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Abstract
We discuss laser cooling of a string of two-level atoms confined in a linear
ion trap. The equations for the dynamics are first analysed in the Lamb–Dicke
regime (i.e. when the size of the mechanical wavefunction is much smaller
than the laser wavelength), and then in general, for Doppler cooling. In the
latter case, using several consecutive steps of averaging we derive from the
full quantum mechanical master equation an equation for the total mechanical
energy of the one-dimensional crystal, defined on a coarse-grained energy scale
whose grid size is smaller than the linewidth of the electronic transition. This
equation describes the cooling dynamics for an arbitrary number of ions in the
quantum regime. We discuss the analogy and the scalability of the string’s
laser-cooling dynamics with that of a single trapped ion.

1. Introduction

Coulomb crystals have been the object of investigation in several fields of physics [1] and have
experienced a renewed interest from the field of quantum information processing with trapped
ions [2, 3]. The necessity of producing cold ion strings has motivated the investigation of laser
cooling of this many-body system. Laser cooling allows for dissipation of the ions’ thermal
motional energy, and at sufficiently low temperature the ions assume an ordered configuration
that minimizes their potential energy [1]. In this limit the residual motion of the ions is
described by the normal modes of the crystal, like in crystalline states observed in larger
systems. Ion strings are one-dimensional Coulomb crystals realized in linear Paul traps with
steep radial confinement [4]: here the cold ions line up along the axial direction (trap axis).
The mechanical effect of light on these systems is rather complex due to the large number of
motional degrees of freedom. Nevertheless, each ion interacts individually with the light field,
since collective effects in the scattering are usually negligible. This makes the general principle
3 Author to whom any correspondence should be addressed.
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of the interaction simple: it is the recoil of the individual ion after absorption or emission of a
photon which excites the collective modes of the string through the ion displacement.

On the basis of theoretical investigations it has been argued that an ion crystal is cooled like
a single ion, i.e. that the dynamics of cooling are qualitatively the same [5]. This statement
has been disputed for three-dimensional Coulomb crystals in Paul traps, where non-linear
effects appear due to the fast rf-drive [6]. Nevertheless, this statement may well apply to
three-dimensional crystals in Penning traps and to ion strings in linear Paul traps, where no
rf-drive is present on the trap axis. Here, we present and discuss the results of some recent
works on laser cooling of ion strings [7–9] in view of the question of analogy and scalability
with the dynamics of laser cooling of a single ion. We consider the motion along the string,
but the arguments can be easily extended to the radial motion.

This contribution is organized as follows. In section 2 we introduce the model and the
corresponding equations for studying the dynamics. In section 3 we discuss the dynamics in
the Lamb–Dicke regime, i.e. when the motional wavepacket is well localized on the scale of the
laser wavelength. In section 4, starting from general considerations, we show the fundamental
steps and discuss the approximations leading to an equation for the total mechanical energy
of the crystal. The scope of this contribution is to give an overview of the results and the
conclusions of some recent papers [7–9]. The reader interested in the theoretical details is
referred to these publications.

2. The model

We consider a string of N ions of mass m, confined in a trap of axial frequency ν. Their axial
motion is described by the normal modes with frequencies ν1, . . . , νN , which scale with the
trap frequency ν. The corresponding Hamiltonian has the form

Hmec =
N∑

α=1

h̄να(a
†
αaα + 1

2 ), (1)

where a†
α , aα are the creation and annihilation operators of a vibrational quantum h̄να . For later

convenience, we introduce the eigenstates |n〉 of (1), with n = (n1, . . . , nN ). They satisfy
the eigenvalue equation Hmec|n〉 = En|n〉 with En = ∑

α h̄να(nα + 1/2). The spectrum
of Hmec does not exhibit the discreteness and equispacing of the single harmonic oscillator
spectrum, but shows a dense distribution of levels, as the ratios between the mode frequencies
ν1, . . . , νN are incommensurate. At sufficiently high energy and large N the spectrum assumes
a quasicontinuum character, such that the density of states is well approximated by a smooth
function g(E) ∝ E N−1, as shown in figure 1 for the case N = 3.

In this representation, the displacement q j of an ion from its classical equilibrium position
x (0)

j in the string is the superposition of the normal mode displacements, and is given by

q j = ∑
α x0,αb j

α(a†
α + aα), where x0,α = √

h̄/2mνα is the size of the ground state wavepacket
for the oscillator at frequency να , and b j

α is a scalar which gives the dependence of the mode
displacement on the position of the ion in the chain.

The internal degrees of freedom of each ion are treated as a two-level dipole transition at
frequency ω0 and dipole moment d. The transition is resonantly driven by a laser, represented
here by the classical field E(x, t) = E0�ε cos(ωL t − kx x) with frequency ωL , amplitude E0,
and polarization �ε. The wavevector component along the x̂-axis is kx = |�k| cos θ0, where |�k|
is the modulus of the wavevector and θ0 is the angle between laser and motional axis. In the
dipole approximation the interaction of the ion at x j with the light is described by the potential
V = d · E(x j , t), and the explicit dependence of V on the position x enters through the terms



Is an ion string laser-cooled like a single ion? 1043

0 10 20 30 40 50
0

20

40

60

D(E)

E/h ν

Figure 1. The number of states D(E) as a function of the total energy E/h̄ν evaluated for three
ions on a grid �E = h̄ν/5 (dots joined by the grey line); smoothed function g(E)�E (see text)
with N = 3 (black curve). The frequencies of the modes are ν1 = ν, ν2 = 1.7321ν, ν3 = 2.4083ν

(from [9]).

e±ikx x j = e±ikx (x(0)
j +q j ). This operator is responsible for the mechanical effect of the light on the

ion string. It also shows that by driving a single ion of the string, the whole collective motion
can be excited.

The master equation for the density matrix ρ describing the full dynamics of the internal
and motional degrees of freedom has the form [9]

∂tρ = 1

ih̄
[Hmec, ρ] +

N∑
j=1

(
1

ih̄
[H j(q j), ρ] + L j (q j)ρ

)
. (2)

Here H j is the Hamilton operator for the dynamics of the ion at x (0)

j , coupled to the laser
with Rabi frequency 	 j = |d · �εE0|/2h̄ and detuning � = ωL − ω0 from resonance, and
L j is the Liouvillian which describes spontaneous decay at rate γ . The operators H j and L j

contain the displacement q j of the ion through the operator eik′q j , where k ′ = kx in H j(q j), and
k ′ = |k| cos θ in the LiouvillianL j . The latter describes the recoil due to spontaneous emission
of a photon at an angle θ with the motional axis. The probability of emission along θ is the
dipole pattern of spontaneous emission, given by the probability distribution N (cos θ) [10].

The number of degrees of freedom can be reduced by considering the case when the
dipoles are driven below saturation. This regime allows for a perturbative expansion in the
parameter 	 j/γ , and the excited states of the dipole transitions are adiabatically eliminated
at second order in this expansion. This procedure removes the internal degrees of freedom
from the equations for the motional degrees of freedom. The dynamics of the reduced density
matrix µ for the motion in the basis {|n〉} are determined by

d

dt
〈n|µ|m〉 = − i

h̄
(En − Em)〈n|µ|m〉

−
∑

j

[∑
l

(L j
l→n〈l|µ|m〉 + (L j

l→m)∗〈n|µ|l〉) +
∑
r,s

L̃ j
r,s→n,m〈r|µ|s〉

]
. (3)

The coefficients L j
l→n, L̃ j

r,s→n,m are of order 	2
j/γ and describe spontaneous Raman scattering

processes (and coherences between such processes), i.e. transitions of the system from state
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Figure 2. Absorption spectrum for a string of two ions, as obtained by scanning the laser
frequency across the dipole transition and recording the level of fluorescence. It is given by
I (�) = ∑

(En−El)/h̄=� |〈n| exp(ikx)|l〉|2 P(n). The detuning � is in units of ν and I (�) is plotted
on a grid of width ν/10 (note that here the natural line-broadening has not been considered). P(n)

is a thermal distribution with average energy per mode 〈Ē〉 = 7.5h̄ν. The Lamb–Dicke parameter
η = √

ωR/ν is in (a) η = 0.6 and in (b) η = 0.1. In (b) the carrier and the blue and red sidebands are
visible, while in (a) many transitions appear where the vibrational numbers change simultaneously
in both modes, or by more than one in a single mode (from [7]).

|n〉 to state |n′〉 when the ion at x (0)
j scatters a photon. The structure of these coefficients

is the product of two probability amplitudes. One is associated with absorption of a laser
photon along the transition |g,n〉 → |e,k〉, and its dependence on the energies En, Ek of the
participating states is a Lorentzian with width h̄γ and peaked in En − Ek = h̄�,

W (En − Ek) ∝ 1

En − Ek − h̄� − ih̄γ /2
. (4)

The other is the Franck–Condon overlap between the motional states involved in the process
of absorption/emission of a photon, and for the absorption of a photon by the ion at x (0)

j and
the states |n〉, |k〉 it has the form

Fk′
n,k = 〈n|eik′q j |k〉. (5)

Its specific form depends on the quantum mechanical details of the states, i.e. on the vibrational
numbers. Nevertheless, its average properties describe a distribution with centre at the energy
shifted from En by the recoil energy h̄ωR , and with variance around this value given by the
Doppler width

√
2h̄ωR En/N . Here we have introduced the recoil frequency ωR = h̄k2/2m.

Figures 2(a) and (b) display the absorption spectrum of two ions as a function of the laser
detuning � and for two different ratios ωR/ν: the height of the vertical bars is determined by
the Franck–Condon overlap between the states participating to the scattering, the width of the
distribution by their average properties.

Three energy scales can now be identified which characterize the dynamics in (3): the trap
frequency ν which scales the mode frequencies and thus the motion of the string, the linewidth γ

of the dipole transition, which determines the states participating in the scattering process, and
the recoil frequencyωR which scales the mechanical energy exchanged by absorption/emission
of a photon.

3. The Lamb–Dicke regime

When the atomic motional wavepacket is well localized with respect to the laser wavelength
(Lamb–Dicke regime), the Doppler linewidth is much smaller than the mode frequencies.
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In this limit, the Franck–Condon coefficients in (5) can be approximated by their first-order
expansion in the Lamb–Dicke parameter η, where η = k

√
h̄/2mν [7, 8]. In this hierarchy, the

transition at zero order is the carrier, where the motional state of the string is not changed by
absorption/emission of a photon. To first order, the vibrational numbers of the motional state
are changed by precisely one phonon, i.e. according to |n〉 → |n + 1β〉 for the ‘blue sideband’
transition, and |n〉 → |n − 1β〉 for the ‘red sideband’ transition. Here β = 1, . . . , N and
the vector 1β is defined through (1β)α = δα,β for α = 1, . . . , N . In this limit, transitions
where the vibrational numbers of two or more modes change simultaneously, or where one
mode gains or loses more than one phonon, are of higher order in η and thus neglected. This
behaviour is reflected in the absorption spectrum as shown in figure 2(b). In equation (3) the
coefficients L, L̃ scale with powers of η. In the Lamb–Dicke limit, the coupling of populations
to coherences between different sideband transitions can be neglected, as the coupling itself
is much smaller than the self-energy of the coherences, i.e. η2	2

j/γ 	 |νβ − να|. Then,
equation (3) reduces to the rate equation

d

dt
〈n|µ|n〉 = −〈n|µ|n〉

N∑
j=1

N∑
β=1

(L̃ j
n→n+1β

+ L̃ j
n→n−1β

)

+
N∑

j=1

N∑
β=1

[〈n + 1β |µ|n + 1β〉L̃ j
n+1β→n + 〈n − 1β |µ|n − 1β〉L̃ j

n−1β →n], (6)

where L̃ j
n±1β→n are real and positive coefficients, and the subscript n ± 1β → n shortens the

subscript (n ± 1β,n ± 1β) → (n,n), as defined in equation (3)4. This result implies that
each mode of an ion string is cooled independently from the others, like a mode of a single ion
in a trap [8]. Thus, in the Lamb–Dicke limit concepts for laser cooling of single ions [10] can
be applied to the individual modes of the string. This result holds both for resolved-sideband
cooling and for Doppler cooling (non-resolved sideband cooling) [8, 9], as well as for other
ground-state laser-cooling techniques implemented for single ions [11].

4. An ergodic equation for the string’s dynamics

Outside the Lamb–Dicke regime it is difficult to apply the perturbative expansions which have
been developed for the study of the dynamics of single ions [10]. Nevertheless, in the limit
γ > ν1, . . . , νN (Doppler cooling) it is possible to examine the crystal’s motional energy on
a coarse-grained energy scale, and thus to single out the quantities determining the cooling
dynamics, while other quantities which depend on the fine details of the quantum states appear
in the equations only through their expectation values [9].

We focus on the dynamics of the crystal’s total mechanical energy, which is the quantity of
interest when Doppler cooling the string. For this purpose, we analyse the dynamics between
energy shells of fixed width �E , which comprise all the states of the Hilbert space whose
energies fall into the interval [E, E + �E], as shown in figure 3 for the case of two modes.
The shell width �E is chosen by requiring that the function (4) is practically constant over
�E , which implies �E 	 h̄γ . At sufficiently high energy the number of states within a
shell is large enough to be well approximated by the quantity g(E)�E . In this limit, and
when a sufficiently large number of pairs of states is coupled between two shells (like in the
situation illustrated in figure 2(a)), the coupling of the shell population to coherences within
and between shells is efficiently averaged out. In other words, the dynamics of the shell

4 Note that at this order in the Lamb–Dicke parameter L̃ j
n→n+1β

+ L̃ j
n→n−1β

is the rate out of the state n.
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Figure 3. Coarse-grained energy space for the case of two modes of frequency ν1, ν2. The points
are the states with energy En = En1 + En2 . The broad lines represent two energy shells at energies
E and E ′ (from [9]).

populations is negligibly affected by the coherences. The negligible role of coherences in
the dissipative dynamics has been confirmed in numerical calculations for the case of two
ions in [7]. The validity of this approximation relies on the quasi-continuum property of the
spectrum. In this limit the coupling between two shells, which in principle depends on the
Franck–Condon overlaps between the individual quantum states, can be approximated by its
average value. This is expressed by

1

N

N∑
j=1

∑
l

′|〈l|e−ik′q j |n〉|2 ≈ �Eg(El)Q(k′)(En, El), (7)

where
∑′

l denotes the sum over all motional states within a shell at energy El, and Q is
a function of the shell energies: it describes the average coupling between two states in the
shells at energies En and El due to photon scattering. Assumption (7) corresponds to neglecting
the dependence of the LHS on the details of the state |n〉. We substitute the discrete sums with
integrals by defining the population densities P(E, t) of the energy shells:

�E P(E, t) =
∑

n

′〈n|ρ|n〉, (8)

where En is within the energy interval [E, E + �E]. The density P(E, t) is normalized,∫ ∞
0 dE P(E, t) = 1. Thus, we arrive at a rate equation for the motional energy with the

form [9]

d

dt
P(E, t) = −P(E, t)

∫ ∞

0
dE1 f (E → E1) +

∫ ∞

0
dE1 f̃ (E1 → E)P(E1, t), (9)

where the coefficients f, f̃ are given by

f (E → E1) = γ
	2

4
N

g(E1)Q(kz )(E, E1)

[(E1 − E)/h̄ − �]2 + γ 2/4
,

f̃ (E1 → E) =
∫ 1

−1
d(cos θ)N (cos θ)g(E)

∫ ∞

0
dE2 Q(k cos θ)(E2, E) f (E1 → E2).
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The first term in equation (9) describes transitions out of the shell, while the second term
describes transitions into the shell, resulting from the absorption of a photon and its spontaneous
emission averaged over all angles θ with the motional axis.

Equation (9) is an equation for the string’s mechanical energy and it is the main result
of this derivation. The coefficients Q in f, f̃ are known through their moments, which can
be evaluated from the Franck–Condon coefficients. They scale with the number N of ions
(modes): equation (9) describes the laser-cooling dynamics of a single ion in the limit of a
quasi-continuum spectrum of mechanical energies, i.e. for γ � ν, so that the approximations
discussed above apply. The explicit form of the coefficients can be evaluated in several limits.
In what follows we discuss the limit ωR 	 γ . Other limiting cases can be found in [9].

For ωR 	 γ the variation of the population P(E) on the energy scale h̄ωR is small,
i.e. h̄ωR |∂ P(E, t)/∂ E | 	 P(E, t). By expanding around E to first order in the parameter
ωR/γ , we get a Fokker–Planck equation of the form

d

dτ
P(E, τ ) = − ∂

∂ E
[A(E)P(E, τ )] +

∂2

∂ E2

[
E

N
P(E, τ )

]
, (10)

where τ = 4M	2γωR(cos2 θ0 + α)L(0)t is a rescaled time, with L(0) = 1/(4�2 + γ 2),
α = ∫ +1

−1 d cos θ cos2 θN (cos θ), and A(E) = 1 + 2E�L(0) cos2 θ0/N(cos2 θ0 + α). We have
introduced the parameter M which scales the time τ : it represents the (effective) number of ions
in the string which are driven by the laser, assuming that the laser intensity is approximately
the same for all driven ions. The cooling rate, characterizing the time at which the steady-state
is reached, is now given by [9]

�cool = M

N

8ωR cos2 θ0	
2γ |�|

(4�2 + γ 2)2
, (11)

and it increases linearly with the number of driven ions M . Thus the cooling rate is maximum
if all ions are driven, as expected below saturation. The steady-state energy is found to be

〈E〉 = Nγ
α + cos2 θ0

4 cos2 θ0

(
γ

2|�| +
2|�|
γ

)
(12)

which contains the dependence of the cooling limit on the angle θ0 between the cooling laser
beam and the direction of the motion. The final energy is minimal for cos θ0 = 1, i.e. when
the laser propagates parallel to the motional axis (that here corresponds to the trap axis), and
it diverges for cos θ0 = 0, when the laser is orthogonal to the trap axis and there is no cooling.

The minimum of the final energy versus detuning is reached for � = −γ /2, as in the case
of one ion (see for example [10]). Inserting into (12) N = 1, α = 1/3 (which corresponds to
spatially isotropic spontaneous emission) and cos θ0 = 1, we find the same result as Javanainen
and Stenholm [12] in their semiclassical expansion for one ion. Hence, the final energy for
N ions is N times the steady state energy achieved by Doppler cooling of one ion. This
general result has also been found earlier in special cases, such as a Coulomb cluster in the
Lamb–Dicke regime [5], and a two-ion crystal treated in [13] by extending the method of [12].

Since the results we have shown so far agree precisely with those found earlier in specific
cases, the general procedure which leads us from the quantum mechanical equations to the
rate equation for the energy can be considered the common basis which underlies and unifies
these earlier treatments. Furthermore, we have shown that the final energy of an N-ion crystal
is N times that of a single motional mode, while the cooling rate scales with the fraction of
driven ions.

The assumptions leading to the Fokker–Planck equation (10) were equation (7) and the
slow variation of P(E) on the scale of the recoil energy. The latter condition corresponds
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to the second-order expansion in h̄ of [12]. In that work the derivation of a Fokker–Planck
equation was based on the limit of overdamped oscillation, γ � ν, in order to adiabatically
eliminate the excited state from the equations. Our derivation, however, does not necessarily
imply this limit. Only in the case of N = 1 ion one must have �E � h̄ν in order to fulfil the
condition of a large density of states, D(E) � 1, and thus for this special case the overdamped
oscillator limit is a requirement for the validity of (10).

5. Conclusions and discussion

We have presented and discussed laser cooling of an ion string in view of the analogy with
laser cooling of a single ion. We have focused on laser cooling in the Lamb–Dicke regime
and on Doppler cooling in the general case, where a perturbative treatment is not possible.
Here, we have shown the main steps of the derivation that lead to an equation for the string’s
mechanical energy, where the number of ions enters as a scaling factor. The results evaluated
in the limiting cases of this equation agree with the ones obtained in previous treatments, which
were developed in perturbation theory strictly valid in the limiting cases alone [5, 10, 12, 13].
Our results, with marginal changes, can also be applied when the radial motion of the string is
taken into account. In that case, the dimensionality enters into the coefficients of the energy
rate equation through the number of modes, which for a crystal of N ions is 3N , and through
the spatial distribution of the scattered photons.

On the basis of these results one can assert that an ion string is cooled like a single ion.
The limits of validity of this statements are found when coherences between different motional
states play a relevant role in the dynamics, for example in presence of exact degeneracies [7],
or of additional interactions between the ions such as dipole–dipole coupling [14].

To conclude, we have modelled a complex (mesoscopic) system of N ions and N modes
starting from the equations for the individual quantum states, and we have derived an equation
for the dynamics of its total energy. Other incoherent processes in physical systems can be
studied in an analogous way, provided that the rate determining the dynamics of interest can
be singled out, and that on the corresponding energy scale the spectrum of energy levels is a
quasi-continuum.
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