converted the path integral over P to an area integral over the area A
enclosed by P, and used equation (1) to rewrite a in terms of position z and momentum p.

Expected signal for the displacement drive
For a relative detuning q s þ d of the two Raman beams the infinitesimal displacement of
the stretch mode amplitude at time t is4:

da#"ðtÞ ¼2 da"#ðtÞ ¼ QD exp½iðfL 2 dtÞ�dt

da##ðtÞ ¼da""ðtÞ ¼ 0
ð10Þ

where:
QD ¼2ðF0# 2 F0"Þz0s=ð2�hÞ ð11Þ
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z 0s is the spread of the ground-state wavefunction for one ion in the stretch mode and fL is
the phase of the driving field. Evaluation of the integrals in equation (8) yields:

a#"ðtÞ ¼iQD=d½expð2idtÞ2 1�expðifLÞ

F#"ðtÞ ¼ðQD=dÞ
2½sinðdtÞ2 dt�

ð12Þ

For the p-phase gate the maximum excursion in phase space is ja"#maxj ¼ 1: The
normalized fluorescence is equal to:

SnormðtÞ ¼ P##ðtÞ þ 1/2½P#"ðtÞ þ P"#ðtÞ� ¼ 1/2½1þ expð2ja"#ðtÞj
2
/2ÞcosðF"#ðtÞÞ� ð13Þ

For the fit in Fig. 3 we allowed for an additional exponential decay:

SfitðtÞ ¼ 1/2½1þ expð2t=t0Þexpð2ja"#ðtÞj
2
/2Þ cosðF"#ðtÞÞ� ð14Þ

where t0 is a phenomenological decay constant mimicking decoherence effects.

Gate speed considerations
The gate speed in our experiments was limited by the intensity of the displacement beams.
The observed ratio of gate time 2p/d to stretch oscillation period 2pqS was 238. The largest
contribution to gate infidelity from off-resonant excitations is that due to excitation of the
centre-of-mass (COM) mode (as opposed to excitation of the internal-state carrier
transition in the Cirac–Zoller and Sørensen–Mølmer gates). The ratio of excitation
amplitude of the stretch mode to that of the COM mode scales as dCOM/d where
dCOM / qS is the detuning from the COM mode. Therefore if the required fidelity
restricts the COM mode excitation to be below a certain size, then the gate rate (/ d) will
scale linearly with qS. For our experimental parameters, we estimate the contribution to
infidelity from off-resonant excitation of the COM mode to be below 1024. In a more
refined scenario, we could intentionally excite both the COM and the stretch mode. For
suitable parameters the COM and stretch-mode amplitudes can return to their initial
values even if the gate rate exceeds the trap frequency.
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Double-slit electron interferometers fabricated in high mobility
two-dimensional electron gases are powerful tools for studying
coherent wave-like phenomena in mesoscopic systems1–6. How-
ever, they suffer from low visibility of the interference patterns
due to the many channels present in each slit, and from poor
sensitivity to small currents due to their open geometry3–5,7.
Moreover, these interferometers do not function in high mag-
netic fields—such as those required to enter the quantum Hall
effect regime8—as the field destroys the symmetry between left
and right slits. Here we report the fabrication and operation of a
single-channel, two-path electron interferometer that functions
in a high magnetic field. This device is the first electronic
analogue of the optical Mach–Zehnder interferometer9, and
opens the way to measuring interference of quasiparticles with
fractional charges. On the basis of measurements of single edge
state and closed geometry transport in the quantum Hall effect
regime, we find that the interferometer is highly sensitive and
exhibits very high visibility (62%). However, the interference
pattern decays precipitously with increasing electron tempera-
ture or energy. Although the origin of this dephasing is unclear,
we show, via shot-noise measurements, that it is not a decoher-
ence process that results from inelastic scattering events.

Direct phase measurements of electrons, customarily done in
double-slit interferometers1–4, are difficult to perform under strong
magnetic fields. Electrons are diverted by the Lorentz force, perform
chiral skipping orbits, and prefer one slit to the other—thus break-
ing the symmetry of the interferometer. At the extreme quantum
limit (that is, in the quantum Hall effect, QHE, regime), the
skipping orbits quantize to quasi-one-dimensional-like states,
named chiral edge states. We have exploited the chiral motion of
the electrons, and constructed an electronic analogue of the ubi-
quitous optical Mach–Zehnder interferometer9 (Fig. 1a). A beam
splitter BS1 splits an incoming monochromatic light beam from
source S into two beams, which, after reflection by mirrors M1 and
M2, recombine and interfere at BS2 to result in two outgoing beams
(collected by detectors D1 and D2). When the phase along one of the
paths varies, signals in both D1 and D2 oscillate out of phase, and as
no photons are being lost, the sum of both signals stays always equal
to the input, S. In the electronic counterpart (Fig. 1b), quantum
point contacts (QPCs) function as beam splitters, and ohmic
contacts serve as detectors. A QPC is formed in the two-dimensional
electron gas (2DEG) by depositing a split metallic gate on the
surface of the semiconductor and biasing it negatively with respect
to the 2DEG. The induced potential in the 2DEG creates a barrier
under the gate bringing the two oppositely propagating edge
currents to the small opening in the barrier, thus allowing back-
scattering. As shown schematically in Fig. 1b, QPC1 splits the
incoming edge current from S to two paths, a transmitted outer
path and a reflected inner path; both later recombine and interfere
in QPC2, resulting in two edge currents (collected by D1 and D2).

The actual device (Fig. 1c) was fabricated in a high-mobility
2DEG embedded in a GaAs–AlGaAs heterojunction. A ring-shaped
mesa, 3 mm in width, was defined by plasma etching with ohmic
contacts (for S, D1 and D2) connected to the inner and outer edges
of the ring. The inner contact, D2, and the two QPCs are connected
to outside sources via metallic films that hover above the surface of
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