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Very low intensity and phase fluctuations are present in a bright light field such as a laser beam.
These subtle quantum fluctuations may be used to encode quantum information. Although intensity
is easily measured with common photodetectors, accessing the phase information requires
interference experiments. We introduce one such technique, the rotation of the noise ellipse of light,
which employs an optical cavity to achieve the conversion of phase to intensity fluctuations. We
describe the quantum noise of light and how it can be manipulated by employing an optical
resonance technique and compare it to similar techniques, such as Pound–Drever–Hall laser
stabilization and homodyne detection. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2937903�
I. INTRODUCTION

Light fields are an important tool in the field of quantum
information.1,2 The intensity and the phase of bright light
beams possess quantum properties similar to the position and
momentum of a quantum harmonic oscillator:3 It is impos-
sible to know both at the same time with arbitrary precision
because they must satisfy the uncertainty principle. The
Einstein–Podolsky–Rosen4 paradox can be realized with
these observables, giving rise to entangled beams. Entangle-
ment is important because it is the primary resource in quan-
tum computation and information.5,6 That is, quantum infor-
mation can be encoded in the intensity and phase of light.

To employ this entanglement in practical implementations,
the two observables must be accessible to measurement.
Light intensity is easily measured by photodetectors. In con-
trast, phase information requires an interference experiment
and must be converted into amplitude information as can
be understood by considering the Mach-Zehnder
interferometer,7 for example �see Fig. 1�a��. If the phase dif-
ference � between the two optical paths is zero �or ��, light
exits the interferometer through one �or another� of two out-
put ports; if �=� /2, then the beam is equally divided be-
tween them. Thus, by measuring the intensity difference be-
tween the output ports, it is possible to infer the relative
phase between the two paths.

In this example, only the mean relative phase was consid-
ered, but a similar situation holds for fast phase fluctuations
as well. If another intense light beam is used with a stable
phase relative to the beam to be measured, it is possible to
acquire phase information about the target beam by their
interference �Fig. 1�b��. It suffices to choose their relative
mean phase as � /2, as in the Mach-Zehnder interferometer
example, such that the two outputs are balanced. Then a
small relative phase fluctuation between the two fields is
optimally converted to a fluctuation in the difference of in-
tensities. This technique is called homodyne detection, the
most commonly employed method of measuring the quan-
tum phase fluctuations of light.8 The practical implementa-
tion of a homodyne technique might be difficult in some
situations, including the establishment of an auxiliary beam

that matches the field to be measured �phase reference, fre-
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quency, and spectral profile� and the requirement of a much
higher intensity which might saturate the photodetectors.9

One way to circumvent these difficulties lies in a powerful
method used for laser frequency stabilization, the Pound–
Drever–Hall technique.10,11 The original idea behind it is to
modulate the beam phase, which may be interpreted as the
creation of “sidebands” in its spectrum, and compare the
light beam frequency to an optical cavity resonance fre-
quency. The cavity, as for every resonance, has a dispersive
character, dephasing each frequency component by different
amounts. By analyzing the field reflected by the cavity, it is
possible to obtain with great precision the detuning �fre-
quency difference� between the laser and cavity based on the
dephasing between carrier and sidebands. This information is
then fed back to the laser or the cavity in order to lock their
frequencies to each other. The action of the cavity can be
interpreted as converting a small amount of the incident
beam phase modulation into amplitude modulation of the
reflected beam, which can then be recorded by a photodetec-
tor. At perfect resonance, no conversion occurs; on different
sides of it, the conversions have opposite signs; it is thus
possible to know if the laser frequency is equal to, higher, or
lower than the cavity resonance frequency.

This technique can be adapted to measure the quantum
sidebands of light beams.12,13 The requirement is that the
conversion be efficient; that is, all the original quantum
phase fluctuations of the incident beam be converted into
amplitude fluctuations in the reflected one. This conversion
is possible if certain conditions are met. It is necessary that
the cavity resonance be sufficiently narrow to clearly distin-
guish the carrier from the sidebands. Then the carrier acts as
a local oscillator and the sidebands as a faint light field. The
cavity introduces a relative phase shift between them, ac-
complishing, as in homodyne detection, the full conversion
of phase to amplitude noise. The frequency, spectral profile,
phase reference, and spatial mode are automatically matched
between the two fields, because they are different spectral
components of a single beam. No extra noise is added by the
local oscillator. Because of the picture of quantum noise as a
noise ellipse,14 we call this technique the “rotation of the
noise ellipse of light.”

In Sec. II the basic concepts of the quantum properties of

laser-like beams are presented. Section III introduces the op-
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tical cavity, and its effect on the light field are discussed in
Sec. IV. Section V describes the physics of the rotation of the
noise ellipse and traces parallels with the two well known
techniques, homodyne detection and Pound–Drever–Hall
whenever possible. Section VI discusses a simple experiment
for demonstrating the effect. Concluding remarks are pre-
sented in Sec. VII.

II. QUANTUM NOISE AND FIELD QUADRATURES

In the classical description of light a complex number is
used to represent the oscillating electric field. However,
when microscopic features are considered, a precise descrip-
tion must include its quantum features: Light travels in small
packets of minimum energy, the photons. The measurement
of light intensity is usually performed by employing the pho-
toelectric effect in which one photon is converted into one
free electron in the detector. Because of this grainy character
of light, the photocurrent cannot be described in the ideal
case by a continuous function, but rather as a sequence of
steps. In practice the flux of photons in the laser beam is so
huge that no photodetector working in this regime can dis-
tinguish individual steps in the photocurrent, and a continu-
ous function is obtained. Nevertheless, the statistics of pho-
ton arrival times are transferred to the photocurrent. The
statistics are called “shot noise” if the times are random,
resulting in Poisson statistics. The intensity fluctuations of an
ideal laser operating far above threshold are Poisson. A more
regular photon flux would result in less photocurrent noise.
This sub-Poissonian light is called “squeezed light,”15,16 and
cannot be obtained solely by common �linear� optical trans-
formations such as lenses and beam splitters. Squeezing is a
quantum property, intimately related to entanglement.2,17

For a laser-like field, with a typical mean photon flux on
the order of 1016 s−1, intensity measurements result in well
defined macroscopic numbers I�t� with very small fluctua-
tions �I�t� in time. In this case the quantum fluctuations may
be treated as classical fluctuations, although their physical
origin cannot be explained classically �the semiclassical
approach18�, and we may once more represent the electric
field of light by a complex number. However, to account for
the uncertainty principle, this complex amplitude is no
longer perfectly defined and fluctuates in time,

��t� = �̄ + ���t� , �1�

Fig. 1. �a� In the Mach-Zehnder interferometer the relative phase � between
the two possible paths determines the intensity difference between the two
output ports. �b� Homodyne detection is performed by interfering in a bal-
anced beam splitter �BS 50/50� the field to be measured �dotted arrow� and
a strong local oscillator field �LO, solid arrow�. The subtraction of the pho-
tocurrents gives information about the phase fluctuations of the target beam
when the mean relative phase is �=� /2.
where
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���t�� � �̄ = ��̄�exp�i�� �2�

is its mean value and ���t� its fluctuations. A bright beam
means that ����t� � � ��̄�. As usual, the field intensity �pho-
tons per time interval� is I�t�=�*�t���t�. We use Eq. �1� to
obtain for the intensity fluctuations,

�I�t� = �̄*���t� + �̄��*�t� , �3�

where the second-order term has been neglected assuming a
bright beam. We see from Eq. �3� and Fig. 2 that the intensity
fluctuations are proportional to the projection of ���t� onto
the direction of �̄ in the complex plane. To avoid a depen-
dence on the absolute value of the field we normalize this
projection by the latter, resulting in the definition of the first
important physical quantity we will study, the amplitude
quadrature fluctuation,

�p�t� = e−i����t� + ei���*�t� , �4�

so that �I�t�= ��̄ ��p�t�. Because �p�t� is proportional to the
intensity, it is directly measured by photodetectors; �p is
related to the fluctuations of the complex field absolute am-
plitude of Fig. 2.

The second important quantity associated with the electric
field of light is the phase.19 According to quantum mechan-
ics, the phase is the conjugate observable of intensity for
bright light fields.3 In Fig. 2 a small phase change of �̄ cor-
responds to a fluctuation in the direction orthogonal to �p�t�,
and is therefore called the phase quadrature fluctuation,

�q�t� = − i�e−i����t� − ei���*�t�� . �5�

It is the projection of ���t� in the direction orthogonal to �̄.
Phase information can be only accessed indirectly by con-
verting it to amplitude information by means of an interfer-
ence effect.

The time dependence assumed for the quadrature fluctua-
tions implicitly assumes a multimode description of the light
field, that is, several frequency components. It is natural
to consider these ideal well defined frequency complex

Fig. 2. Representation of the light field in the complex plane and its fluc-
tuations. The vector is the complex field mean amplitude �̄= ��̄ �exp�i��.
The decomposition of the fluctuation �� in the direction of the mean value
and in the orthogonal one defines the amplitude p and phase q quadratures,
respectively. In the time domain a field presenting the amplitude fluctuations
would resemble the inset �a�, and the phase fluctuations would correspond
to �b�.
amplitudes,
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����� = 	
−T/2

T/2

ei2��t���t�dt, �������* = ��*�− �� , �6�

which give us better physical insight into the fluctuations.
The integration time T is much longer than the typical fluc-
tuation time scale of the system, and we therefore take T
→� to simplify the calculations. This Fourier transform is
evaluated around the optical frequency �0
1014 Hz
����0�, because photodetectors cannot resolve the fast os-
cillations of an optical field and record only its average in-
tensity over many optical cycles. The mean field �̄ is thus
represented by the zero frequency component, �=0, which is
called the carrier. Practically all the energy present in the
light field belongs to the carrier. Its quantum character is not
considered here because of technical limitations in distin-
guishing photon numbers at this intensity level, although
they may show very interesting quantum features.20 There-
fore, it is justified to consider it as a classical field for our
purposes.

The frequency components around the optical carrier are
called sidebands. The analysis frequency � in which to ob-
serve them is chosen according to the experiment �typically
radio frequencies, �
1–100 MHz�. In the time domain they
are related to the intensity and phase modulations of the
carrier.8 Therefore, in the frequency domain the quantum
states to be considered belong to the sideband region. If no
energy exists in these modes, they are in the vacuum state,
which also possesses intensity and phase uncertainties but
has zero mean values. Thus, light with sidebands in the
vacuum state presents amplitude and phase noise—another
way of understanding the shot noise. In contrast, when light
is externally modulated �such as in the Pound–Drever–Hall
method�, we may associate this energy with the existence of
photons in the sidebands. Similarly, if we apply a specific
quantum dynamics to the beam, the noise in one quadrature
becomes smaller than the shot noise at the expense of in-
creasing the conjugate noise. This situation represents a
squeezed state of light, and in this case the sidebands are also
populated with photons. For typical experimentally observed
squeezing levels, the mean number of photons per frequency
interval is on the order of unity.14

The single-frequency quadrature components are given by

�p��� = e−i������ + ei���*�− �� , �7�

�q��� = − i�e−i������ − ei���*�− ��� . �8�

They have the form of beats between the carrier optical fre-
quency and the sidebands symmetrically located at the fre-
quencies �� around it �normalized by the carrier absolute
amplitude�. Thus, despite the fact that the sidebands have a
very low photon number, their effect can be recorded by
normal photodetectors because of the enormous carrier
power.

Amplitude and phase fluctuations differ only by a phase:
The amplitude quadrature is in phase with the mean field
complex amplitude, and the phase quadrature is in quadra-
ture with it. It is possible to convert phase to amplitude fluc-
tuations by manipulating the relative phase between the car-
rier and sidebands. To show this conversion we consider how
the amplitude quadrature of Eq. �7� would change if we

could shift the carrier or the sidebands by a phase 	 tunable
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by some physical means. By adding this phase, for example,
to the complex sideband �����, the amplitude quadrature
goes to

�p��� → �p���� = ei	e−i������ + ei���*�− �� �9a�

=ei	/2�e−i��−	/2������ + ei��−	/2���*�− ��� . �9b�

By varying 	 from 0 to 2�, the amplitude quadrature as-
sumes the value of the phase quadrature for one possible 	,
	=� �the leading phase plays no role�. A similar effect oc-
curs by varying the other sideband phase. The carrier phase
could be varied as well, �→	+�. In this case, �p changes
according to

�p��� → �p���� = e−i��+	������ + ei��+	���*�− �� , �10�

which is equal to the phase quadrature for 	 equal to � /2 and
3� /2. Homodyne detection is described by an identical ex-
pression, with the difference that 	 represents the local oscil-
lator phase. Therefore, the possibility of independently vary-
ing the phases of the carrier and sidebands allows complete
conversion between the quadratures. This effect is what an
optical cavity realizes close to resonance.

III. OPTICAL CAVITY

An optical cavity is a region of space delimited by mirrors
where light is confined for some time. Only certain frequen-
cies of light which fulfill a resonance condition are able to
probe this region. Every resonance has a dispersive character.
Thus, the different frequency components of a light beam
reflected by an optical cavity close to resonance experience
different phase shifts.

Consider the situation depicted in Fig. 3. The optical cav-
ity has a coupling mirror with intensity reflection R1 and
transmission T1, and an output mirror, with reflection R2 and
transmission T2�1 representing spurious losses. The ampli-
tude reflection and transmission coefficients are, respectively,
rj

2=Rj and tj
2=Tj, j=1,2. The cavity resonance frequency

closest to the incident light beam is denoted by �c. Three
important parameters characterize the optical cavity: The fi-
nesse, F=� �R1R2�1/4 / 1−�R1R2 , the free spectral range

�c=c /L, �where L is the cavity perimeter, that is, the dis-
tance traveled by light in one round trip21�, and the resonance
bandwidth �or full width at half maximum�, ��c=
�c /F.
They represent the amplification of the field inside the cavity
compared to the incident field, the inverse of the round-trip
time of a photon, and the inverse of the average time a pho-
ton remains inside the cavity, respectively.

An optical field �in�t�= �̄in+��in�t� incident on the cavity
¯

Fig. 3. Linear optical cavity with coupling mirror showing the reflectivity R1

and the output mirror with reflectivity R2. The reflected field amplitude �R is
the sum of the incident amplitude �in with the vacuum �v coupled by the
output mirror and losses.
coupling mirror generates a reflected beam �R=�R+��R�t�
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after mixing with the vacuum fluctuations �v�t�=��v�t� that
couple to the cavity through the output mirror and spurious
losses. If we define the analysis frequency relative to the
cavity bandwidth,

�� = �/��c, �11�

they are related to each other by the expression3

�R���� = r�
 + ����in���� + t�
 + ����v���� , �12�

where the optical cavity amplitude reflection r�
� and trans-
mission t�
� functions are

r�
� =
r1 − r2 exp�i2�
/F�

1 − r1r2 exp�i2�
/F�
, �13a�

t�
� =
t1t2 exp�i�
/F�

1 − r1r2 exp�i2�
/F�
, �13b�

and


 = ��0 − �c�/��c �14�

is the detuning, relative to the cavity bandwidth, between the
carrier frequency �0 and the closest cavity resonance fre-
quency �c. These expressions are easily deduced by consid-
ering the sum of all reflected waves inside the cavity.

The squared modulus and phase 	R of r�
� are plotted in
Fig. 4 as a function of 
. The Lorentzian curve �r�
��2 rep-
resents an attenuation in the reflected beam relative to the
incident one. The phase 	R varies from 0 to 2� across reso-
nance such that the relative phase between off-resonant and
exactly resonant fields is �. By energy conservation, �r����2
+ �t����2=1. The phase of t�
� has the same shape, but varies
from 0 to � across the resonance, similarly to simple me-
chanical resonances.

IV. CAVITY EFFECT ON THE FIELD
QUADRATURES

How does an empty optical cavity realize the effects given
by Eqs. �9� and �10�? To understand the answer we recall the
multimode description of bright fields in which each fre-
quency mode is given by Eqs. �7� and �8�. The frequency
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Fig. 4. Squared modulus �continuous line� and phase �dashed line� of r�
�
as functions of the carrier-cavity detuning parameter 
 relative to the cavity
bandwidth. The numerical values R1=95.0% and R2=0.3% were used.
components around the carrier are recorded by the photode-
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tector, and the resulting beatnote signal at a chosen fre-
quency defines the amplitude fluctuations. Photodetectors are
in principle insensitive to the phase fluctuations of light, but
if the light beam is previously reflected by an optical cavity,
additional phase shifts appear between the carrier and side-
bands as a consequence of the cavity dispersion �see Fig. 5�.
The final effect is that the reflected field amplitude fluctua-
tions can provide information on the incident field phase
fluctuations. The exact noise conversion dependence on the
sideband frequency and cavity detuning is deduced in the
following.

We apply Eq. �12� to the field mean amplitude to deter-
mine how the carrier is affected by the reflection,

�̄R = r�
��̄in, �15�

where a zero mean amplitude has been used for the vacuum
field. We choose �in=0, that is, the incident carrier field is
chosen as the phase reference. The same equation applied to
the sidebands results in

��R���� = r�
 + �����in���� + t�
 + �����v���� , �16a�

��
R
*�− ��� = r*�
 − �����in

* �− ��� + t*�
 − �����v
*�− ��� .

�16b�

In this way the reflected field frequency component that is
resonant to the cavity undergoes the attenuation �r�
�� and
the phase delay 	R�
� depicted in Fig. 4,

exp�i	R�
�� = r�
�/�r�
�� . �17�

It is also contaminated by the vacuum field through the co-
efficient �t�
��.

Once we know the cavity effect on the field carrier and

Fig. 5. Representation of the light field frequency components, carrier and
sidebands �upper curve�, and cavity resonance transmission profile �lower
curve�. The cavity is either resonant with �a� one sideband or �b� the carrier.
sidebands, we can deduce their composite effect on the re-
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flected beam amplitude quadrature �pR. To show its explicit
dependence on carrier and sidebands, it may be written as

�pR���� =
�̄

R
*

��̄R�
��R���� +

�̄R

��̄R�
��

R
*�− ��� . �18�

We substitute in Eq. �18� the results of Eqs. �15�–�17� and
obtain

�pR���� = e−i	R�
�r�
 + �����in����

+ ei	R�
�r*�
 − �����in
* �− ���

+ e−i	R�
�t�
 + �����v����

+ ei	R�
�t*�
 − �����v
*�− ��� . �19�

Equation �19� should be compared to Eqs. �9� and �10�.
For simplicity, the output mirror transmission is set to zero in
the following discussion ��r�
� � =1 and �t�
� � =0�, so that
the last two terms of Eq. �19� are zero. It is also supposed
that the cavity acts only on one frequency component at a
time ����1�, as depicted in Fig. 5. Only one of the phase
factors appearing in Eq. �19� is different from unity in this
situation. When one sideband is close to the cavity resonance
�see Fig. 5�a��, Eq. �19� takes the form

�pR���� = ei	R�
+�����in���� + ��in
* �− ��� , �20�

which is analogous to Eq. �9�. If the cavity is resonant to the
carrier �see Fig. 5�b��, then

�pR���� = e−i	R�
���in���� + ei	R�
���in
* �− ��� , �21�

as in Eq. �10�. In this case the carrier plays the same role as
the local oscillator in homodyne detection, but without intro-
ducing extra noise in the beam. In conclusion, the hypotheti-
cal controllable phase 	 considered in the discussion of Sec.
II is precisely 	R�
�.

In the general case when the simplification ���1 does not
apply, the dephasings of the three frequency components in-
terfere. By decreasing the analysis frequency even further,
the limiting situation where the carrier and sidebands cannot
be distinguished from each other inside the cavity bandwidth
is reached ����1�: Because all components acquire the
same phase shift, there is no quadrature conversion. Thus,
there is a minimum value of �� for which the phase noise is
completely converted to amplitude noise. This value can be
shown to be ��=�2 by imposing 	R�
�−	R�
−���=� /2 in
Eq. �19�. If ����2, quadrature conversion is partial; if ��
��2, it is complete.

The same frequency-dependent dephasing is exploited by
the Pound–Drever–Hall technique, but in the opposite sense:
Classical sidebands resulting from external phase modulation
serve as references to the mean field. Even a small detuning
between the laser and the cavity converts the phase to a
detectable amplitude modulation, such that the laser intensity
fluctuation works as a sensitive probe for the detuning.

The final expression for �pR as a function of the input
quadratures �pin and �qin is obtained by inverting Eqs. �7�
and �8� for the incident field and substituting the results in
Eq. �19�,

�pR�
,��� = gp �pin���� + igq�qin���� + gvp�vp����

+ igvq�vq���� , �22�
i�
where �v=e ��vp+ i�vq� /2 is the vacuum fluctuation, and
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2gp = e−i	R�
�r�
 + ��� + ei	R�
�r*�
 − ��� , �23a�

2gq = e−i	R�
�r�
 + ��� − ei	R�
�r*�
 − ��� , �23b�

2gvp = e−i	R�
�t�
 + ��� + ei	R�
�t*�
 − ��� , �23c�

2gvq = e−i	R�
�t�
 + ��� − ei	R�
�t*�
 − ��� , �23d�

are functions dependent on the cavity characteristics and de-
tuning.

The coefficients gp and gq involve the dependence of
�pR���� on the input field quadratures, and gvp and gvq are
related to the vacuum contributions. The effect of these spu-
rious losses is to remove photons from the resonant field
component, partially taking it into the vacuum: If one side-
band is resonant, the reflected beam noise tends to shot
noise; in the case of the carrier, only the “local oscillator” is
attenuated, and no loss of noise information occurs because
the sidebands are totally reflected. If no cavity losses are
present, then �gvp � = �gvq � =0 and �gp�2+ �gq�2=1, and we may
write �gp � =cos  and �gq � =sin  �where  is a cavity-
dependent parameter� to show the analogy with homodyne
detection. The main difference between these two techniques
is the functional form of  on the parameters. Although it
varies linearly with the relative phase between the local os-
cillator and the measured field in homodyne detection, in the
case treated here  results from the interference of three
phase shifts, each of which varies as the arctangent of the
cavity detuning respective to its frequency component.

V. ROTATION OF THE NOISE ELLIPSE

The noise at the analysis frequency � is defined as the
power present in the fluctuations of this frequency compo-
nent. It is measured relative to the shot noise, defined here as
the quadrature noise of a light beam with sidebands in the
vacuum state. The noise spectrum SX�

��� of a generalized
quadrature �X�=exp�−i���+exp�i���* is calculated by the
Wiener–Khintchine theorem,22 which results in the relation

SX�
������ − ��� = ��X�����X��− ���� . �24�

This ideal noise spectrum is a very good approximation to
the actual measured quantity if the measurement integration
time is much longer than the typical time scale of the system
variations, as assumed in Eq. �6�. The delta function in Eq.
�24� means that the treatment assumes perfectly defined fre-
quencies; it disappears as soon as the finite precision of the
frequency definition �bandwidth� is included.

Fig. 6. Noise ellipse representation in the complex plane �shaded ellipse�.
The dotted circle represents the shot noise. The ellipse size compared to the

mean value is exaggerated for ease of visualization.
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The noise ellipse is a representation of the uncertainty sta-
tistics of the carrier intensity and phase at a certain analysis
frequency �see Fig. 6�. It can be rigorously defined as a con-
tour of the Wigner function describing the field in phase
space.23 For a shot-noise limited beam it is a circle with unit
radius. For a squeezed state, its minor axis represents the
maximally squeezed quadrature, and its major axis stands for
the anti-squeezed one. If either of these axes is aligned with
the mean field complex amplitude, then the optima squeezed
and anti-squeezed quadratures correspond to the amplitude
and phase quadratures. The optima noise powers are denoted
as Sx and Sy, and Sp and Sq the amplitude and phase quadra-
tures noise, respectively. The uncertainty principle imposes
SxSy �1 and SpSq�1. If the ellipse axes are not aligned with
�̄, there is a correlation between �p and �q.
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Fig. 7. The rotation angle  between the field carrier and the noise ellipse
introduced by the cavity as a function of 
 for ��=6.

Fig. 8. Phase rotation of the noise ellipse as a function of the carrier-cavity
reflected beam amplitude noise SR�
 ,��� �Eq. �25��, and the frames around

complex plane �see Fig. 6�. For ��=6, Sp�Sq, R1=95.0%, and R2=0.3%.
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The angle between the mean amplitude and the ellipse axis
associated with Sx is �. An optical cavity close to resonance
with the optical field, by realizing the effects in Eqs. �9� and
�10�, rotates this relative angle. In fact, the quantity  is
precisely the angle added by the cavity, presented as a func-
tion of detuning in Fig. 7. Its shape resembles the Pound–
Drever–Hall error signal10 due to the fact that the latter is
chosen as the dispersive part of the cavity action over the
sidebands,24 which is directly related to .

The final step in our derivation is to obtain the amplitude
noise spectrum SR�
 ,��� of the reflected field, calculated
from Eq. �24� and applied to Eq. �22�,

SR�
,��� = �gp�2Sp���� + �gq�2Sq���� + �gvp�2 + �gvq�2, �25�

where Svp���=Svq���=1 is by convention the vacuum noise
and ��vp,q����vp,q�−����=���−��� has been used for the
vacuum field. The noise ellipse was assumed to be aligned
with the carrier ��=0�.

Figure 8 presents a typical noise power curve as a function
of the cavity detuning parameter 
 for ��=6. We chose Sp
�Sq in this example, such that the noise profile contains four
peaks �four valleys would appear instead if Sq�Sp�. Around
the curve, small frames show the reflected field representa-
tion in the complex plane, each corresponding to a labeled
detuning. For large detuning �frame 1�, the cavity has no
effect on the beam, and amplitude noise is observed. As the
first sideband is brought close to resonance, with 
�−��
�frames 2–4�, it undergoes a phase shift, causing a rotation in
the noise ellipse while the mean field remains undisturbed.
At exact sideband resonance �
=−��, frame 3�, the ellipse
rotates by � /2, and phase noise is observed. Only one phase
to amplitude noise conversion occurs when the sideband
passes through the resonance �Eq. �9��. A small fraction of
vacuum fluctuations originating from the spurious losses
contaminates the quantum sideband, making the noise ellipse

ning parameter 
 relative to the cavity bandwidth. The central curve is the
resent, for the corresponding numbered detuning, the reflected field in the
detu
it rep
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a bit closer to the shape of a circle. For �
 � �1, the carrier is
resonant, while the sidebands are far off resonance �frames
6–12�. The carrier experiences a �� /2 phase shift at 

= �0.5, giving rise to two complete conversions �Eq. �10��
between quadratures �frames 7 and 11�. The vacuum now
contaminates only the carrier and attenuates it. Because only
the local oscillator is attenuated, there is no vacuum contri-
bution to the noise measurement, and perfect phase noise is
observed. Hence, peaks 7 and 11 are slightly higher than
peaks 3 and 15. The carrier rotates by � at exact resonance
�frame 9�, without any affect on the reflected beam noise
spectrum, and we observe amplitude noise once more. The
noise ellipse rotates again as the other sideband enters reso-
nance �frames 14–16�. This noise profile gives complete in-
formation about the noise ellipse, allowing for the recon-
struction of the sideband state25 by quantum tomography.26,27

All three frequencies dephasings interfere as the analysis
frequency is decreased. Peaks 3 and 7 �as well as peaks 11
and 15� approach each other and finally collapse in one
single peak for ��=�2. Below this analysis frequency their
amplitudes decrease, because the carrier and sidebands can-
not be perfectly distinguished inside the cavity bandwidth,
and a partial ellipse rotation occurs.

These regimes can be better characterized by observing
the detunings for which SR�
 ,��� has zero derivatives as ��
is varied �see Fig. 9�. For symmetry reasons only 
�0 is
considered, and a perfect cavity is now assumed �R2=0�. For
����2, there is only one detuning where a zero derivative
occurs, because phase to amplitude conversion is partial
�open circles�. As �� increases above �2, three positive de-
tunings with zero derivatives appear in total. Two of them
correspond to the full conversion of phase to amplitude noise
�triangles�, and the third corresponds to the inflection point
between the two complete noise conversions �full circles�. As
��→�, the sidebands and carrier phase shifts no longer in-
terfere. The first full conversion, due to the carrier rotation,
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Fig. 9. Detunings 
�0 for which SR�
 ,��� has zero derivatives as a func-
tion of the analysis frequency ��. Each symbol represents a different zero
derivative point. At ��=�2 a single detuning with zero derivative �open
circles� gives rise to three such points as �� increases, because the complete
conversion of phase to amplitude noise begins to be possible �triangles�. The
gray curves help to visualize the asymptotic behavior. Losses are assumed to
be zero �Rmin=1�.
occurs at 
�0.5 �full triangles�, and the second one, due to
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the sideband rotation, occurs at 
��� �open triangles�, as
expected. The gray lines show this asymptotic behavior.

It can be shown that the zero derivative points also depend
on the losses. As R2 is varied for a given analysis frequency,
the smallest detuning for which complete conversion occurs
goes to zero as R2→R1. For this reason the Pound–Drever–
Hall method has a very steep error signal close to exact reso-
nance and is most effective when R1=R2.

VI. CLASSROOM EXPERIMENT

A classroom demonstration of this effect can be performed
with the same apparatus used in the Pound–Drever–Hall
technique:10 an optical cavity, a laser, a phase modulator, a
photodetector, and a spectrum analyzer �Fig. 10�.

The cavity should be stable, possibly built as a rigid me-
tallic body. The ring geometry would be more convenient
than the linear one, because it does not require an optical
isolator, wave plate, and polarizing beam splitter. Because
the quantum noise is very weak, it would be more practical
to modulate the laser phase �to create strong sidebands�. The
cavity bandwidth has to be compatible with this frequency
�see Figs. 8 and 9�. The beam reflected by the cavity is mea-
sured with a photodetector. The fast components of the pho-
tocurrent are then sent to a spectrum analyzer set to measure
at a single frequency, the same used to modulate the beam
phase. As the laser frequency is linearly scanned around the
cavity resonance �the cavity transmission or reflection profile
can be monitored to check for the resonance condition�, the
noise profile should show the features in Fig. 8. It would be
interesting to change the laser modulation frequency and
check how it affects the noise profile �Fig. 9�. Alternatively,
we could employ a diode laser, which possesses strong phase
noise but low amplitude noise, to eliminate the phase modu-
lator. In this case we would directly measure the laser phase
noise; however, this measurement might require us to am-
plify the photocurrent signal. It is natural that such a demon-
stration be part of a lecture on the optical cavity and on the
quantum noise of light.

VII. CONCLUSION

A detailed description of the physical process that allows
an empty optical cavity to convert phase to amplitude noise
of a bright light beam has been presented. We have consid-
ered amplitude and phase fluctuations as frequency side-
bands around the carrier optical frequency. For measure-
ments based on photodetectors, only the light fluctuations in
phase with the carrier �the amplitude quadrature� can be
measured. However, the dispersive character of an optical

Fig. 10. Schematic of the experimental setup required to perform a class-
room demonstration of the effect. PM: phase modulator.
cavity resonance can be used to introduce a relative phase
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between the carrier and the sidebands. For certain detunings
the conversion of phase to amplitude noise in the beam re-
flected by the cavity occurs: In phase space, the field carrier
and noise ellipse rotate relative to each other. The carrier has
a completely analogous role to the local oscillator used in the
homodyne detection technique, with the advantage of perfect
spatial and temporal overlap and no additional noise. Fur-
thermore, every quadrature is easily accessible, as in homo-
dyne detection, giving complete information about the field
quantum state. The rotation of the noise ellipse of light can
be viewed as an application of the Pound–Drever–Hall tech-
nique in the opposite sense: Instead of using classical side-
bands to measure the detuning between carrier and a refer-
ence cavity, it employs the carrier as a local oscillator to the
quantum sidebands of bright light beams.
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