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Abstract

This thesis reports on the experimental demonstration of a highly deterministic atom-
cavity field interaction. A single 40Ca+ ion is trapped in a Paul trap situated inside an
optical high finesse cavity. The resonator is stabilised to the narrow S1/2-D5/2 atomic
transition and the lifetime of the D5/2 level is measured at different positions in the
vacuum standing wave in the cavity. A reduction of the lifetime of ≈15% in the node
of the standing wave is observed.

For the lifetime measurement a new technique is introduced based on high-efficiency
quantum state detection after deterministic excitation to the D-state and subsequent
free, unperturbed spontaneous decay. This method allows the precise lifetime measure-
ment of both metastable D-levels, D5/2 and D3/2, using a single ion. The result for the
natural lifetime of the D5/2 state of 1168(9) ms agrees excellently with the most precise
published value. The lifetime of the D3/2 state is measured with a single ion for the
first time and yields 1176(11) ms which improves the statistical uncertainty of previous
results by a factor of four. Systematic errors are discussed in detail.
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Zusammenfassung

Diese Arbeit berichtet über die experimentelle Realisierung kontrollierter Kopplung
zwischen einem Atom und einem Resonatorfeld. Ein einzelnes 40Ca+ Ion wird in einer
Paul-Falle gefangen, die sich in einem optischen hoch-Finesse Resonator befindet. Der
Resonator wird auf den atomaren S1/2-D5/2 Übergang stabilisiert, und die Lebensdauer
des D5/2 Niveaus wird an verschiedenen Positionen in der Vacuum Stehwelle des Res-
onators gemessen. Im Knoten der Stehwelle wird eine Lebendauerverkürzung von etwa
15% beobachtet.

Für die Lebensdauermessung wird eine neue Methode vorgestellt, die auf hoch-
effizienter Quantenzustandsdetektion nach deterministischer Anregung und freiem, un-
gestörtem atomaren Zerfall basiert. Diese Methode erlaubt die Lebensdauermessung
beider metastabilen D-Niveaus, D5/2 und D3/2, an einem einzelnen Ion. Das Ergeb-
nis für die natürliche Lebensdauer des D5/2 Niveaus ist 1168(9) ms in hervorragender

Übereinstimmung mit dem genausten bisher veröffentlichten Wert. Die D3/2 Leben-
dauer wird erstmals an einem einzelnen Ion gemessen, wobei das Ergebnis von 1176(11)
ms den statistischen Fehler bisheriger Messungen um einen Faktor vier reduziert. Sys-
tematische Fehler werden ausführlich diskutiert.
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1 Introduction

In an unobtrusive article in 1946 Purcell pointed out that the spontaneous emission
probability of nuclear magnetic moment transitions can be considerably enhanced when
the system is coupled to a resonant electrical circuit. In that case thermal equilibrium at
room temperature could be reached in the order of minutes instead of 5× 1021 seconds
[1]. This article became one of the most widely cited references in works on cavity
quantumelectrodynamics (CQED) being the first explicit note on the ’Purcell effect’ :
the shortening of an atomic lifetime by modified boundary conditions of the vacuum. It
took almost 40 years until it was observed experimentally - in a totally different system
and with pure academic motivation. Today, in the context of quantum computation,

Figure 1.1: Purcell’s original paper on enhanced spontaneous emission in a proceedings
of the American Physical Society, Phys. Rev. 69, 681 (1946)
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1 Introduction

the Purcell effect has a different implication: it is the basis for an interface of atomic
and optical quantum information (QI) for realising a quantum network.

This work reports on an experiment where a single ion has been deterministically
coupled to a single mode of the electromagnetic field inside a cavity and exhibiting the
Purcell effect - small in magnitude but in the purest implementation. The significance
of such a system in the context of modern physics is described in the following historic
overview.

1.1 Single Particle Experiments

Single particle experiments are, in fact, relatively young. The first experiment with a
single particle was reported in 1973 [2] where a single electron was trapped in a Penning
trap. The first single ion was trapped in 1980 in Heidelberg [3]. In the following years,
the experimental control on the single particle level was refined by new techniques,
e.g. laser cooling, and technological advances of laser sources and stabilisation. These
experiences were the foundation for single particle experiments becoming the model
system for proof-of-principle experiments in the emerging field of quantum information
processing (QIP) in recent years.

In classical information theory the basic carrier of information is the bit which can
take two values 0 or 1 typically realised as two different electrical potentials. It has been
pointed out already by Feynman in 1982 [4] that if a quantum mechanical (QM) 2-level
system would be used to encode and process information, interesting computational
possibilities would emerge. The unit of information is then called quantum bit or
qubit and is encoded in a coherent superposition of, for example, two atomic levels.
The power of the QM version of the bit stems from the superposition principle and
the notion of entanglement. The latter is a pure QM feature that has no classical
counterpart. The concept entanglement is one the strangest consequences of QM that
has raised many discussions in the early days of QM, the most prominent between
Bohr and Einstein. A quantitative treatment is still subject of current theoretical
research (see for example reference [5]). Originally, Feynman suggested to use such
a quantum computer (QC) to simulate large quantum systems [4]. Because at that
time any experimental realisation was far out of reach it remained a pure concept at
first. It was not until the early 1990’s that other useful proposals were brought forward
that demonstrated the real power of the QC and created a new field of research in
quantum information. In 1992 Deutsch and Josza formulated a problem that could
be solved more efficiently on a QC [6]. Two years later Shor [7] proposed the first
quantum algorithm of practical interest. His algorithm allows the factorisation of large
prime numbers much faster than any known classical version on a classical computer.
Another proposal was Grover’s search algorithm [8] for searching large databases more
efficiently than its classical counterpart. Especially Shor’s proposal gave the field of
quantum information high practical relevance and attraction. The main reason is that
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1.2 CQED Experiments in Perspective

classical cryptography and hence personal and national security is based on the very
fact that factorising sufficiently large prime numbers, the basis of present encryption
methods, is intractable on classical computers.

Various proposals for the physical realisation of QC have been put forward [9].
One promising realisation are strings of trapped ions [10] which can meet the necessary
experimental requirements for QC, known as the DiVincenzo criteria [11]. Using a single
trapped calcium ion the Deutsch-Josza algorithm has recently been implemented [12].
Also two-ion entangling operations such as the universal controlled-NOT operation
(proposed 1995 [10]) have been demonstrated in ion-traps [13, 14]. The most recent
milestone was the impressive achievement of quantum teleportation of an atomic state
[15, 16]. These developments show that the ion trap realisation at this stage is best
suited at least for proof-of-principle experiments.

1.2 CQED Experiments in Perspective

Experiments in the context of CQED have been realised using various different physical
implementations foremost in atomic and solid state physics. The aim of this section is
to introduce and compare these different approaches and to point out their respective
strengths and limitations.

In atomic physics the first experiments were done in the 1980’s using thermal molec-
ular [17] and atomic beams [18]. In the microwave regime Rydberg atoms became the
workhorse of CQED because of their large dipole moments and the availability of super-
conducting high-Q cavities allowing a strongly coupled system. For example, enhanced
spontaneous emission was first revealed in such a system [19], and in a similar setup
a one-atom maser was realised [20]. Inhibited spontaneous emission was also first ob-
served in Rydberg atoms [21] after the proposal of Kleppner [22]1.

Experiments with single atoms in the optical domain were first realized by Heinzen
et al. [24]. They measured both enhanced and inhibited emission rates2 of a thermal
beam of Ytterbium atoms traversing a confocal optical cavity. Attenuated atomic
beams with single atoms in the cavity at a time have further shown interesting atom-
cavity effects, like normal modesplitting [25, 26]. The experimentally more demanding
optical analogue of the famous one-atom maser (then dubbed microlaser) was also
demonstrated in such a system [27].

The development of laser cooling and trapping of neutral atoms refined these ex-
periments since the atoms could be delivered into smaller volume cavities in a more
controlled way: by dropping them from a Magneto-Optical Trap (MOT) [28] or push-
ing them from below in an atomic fountain [29]. From the cavity transmission signal
the transit and even the trajectory of a single atom could be inferred. Using this signal

1The same effect was also observed about the same time in the cyclotron motion of a single trapped
electron in a Penning trap [23].

2The relative modification of the emission was +1.6%/-0.5%, respectively.
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1 Introduction

the cavity field itself could be used to trap and cool single atoms for up to 3 seconds
[30, 31]. Recently, it has been achieved to guide atoms in a dipole trap into the cavity
on an atomic ’conveyor belt’ [32]. Localisation of the atoms seems to be the high-
est refinement of neutral atom CQED experiments. This, of course is the strength of
trapped ion systems, where localisation of the ion, i.e. its wavepacket is much smaller
than the optical wavelength. This has been used to map the standing wave inside an
optical resonator [33, 34] (see also chapter 6.1.2 in this work).

An alternative approach to CQED has emerged in solid state physics since the 1990’s.
The rapid advance of semiconductor technology enabled the production of nanostruc-
tures from 2-D quantum wells to 0-D quantum dots (QD). A quantum dot is a small
volume (few ten nanometers) semiconductor material embedded in another semicon-
ductor environment resulting in novel properties like discrete energy levels due to its
reduced dimensions. The electronic excitation (exciton) can be tailored to have only 2
bound levels. That is why a QD is also called ’artificial atom’. The same technological
control of semiconductor growth and etching methods allows the fabrication of high-Q
cavity structures in various designs, for example planar Bragg-reflector cavities, micro
discs and -pillars and recently photonic-crystal defect cavities. These ingredients make
CQED with quantum dots a promising field in the future.

A first success of semiconductor quantum optics was the observation of normal
mode splitting in a quantum well coupled to a Bragg reflector microcavity [35]. Altered
spontaneous emission has been observed as early as 1988 [36] in double heterostructures
but the first clear demonstration of the Purcell effect in QD’s was presented in 1998 by
Gérard et al. [37]. They measure a 5-fold enhancement of the spontaneous emission rate
of an ensemble of QD’s coupled to a planar cavity in a micro pillar. The emission rate
is determined by time resolved photoluminescence detection. In an improved system
with a microdisc cavity enhancements of up to a factor of 12 have been reported [38].
An alternative measurement approach for the spontaneous emission rate is pump-power
dependent cw photon correlation of the photoluminescence. This has been applied by
Kiraz et al. [39] where a single QD 3 coupled to a microdisc cavity has exhibited a 6-fold
exciton lifetime reduction. There, also the ability to tune the QD’s resonance frequency
has been demonstrated. Finally, a factor of 9 in the emission enhancement has been
achieved in QDs in a photonic-crystal defect cavity [41]. A remotely related approach
to observing CQED effects that is worth mentioning here is doped microspheres [42]
and nanocrystals on microspheres [43].

An overview over the relevant different systems is illustrated in fig.1.2. The picture
attempts to summarise in one view the respective strengths and limitations of exper-
imental approaches to CQED. However, the most important question is, as to which
goal these measures refer. All techniques have equally revealed CQED effects and have
confirmed the theory, certainly one aim of experimental physics. On the other hand, as
noted in the introduction, one key role of CQED is that of an atom-photon interface in

3See also reference [40]
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Figure 1.2: Schematic comparison of various physical implementations of CQED exper-
iments with respect to deterministic cavity coupling. Spatial localisation
refers to the coupling control, i.e. how well can the particle be placed with
respect to the cavity mode. Temporal localisation is related to interaction
time. The grey shade of the boxes indicates the achieved coupling strength
(darker = stronger).

quantum information processing. The key requirement is deterministic coupling, both
in space and time. In that sense the trapped ion system is the ideal system where
qubits can be placed at specific points in the cavity mode. Unfortunately, the cou-
pling strength is technically still very limited (c.f. sections 2.3 and 3.1.2). The overall
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1 Introduction

technical complexity is also manifest in that the above mentioned experiments are not
only very recent but also unique. With cold atoms, Rydberg atoms or quantum dots
strong coupling is accessible but other drawbacks are apparent. In the first two cases
the interaction times4 have been increased but e.g. lifetimes even in a dipole trap never
reach the ion trap order of magnitude. With QDs exact positioning of a quantum dot
with respect to the cavity mode has been the main drawback. While the localisation
is ideal the spatial and spectral overlap is not always deterministic. The best suit-
able quantum dots have to be selected for the experiment. This system, however, has
the huge advantage that nanotechnology is still growing fast. In addition, it has the
best scaling properties which makes it a promising candidate in the future for beyond
proof-of-principle experiments. Recently, proposals have been put forward to combine
the advantages of both atomic and solid state systems in a hybrid system [48], an idea
which might be extended to CQED experiments.

This thesis is organised as follows: Chapter 2 provides some theoretical background
of atom-field interaction and spontaneous emission. In chapter 3 the experimental
set-up is described and some operational principles are outlined. Chapter 4 is an in-
troduction to the general experimental tools and methods along with some important
results which form the prerequisites for the following experiments. In chapter 5 the
new lifetime measurement technique is introduced along with the results, which are
analysed and discussed. The CQED measurement, the observation of cavity enhanced
spontaneous emission is found in Chapter 6. All results are summarised in chapter 7
which concludes and provides an outlook. The appendices include some practical tech-
nicalities of the experiment and statistical methodology used for the lifetime analysis.
Finally, the two publications comprising the important results are appended.

4It should be noted that interaction time is much less a problem in the microwave regime: the transit
time through the large mode volume of a millimeter wavelength cavity field is much longer than
the coupling time scale in the strong coupling regime.
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2 Theory of Spontaneous Emission

In this chapter, the theoretical foundation for spontaneous emission of excited atomic
states is presented. Starting from general semi-classical atom-field interaction the con-
cept of the quantum vacuum is introduced. Finally, the way cavities modify the vacuum
along with natural atomic properties is discussed. Spontaneous emission is one of the
most demanding problems in the study of atom-field interactions, many different ap-
proaches were developed and even today conceptional subtleties exist, for example, how
to interpret the role of vacuum fluctuations (VF). Here, some of the approaches are
discussed with emphasis on the physical concepts as opposed to pure mathematics.

2.1 Approaches to Atom-Field Interaction

A first success in describing atom-field interaction which was consistent with the find-
ings of Planck, i.e. the introduction of light quanta of energy ~ω, was achieved by
Einstein in 1917. He considered 2-level atoms in equilibrium with a thermal electro-
magnetic field (blackbody radiation) and found relations for the coefficients of stim-
ulated emission B21 and absorption B12 and spontaneous emission A21, the so-called
Einstein coefficients. Using only the Boltzmann distribution for the ratio of atoms in
the excited and ground state (N2 and N1) and the energy density of the field ρE(E) he
derived the relation of spontaneous and stimulated emission coefficients [51]:

A21

B21

=
~ω3

π2c3
(2.1)

In the absence of an external field N2(t) = N2(0) · e−A21t describes the exponential
decay of the excited population N2. The density of field modes ρ(ω) in the interval
[ω, ω + dω] is found by counting states in k-space and converting the sum into an
integral over frequency

ρ(ω) =
ω2

π2c3
(2.2)

The energy density follows from ρE(E) = 〈n〉~ωρ(ω) where 〈n〉~ω is the average photon
energy. The expression for ρE(E) equals Planck´s formula for the blackbody spectrum.
Einstein´s model offers a consistent mathematical expression for the decay rate but

7



2 Theory of Spontaneous Emission

is unsatisfactory, however, in the sense that it is a phenomenological ’postulate’ of
spontaneous emission. Nevertheless, the coefficients can be calculated in the framework
of a semiclassical theory.

2.1.1 Semiclassical Theory

When the full quantum mechanical machinery was developed in the 1920’s the prob-
lem of spontaneous emission could be tackled in a more rigorous way: In a simple
semi-classical theory the atom is treated by standard quantum mechanics whereas the
field is still described by the classical Maxwell equations. In perturbation theory the
Hamiltonian is conveniently written as a sum of an unperturbed atomic term Ha and
an interaction term Hint incorporating the atom-field coupling. A quantum state is
determined by its (complex) probability amplitudes cn for a set of basis states ϕn. For
the 2-level atom considered here and referring to the quadrupole transition between
S1/2 and D5/2 states at ωSD, the state is written:

|ψ〉 = c1|ϕ1〉+ c2|ϕ2〉 = c1|S1/2〉+ c2|D5/2〉 (2.3)

substituting into the time dependent Schrödinger equation (TDSE) yields two coupled
differential equations for the amplitudes [50], e.g. for c2:

ċ2 = −
1

~
〈S|H̃int|D〉eiωSDtc1 ≡ −

1

~
|H̃int|eiωSDtc1 (2.4)

For electromagnetic (EM) fields with harmonic time dependence, the transition matrix
element of atom-light interaction is of the form: |H̃int| = |Hint|eE0cos(ωt) where |Hint|
depends on the type of transition. Integrating 2.4 from 0 to t and applying the rotating
wave approximation (RWA, see [50]) yields

|c2|2 =
|Hint|2
4~2

sin2[(ω − ωSD)t/2]

(ω − ωSD)2
. (2.5)

For longer times 1/t < (ω − ωSD) the last term can be written in terms of the Dirac
delta function δ(ω − ωSD)

1. Considering a continuous density of states ρ(ω) the total
probability of finding the excited state is

|c2|2 =
1

2~2

∫

dω|Hint|2tρ(ω)δ(ω − ωSD) (2.6)

The delta function under the integral is equivalent to the assumption that |H̃int(ω)|
and ρ(ω) vary slowly in the vicinity of ωSD. Evaluating 2.6, Fermi´s Golden Rule is
recovered:

1

τ
= Γ =

d

dt
|c2|2 =

π(eE0)
2

2~2
|Hint|2ρ(ωSD) (2.7)

1One definition of the Dirac delta function is: δ(ω − ω0) =
2
π limt→∞

sin2[(ω−ω0)t/2]
(ω−ω0)2t

8



2.1 Approaches to Atom-Field Interaction

To connect this expression to the Einstein coefficients the monochromatic field strength
E0 must be replaced by an integrated energy density U(ω) over all frequencies

1

2
ε0E

2
0 =

∫

dωU(ω) (2.8)

where for the vacuum the integral is simply ~ωρ(ω) = (~ω3)/(π2c3). Substituting into
2.7 and identifying the stimulated transition rate B21 = πe2

~2ε0
|H̃int|2 equation 2.1 is

recovered.
For the evaluation of 2.7 the matrix element |Hint|must be specified. For a quadrupole

transition the atomic quadrupole moment Q̂ couples to the gradient of the electric field:

Hint = Q̂∇E(t) (2.9)

For the transition between the S1/2,m = −1/2 and D5/2,m = −5/2 Zeeman sublevels
the matrix element computes to [113]:

|Hint| = |〈S1/2|(r.e)(r.k)|D5/2〉| (2.10)

where r is the operator describing the position of the valence electron relative to the
atomic center of mass and k and e descibe the light’s direction and polarisation, re-
spectively. The matrix element is related to the coupling parameter, i.e. the Rabi
frequency Ω0 by:

Ω0 =
eE0

2~
|Hint| (2.11)

2.1.2 Jaynes-Cummings Model

For a full quantum model the field must be quantised as well. This was considered by
Jaynes and Cummings [54] after whom the well known model was named which has be-
come the ’theoretical workhorse’ in quantum optics. In this formalism the Hamiltonian
for a 2-level atom in a quantised EM-field is written as

H =
1

2
~ωaσz

︸ ︷︷ ︸

+ ~ωkaa
+

︸ ︷︷ ︸
+ ~g(a+σ− + a−σ+)
︸ ︷︷ ︸

(2.12)

σz is one of the Pauli spin operators and can be written in terms of the commutator
of the spin flip pseudo-operators σ− and σ+, σz=[σ−,σ+]. The field operators a and a+

are also called photon annihilation and creation operators and obey the usual bosonic
commutation relations [a, a+] = 1. The atom-field coupling is here denoted by g which
is related to equation 2.11 by g = 1

2
Ω0. The RWA is applied by omitting terms like a+σ+

and a−σ−. In the Heisenberg picture the TDSE for the operators becomes i~ d
dt
A =

[H,A] and one finds for the equation of motion for the atomic operator

σ̈z = Ω2σz (2.13)

9



2 Theory of Spontaneous Emission

This yields an oscillatory solution which describes a harmonic exchange between atom
and field. The frequency Ω is the generalised Rabi frequency that is encountered
frequently in quantum optics; Ω =

√

Ω2
0 +∆2. The Hamiltonian 2.12 can be readily

modified to be applied to many other problems in quantum optics, e.g. for treating
the quantised motion of a cooled, trapped atom which is used in chapter 4.3. The
Hamiltonian then includes the phonon operators, a and a+ of the same form as the
photon operators, for the vibrational modes of the atom, and one finds solutions for
the quantised Rabi frequencies depending on the motional state.

In section 2.3 the Jaynes-Cummings model is applied to atom-cavity field coupling
where g then depends on the cavity mode volume.

One of the consequences of formally quantising a harmonic oscillator is its zero-point
energy E0 =

1
2
~ωk corresponding to half an excitation quantum. This means that even

for a zero EM field there remains a virtual field which is referred to as quantum vacuum
consisting merely of ’vacuum fluctuations’ (VF). Mathematically, this translates to the
expectation value of the electric field operator in vacuum being zero: 〈vac|Ê|vac〉 = 0,
whereas the variance remains nonzero (since 〈vac|Ê2|vac〉 6= 0).

The concept of VF was quickly regarded to be responsible for spontaneous emission
[55, 56]. It was, however, proven to be an over-simplified picture.

2.2 Spontaneous Emission in the Weisskopf-Wigner

Approximation

The first satisfactory mathematical account for the irreversible exponential decay be-
havior of excited atomic levels was presented by Weisskopf and Wigner in 1930 [55].

In terms of the chosen basis ϕ1 = |D, 0〉 = |exited atom, vacuum〉 and ϕ2 =
|S, kα〉 = |atom in groundstate, one photon in kth mode〉 the quantum state vector in
the Schrödinger picture is written as [51]

ψ = A(t)eiωSDt|D, 0〉+B(t)eiωαt
∑

α

|S, kα〉 (2.14)

where ϕ1 describes the state where the atom is in the excited state and the EM field in
the ground state (vacuum state) and ϕ2 is the atomic ground state and a photon in the
mode with wave vector kα, frequency ωα and polarisation vector êα where the index α
runs over all frequencies and polarisations. The multimode version of the Hamiltonian
2.12 is

H =
1

2
~ωSDσz + ~

∑

ωkaαa
+
α + ~

∑

gα(a
+σ− + adj.) (2.15)

Inserting into the TDSE one obtains two coupled differential equations for the ampli-
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2.2 Spontaneous Emission in the Weisskopf-Wigner Approximation

tudes A(t) and B(t). The time dependent amplitude for ϕ1 is

Ȧ(t) = −
∑

α

g2α

∫ t

0

dt′e−i(ωSD−ωα)(t−t′)A(t′) (2.16)

The essential approximation used here is to set
∫ t

0
dt′A(t′) = A(t)

∫ t

0
dt′. This is some-

times called Markov approximation and means that the amplitude is independent of
earlier times, in other words, it has ’no memory’. Equation 2.16 contains a typical QED
integral which can be replaced for sufficiently long times (ω0t >> 1) using Cauchy’s
’Residuensatz’:

∫

dt′e−i(ω−ω0)(t−t′) = −iP
(

1

ω − ω0

)

+ πδ(ω − ω0). (2.17)

Then after turning the sum over modes into an integral 2.16 can be written as

Ȧ(t) = −(Γ/2− i∆)A(t) (2.18)

to reveal an exponential decay of the excited state probability: |A(t)|2 = e−Γt. From
equations 2.16 and 2.17 the decay constant is

Γ =
e2ω3

SD

~πc3ε0
|Hint|2 (2.19)

which recovers expression 2.7 when one uses equation 2.8 again. The other important
result of 2.18 is the implication of the imaginary part i∆ which describes a frequency
shift ∆ of the upper level.

There remained, however, several puzzles, concerning the interpretation of the physi-
cal origin of spontaneous decay or the respective roles of VF, the quantum point-of-view
and radiation reaction (RR)2, the classical point-of-view. This discussion has been em-
phasized by Milonni [52](and references therein) and others [53]. Note that the issue
of vacuum fluctuations is not explicit in the Weisskopf-Wigner-formalism using the
Schrödinger picture. In the Heisenberg picture the equations of motion for the atomic
spin operators and the field operators are integrated. In analogue to equation 2.18 one
finds the time derivative for the expectation value of the atomic spin operator σz. It
turned out that the respective ordering of field and atomic operators plays the crucial
role in the interpretation of the origin of spontaneous decay, see e.g.[52]. For example,
the atomic operator equation reads

σ̇(t) = −iω0σ + g(a+ a+)σz (2.20)

2In classical electrodynamics RR accounts for the back action of the radiated field onto the emitting
(point) particle.
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2 Theory of Spontaneous Emission

The solution for the field operator a(t) can be decomposed into a sum of a vacuum
part and a source field created by the atomic radiation a′(t).

a(t) = a(0)eiωαt + a′(t) (2.21)

The second term of 2.20 is not unique with respect to ordering of operators. It could
also be written as, for example g(σza+ a+σz) which is called ’normal ordering’. Then
only the source term a′(t) contributes to the expectation value 〈vac|σz|vac〉 and the
decay would be interpreted to be solely the result of radiation reaction. Other orderings
yield contributions from both, VF and RR.

2.3 Cavity QED and The Purcell Effect

In the expression for the decay rate 2.19 a spectral mode density is implicit. It would
therefore not come as a surprise if the decay is modified by changing the mode density
of the vacuum with specific boundary conditions. In a rather brief but often cited
publication, Purcell [1] was the first to predict that for a nuclear spin system coupled
to a resonant electrical circuit the spontaneous decay at radio frequencies could be
enhanced by a factor of f = 3Qλ3/4π2V where Q(= ω/δω) is the resonator´s quality
factor and V is it´s mode volume. For a confocal optical cavity the derivation differs
slightly. The decay rate into the cavity mode is modified by the response function t(ω)
which describes the enhancement of the intra-cavity field3

γ

γfree
= t(ω) ' F

π

1

1 + (F/π)2) sin2(ωL/c)
(2.22)

which has a maximum

γenh
γfree

=
F

π
(2.23)

The total decay rate Γenh into solid angle ∆Ω that the cavity mirrors subtend is

Γenh = Γfree + γenh = Γfree[1 +
F∆Ω

4π2
] = Γfree[1 +

F

4π2
λ2

w2
0

] (2.24)

Γenh = Γfree[1 + f ] (2.25)

To improve this naive first calculation the geometry of the radiation pattern must be
accounted for. So we write f = αFλ2/w2

0. For a quadrupole transition with ∆m = 2

3This is related to the ratio of cavity to free space density of modes ρcav(ω)/ρfree(ω). Around the
resonances t(ω) can be written as a Lorentzian.

12



2.3 Cavity QED and The Purcell Effect

the geometric factor turns out to be α = 5/π3 [118]. In terms of Q, λ and V the
expression for f for a quadrupole transition becomes f = 5Qλ3/32π3V .

Within the Jaynes-Cummings formalism from section 2.1.2 the enhanced decay rate
can be derived more formally. The effective (non-Hermitian) Hamiltonian for the cou-
pled atom-cavity system is modified from 2.12 and includes a loss term for both atom
(decay constant γ⊥) and cavity (decay constant κ)

Heff = Hacf − i~(γ⊥σ+σ− + 2κaca
+
c ). (2.26)

Using the same basis states as in the Weisskopf-Wigner approach |D, 0〉 and |S, kα〉
and solving the TDSE we find the time dependent coefficients A(t) and B(t) [51]:

A(t) ∼ eλ+t;B(t) ∼ eλ−t (2.27)

where the eigenvalues are

λ± = −γ⊥ + κ

2
±
√

(−γ⊥ + κ

2
)2 − g2 (2.28)

The dynamics now depends on the system’s parameters (γ⊥, κ, g). For the case where
the cavity interaction is dominated by dissipation, i.e. (κÀ g2/κÀ γ⊥) the exponents
λ± are real and the system is damped which is called the ’bad cavity regime’. This
is the relevant regime realised in the cavity experiment described in this work. The
eigenvalues can then be approximated by

λ+ ≈ −(γ⊥ +
g2

κ
) = −γ⊥(1 + 2C) (2.29)

λ− ≈ −(κ−
g2

κ
) (2.30)

where C = f/2 = g2

2γ⊥κ
is defined as the cooperativity parameter. When the expres-

sions for g, κ and γ⊥ are substituted one finds again the expression 2.24. Because of
the weak atom-cavity coupling the new eigenstates retain their character to a large
extent: λ+ corresponds to an ’atom-like’ state consisting mainly of |e, 0〉, accordingly
λ− corresponds to a cavity state. The important result from 2.29 is that the atomic
decay occurs at a faster rate4 expressed by the Purcell factor F = (1 + 2C) or a rel-
ative shortening of β = 2C/(1 + 2C). Another consequence is that the geometry of
the emission is modified: the enhanced decay (fraction β) occurs into the cavity mode,
that is, for large Purcell factors the emission pattern becomes one-dimensional [25].

For the quadrupole transition we obtain:

g =
e

2~
|Hint|

√

2~ω
ε0Lπw2

0

=
eEp

2~

√
2|Hint| ≡ Ω0/2 (2.31)

4Similarly, the cavity decay rate is modified.
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2 Theory of Spontaneous Emission

where the ’electric field per photon’[51]

Ep =

√

~ωc

ε0V
(2.32)

has been introduced. L and w0 are the length and waist of the cavity mode, respectively,
and determine the cavity mode volume V = Lπw2

0. Comparing equations 2.11 and 2.32:
Ep replaces the field amplitude E0, the reason why 2g is also called the vacuum Rabi
frequency Ω0. For the relevant S-D transition, the atom-cavity coupling is evaluated to

g =

√

5γ⊥cλ2

2π2V
(2.33)

Considering the system’s parameter (g, κ, γ) = 2π(89, 105, 0.16)s−1, c.f. chapter 3, the
value of C0 is calculated to C0 = 0.51 and the maximal decay enhancement is expected
to be around two. Note that for applications such as the quantum information interface
or a single photon source the cavity decay must be set the fastest timescale (’bad’
cavity) because once the photon is emitted into the cavity it must be able to leak out
before being absorbed again by the atom.

If g À κ, γ⊥, i.e. the cavity coupling is the dominant parameter, then the eigenvalues
are imaginary and the system shows oscillatory behavior: the energy can be exchanged
periodically between atom and cavity field. This so-called ’strong coupling regime’ is
realised, for example, in the neutral atom experiments in references [28, 30, 31].

The Jaynes-Cummings model can also be modified if the quantum state is described
by a density matrix ρ rather than a state vector to incorporate the incoherent process.
The TDSE for operators is then called the master equation:

ρ̇ =
1

i~
[H, ρ] + Lρ (2.34)

where L is the so-called Liouvillian of the system:

Lρ = γ([σ+σ−, ρ] + 2σ+ρσ−) (2.35)

This models a small quantum system coupled weakly to a large reservoir or bath. The
reservoir incorporates all empty modes of the EM field. The modes are uncoupled and
hence it is sometimes expressed as the reservoir having no ’memory’. This assumption
is also implicit in the Weisskopf-Wigner method.
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3 Experimental Set-Up

The whole experimental set-up is a complex entity consisting of a detailed trap-cavity
apparatus in a UHV camber, the heart of the experiment, and various laser sources,
optical components and electronics. Since the experiment has been developed over
many years most components have been described in detail elsewhere (in other PhD
theses produced in this group). References are given accordingly.

The apparatus described here has been set up up by A.B. Mundt within his PhD
work where it has also been described in more detail [113]. First, the basic operational
principles will be presented followed by the technical implementation.

3.1 General Principles

3.1.1 Ion Traps

Since electric fields obey the Laplace equation 4Φ = 0, confinement of a charged
particle is not possible in static electric fields alone. One possible trick is to use a
time dependent field, the idea of dynamical electromagnetic confinement. Effectively,
an appropriately varying quadrupole field generates a pseudo-harmonic potential for
confinement in all three dimensions. First a 2-dimensional experimental implementa-
tion was realised by Wolfgang Paul in 1953 intended for mass-spectrometry. A little
later, the same principle led to the radio frequency (RF) Paul trap [57, 58] from which
the modern traps differ only in technical refinements like, for example, miniaturisation
and more complex electrode structures. The mathematical description, however, is
essentially the one of the original mass spectrometer.

Consider a quadrupole potential composed of static and time dependent part:

Φ(x, y, z, t) =
1

2
[U + V cos(ΩRF t)][αx

2 + βy2 + γz2] (3.1)

The restrictions for the coefficients (α, β, γ) then follow from the Laplace equation:

α+ β + γ = 0 (3.2)

which illustrates the static instability: at least one of the coefficients must be negative
yielding a ’saddle’ potential.
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3 Experimental Set-Up

The equation of motion (in the x-direction) for the trapped particle is derived from
3.1:

ẍ =
−Q
m

∂Φ

∂x
=
−Qα
m

[U + V cos(ΩRF t)]x (3.3)

which can be cast into a standard mathematical form, the so-called Mathieu differential
equation:

d2x

dξ2
+ [ax − 2qx cos(2ξ)]x = 0 (3.4)

using the substitutions

ξ =
1

2
ΩRF t, ax =

4QUα

mΩ2
RF

; qx =
2QV α

mΩ2
RF

(3.5)

where ΩRF is the radio frequency (RF) trap drive, Q and m the ion’s charge and mass,
and α depends on the trap geometry. The exact solution to 3.4 is quite complicated
and can be found e.g. in references [59] and [60]. The lowest order approximation is
already satisfactory in most cases and describes oscillatory motion:

x = Ax cos(ωxt+ φ)(1 +
qx
2
cos(ΩRF t)) (3.6)

which can be decomposed into a harmonic or secular motion at frequency ωx (the trap
frequency) and a fast, driven amplitude modulated ’micromotion’ at the trap drive
frequency ΩRF . In the experiment the micromotion is minimised to the largest possible
extent by shifting the ion into the node of the RF, see section 4.1, and is often neglected
(secular approximation). The ion can then be regarded as effectively being confined in a
pure harmonic pseudo-potential. For a ring Paul trap which is cylindrically symmetric
about the z-axis (normal to the ring) the trap frequencies (radial and axial) are given
by

ωi = βi
ΩRF

2
and βi =

√

ai +
qi2

2
. (3.7)

where the trap parameters a and q are

ax = ay = ar = −
8QU

m(r02 + 2z02)ΩRF
2 , az = −2ax ,

(3.8)

qx = qy = qr =
4QV

m(r02 + 2z02)ΩRF
2 , qz = −2qx ,

However, stable solutions exist only for certain values of a and q. Here, the trap is
operated at parameters a ≈ 0 and q ≈ 0.5−0.6 which are well in the first stable region.
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3.1 General Principles

Besides the ring trap various other designs exist to realise a quadrupole field. Origi-
nally, the quadrupole mass filter consisted of four parallel hyperbolic rods. Two endcaps
at a positive DC-voltage achieve axial confinement which converts the mass filter into
a linear Paul trap. Such a trap is suited in particular for trapping large ion crystals
or strings of few ions as required for QC. The ring trap design has only one point in
space with no RF present (point-symmetric potential) and is therefore most suitable
for single ion experiments. It has also other advantages such as simpler design than
linear traps at similar trap frequencies and better optical access.

The other concept for electromagnetic ion confinement is the Penning trap which is
based on a combination of a static electric quadrupole field and a static magnetic field.

As a final note: the principle of ion traps is extensively discussed in the recommend-
able book by Ghosh [59] and appears also in all PhD theses produced in this group,
e.g. [113–119].

3.1.2 Optical Resonators

The concept of an optical resonator is that light is reflected back and forth between
two spherical mirrors1 mapping the mode onto itself after a roundtrip. Some spectral,
temporal and spatial properties of the resonator mode are discussed in the following.
One consequence of multiple reflections is wavelength selectivity due to interference

�����

�
�

�

Figure 3.1: Sketched cavity mode and geometric parameters. The cavity length L is
close to the mirror curvature R (near-confocal cavity). The fundamental
Gaussian mode TEM00 is characterized by the waist w0. The curved lines
indicate the mode´s phase fronts.

1Various other types exist, e.g. ring cavities with three or more mirrors

17



3 Experimental Set-Up

of the reflected fields: The cavity can only sustain certain frequencies that fulfil the
resonance condition, the principle of the Fabry-Perot filter. The intensity transmission
function (the square of the sum of the reflected field phasors) looks as follows:

I(ω) =
Imax

1 + (2F/π)2) sin2(πω/νFSR)
(3.9)

For high mirror reflectivities this function has periodic Lorentzian peaks with linewidth
δω separated by the so-called free spectral range (FSR) ωFSR. The ratio is the finesse
of the cavity

νFSR

δν
= F (3.10)

which depends on the mirror reflectivity R

F =
π
√
R

1−R (3.11)

whereas the FSR only depends on the resonator length:

νFSR =
c

2L
(3.12)

which corresponds to the reciprocal of the time for a complete roundtrip for the light
between the two mirrors. Transmission and absorption of the mirrors are losses that
cause the light intensity in the cavity to decay exponentially I(t) = I0e

(−t/τ). The
cavity decay rate κ (the decay of the field) is related to the decay time τ and the cavity
linewidth by:

κ =
1

2τ
= πδν (3.13)

Spatially, the allowed transverse modes are solutions of the paraxial Helmholtz equa-
tion of which the Gaussian mode, the TEM00 mode, is the simplest and most important
case here. It is characterised by a waist w0 (see also fig. 3.1) depending on the cavity
configuration [61]:

w2
0 = λ/2π

√

L(2R− L) = λb

2π
(3.14)

where the waist is expressed in terms of the wavelength and the confocal parameter b.
For a confocal cavity, L = R and

w0 =

√

λL

2π
(3.15)

From equation 3.14 the waist can be reduced by increasing the cavity length towards
L = 2R (concentric cavity) or L = 0 (planar cavity), both at the cost of increasing
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3.1 General Principles

instability of the resonator. For cavity QED experiments the key parameter is actu-
ally the mode volume V = Lπw2

0 which is generally sought to be minimised. The
significance of the mode volume will become lucid in section 2.3.

Figure 3.2 shows a photograph of the experimental realisation: the ring trap in
the cavity. The cavity mirrors are hidden behind the conical metal caps to protect
them from the atomic Calcium beam and to shield the trap from stray charges on the
dielectric high reflectivity coatings. The hook shaped electrodes are for compensating
stray electric fields which lead to micromotion.

Figure 3.2: The miniaturised Paul trap. The ring electrode (diameter ≈ 1.4 mm) and
the endcaps (tip electrodes) are made of molybdenum wire (diameter ≈
0.2 mm). The hook shaped wires are the compensation electrodes used to
shift the ion into the node of the RF field.

19



3 Experimental Set-Up

3.2 The Trap-Cavity Assembly

shielding
caps

PTZ

bellow

micrometer
screws

glass cell

to pump unit

feedthrough

integrated spring element

cavity
mirror

electron
gun

Ca  oven

Figure 3.3: Schematic drawing of the trap-cavity assembly inside the vacuum chamber.
All components are mounted on a stainless steel baseplate (248 mm in
diameter) inside a glass cell for optimal optical access. The glass cell is
sealed onto the steel base with helico-flex seals, which initially resulted in
vacuum problems. Two flanges are welded onto the baseplate, connecting
pump unit and electrical feedthrough to the vessel. The trap can be moved
relative to the cavity by micrometer screws. Wiring and details are omitted
for clarity. (Drawing reprinted from reference [113].)
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3.2 The Trap-Cavity Assembly

Figure 3.4: Photograph of the assembled experimental apparatus after evacuation and
bakeout on the optical table. For good optical access, cavity axis and trap
are mounted 94 mm above the optical table. The cuboid glass cell and its
flange are visible. At the bottom of the cavity mount, the two Calcium
ovens and the aperture for the atom beam are mounted.

21
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3.3 Calcium

Generally, in ion traps charged ions with hydrogenlike electron configuration are best
suited (obvious representatives are the alkaline earth metals: Be, Mg, Ca, Sr, Ba, Ra).
They all have the same electronic ground state configuration: a valence S-electron
around a closed shell in nobel gas configuration. The criteria for choosing the best
suited ion depend on the application. Possible criteria include transition frequencies,
mass and atomic level structure.

Transition wavelengths should be easily accessible with common (commercial) laser
sources preferably diode lasers which are relatively cheap and allow a compact experi-
mental set-up. Drawbacks of diode lasers might be limited output power and linewidths
and beam profile. The atomic level structure should include features like closed cycles
for cooling and long lived states like metastable states or hyperfine splitting. Finally,
the natural abundance of the specific element should be high enough to allow easy and
efficient loading into the trap.

One special feature of Calcium is that it has a metastable level that is long lived and
therefore spectrally narrow. This offers diverse applications in fields such as quantum
computation and optical frequency standards. The natural line width of below 1 Hz
implies a Q-factor of ∼ 1015 which could be used in an optical frequency standard
[62] potentially improving current microwave based frequency standards by more than
an order of magnitude. For the current status of optical frequency metrology see
[63, 64] and references therein. The long lifetime also offers the possibility of using
it for quantum information processing. For iontrap QC application the gatespeed is
the main criterion. It is proportional to the squareroot of the recoil energy times
trap frequency, i.e. inversely proportional to the transition frequency over mass (see
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Figure 3.5: The five lowest energy levels of 40Calcium+
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3.4 Laser Sources

reference [65] or [114] for more detail).
Calcium is also of major interest in astrophysics because of its abundance in stellar

coronae and interstellar gases. Absorption lines in the near infrared and near ultraviolet
from singly ionized Calcium (Ca II) are among the most prominent that are accessible
from the earth. Relevant are all strong transitions in the 5-level scheme (S-P and P-D
transitions, see level scheme) at 393 and 397 in the UV (H and K lines)and the so-called
Near Infrared Triple (NIT) at 850, 854 and 866nm. From the absorption strengths (or
ratios of linestrengths) and linewidths information about kinematics and distribution of
stellar and interstellar gases can be extracted. Most directly related to the experiment
described here is the 854nm line which corresponds to the observation of the Ca II
D5/2 level. Since the lifetime of this level is sensitive to collisions it is an independent
indicator for temperature and density in stellar clouds. The H and K lineprofiles were
used in the survey of 44 galactic stars and revealed the detailed structure of several
individual interstellar cloud components [66]. The UV and 854 lines were also used, for
example, in the investigation of the spatial structure of the disk of dust around Beta
Pictoris [67, 68], a near-by star with cold disk-shaped dust distributed around it. Its
study is highly interesting because of the possibility of observing an analogue to the
solar system in its early stage, in the hope of finding clues about the mechanism of
planet formation (special asymmetries in the disk). Another example of the application
of calcium spectroscopy in astrophysics is the study of T Tauris stars, young protostars,
which could give insight into the development of stars.

For a reliable and also quantitative analysis precise spectroscopic data about transi-
tion strengths and wavelengths are required. These data were provided by theoretical or
semi-empirical calculations and experimental measurements which, however, in the past
had discrepancies of up to 30%. That is why lifetime measurements of the metastable
levels in calcium is of such interest for the astronomers.

3.4 Laser Sources

To drive the relevant transitions in fig. 3.5 the following laser sources are needed:
Cooling Laser at 397 nm [118]

The UV light used for Doppler-cooling and state detection on the S1/2↔P1/2 dipole
transition is generated by frequency doubling a 794 nm Ti:Sapphire (Ti:Sa) laser2.
The Ti:Sa is locked using Pound–Drever–Hall method (PDH) [71] to a temperature
stabilised reference cavity, resulting in a linewidth of about 200 kHz. Frequency dou-
bling is achieved in a commercial LBO doubler3 crystal. Pumped with ≈ 1.5 W from
the Ti:Sapphire it yields ≈ 200 mW UV light power at 397 nm. A power of 3 mW at
the fibre output on the experiment table is sufficient for laser cooling of the trapped ion.

2CR–899-21, Coherent, Ar+ pumped, later replaced by a Coherent Verdi (V10).
3Spectra Physics LAS, ‘Wavetrain’

23



3 Experimental Set-Up

diode  laser  system
854 nm

diode  laser  system
866 nm

diode  laser  system
423 nm / 390 nm

diode  laser  system
785 nm

Ar  -ion  laser

frequency doubling
397 nm

Ti:sapphire  793 nm

Ti:sapphire  729 nm

fixed reference
resonator

lock lock

CCD PMT

+

experiment table

laser table

lo
ck

vacuum
apparatus

Figure 3.6: Overview of the experimental setup. The experiment extends over two
optical tables. The laser sources for 397 nm, 729 nm, and 785 nm light
are located on the laser table. The light is transmitted to the experiment
table by optical fibres, where the diode laser systems at 866 nm, 854 nm
and the ionisation lasers at 423 nm and 390 nm are situated. The vacuum
apparatus and the detection units are also located on the experiment table.
The Ar+-ion laser has now been replaced by two Coherent Verdi lasers for
pumping the Ti:Sapphire lasers.
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3.4 Laser Sources

Ultrastable laser at 729 nm [117]
For excitations on the narrow quadrupole transition S1/2↔D5/2, a very narrow band
Ti:Sapphire laser4 at 729 nm is used. Stabilisation is achieved by PDH–locking to an
evacuated and temperature stabilised (sub µK, [117]) high finesse cavity (F ≈ 220000)
and results in a linewidth of about 100 Hz. Typical light power at the experiment table
is 25 mW.

Diode lasers at 866 nm and 854 nm [69, 70]
The diode lasers at 866 nm and 854 nm are used to repump occupation of the D3/2 and
the D5/2 levels. The frequencies of the lasers are grating stabilised using the Littrow
configuration. They are locked using the Pound–Drever–Hall method [71] to tempera-
ture stabilised cavities having a finesse of about F ≈ 1000, resulting in laser linewidths
of ≈ 10 kHz. About 1 mW of light power is sufficient at the trap apparatus. The wave-
lengths are measured by comparison with a He-Ne-laser (wavemeter) [72] and checked
optionally on a hollow cathode Ca discharge lamp (866 nm) or on the ion (854 nm).

Diode laser at 785 nm [113]
With the help of the diode laser at 785 nm a transfer lock from the 729 nm cavity to
the trap cavity is realised. For this the 785 nm laser is locked to the 729 nm cavity and
the trap cavity in turn is locked to the 785 nm light. A double pass AOM configuration
allows for fine tuning of the trap cavity length. The procedure is described in section
3.6.

Photoionisation lasers at 423 nm and 390 nm [74, 114]
The two step photoionisation light source is composed of laser diodes at 423 nm and
390 nm. The laser at 423 nm excites atomic Ca to the 4p 1P1 state. From this level the
laser at 390 nm excites further to Rydberg states near the continuum. The Rydberg
ion is then field–ionised by the trapping fields. Both laser diodes are grating stabilised
by the Littrow technique. Fine tuning of the more critical 423 nm laser frequency is
done with the help of a hollow-cathode Ca discharge lamp. The wavelength at 391nm
is relatively uncritical (loading could be achieved between 390.5nm and 391.4nm) Both
laser beams are superimposed on a polarising beam splitter and focused through the
ring of the trap. A power of 1.3 mW at 423 nm and 0.6 mW at 390 nm is sufficient to
load a few ions into the trap in about one minute at an oven current of 2.1 A.

All wavelengths are measured with a custom-built wavemeter with a relative preci-
sion of 10−7 [72]. The wavemeter works by comparing the unknown wavelength with a
reference wavelength of a He-Ne laser.

4CR–899-21, Coherent
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3 Experimental Set-Up

3.5 Geometry

The relative coupling strengths of the Zeeman sublevels depend strongly on the geom-
etry of beam direction and polarisation with respect to the quantisation axis (fig.3.7a).
The aim is to maximise the qubit coupling strength (change of magnetic quantum num-
ber ∆m = 2) and eliminate the other transitions to the largest possible extent. This
should hold for the direction of the cavity axis and the 729 nm beam. The magnetic
field is approximately perpendicular to both the cavity mode and the 729 nm beam.
This is confirmed for the cavity mode in fig. 3.7b: The measured ion cavity-coupling is
shown as a function of the 729 nm polarisation. The polarisation of the 729 nm beam
is set at right angles to the magnetic field. In addition, the cooling laser and repumper
beams should have a projection onto all trap oscillator axes for optimal Doppler cooling.
The sigma optical pumping beam should be pointing in the direction of the magnetic
field, for obvious reasons. How these constraints are met in the experimental set-up is
shown in figure 3.8.
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Figure 3.7: a) Geometrical coupling strength on the S1/2 ↔ D5/2 quadrupole transition
for |∆m| = 2. φ denotes the angle between laser beam k and magnetic field
B. γ is the angle between polarisation e and the projection of B onto the
plane normal to k. Dark shadings correspond to low coupling. b)Measured
coupling strength (Rabi frequency) of the ion excited by the 729 nm laser
injected into the cavity as a function of polarisation angle e. Solid circles
are experimental data. Included are calculations for different angles φ which
suggest that φ is close to 85◦. The polarisation is near-perpendicular to the
magnetic field at e= 155◦ (maximum coupling).
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Figure 3.8: Geometry of trap axes, cavity mode, beams and magnetic field. View along
the cavity axis (a) and top view (b). The trap axis is at 45◦ to the cavity
mode. The magnetic field is approximately perpendicular to both the cavity
mode and the 729 nm beam for maximum coupling to the D5/2 m=-5/2
Zeeman level, the qubit transition. The cooling and repumper beams have
projections onto all three trap axes. The cavity waist as well as ring and
endcaps of the trap are sketched schematically.[113]
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3 Experimental Set-Up

3.6 The Transfer Lock

For any deterministic ion-cavity interaction the cavity must be stabilised to the cor-
responding atomic transition. At the same time the lock should leave the ion un-
perturbed. This defines the problem that is resolved by the concept of the so-called
transfer lock. It allows stabilisation of a cavity to one wavelength (the atomic) by using
another (transfer) wavelength for which the cavity is also resonant, a situation called
double resonance. In this experiment it translates to using far-detuned light at 785 nm
to stabilise the cavity to the qubit transition at 729 nm.

The 785 nm diode laser is locked to the same ultra-stable reference cavity as the 729
nm laser which ensures a fixed frequency relation between the two lasers (and hence the
lengths of the cavities are fixed relative to each other). For the laser set-up see section
3.4. The cavity must then fulfill a double resonance condition for both wavelengths of
which one (the 729 nm) wavelength is dictated by the ion´s resonance conditions. The
procedure then is to scan the cavity over the 729 nm resonance where the transmission
is monitored with a photodiode (and CCD camera) while finding a corresponding mode
of the 785 nm laser that matches the cavity resonance. This mode can be found as
follows: by tuning the current a suitable longitudinal mode of the diode laser is selected.
The piezovoltage allows one to match a mode of the reference cavity which has a free
spectral range (FSR) of 750 MHz. (The trap cavity has a FSR od 7.14 GHz) If that
mode is close enough to the trap cavity mode by±100 MHz it can be fine-tuned by
an AOM (in double pass configuration). The situation can be more readily visualised
by considering two frequency combs with different spacing which are to be overlapped
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Figure 3.9: Transmission of 729 nm light through the locked cavity while the frequency
of the transfer laser is scanned. The linewidth at 785 nm is ≈ 300kHz
corresponding to an effective finesse of F = 22000 at 729nm. Note that the
detunings at 729 nm and 785 nm are related by δν729 = δν785 · 729785

.
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Figure 3.10: Setup of the trap cavity lock. The light at 785 and 729 nm is coupled
into the cavity from opposite directions in a symmetric way. Gratings
(1200/ mm) on both sides separate the beams and ensure control of the
transmitted power at both wavelengths without perturbation by reflections
of the other light. The 785 nm light is phase modulated and with the
standard techniques a Pound-Drever-Hall error signal is obtained to lock
the trap cavity to the 785 nm light. Lenses are omitted for the sake of
clarity. The figure is adopted from [113].

at a given point. The offset of one is fixed and the other can be moved in frequency
space: discretely by jumps of 750 MHz (the FSR of the reference cavity) and several
GHz (FSR of the laser diode) and continuously by 200 MHz. Using these parameters
double resonance could always be found with a little experimental practice.

To characterise the cavity lock, the frequency of the transfer laser was scanned
while the cavity stayed locked which is shown in fig. 3.9. The cavity transmission was
detected by a photo-diode. The transmission is fitted by a Lorentz function which yields
a linewidth5 of δν785 = 302 kHz. This translates to a finesse of F = δν/νFSR = 22000
at the transition wavelength of 729 nm. The result is somewhat smaller than the finesse
found independently from a direct decay measurement of the intensity. By recording,
on a photodiode, the exponential decay of the output light field after the input light had
been switched off F = 35000 was found [113]. This is interpreted as an inhomogenious
broadening of the natural cavity linewidth by acoustical and electronical noise that
limits the cavity lock and produces a lower effective finesse.

5Both laser linewidths (729 nm and 785 nm) are below 2 kHz and can be neglected here.
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4 Characterisation of a Single Ion

The experimental prerequisites that are needed for the lifetime measurements are pre-
sented here. The properties that characterise a single ion are its electronic and vibra-
tional state. The coherent dynamics of carrier and sideband transitions are then used
to, for example, gain knowledge about the ion’s wavepacket extension.

4.1 Loading and Detection

All measurements within this work are done on a single ion. In the following the
procedure of preparing the set-up will be outlined. The procedure is mostly identical
to the one described in ref. [113]. The process starts with switching on all laser sources
(see previous chapter) and electrical supplies (including trap power) and allow time
(> 2 hours) for warm-up. Then, adjustments on the lasers for optimising power and
the correct wavelength are done.

The principle of loading ions into an ion trap is as follows: a beam of thermal
calcium atoms is produced from an oven and directed through the trap volume. The
oven consists of a steel tube filled with elementary calcium and heated with a current
of a few ampères. The ionisation laser beams are overlapped and directed through the
trap to ionise the atoms in the trap volume.

The photoionisation used here is a two-step process. First the atom is resonantly
exited to the P1/2 level and from there to a high Rydberg state close to the continuum
which is then field-ionised by the RF trap field. The photoionisation lasers replaced
the old electron impact method and improved the experiment considerably. With a
much higher ionisation efficiency the oven current could be decreased which implies
less patch effects and basically no more compensation problems. Also, the resonant
method ensures that only 40Ca is loaded and no ’dark’ ions. An alternative way of
photoionising calcium has been demonstrated by the ion-trapping group in Åarhus
[73]. They use two transitions at 272 nm to excite the atoms into the continuum.

Driving the dipole transition which couples the S1/2 ground state to the short-lived
P1/2 state, several 10

7 photons are scattered per second1. These photons can be detected
with an objective and a PMT even with an objective that covers only a relatively small

1this cycle is not closed and an additional repumper laser is needed to empty the D3/2level which is
otherwise populated via the 1:16 branching ratio of the P1/2level
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4 Characterisation of a Single Ion

solid angle and non-perfect PMT quantum efficiency2. In our experiment the maximal
count rate of a single ion is 25kHz with a background rate of ∼ 2kHz. In addition, the
scattered light is focussed onto a CCD chip to obtain a spatial image of the ion or a
cloud of ions.

Micromotion of the ion due to stray electric fields must be compensated. There are
three ways of compensating which can be applied simultaneously. The three signals
that are directly or indirectly related to micromotion are: PMT signal, correlation of
PMT signal and trap drive phase and the CCD-camera image. The whole procedure
for this type of trap has been described in great detail in ref. [118].

4.2 The Electronic State

In the theory part in chapter 2.1 a single Ca+ ion is described as a 2-level system
which forms the qubit. The real atom has, of course, a richer electronic structure and
these two levels must be identified experimentally. First of all a quantisation axis is
defined by applying a magnetic field of ∼3 Gauss3 to the ion which splits the S1/2
into two and the D5/2 into five Zeeman sublevels, respectively. Hence the spectrum
of the S1/2-D5/2 transition would actually consist of ten carrier transitions each with
six sidebands (SB), a blue and a red sideband4 for each oscillator axis. The axes are
denoted x, y and z, where x and y are the radial modes (in the plane of the ring)
and z the axial mode (along the tip axis). In addition micro-motion sidebands at the
trap drive frequency are possible. However, identification of spectral lines is simplified
due to initial preparation into the S1/2(m = −1/2) groundstate by optical pumping
which eliminates half the spectrum. The line strength depends on the nature of the
transition, i.e. carrier or sideband, the change of the magnetic quantum number ∆m
of the transition, i.e. the Clebsch-Gordon coefficient and finally the geometry of beams−→
k , polarisation −→e and magnetic field

−→
B .

Here, the 2-level system is realised by the S1/2(m = −1/2) and D5/2(m = −5/2)
Zeeman levels. This transition will also be referred to as qubit transition in this work.
The geometry (see section 3.5) is such that this transition is the strongest and can
easily be identified in the spectrum. The magnetic field strength has been chosen such
that none of the transitions coincide in frequency. To identify the qubit transition an
excitation spectrum is measured by a applying a sequence of laser pulses to the ion.
The pulse sequence consists of three parts (fig. 4.1b).

• State preparation (Doppler cooling (397nm, 866nm, 2ms), resetting in case ion
was in D-state (854nm, 2ms), optical pumping to m=-1/2 ground state (397nm,

2The PMT used here is an Electron Tube P25PC with quantum efficiency η = 25% at 397 nm
3Achieved with a current of 95 mA through the main coil
4Carrier transitions are transitions with no change in the phonon number (∆n = 0), sideband
transitions are accompanied by an increase (∆n = 1, blue SB) or reduction (∆n = −1, red SB) of
the phonon number.
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Figure 4.1: a) Partial spectrum of the S1/2-D5/2 transition. The spectrum is centered
around the qubit transition with its vibrational sidebands. The second
weaker carrier is from the m=-1/2 to m=-3/2 transition. b) Schematic of
the pulse sequence. The laser pulse at 729 nm is either scanned in frequency
for the spectroscopy in a) or in pulselength for the coherent dynamics in
c). More details are given in the text. c) Rabi oscillations on the carrier
reveal coherent excitation of the two-level system.
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σ− polarised, 0.1ms))

• Excitation pulse (729nm, 0-1ms)

• Detection (397nm, 866nm, 3.5ms)

This sequence is repeated 100 times to obtain the excitation probability from the
detection results (one data point). A spectrum consists of many such points with the
frequency of the 729 nm laser scanned in a certain frequency range. An example of a
spectrum is shown in fig. 4.1a where the various transitions are indicated.

Once the frequency of the qubit transitions is determined to a precision of at least 1
kHz an arbitrary superposition of the two levels can be created by an appropriate choice
of the excitation time. This coherent dynamics manifests itself in Rabi oscillations
when the pulselength is scanned. An example of such Rabi oscillations on the carrier
transition is depicted in fig. 4.1c.

In the next two sections the Rabi oscillation on the carrier and sideband transitions
are used to gain information on the motional state of the ion.

4.3 The Motional State

4.3.1 Cooling

The ion moves in the quasiharmonical trap potential which results in the well-known
harmonic energy eigenstates with equidistant energy levels with ∆E = ~ω. The mo-
tional states are characterised by the vibrational quantum number n = 1, 2, 3... also
called the phonon number, analogous to the quasiparticle of acoustical excitation in
solid state physics, the phonon. For the quantised motion to be apparent the quantum
number n must be small which is achieved with laser cooling.

The principle of the most common type of laser cooling in ion traps, namely Doppler
cooling, is the following: Depending on the detuning of the laser light each scattering
event changes the energy of the ion. For cooling, the light is red-detuned with half
the linewidth of the upper level (∆ = 1/2Γ ' 10MHz). Then the ion experiences a
decelerating velocity dependent force since the momentum of the absorbed photon is
fixed by the k-vector of the laser beam while the emission recoil occurs in any direction.
Furthermore, the energy of the scattered photon is, on average, higher than the energy
of the absorbed photon and the ion is cooled. Physically, this is a very intuitive but
over-simplified picture and the quantitative theory is far more complicated and can be
read elsewhere [75, 76]. For example, the dipole emission pattern is not isotropic and
has to be taken into account to find the exact resulting force. Also, the micro-motion
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4.3 The Motional State

has to be considered. The Doppler cooling limit5 is given by:

Emin =
1

2
kB Tmin =

~Γ
√
1 + s

8
(1 + ξ) (4.1)

using a detuning ∆ = Γ
2

√
1 + s (s is the saturation parameter (2|Ω|2/Γ2) and ξ is

a geometry factor for the emission pattern, for dipole radiation ξ = 2/5). In the
experiment the power of the Doppler beam is reduced to well below saturation so that
s < 1. The resulting mean vibrational quantum number is given by: Emin = ~ω(n̄min+
1/2). Note here that for cooling it is advantageous to have high trap frequencies (stiff
traps) since it implies a lower n̄.

In the experiment the ion does not end up in a pure motional state but in a thermal
state which is a mixture of states |motion〉 =∑ pn|n〉. In a thermal state the occupa-
tion probability pn for a n phonon state follows from the Boltzmann distribution and
the mean n:

pn =
1

n+ 1
(

n

n+ 1
)n (4.2)

The Rabi oscillations for an ion in a thermal state consist of many frequencies, since ev-
ery state contributes with its frequency Ωn,n+1 with amplitude pn. Coherent excitation
of the blue sideband with pulselength t is then written as:

pD(t) =
1

2

(

1−
∑

n

pn cos(Ωn,n+1t)

)

(4.3)

The Rabi frequency for carrier and sideband transitions depending on the motional
state is given by6:

Ωcar = Ωn,n = Ω0(1− η2n) (4.4)

Ωred = Ωn,n−1 = η
√
n+ 1 Ω0 (4.5)

Ωblue = Ωn,n+1 = η
√
n Ω0 (4.6)

Ω0 is the Rabi frequency defined in equation 2.11. The Lamb-Dicke (LD) parameter η
is defined as

η = k cos(φ)

√

~
2mω

(4.7)

5Interestingly, the same cooling limit applies for the cooling of free particles [75].
6Ignoring higher order terms in η2.
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(φ being the angle between the light´s wavevector k and the oscillator axis with fre-
quency ω, m is the ion’s mass.)

The measurements of carrier and sideband frequencies have been discussed already
in the thesis of A.B. Mundt [113] and will only be quoted here. Since the sideband Rabi
frequency depends on the squareroot of the phonon number n as evident in equations
4.4 to 4.6, one can find n̄ by driving carrier and sideband transition coherently and
comparing the respective Rabi frequencies. The Rabi oscillation on the sidebands are
composed of different frequencies Ωn,n+1 contributed by each vibrational state n with
amplitude pn and will damp out quickly. So the problem is to find a consistent solution
for the mean n of all three oscillators given the geometry and trap frequencies and the
carrier Rabi frequency Ω0. The method is explained in more detail in the next section.
The parameters of the vibrational state were determined to be [113]

[nx, ny, nz] = [20(5), 5(1), 5(1)] (4.8)

with the following LD-parameters

[ηx, ηy, ηz] = [0.04, 0.02, 0.03] (4.9)

Now, the wavepacket extension wi can be calculated using

wi =

√

~(n̄i +
1
2
)

mωi

(4.10)

and result in

[wx, wy, wz] = [42(5), 17(2), 15(1)]nm (4.11)

These numbers justify that after Doppler cooling the ion is in the LD-regime (η2n << 1)
or the wavepacket extension w << λtransition = 729 nm. This is the pre-requisite for
mapping the cavity standing wave with high contrast (c.f. section 6.1.2 and 6.3).

To cool the ion to the vibrational groundstate a further cooling stage must be imple-
mented. One example is sideband cooling. In the LD-regime and strong confinement7

the motional sidebands are well resolved from the carrier transition and the sideband
transition can be driven selectively. Excitation on the red sideband and subsequent
decay back to the ground state results in the loss of one phonon from the vibrational
mode which is the general principle of sideband cooling. To make the scheme feasible
the upper level is quenched by coupling it to the P-state with the repumper laser (then
called quenching laser). This increases the scattering rate and hence the cooling rate.
More details on the experimental techniques can be found in ref. [118]. The sideband
cooling results on the axial oscillator are shown in figure 4.3 and yields a mean phonon
number after sideband cooling of n̄z = 0.2 corresponding to a groundstate probability
(GSP) of 80%. Sideband cooling to 99% GSP has been achieved in this group by C.
Roos et al. [79].

7The regime where the trap frequency is much larger than the natural linewidth of the atomic
transition.

36



4.3 The Motional State

0 100 200 300 400 500 600
0.0

0.5

1.0
z SB

D 5/
2 e

xc
ita

tio
n

0 20 40 60 80
0.0

0.5

1.0

D 5/
2 e

xc
ita

tio
n

Pulselength (µs)

-5.80 -5.78 -5.76 -5.74 -5.72 -5.70

0.0

0.1

0.2

0.3

Detuning (MHz)
5.70 5.72 5.74 5.76 5.78 5.80

0.0

0.1

0.2

0.3
a) b)

c)

d)

Pulselength (µs)

D 5/
2 e

xc
ita

tio
n

Figure 4.3: Sideband cooling results: Absorption of red a) and blue b) axial sideband
before (solid circles) and after (open circles) sideband cooling. Rabi os-
cillations on the carrier and the blue axial sideband are shown in c) and
d), respectively. The solid lines are best-fit model calculations to the data
points which yield ground state occupation probability of 0.8 for the axial
oscillator.
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4.3.2 Heating

The heating rate denotes the gain of vibrational energy with time. In this work the
heating rate has relevance for two reasons. First, in the lifetime measurements (chapter
5) long intervals (of up to 5 seconds!) without cooling are necessary. After that time
coherent excitation must not be affected. In the most severe case heating also causes
a decrease in the fluorescence counts affecting the state detection. Second, for the
mapping of the vacuum standing wave (chapter 6) good localisation of the ion is a
prerequisite. Vibrational heating increases the wavepacket and leads to a reduced
contrast of the standing wave.

Vibrational heating in ion traps has been subject to some investigations in the past
(see e.g. [80] and references therein) but its origin is not completely conclusive and
still under debate. A possible candidate is the electric field influence of fluctuating
patch charges on the trap electrodes. Other models, for example Johnson noise in
the electrodes were unable to account for the experimentally observed heating rates.
However, it is evident from the results in [80] and [118] that the heating rate scales
inversely with trap size, i.e. larger traps generally have smaller heating rates.

The heating rate is determined by inserting a delay time between the cooling and
the coherent excitation pulse as depicted in the pulse sequence in fig. 4.4. Thus the
vibrational state (n̄) is measured as a function of delay time and the linear gradient dn̄

dt

is the heating rate.

The mean phonon number n̄ is determined from the sideband and carrier Rabi
oscillations (fig. 4.5). Here only the radial x-oscillator is considered. The D-state
population pD(t) as a function of pulselength time in equation 4.3 is the model function
for the data and the fit variable is n̄x. The corresponding amplitudes pn (equation

SB
cool

prep	 

�
t

x det	
������� � ���

Figure 4.4: Sketched pulse scheme for the determination of heating rates. Preparation
(prep), excitation (X) and detection (det) are identical to the one in section
4.2. The sideband cooling part consists of a laser pulse at 729 nm tuned
to the red sideband of the carrier transition. At the same time the laser
at 854 nm is switched on for quenching the transition. In addition, several
short optical pumping pulses (σ polarised light at 397 nm) are included, to
prevent pumping into the m=1/2 Zeeman groundstate.
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Figure 4.5: Rabi oscillations on the blue sideband of the x-axis. In a-d the waiting
period has been changed (0, 20, 40 and 60 ms, respectively) to observe the
heating from the groundstate. Circles are experimental points, the solid
curve is the best-fit model calculation. Note the different x-scales.

4.2) for frequencies up to a cut-off are calculated and produce the model curve. The
required parameters are ηx,y,z, and n̄y = n̄z = 5 known from the previous measurements
in section 4.3.1. Ω0 is determined independently from carrier Rabi oscillations. The
model also includes a possible detuning ∆. Then n̄x and the detuning are varied to
minimise the deviation from the experimental data.

The Rabi oscillations on the blue axial sideband are shown in fig. 4.5. For ∆t =
(0, 20, 40, 60) ms the resulting vibrational quantum numbers are n̄ = (0.2, 2, 4, 6) yield-
ing a heating rate of 0.1 ms−1. This is an unexpectedly high heating rate compared to
the previous ring trap (of similar dimensions) for which that rate was measured to be
1 phonon per 190 ms or 0.005 ms−1 for the axial oscillator [118]. This means that 1
second after Doppler cooling the ion has heated to n ∼ 100 which is considerable for
the carrier Rabi oscillations since Ωcar = Ω0(1− η2n) (4.4). Then both Rabi frequency
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4 Characterisation of a Single Ion

and the maximum transfer to the D-level decrease. This is, for example, a limiting
factor for the lifetime measurement of the D3/2 level. For that purpose the lifetime
measurements in chapter 5 have been performed in a linear Paul trap with much lower
heating rate.

If the ground state probability is close to one, n̄ can also be inferred from the ratio
of the amplitudes of the red and blue sideband which become asymmetric. In the
absolute groundstate the red sideband cannot be excited at all because no phonon
can be absorbed from the empty vibrational mode. This decrease in the red sideband
amplitude, compared with and without sideband cooling, is illustrated in fig. 4.3a.
However, this method is less accurate.
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5 Lifetime Measurements

5.1 Overview

Early experiments on the measurement of the D-level lifetimes in 40Ca+ [81–85] used
large clouds of ions and the lifetime was determined by recovery of fluorescence on the
UV-transitions (S1/2 - P1/2 or S1/2 - P3/2, see Fig. 3.5) after electron shelving in the
D-states or by observing UV fluorescence after driving transitions from the D-states
to the P-states. These lifetime measurements were limited by deshelving induced by
collisions with other ions or the buffer gas used for cooling. Similar results using the
same techniques have been obtained in an ion storage ring [86]. More accurate results
can be obtained by performing lifetime measurements with single trapped ions [87–91]
or crystallised strings of few trapped ions [92] and employing the so-called quantum
jump technique. This technique is based on monitoring the fluorescence on the S1/2 -
P1/2 dipole transition while at random times the ion is shelved to the metastable state
where the fluorescence falls to the background level. Shelving is initiated by applying
laser light at 850 nm (D3/2 - P3/2) [87] or at 729 nm (S1/2 - D5/2) [91]. The idea of
observing quantum jumps of a single ion was brought forward by Dehmelt [93] and was
first observed experimentally almost simultaneously by three groups [94–96].

Statistical analysis of the dark times yields the lifetime τ . The most precise mea-
surement using this technique was carried out by Barton et al. [90] who found the
result of τ=1168(7) ms. Analogous lifetime measurements exist for other higher-Z al-
kaline earth elements such as Strontium [97] and Barium [94] which have a very similar
atomic structure as calcium.

In this work the main goal is to measure the lifetime reduction due to the coupling
to the vacuum field inside a cavity. Here the quantum jump technique fails because
it requires the continuous illumination of the ion by dipole coupling laser light which
results in power-broadening of the S1/2 ground state and hence the quadrupole transi-
tion. Even for low laser power this transition is broadened beyond the cavity linewidth
and the cavity effect diminishes1. To avoid that we must use a different technique that
interacts as little as possible with the ion during the ’measurement’. The new measure-
ment technique that is introduced here is based on deterministic coherent excitation

1For the free-space lifetime the linewidth plays no role since the vacuum field density can be taken
as constant over the linewidth
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5 Lifetime Measurements

to the D5/2 state or incoherent shelving in the D3/2 state, followed by a waiting period
with free spontaneous decay and finally a measurement of the remaining excitation by
high-efficiency quantum state detection. During the waiting time all lasers are shut
off and no light interacts with the ion which could affect the free decay of the atom.
This method basically is an improved version of a technique that was used earlier to
measure the D3/2 metastable level lifetime in single Ba+ ions [98].

Another advantage of this ”state detection” method is that it allows for the mea-
surement of the D3/2 level lifetime which otherwise is inaccessible with the quantum
jump technique. There exist only a few reported D3/2-level lifetime results for Calcium
[83, 84, 86] but none from a single ion experiment. Since single ion measurements can
be made more accurate as systematic errors, e.g. due to collisions, can be reduced
to the highest possible extent. Therefore, single ion D-level lifetime measurement for
Calcium are of special interest.

The lifetime measurements described in this chapter are performed in a linear Paul
trap instead of the ring trap set-up described in chapter 3. Nevertheless, the experi-
mental environment for the single ion is identical except for two advantages of the linear
trap which motivated this decision: First, the vacuum with a pressure of < 10−11 mbar
is about an order of magnitude better than in the CQED set up. This allows not only
longer trapping times2, and hence measurement times, but also to neglect systematic
errors due to collisions. Second, the low heating rates of ∼ 0.01ms−1 are a huge im-
provement for the D3/2 lifetime measurement. The linear trap is situated on the same
experimental table, shares the same laser sources and computer control and is designed
for QC related experiments with Ca+ ions [12, 13, 15]. It has been well characterised
in the Ph.D. thesis of S. Gulde in Ref. [114]. The lifetime measurements in the ring
trap in the cavity are performed to demonstrate the cavity effect and not to present an
accurate value per se for the lifetime. Also, the results from the ring trap do not reach
the precision that collisional effects have to be considered. Within the statistical error
bar, the lifetime results from both traps are in agreement.

5.2 The D5/2 Level

5.2.1 Method

The lifetime measurement consists of a repetition of a laser pulse sequence applied to
the ion. The detailed pulse sequence is shown in fig. 5.1. Essentially, the sequence
consists of three steps:

1. State preparation and Doppler cooling, consisting of 2 ms of Doppler cooling
(397 nm and 866 nm light), repumping from the D5/2 level (854 nm light) and optical
pumping into the S1/2(m=-1/2) Zeeman sublevel (397 nm σ+ polarised light).

2In the linear trap the ion stays trapped for hours without cooling, as opposed to minutes in the ring
trap
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Figure 5.1: Pulse scheme for the D5/2 lifetime measurement. The simplified sketch illus-
trates the essential steps: state-preparation, coherent population and two
state detections separated by a waiting time ∆t. This sequence is repeated
typically a few thousand times to determine the mean decay probability p
as a function of ∆t.

2. Coherent excitation at 729 nm with pulse length and intensity chosen to obtain
near unity excitation (π-pulse) to the D5/2(m = −5/2) Zeeman level.

3. State detection for 3.5 ms by recording the fluorescence on the S1/2 - P1/2 tran-
sition with a photomultiplier. Discrimination between S and D state is achieved by
comparing the fluorescence count rate with a threshold value. The state is measured
before and after a fixed waiting period ∆t to determine whether a decay of the excited
state has happened.

This sequence is repeated typically a few thousand times to determine the mean de-
cay probability p. In detail, p is determined as follows: each detection period yields two
possible results, excitation (1) or no excitation (0), giving four possible combinations,
denoted by (00),(10),(01) and (11). The first number of the pair denotes the result of
the first detection, the second correspondingly. For a number of N sequences the decay
probability p is then given by

p =
∑

N

(10)/
∑

N

[(10) + (11)] (5.1)
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5 Lifetime Measurements

which is the ratio of the number of decays to the number of excitations after the π pulse.
The arithmetic mean of the denominator is the transfer efficiency of the π pulse which
is close to unity but fluctuates due to quantum projection noise. The intensity of the
729 nm light is stabilised to 1%. On a longer time scale (> 1h) the transfer efficiency
may decrease due to laser frequency drifts (thermal drift of the reference cavity) and
intensity changes of the 729nm light (The polarization maintaining optical fiber has
an optical axis that is sensitive to temperature and fiber curvature such that after a
beamsplitter polarisation changes are converted into intensity changes).

5.2.2 Results and Discussion

The remaining D5/2 population (1−p) measured for several delay times (∆t = 25−5000
ms) is plotted in fig. 5.2. The delay time is defined as the time between the end
of each detection period. A weighted least-squares fit to the data yields the result
τ = 1168(9)ms applying the fit function (1−p) = e−∆t/τ where p is the decay probability
∆t is the delay time and τ is the only fit parameter. The resulting reduced Chi-squared
parameter of χ2

ν = 0.47 indicates that the experimental decay is consistent with the
expected exponential decay behavior. The appropriateness of the least-squares method
is justified in appendix B where also the definition and meaning of the χ2 parameter is
found. The statistical error (in brackets) is the 1σ standard deviation, a connotation
used throughout this work. It should be kept in mind that the 1σ deviation is only
a 68% confidence interval! A more stringent number for the error is the 2σ deviation
which corresponds to a 95% confidence interval. However, it has been established in
this field of science in the past decades to quote only the 1σ interval.

There are several types of systematic errors that may occur. In UHV single ion
experiments the biggest source is radiation, in this case residual light at 854nm. During
the delay interval it may de-excite the D5/2 to the groundstate via the P3/2 level (strong
transition!). This additional ’decay channel’ artificially shortens the observed lifetime.
The obvious source for residual 854nm radiation is the 854 diode laser itself. It is
eliminated by a fast mechanical shutter3 which is closed during the delay. The 40dB
attenuation of the double-pass AOM which usually switches the 854 nm light was
shown to be insufficient: In an earlier experiment without that shutter the lifetime
was determined to be 1011(6)ms [107]. However, the result without shutter may vary
(±50µs) depending on the specific AOM and diode laser adjustments. Another source
is background fluorescence at 854 nm from the 866 nm diode laser. To eliminate this
radiation an AOM in single pass was installed in the beam path that attenuates better
than 20dB, a sufficient measure since, without the AOM the systematic effect was of the
order of a few percent. Note that this source of error cannot, in principle, be directly

3The best suitable shutters were found to be the Densitron, TK-CMD series. The shutters consist of
a small iris with ∅ of 1 or 3.3 mm in front of a blade driven by a solenoid plunger. Using suitable
electronics for the drive closing and opening times of the order of 0.5 ms can be achieved. The
jitter is on the same time scale

44



5.2 The D5/2 Level

eliminated in the quantum-jump technique where 866 nm repumper light MUST be
on continuously. This might have been a major source of systematic error in earlier
measurements based on the quantum-jump method. The problem was first recognized
by Block et al. [89]. The only way to correct for this systematic error is to measure at
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Figure 5.2: D5/2 excitation for delay times from 50 ms to 5 s on a logarithmic scale. The
solid line is a least-squares-fit to the data using the exponential fit function
(1 − p) = e(−∆t/τ). The bottom plot shows the residuals, the difference
between data points and fit. No significant systematics is visible.
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5 Lifetime Measurements

different repumping light powers and extrapolate linearly to zero power which in turn
implies a larger statistical error (see also ref. [90]).

Also non-radiative lifetime shortening mechanisms exist, namely, inelastic collisions
with neutral atoms or molecules from the background gas. Two relevant types of
collisions can be distinguished: Quenching and j-mixing collisions.

Quenching collisions cause direct de-shelving of the ion into the groundstate. In the
presence of high quenching rates lifetime measurements had to be done at different
pressures and extrapolation to zero pressure would yield the natural lifetime. Mea-
surement of collisional deshelving rates for different atomic and molecular species have
been performed, for example, by Knoop et al. [84, 99]. They find specific quenching
rates for Ca+ of Γ = 37 · 10−12cm3s−1 for H2, and Γ = 170 · 10−12cm3s−1 for N2.

Collisions may also induce change of the atomic polarisation, a process called j-
mixing or finestructure mixing. This means that a transition from the D5/2 to the D3/2

state or vice versa is induced (the finestructure quantum number j of the D-levels are
interchanged). The rates have been measured [99] to be Γ = 3 ·10−12cm3s−1 for H2 and
Γ = 13 · 10−12cm3s−1 for N2. These collisional effects cannot be distinguished from a
natural decay process. Collisional effects are most prominent in experiments with large
clouds of ions or at higher background pressure. The measured lifetime is modified
by additional deshelving rates γi as 1

τmeas
= 1

τnat
+
∑
γi where γi = niΓi (ni being

the particle density in cm−3). To give an upper limit of the effect in this experiment
estimates of the constituents of the background gas must be made. If a background gas
composition of 50% N2 and 50% H2 is assumed4 and the pressure p < 2 · 10−11mbar in
the linear trap set up is taken an upper limit for the additional collision induced rate of
γ = 3 · 10−4s−1 is found. This effect is well below 10−3 relative error and can be safely
neglected here. However, the pressure in the CQED setup is an order of magnitude
higher (p ' 2 ·10−10mbar) and collisions have to be taken into account if the lifetime is
measured with a precision of much better that a percent. This is not the case for the
measurement of the lifetime reduction in the cavity vacuum field in chapter 6.3.

Transitions between the D-levels can in principle also be induced by a M1-transition
stimulated by thermal radiation. The corresponding transition rate is given by W12 =
B12ρ(ν) with the Einstein coefficient for stimulated emission B12 and the energy density
per unit frequency interval for thermal radiation ρ(ν). With the rate of spontaneous
emission A12 = (8πhν3/c3)B12, W12 is rewritten as:

W12 =
A12

ehν/kT − 1
(5.2)

With ν = 1.82 THz and A12 = 2.45× 10−6 taken from [101] we get W12 = 7.23× 10−6

at room temperature which reduces the D5/2 -level lifetime by much less than the
statistical error.

4Thich seems a reasonable assumption according to the mass spectrometer analysis in the Åarhus
ion trap experiment [92].
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5.2 The D5/2 Level

Finally, lifetime-prolonging systematic effects are considered. They could stem from
radiation at 393nm (roomlight) or 729nm (Ti:Sa laser, double-pass AOM attenuation
of ∼ 40dB) which both could achieve re-shelving. This effect, however, leads also to
a different decay function. When modeled by a simple rate equation including the
additional rate R with the opposite sign (see appendix C.2) the solution is of the form

pD =
R

Γ′
+ (1− R

Γ′
) · e−Γ′∆t. (5.3)

where the new decay rate Γ′ = Γ + R (the natural decay rate is of course Γ = 1/τ).
The resulting decay curve is illustrated in figure C.3a. The initial decay is unchanged
but for longer waiting times the decay approaches an offset. It is interesting to note
that the additional rate requires a different exponential model whereas all shortening
systematic errors due to radiation only affect the decay constant. The result from fitting
the data with the modified exponential fit function from above is τ = 1165(10)ms and
R = 3(2) · 10−3s−1. It is shown in appendix B using simulated data that the statistical
variation is ∆R = 3 · 10−3s−1. So the fitted rate is consistent with zero and not
sufficiently significant to allow any conclusion about the actual rate or the model, i.e.
the statistical error is too large for a data fit to resolve the small systematic error. So
we obtain an upper limit for the systematic error due to a possible re-pumping rate by
simulating data sets including such a rate and fitting these with a normal fit function
(1− p) = e−∆t/τ . The deviation of the fit result for τ and the τ used for the simulation
gives exactly the systematic error, c.f. figure C.3 in the appendix. For R = 3 · 10−3s−1

the systematic error is ∆τ = −3 ms5.
Another systematic effect that implies a different fit model is the state detection

error. Even though the efficiency is close to unity Poissonian noise in the counts and
the possibility of a decay during the detection period produce a small error. In appendix
C.1 these two types of error are evaluated to 10−5 and 10−3, respectively. This error
implies a model function of the form (1−p) = (1−ε2)e−Γ∆t. Here, only the initial decay
is affected. The statistically consistent limit for this detection error is ε2 = 1 · 10−3.
Again, it cannot be resolved by a fit to the data. From the simulations an upper limit
of ∆τ = 7 ms can be stated.

In summary, the result for the lifetime of the D5/2 level is quoted as:
τ(5/2) = 1168(9)ms (statistical) -3ms (repumping rate) +7ms (detection)

5Meaning that the fit result is systematically 3 ms larger than expected
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5 Lifetime Measurements

5.3 The D3/2 Level

5.3.1 Method

The general strategy for the lifetime measurement of the D3/2 and the D5/2 level is
the same (excite-wait-detect decay) however some alterations in the pulse sequence are
required, see fig.5.3. To populate the D3/2 state we use indirect shelving by driving
the S-D transition at 397nm and taking advantage of the 1:16 branching ratio into
the D3/2 level. After a few microseconds the D3/2 level is populated with unity proba-
bility. Alternatively, the quadrupole transition could be driven directly in analogy to
the D5/2 π-pulse by tuning the Ti:Sa laser from 729nm to 732nm which just implies
more experimental effort with the current set-up. The only difference between the two
methods is that by indirect shelving all Zeeman sublevels are populated with some
probability whereas the π-pulse singles out one level. This is of no concern here since
the lifetime is independent of magnetic quantum number (Wigner-Eckert theorem).

Furthermore, because that level is part of the closed 3-level fluorescence cycle used
for state detection its population cannot be probed with that state detection scheme.
In that sense the D3/2 level is not a shelved state. The method used here is that prior
to state detection the decayed population is transferred to the D5/2 shelving state. The
measured excitation divided by the shelving probability then corresponds to the decay
from the D3/2 level and the analysis is analogous to the one in the previous section. The
shelving is achieved by coherent excitation. However, it must be taken into account
that the D3/2 state may decay into both Zeeman sublevels of the S1/2 ground state.
Hence two π-pulses from both sublevels are required to transfer all decayed population
to the D-state. In this case the two ∆m= 2 transitions (m=-1/2 to m=-5/2 and
m=1/2 to m=5/2) are chosen. The combined transfer efficiency of the two pulses is
determined in the first part of the pulse sequence by measuring the excitation without

det 1 det 2prep	 É
Ê

t

prep	 
É

s

Figure 5.3: Simplified pulse scheme for the D3/2 lifetime measurement. It consists of a
measurement of the π-pulse transfer efficiency on the S1/2-D5/2 transition
(prep, π and det1); D3/2-state preparation (prep, s); waiting period ∆t and
state detection (π and det2). The waiting time is varied between 25 ms and
5 s. For details of the pulse sequence see text.
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optical pumping into the S1/2(mj = −1/2) ground state after Doppler cooling.

The complete laser pulse sequences applied to the ion for the measurement of the
D3/2-level lifetime is composed of three steps (c.f. Fig. 5.3):

1. Measurement of transfer efficiency Pπ: state preparation and Doppler cooling,
consisting of 2 ms of Doppler cooling (397 nm and 866 nm light), repumping from the
D5/2 level (854 nm light) and spontaneous decay into the S1/2(m=-1/2) or (m=+1/2)
Zeeman sublevel; π-pulses on the S1/2 to D5/2 transitions (mj = −1/2 to mj = −5/2
and mj = 1/2 to mj = 5/2); state detection for 3.5 ms by recording the fluorescence
on the S1/2 - P1/2 transition with a photomultiplier.

2. State preparation and shelving in the D3/2-level: 2 ms of Doppler cooling (397 nm
and 866 nm light), repumping from the D5/2 level (854 nm light) and optical pumping
into the S1/2(m=-1/2) Zeeman sublevel (397 nm σ+ polarised light); shelving pulse at
397 nm for a few µs.

3. Measurement of decay probability: free decay for a variable delay time; π-pulses
on the S1/2 to D5/2 transitions (mj = −1/2 to mj = −5/2 and mj = 1/2 to mj = 5/2);
state detection for 3.5 ms by recording the fluorescence on the S1/2 - P1/2 transition
with a photomultiplier.

Finally, it should be mentioned that one problematic issue of this scheme is its
sensitivity to vibrational heating of the ion. A π-pulse only has high transfer efficiency
if the ion is in the Lamb-Dicke regime. When the factor η2n becomes significant both
the Rabi frequency and the maximum transfer decrease. For example, given a heating
rate of 0.1ms−1 as for the ring trap the mean vibrational quantum number has increased
to ≈100 after a delay time of 1 second (without cooling). Nevertheless, this problem is
not fundamentally limiting this scheme. Either the delay time must be limited to the
time scale where heating is still negligible (. 500ms). Alternatively, the delay time
must be inserted in the first part of the pulse sequence as well (before the π-pulse),
to measure the appropriate shelving probability with the heated ion. For longer times
this implies almost a doubling of the measuring time in addition to fewer successful
experiments due to inefficient shelving. For faster data acquisition and hence higher
precision in the result, the D3/2 lifetime measurement was conducted in the linear Paul
trap. The heating effect is treated along with the other systematic errors.

5.3.2 Results and Discussion

The measured D3/2 excitation is plotted against delay time in fig.5.4. Again, the data
have been fitted using the least squares method and the fit function (1− p) = e−∆t/τ .
Here, p denotes the corrected decay probability p = Pex/Pπ, the detected excitation
of the D5/2 level Pex corrected for the near-unity shelving probability Pπ directly after
Doppler cooling. It is typically 0.98-0.99 on average. It should be noted that the actual
Pπ for each Pex cannot be known exactly. It lies within the quantum projection noise

49



5 Lifetime Measurements

(QPN) limited error of the Pπ measured in the first part of the pulse sequence6. In
that sense there is no correlation between the two. Hence it is more appropriate to
use the average of Pπ over the whole dataset for one delay time. The output variables
from the fit are τ = 1176(11)ms with χ2

ν = 0.68. The reduced Chi-squared parameter
indicates consistency with an exponential decay.

Again, systematic errors due to residual light have to be investigated. The shortening
effects include residual light during the delay interval at 866nm or 850nm which de-
excites via the P1/2 and P3/2 respectively and results in a faster effective rate. The
main source of light at 866nm is the corresponding diode laser itself. Since the single
pass AOM attenuation of 20dB was wholly insufficient (see figure 5.5) a fast mechanical
shutter has been installed which remains closed throughout the entire waiting period.
The fluorescence background of the 854nm diode laser at 866nm was found to be
negligible.

Light at 850nm would mainly originate from the fluorescence background of the
854nm diode laser (repumper). The double pass AOM attenuation was proven to be
sufficient, no effect could be measured within a 5% error even if the laser was on at full
intensity during the whole waiting time.

The shortening effects are not obviously detectable because they only increase the
decay rate while the functional shape of the decay curve remains the same. The main
concern here is the 866nm light and extreme care has been taken to ensure that the
shutter was indeed closed during the delay time. Before the 397nm shelving pulse and
between the π pulse and the second detection a 1 ms period has been inserted to allow
for shutting time and jitter. During the lifetime measurements the correct shutting was
checked on photodiodes behind beamsplitters in the beampath. In fact, the shutters
close fast in about 400µs but the start time is not well defined and jitters by about
500µs. To show the sensitivity of the measurement to residual 866 nm light the lifetime
was measured with the shutter opened some time before the π-pulse, fig. 5.5.

Amongst the prolonging effects is residual blue light at 397 nm which might re-excite
the ion after it has already decayed. The same applies for light at 729 nm. This re-
pumping rate is inherent as an offset as pointed out already in D5/2 lifetime analysis
(section 5.2.2). The 397nm light is switched by two single pass AOM´s in series (one
before a fiber) with attenuation of ≈ 55dB attenuation plus 160 MHz detuning. To
suppress the influence of 397nm laser light to the largest possible extent a mechanical
shutter was installed in the beampath even though the lifetime was unchanged within
a 4% errorbar compared to the one measured without a shutter. To give a limit on
the systematic effect of any re-pumping source the same method as in section 5.2.2 is
applied. The experimental data is fitted with the rate model function yielding a rate of
R = 3(10) ·10−3s−1. The variation for an simulated ideal data set is ∆R = 1.5 ·10−2s−1,
so again it is hidden in the statistical error. From the simulation an upper limit for the

6The QPN noise is given by the binomial error ∆p =
√

p(1− p)/N , e.g. ∆p = 0.014 for p = 0.98
and 100 experiments
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systematic error of ∆τ = −2ms is obtained. More details on the simulations are found
in appendix C.2.

Another source of systematic error is vibrational heating. Heating during the waiting
time causes the transfer efficiency of the π-pulse Pπ to decrease. Hence it is less than
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Figure 5.4: D3/2 excitation for delay times from 50 to 2000 ms on a logarithmic scale.
The solid line is a least-squares fit to the data using the exponential fit func-
tion (1− p) = e(−∆t/τ). The bottom plot shows the residuals, the difference
between data points and fit. No significant systematics is noticeable.
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Figure 5.5: Effect of residual radiation at 866 nm: D3/2 decay rate as a function of
interaction times of 866nm light during the delay time. During the inter-
action time the shutter is open and the 866 nm beam is only attenuated by
the AOM.

the one determined in the first part of the pulsesequence and the decay correction is too
small, i.e. the real decay is higher than measured. This has been checked experimentally
by recording the excitation after the π-pulse as function of waiting time. The average
of all scans is shown in fig. 5.6. For hundred experiments the decrease of the excitation
after 2 s lies within the QPN. If the efficiency Pπ is written as Pπ(∆t) = 1− a ·∆t the
slope is determined a = −4(2) · 10−3s−3. For this slope the systematic error computes
to ∆τ = −7ms (appendix C.3).

Finally, the detection error is considered, analogous to section 5.2.2. From simulated
data sets with a detection error of ε2 = 1 · 10−3 a systematic error for the lifetime of
∆τ = +8ms is found (appendix C.1).

Collisional effects (quenching and j-mixing) and M1 transitions are neglected on
grounds discussed in section 5.2.2.

Summarising the analysis, the lifetime for the D3/2 level is given as:

τ(3/2) = 1176(11)ms (statistical) -2ms (repumping rate) -7ms (heating) +8ms (de-
tection error)
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Figure 5.6: Vibrational heating causes a decrease in the transfer efficiency of the π-
pulse: Average transfer efficiency of the π-pulse as a function of waiting
time ∆t. The linear slope is determined as a = −4(2) · 10−3s−1.

5.4 Comparison with other Experimental and

Theoretical Results

Due to the scientific interest of the calcium lifetimes several theoretical and experimen-
tal works have been published. Figure 5.7 shows an overview over all experimental and
theoretical results for the lifetime of the D5/2 and D3/2 states, respectively [100–106].
It is remarkable that the theoretical predictions scatter rather widely, with no visible
convergence while the experimental results show a trend towards longer lifetimes in the
recent years as more systematic errors are identified and minimised. In general, the
theoretical problem can be stated as calculating the D and S electron wavefunctions to
find the reduced transition matrix element for the quadrupole operator between the S
and D states. Many different methods with various approximations and higher order
corrections have been developed. Here, just three different representative methods that
yield a comparably short, long and intermediate value, respectively, for the lifetime of
the D5/2 level are briefly described.

Kim and Ali [101] apply the multiconfiguration Dirac-Fock (MCDF) method and
obtain as a result a relatively short lifetime of τ =950 ms. The relativistic configu-
ration wavefunctions are generated by minimising the energy of the radial Dirac-Fock
functions for each level separately. Core-electron correlations are not considered in this
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5 Lifetime Measurements

model.

Vaeck et al. [104] include valence correlations in a multiconfiguration Hartree-Fock
(MCHF)approach and find a reasonable value of τ =1140 ms.

Guet and Johnson [102] use relativistic many-body perturbation theory (MBPT)
up to third order including semi-empirical scaling of orbitals and predict τ =1236 ms.
By solving the Dirac-Hartree-Fock (DHF) equation the frozen-core HF potential is
found. This is used as the effective potential for the valence electron which can then
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Figure 5.7: All experimental and theoretical results for the lifetime of the D5/2 (top)
and D3/2 (bottom) states, respectively.
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5.4 Comparison with other Experimental and Theoretical Results

be described with a one- electron Hamiltonian.
Note that the publication of the lifetime results (see Appendix F) was done in

collaboration with the theoretian M. Safronova. She calculates a lifetime of τ =1165
(11) ms using a relativistic all-order MBPT method (ab initio). A good review on the
status of the Ca+ lifetime theory can be found in Ref.[100].

In comparison with previous work it can be concluded here that our lifetime result
for the D5/2 level agrees with and thereby confirms the most precise value of Barton
et al. using an alternative measurement approach. In addition, the result for the D3/2

level represents the first single ion measurement and reduces the statistical uncertainty
of the previous value for the lifetime by a factor of four.
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6 Enhanced Spontaneous Emission

6.1 Ion-Cavity Coupling

6.1.1 Coherent Coupling

Perhaps the most stringent characterisation of a cavity stabilisation is to coherently
excite a single ion with the cavity light field. Perturbations or oscillations of the cavity
length induced by electronic or acoustical noise are observable in the light transmission
signal of the cavity output. During coherent excitation these fluctuations are translated
to phase fluctuations of the light inside the cavity, equivalent to a broadening of the
laser linewidth reducing the coherent interaction time. Rabi oscillations on the carrier
transition driven by light coupled into the cavity are shown in fig. 6.1. The damping is
considerably higher than for simple laser excitation, compare with fig. 4.1c, nonetheless
the population transfer probability for a π-pulse is still 90%. Care must be taken to
determine the carrier transition frequency while the cavity is locked to include the
ac-Stark shift which is discussed in section 6.2.
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Figure 6.1: Fast Rabi oscillations driven by the cavity light field.
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6 Enhanced Spontaneous Emission

6.1.2 Standing Wave Pattern

A doppler-cooled ion in the Lamb-Dick regime has a wavepacket extension of much
less than the excitation wavelength and can thus be used as a nanoscopic probe of
the standing wave (SW) field spatial variation. This was first shown in [33]. The
SW pattern has previously been mapped with the same set-up by a cavity scanning
technique before the cavity stabilization was implemented [34, 46]. Excitation spectra
were recorded by scanning the laser detuning over the carrier resonance. The offset
voltage of both scan PZT and offset PZT was then varied simultaneously in such a
way that the SW in the cavity is shifted longitudinally with respect to the location of
the ion. The position-dependent excitation probability was determined by fitting each
spectra with a Lorentzian and adopting the peak value. From fitting a sin2 function
to the datapoints a very high contrast ratio or so-called visibility V of V = 96.3(2.6)%
is obtained. The maximum of the excitation corresponds to the node of the optical
field since the atomic quadrupole moment couples to the gradient of the electric field.
See [46] or the thesis of A.B. Mundt [113] for all details. That procedure, however, is
very time consuming in both the experiment and analysis since each datapoint is an
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Figure 6.2: SW pattern of the intra cavity field mapped by recording the coherent
excitation after a short light pulse. Due to good localisation of the ion the
visibility is close to unity.
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Figure 6.3: Cavity drift: Example of SW-patterns shifting over time.

amplitude derived from a spectrum comprising 60 points. Driving Rabi flops through
the locked cavity allows the SW to be mapped much faster by simply recording the
excitation probability after a short pulse while varying one PZT offset voltage.( Note
that the cavity stays resonant because the integrator on the locking PZT compensates
for the offset and the cavity is shifted longitudinally.) The exact pulse length should
be set to the π/2 time of the maximum Rabi frequency in the node to ensure a pure
sin2 position dependence. It will become clear in the next chapter that a fast and
precise mapping of the SW is crucial when drifts and other experimental imperfections
threaten to conceal the small cavity effect on the spontaneous emission rate.

In fig. 6.2 the SW pattern determined by the coherent excitation technique is shown.
The visibility is close to unity. The main reason for non-unity contrast is the wavepacket
extension discussed below in 6.4. The thermal drift of the cavity can be neglected here
when the measurement duration is small enough1. The thermal drift of the cavity has
been measured over several hours during the lifetime measurements. Examples of three
SW patterns recorded approximately 1 1

2
hours apart are depicted in fig. 6.3.

In fig. 6.4 the phase (i.e. the voltage at which the minimum occurs) of the fitted SW
curves is plotted against time and a straight-line fit to the linear part of the data yields

1Here the measurement time T was T =20points x ( 500 experiments/point x 5 ms/experiment +
≈2s to change offset voltage by hand)≈ 90s.
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Figure 6.4: Cavity drift over several hours on two different days: The phase of each
SW-pattern is plotted against time. The drift is typically about λ/4 in 4
hours.

a slope of 0.62(1)V/min corresponding to a drift of λ/4 in 3.9 hours. The drift varies
from day-to-day operation but was always found around that order of magnitude. For
the lifetime measurements which take more time the drift must be taken into account
to find the corrected average position in the phase the SW. (The voltage range of the
offset PZT unfortunately barely covers one FSR of the cavity. This means that if the
turning point of the drift (around 300 V in fig. 6.4) is slightly larger the mode is out of
reach of the PZT offset (305 V max) and a new mode of the transfer laser for double
resonance must be found.

6.1.3 Lateral Positioning

The atom-cavity coupling g depends not only on the longitudinal position (SW phase)
but also on the transverse position in the (gaussian) waist of the cavity mode2. Be-
cause the cavity-trap set up cannot be assembled to that precision and, in any case,
misalignment during bakeout would not be controlable the trap is mounted on a 3-point
mirror-holder-style-mount to allow relative positioning of the ion with respect to the
cavity mode, see setup figure 3.3. For the optimization of the lateral position the trap
was moved in the lateral plane by the micrometer screws and the Rabi frequency which
is proportional to the coupling strength was measured. The plot is displayed in fig 6.5.

The exact position in the lateral plane was determined by shining a He-Ne laser
beam through the cavity and monitoring the image of the trap behind the cavity on
a digitised CCD-camera. Four points on the ring projection of the trap were used

2the longitudinal envelope of the SW can be neglected here since the confocal parameter of the cavity
mode (b=2.5 cm) is larger than the cavity length
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6.1 Ion-Cavity Coupling

as markers to trace its position. An independent check was done by calculating the
trap´s relative position from the reading on the micrometerscrew´s scale taking the
dimensions of the mount into account.

For each point it was first ensured that the ion was kept at the node by maximising
the Rabi frequency with the PZT offset. In addition all laser beams (Doppler cooling,
repumper and 729 beams) plus the PMT and CCD-camera objectives had to be re-
aligned after each trap movement which makes the whole procedure extremely time-
consuming and tedious and thereby limits the spatial resolution. From the error in Rabi
frequency (shot-to-shot variation compared to the variation at adjacent positions) and
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Figure 6.5: Transverse position in the TEM00 cavity mode: The measured Rabi fre-
quency is plotted against position of the ion in the lateral x-y plane. The
ion trap was shifted by micrometer screws on the mount
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6 Enhanced Spontaneous Emission

the error in the measured position of the trap, the precision of the lateral positioning
is estimated as 20µm.

6.2 AC-Stark Shift

Although the transfer light inside the cavity is far-detuned, coupling to the P-levels
(dipole) or the D-level (quadrupole) results in an ac-stark shift of the S-D transition
frequency. It has to be kept in mind that even though only little power is required
for the stabilisation (minimum power is about 5µW in transmission) the power inside
the cavity is enhanced by a factor of F/π ' 4100 implying a maximum intensity of
2.3·10−4mW/µm2 at the ion. Of course, the ac-Stark shift is also modulated sinusoidally
in the SW. At a fixed phase of the standing wave the ac-Stark shift has been measured
by spectroscopy on the S1/2−D5/2 transition as a function of the transfer light power.
The linear dependence is verified in fig.6.6a.

Unfortunately, the transfer wavelength cannot be chosen arbitrarily far-detuned. A
compromise must be made between detuning and cavity finesse at the transfer laser
wavelength. Away from the design wavelength of the transition it drops considerably.
At 785 nm the cavity finesse is about 13000 which is still good enough for a narrow
linewidth stabilisation.

The ac-Stark shift originates from coupling to other transitions which implies off-
resonant excitation to the short lived P-levels. This increases the measured natural
decay from the D5/2level, shown in fig. 6.6b. It is therefore desired to use the min-
imum possible power for the transfer lock during the lifetime measurements. In this
experiment the minimum power is 5µW in transmission corresponding to a maximum
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Figure 6.6: a) Linear dependence of ac-Stark shift against transmission power of the
transfer light. The ion´s relative position in the SW was kept constant. b)
The ac-Stark shift induces an additional decay rate by off-resonant excita-
tion to the short lived P-levels.
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6.3 Mapping the Cavity Vacuum Field

ac-Stark shift of 16 kHz or an additional deshelving rate of γ = 0.04s−1 which amounts
to ≈ 5% lifetime reduction in the antinode of the transfer light SW.

6.3 Mapping the Cavity Vacuum Field

It is described in section 2.3 that spontaneous emission is maximally enhanced by the
Purcell factor (2C + 1) at the node of the vacuum SW in the cavity: γ → γ0(1 + 2C).
Since the coupling parameter g and hence C depends on the phase of the vacuum SW
(like sin2(φ)) the decay rate is modulated accordingly. By measuring the D5/2 lifetime
of the ion placed at different phases along the standing wave the enhanced vacuum
field inside the cavity is mapped. The lifetime is determined by measuring the decay
for a single delay time only (∆t = 50ms) and using the exponential law verified in
the previous chapter: τ = −∆t

ln(1−p)
. Considerations on the optimal delay time for which

the statistical error decreases the fastest with measurement time are formulated in the
appendix. The lifetime measurements at different positions in the vacuum SW are
shown in fig. 6.8.

Each data point in fig. 6.8 consists of an average of up to four points each comprised
of 20000 individual decay measurements shown in fig. 6.7. During the 19 min for
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Figure 6.7: All individual lifetime measured at various points in the vacuum SW. The
circles indicate the points that are binned to yield figure 6.8
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6 Enhanced Spontaneous Emission

20000 experiments the cavity drift is about 15 nm (λ/50). This position drift is not
a systematic error in the phase but corresponds to an averaging over the sinusoidal
variation and a loss of contrast. The maximum lifetime reduction in the node of the
vacuum SW is 15± 5%.

6.4 Discussion

The results in fig. 6.8 leave two significant points for discussion: On the one hand is the
maximal lifetime reduction of 15% in the node of the SW less than the calculated effect
of 52%, on the other hand, the lifetime in the antinode τa is less than the expected
free-space lifetime (τfs = 1168(9)ms) determined in chapter 5.2.
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Figure 6.8: Combined experimental D5/2 lifetimes at five different points in the vacuum
SW. The dotted line shows a simulation of the effective Purcell effect ne-
glecting the additional transfer light deshelving. The light grey solid line
includes the additional deshelving of γadd = 0.04 s−1 using equation 6.1.
The black solid line is a simulation assuming Ceff=0.15.
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6.4 Discussion

The non-unity visibility V of the SW3considers cavity drift and wavepacket extension
that smear out the sinusoidal variation: sin2 → [ (1−V )

2
+V sin2(φ)]. For a Gaussian en-

velope of width a the visibility decreases as V = exp(−2(2πa/λ)) [110] which is derived
from a convolution integral of a Gaussian with a sin2 function. The effective envelope
consists of the instantaneous wavepacket extension and the drift. The wavepacket ex-
tension is of the order of 20 nm, considering a heating rate of 0.1 ms−1 during the 50
ms delay time, whereas the drift during one measurement amounts to 15 nm. Hence,
the SW visibility reduces to 90%.

Furthermore, C0 is replaced by an effective Ceff due to several experimental imper-
fections reducing the Purcell factor: First, disturbance of the cavity lock (acoustical or
electronical) leads to an inhomogenious broadening of the cavity linewidth, recall fig.
3.9 in section 3.6. The resulting effective finesse is 22000 which reduces the coopera-
tivity to 0.62C0. Second, a suboptimal transverse position of the ion in the waist of
the cavity mode reduces the coupling g, see section 6.1.3. The positioning achieves an
estimated precision of 20µm reducing the cooperativity further to 0.57C0. The effective
cooperativity then computes to Ceff = 0.62× 0.57× C0 = 0.184.

This implies that in the antinode (φ = 0) γa = 1.02γ0, i.e. τa = 0.98τ0, whereas
in the node (φ = π/2) γn = 1.35γ0, i.e. τn = 0.74τ0, corresponding to a 26% lifetime
reduction.

Finally, the influence of the transfer light on the lifetime due to the ac-Stark shift
is considered (see section 6.2). The phase of the transfer SW φ′ in the cavity was not
determined independently but is, in general, different than the vacuum SW φ. The
short lifetime in the antinode of τ = 1075(30)ms suggests the following case scenario:
The transfer light SW phase is such that it decreases the lifetime in the antinode by 5%
due to the additional deshelving rate of 0.04 s−1 and leaves the minimum lifetime in
the SW node unchanged: φ′ = φ+π/2. The total expected experimental enhancement
is now written as (c.f equation 2.25):

γ = (γ0 + 0.04× [
(1− V )

2
+ V cos2(φ)])× [1 + 2Ceff{

(1− V )

2
+ V sin2(φ)}] (6.1)

This resulting expected lifetime variation from equation 6.1 is included in figure 6.8
(grey line). So including the influence of the transfer laser the maximum lifetime
reduction is expected to be τn = 0.74 · 0.95 · τ0 corresponding to 22% which is in
reasonable agreement with the experimental result.

3Defined as V=(max-min)/(max+min)
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7 Summary and Conclusion

In summary, this work reports on an experiment that explores the deterministic inter-
action of a single trapped Ca+ ion with the modified vacuum field inside a high finesse
optical resonator. Such a system could be the basic building block for, e.g. a quantum
information interface, interconverting atomic and photonic qubits. The experimental
requirements and challenges for controlled ion-cavity coupling are described. Further-
more, the single ion was well characterised by spectroscopy and coherent dynamics.
After Doppler cooling, the ion is well localised in the cavity standing wave. Prob-
lems like vibrational heating were analysed before the CQED experiments could be
performed. The spatial variation of the spontaneous emission rate has been investi-
gated by measuring the lifetime of the D5/2 level at different points in the vacuum
standing wave of the cavity. In the node a maximal lifetime reduction of 15(5)% was
observed (Purcell effect). Various experimental imperfections lead to the reduction of
the theoretically expected effect from 50% to 22%.

For the lifetime measurement a novel technique based on deterministic excitation
and quantum state detection has been introduced. This new method has two distinct
advantages. It allows the precise lifetime measurement of both metastable D-levels,
D5/2 and D3/2, using a single ion. In addition, systematic errors can be eliminated to the
largest possible extent because no light interacts with the ion during the decay. Residual
systematic effects, such as detection errors, have been precisely accounted for by using
error models and simulations. Using this method, a lifetime of τ = 1168(9) ms for
the D5/2 level was found which agrees well with previous high precision measurements.
The D3/2 lifetime result of τ = 1176(11) ms is the first from a single ion and exceeds
previous results by a factor of four in precision.

Currently, the next generation experiment is being assembled in the laboratory for
the investigation of further CQED effects, based on the experience and expertise de-
veloped in the experiment characterised here. The new design will incorporate a linear
Paul trap to allow for the coupling of two or more ions to a common cavity mode. An
important technical detail is that the cavity assembly is maneuverable instead of the
trap assembly. This will allow a simplified lateral positioning of the ion with respect
to the cavity mode. Furthermore, a near-concentric cavity (< 20µm waist) and higher
reflectivity mirrors (F≈ 80000) produce a higher coupling so that CQED effects are
more pronounced. The cavity will be resonant to the P3/2-D5/2 dipole transition at 854
nm. The coupling parameters (g, κ,Γ) all shift towards higher frequencies in the MHz
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7 Summary and Conclusion

regime, resulting in the ’weak coupling regime’. A major goal would be the realisation
of a single photon source and an atom-photon interface, both using a stimulated rapid
adiabatic passage (STIRAP) process. Detailed theoretical studies for using STIRAP
in the new set-up to produce single photons have already been done [120].

This symbiosis of both, cavity and linear trap technology developed in this group
will provide an improved, versatile tool for exploring CQED at the most refined level.
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A Loading a Single Ion: Tricks and
Hints

As a summary for loading ions the following checklist must be considered:

• all required power supplies must be on, including all GPIB-devices, start LabView
progamme on PC.

• 397nm and 866nm lasers on correct wavelength and locked.

• ionization lasers on resonance (hollow cathode signal) and both beams overlapped
at the trap

• light at the experiment and focussed through the trap,

• trap RF-power ≈ 0.5W on RF-powermeter, no RF-reflection

• switch oven on (I∼ 2.1A)

• PMT shutter closed (and camera shutter) closed to protect against stray light
from ionization lasers

When all beams are well aligned and on resonance loading takes of the order of
minutes but minor deadjustments might easily lead to an extention of the loading
process beyond 10 min. Often more than ion is loaded. Then by blocking the repumper
or blue-detuning the 397 nm doppler light ions can be heated out of the trap until one
single ion is left. An indication for the number of ions is given by various measures: the
PMT countrate, the S1/2 − P1/2lineshape, the image on the CCD-camera or quantum
jump levels. More than 2 ions cannot crystallise in the small trap and they form a
hot cloud. Hence PMT counts are rather low, the lineshape is broad and the image on
the camera is a fuzzy cloud. When the 729 nm light is present at the ions quantum
jumps can be induced. When an ion is exited to the D5/2 it is decoupled from the
fluorescence cycle (’shelved’) and the fluorescence level changes. For a few, e.g. 3, ions
then 4 distinct fluorescence levels can be identified corresponding to 0,1,2 and 3 excited
ions.
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B Statistical Methods for Data
Analysis

Every experiment consists of only a finite number of measurements, so every measured
physical quantity is associated with a statistical error bar that accounts for an uncer-
tainty in the measuring process due to non-perfect measuring equipment or fluctuations
in the physical system itself. In the language of statistics the measured data is a subset
of a parent distribution. Translated back into the language of physics, the parent dis-
tribution is an imaginary ’ideal’ data set obtained from infinitely many measurements
assuming a certain model function. One task of statistics is to estimate certain param-
eters that best match the one of the parent distribution (if the parent distribution is
known). This is usually done by fitting a model function to the data using an appro-
priate fit method and find the best-fit model parameters. Another question is whether
the measured data really is a subset of the expected parent distribution, i.e. whether
the model is correct.

Transferred to the specific case in this work the statistical questions are: Is the
measured decay indeed a purely exponential decay and what is the decay constant and
its statistical error. Before the data can be fitted with a model function the relevant fit
method must be found. The most common method is a least-squares fit which works
on minimising χ2, defined as the sum of the squares of differences of data (xi, yi) and
a model function y(xi), weighted by the experimental uncertainties σi [108]:

χ2 ≡
∑

i

{
1

σ2i
[yi − y(xi)]

2

}

(B.1)

It is crucial to note here that this method is based on the assumption that the parent
set of each data point is distributed normally (Gauss distribution). If this is verfied
the fit procedure is a straight-forward numerical problem. An important parameter of
a least-squares fit is the so-called reduced χ2

ν which can be written as

χ2
ν =

χ2

ν
=

s2

〈σ2〉 (B.2)

where ν is denotes the degrees of freedom of the fit (number of data points minus
number of fit parameters) and s2 is the variance of the fit. 〈σ2〉 is the weighted average
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Figure B.1: ’Monte-Carlo’ simulation results. a) Individual probabilities of finding a
certain number of decays are distributed according to the binomial dis-
tribution, which is indicated by the square points. The total number of
simulated decays in the histogram was 1000. The mean decay probability
after 25 ms is 0.021. b) and c) The central limit theorem: the distribution
of the means of a set of variables with arbitrary distribution is a Gaus-
sian distribution. This is verified for the extreme cases of small and close
to unity excitation probabilities. The binomial distribution is symmetric
(Gaussian) only for p = 0.5.

of the individual variances. In this form the meaning of χ2
ν is most obvious: it is the

ratio of the estimated variance to the parent variance which makes it a convenient
measure for the goodness of the fit. For a reasonable fit χ2

ν is expected to be around
1. However, the interpretation of χ2

ν per se can be somewhat ambiguous, e.g. a large
spread in the data cannot be distinguished from a bad choice of the parent function if
χ2
ν is too large.

One way to answer statistical questions is to simulate random experimental data sets
following the Monte-Carlo idea. In this case random data are generated using the fact
that the decay probability for a given waiting time is distributed binomially1 around
a mean that is given by an exponential function. So for the particular experimental
waiting times and number of measurements (the exact number used in section 5 for the
D3/2 and D5/2 levels, respectively. Model lifetimes of τ = 1179ms and τ = 1165ms have
been taken) an ’ideal’ random data set is created from the parent function. The data
set is ideal in the sense that it is known to be free of systematics and random in the
sense that it is truly statistical. From an ensemble of such sets one can deduce many
statistical properties, e.g. standard deviation, χ2 distribution and the distribution of
other parameters. One important result is the verification of the Gaussian distribution
of the individual mean decay probabilities which is shown by the histogram plot in figure

1The binomial probability distribution is the adequate description for physical processes involving
exponential decay. It gives the probability Pbino of observing ν events in n trials. In one trial each
event has probability p to occur, then Pbino =

n!
ν!(n−ν!)p

ν(1− p)n−ν .
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Figure B.2: Distribution of fit results from an ensemble of simulated data sets. Ideal
parent distributions 1− p = e−∆t/1165ms were fitted with a model function
pD = B + Ae−Γ′∆t where B = R/Γ′, A = 1 − R/Γ′ and Γ′ = R + Γ.
τ = 1165ms with standard deviation ∆τ = 10ms and ∆R = 3 · 10−3s−1.

B.1 b,c. This is a result of the central limit theorem and justifies the least-squares fit
to the decay probabilities. This also shows, for example, that a least-squares fit of
a straight line to the logarithm of the decay is not appropriate. Another interesting
result is the distribution of the fitted parameters τ and R. An ensemble of simulated
data sets is fitted with an exponential function pD = B + Ae−Γ′∆t, where B = R/Γ′,
A = 1−R/Γ′ and Γ′ = R+Γ, a model that includes a repumping rate, c.f. section C.2.
As expected both distributions for τ(= 1/Γ) and R are Gaussian with mean τ = 1165ms
and R = 0s−1, the means of the parent distribution (fig. B.2 a,b). The scatter of the
values, i.e. half the widths of the Gaussians, are the errors (1σ standard deviation) in
each parameter for a single simulated data set fit. The standard deviation of the rate
is ∆R = 3 · 10−3s−1. This implies also that a fitted rate of such magnitude for the
experimental data is statistically consistent with zero; A real rate that is present but
smaller than this ∆R is hidden in the statistical fluctuations and cannot be extracted
from a fit.

Finally, it is mentioned that for the statistical analysis in the quantum jump tech-
nique the least-squares method is inappropiate. The bins at longer times have only
few events the distribution of which deviates strongly from a Gaussian because of the
binomial distribution. These points are weighted incorrectly when fitted with the least
squares method. A relevant method in such a case is the more general maximum-
likelihood-estimation method which is independent of the distribution, see e.g. [108].
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C Systematic Errors

Systematic errors are inherent to most physical measurement processes. Often they
can be avoided by a careful experimental procedure or detected by a deviation of the
data from the expected model. But if the deviation is within the statistical noise, data
simulations are an elegant way to estimate limits for systematic errors. The relevant
question here is how do e.g. detection errors translate into a systematic error of the
measured decay probability p and what is the effect on the resulting lifetime?

C.1 Detection Error

The state detection is based on the discrimination of two fluorescence levels. If the ion is
in the D-state: no fluorescence = counts CD (=background counts). If the ion is in the
S-state: fluorescence = counts CS. The state is determined by comparing the counts C
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Figure C.1: Histogram of fluorescence counts of a single ion in the detection interval
of 3.5 ms. The Poissonian distribution of counts is visible. The excitation
probability is approximately 0.5. The threshold for discrimination is indi-
cated by the vertical line. The signal-to-background ratio is about 6.5 at
an average countrate of 45 kHz when the ion is fluorescing.
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C Systematic Errors

to a threshold Θ (CD < Θ < CS). An example of the distribution of fluorescence counts
in the detection interval of 3.5 ms is shown in a histogram in figure C.1. Detection
errors may occur due to the Poissonian distribution of counts (width=

√
C) and the

possibility of spontaneous emission during the detection. In the following, these two
classes of errors will be referred to as type 1 and type 2, respectively.

Type 1 errors are of pure statistical nature. They can happen both ways: measuring
state S while the ion was actually in state D and vice versa1. For a proper threshold
these possibilities are equal in magnitude (ε1). The probability of measuring D instead
S can be expressed as

ε1 = prob(CS < Θ) =
1

2

(
1− prob(CS −Θ < CS < CS +Θ)

)
. (C.1)

The second probability on the right hand side is calculated by integrating over the
probability density function of CS which can well be approximated by a Gaussian:

prob(CS −Θ < CS < CS +Θ) =
1√
2π

∫ CS+Θ

CS−Θ

e
−

(

CS−CS√
2CS

)2

dC (C.2)

This value of the integral in C.2 can be found in tables e.g. in the appendix of ref.

[108]. For CS−Θ√
CS
≈ 7 (the threshold is seven standard deviations away from the mean)

the type 1 error is negligibly small: ε1 < 10−6.
Type 2 errors occur when the ion decays during the interval T of the detection. If

such an event happens at time t after the start the mean detected counts C ′
D are

C ′
D(t) = CD

t

T
+ CS

(

1− t

T

)

. (C.3)

At time t = tε = T
(

CS−Θ
CS−CD

)

the number of counts are equal to the threshold, C ′
D(tε) =

Θ. Hence the error is the probability that the ion decays in the interval (0, tε) [118]:

ε2 =
tε
τ

=
T

τ

(
CS −Θ

CS − CD

)

(C.4)

With the experimental values this produces an error of ε2 = 2 · 10−3. Clearly, the error
also depends on the population. For example, if the ion is in the S state with 98%
probability then this error is negligible. Hence it only affects the measured initial decay.
The systematic error in the measured excitation probability pmeas can be written as:

pmeas = (1− ε2)pactual (C.5)

1Note that this is referred to as type 1 and type 2 error, respectively in reference [118].

76



C.2 Rate Error

1 10

-20

-10

0

S
ys

te
m

at
ic

 L
ife

tim
e 

E
rr

or
 (

m
s)

Detection Error ε2  (10
-4

)
0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0
 perfect detection 
  ε

2
 = 0.1

  ε
2
 = 0.2

∆t (1/Γ)

E
xc

ita
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Actual Excitation

M
ea

su
re

d 
E

xc
ita

tio
n

 no detection error
 type 1 error ( ε

1
 = 0.1)

 type 2 error ( ε
2
 = 0.1)


��  � � �

Figure C.2: a) Two models for the detection error: Type 1 errors are due to Poissionian
noise in the detection counts. This error is less than 10−6 and can safely
be ignored here. Type 2 errors are due to spontaneous decay during the
detection period. It is of the order of 10−3 and the dominating error.
Exaggerated 10% errors of both types are shown to illustrate the effect on
the measured excitation as a function of the actual excitation. b) Effect of
type 2 detection error in the measured excitation as a function of waiting
time. c) The systematic error in the lifetime due to detection error: Data
is simulated including a detection error and fitted with a pure exponential
curve (1− p) = e−∆t/τ . The systematic error is the deviation of the fitted
lifetime from the real lifetime used for the simulations.

This error model is illustrated in fig. C.2 with an exaggerated error. The systematic
error on the resulting lifetime is then found by simulating data as in section B using the
error model in equation C.5. The data is then fitted with a normal exponential function
(1 − p) = e−∆t/τ . The results are shown in fig. C.2c as a function of the detection
error ε2. For ε2 = 1 · 10−3 a systematic error of the lifetime result is determined to be
∆τ = +8ms.

A detailed mathematical analysis of the detection error can also be found in the
PhD thesis of C. Roos [118].

C.2 Rate Error

A repumping rate leads to a different exponential decay. This can be modeled by
a simple rate equation including the additional rate R with the opposite sign. The
differential equation for the excited state population pD is then written as:

˙pD = −ΓpD +R(1− pD) (C.6)
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Figure C.3: The effect of a repumping rate R: a) Solutions of the rate equation, pD =
B+Ae−Γ′t, a modified exponential model. b) Systematic error of the fitted
lifetime to simulated data.

and by substituting the ansatz pD = B+Ae−Γ′t it follows for the parameters A, B, and
Γ′:

B =
R

Γ′
, A = 1− R

Γ′
, Γ′ = Γ +R (C.7)

The solution is graphically depicted in fig. C.3a. In the initial decay behaviour the rate
is not significant but for longer times the decay probability approaches an offset, the
equilibrium point of decay and repumping. This offset leads to systematic error towards
longer lifetimes which again is investigated by the use of simulated data. For different
rates model data are simulated and fitted with the normal exponential model. The
dependence is shown in fig.C.3b. When the experimental data is fitted with the rate
model pD = B+Ae−Γ′t resulting in R= 6 · 10−3s−1 and τ = 1172ms. Using the normal
exponential fit function pD = e−∆t/τ (c.f section 5.3) τ = 1176ms was found. The fits
to the simulated data for a rate of R = 5 · 10−3s−1 yield lifetimes for both D3/2 and
D5/2 that are systematically larger by ∆τ = +4 ms (fig. C.3c), the same discrepancy
as the experimental fits. This is an impressive indication that the simulations produce
reliable results.

It should be noted that in this case the systematic error is hidden in the natural
statistical error of the rate and cannot be resolved directly, c.f. figure B.2b.

C.3 π Pulse Error

The decay of the D3/2 level pdec is measured by transferring the decayed population
to the D5/2 level via a π pulse and determining its excitation probability pD. Due to
heating of the ion the transfer efficiency ηπ decreases with waiting time and leads to a
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systematic error in the measured excitation probability pD, see fig. C.4b.

pdec = 1− pD
ηπ
, ηπ = 1− a ·∆t (C.8)

The decrease of the π pulse transfer efficiency was measured independently in the
experiment as a = 4(2) · 10−3s−1 (fig.C.4a). This value for a implies a systematic error
in the D3/2 lifetime of ∆τ = −7ms. Simulating data according to C.8 and fitting the
normal exponential model yields τ = 1186ms (fig. C.4c).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

∆t(1/Γ)

ex
ci

ta
tio

n

 
a=0.05   Γ

0 2 4 6 8 10

1180

1185

1190

1195

lif
et

im
e 

(m
s)

a (10 -3 s-1)

a=0   

0.0 0.5 1.0 1.5 2.0
0.95

0.96

0.97

0.98

0.99

1.00

A=  0.995 (0.001)
B= -6 E-9 (1 E-9)

ex
ci

ta
tio

n 
af

te
r 

π  
- 

pu
ls

e 

∆t(s)

Figure C.4: The effect of decreasing π pulse efficiency. a) The efficiency decreases lin-
early with slope a = 4(2) · 10−3s−1: ηπ = 1− a ·∆t. b) For longer waiting
times ∆t the measured excitation is systematically higher than the ac-
tual excitation (exaggerated illustration). c) Systematic error on the D3/2

lifetime as a function of slope a.
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D Lifetime Measurement Strategy
at a Single Delay Time

In chapter 6 the lifetime is determined by measuring the decay for a single waiting time
∆t only. This is sufficient since the decay follows the exponential law, for which:

τ =
−∆t

ln(1− p) . (D.1)

The remaining problem is to find the optimal waiting time such that the relative error
in the resulting lifetime decreases fastest with measurement time.

Consider first the error of the decay probability ∆p which is results from quantum
projection noise:

∆p =
√

p(1− p)/N (D.2)

where N is the total number of experiments. This transforms into a relative lifetime
error

∆τ

τ
= −

√

p(1− p)
ln(1− p)(1− p)

√
N

(D.3)

by error propagation ∆τ = dτ
dp
∆p. The total measurement time T is T = N(∆t +

ε) where ε is the time overhead in the pulse sequence due to state preparation and
detection, here ε = 5.5 ms, recalling fig. 5.1. The relative error in the lifetime after a
fixed measuring time T can then be written as a function of p only when ∆t is replaced
by −τ ln(1− p):

∆τ

τ
=

√

p(1− p)
ln(1− p)(1− p)

√

−τ [ln(1− p) + ε]

T
(D.4)

A plot of the relative error ∆τ/τ against p for a lifetime of τ = 1165 ms and a
measurement time of T = 10 min is shown in fig. D.1. A relatively flat minimum is
identified at 9% decay which corresponds to a delay time of 110 ms. For the lifetime
measurements in chapter 6 a fixed delay of 50 ms was chosen as a compromise between
fast data aquisition and minimum heating of the ion during the delay. Also, for short
delays the timing of the mechanical shutter (for the 854 nm beam) becomes more
critical.
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Figure D.1: Relative lifetime error after a measurement time of 10 min as a function of
the decay probability. The relatively flat minimum is at 9% decay which
corresponds to a waiting time ∆t = 110 ms.
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Spontaneous Emission Lifetime of a Single Trapped Ca� Ion in a High Finesse Cavity

A. Kreuter, C. Becher,* G. P.T. Lancaster, A. B. Mundt, C. Russo, H. Häffner, C. Roos, J. Eschner,†

F. Schmidt-Kaler, and R. Blatt

Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
(Received 22 December 2003; published 19 May 2004)

We investigate the spontaneous emission lifetime of a single trapped 40Ca� ion placed at different
positions in the vacuum standing wave inside a high finesse cavity which is stabilized to the atomic
transition. The lifetime is measured by quantum state detection after �-pulse excitation. The result for
the natural lifetime of the D5=2 metastable state of 1161(22) ms agrees, within 1 standard deviation,
with the most precise published value. We observe a reduction of the spontaneous emission lifetime of
�15% in the node of the vacuum field.

DOI: 10.1103/PhysRevLett.92.203002 PACS numbers: 32.70.Cs, 03.67.Lx, 42.50.Pq

The rapid and promising development in the field of
quantum information processing in recent years is based
on the ability to control and manipulate single quantum
systems. Among these, trapped ions have proven to con-
stitute a model system for storing and processing quan-
tum information. The transport of this information
within distributed quantum networks [1] requires an in-
terface between trapped ions and photons operating as
moving quantum bits. Such an interface could be based on
the deterministic coupling of a single atom or ion to a
high finesse optical cavity [2,3], which requires the abil-
ity to precisely and stationary place the atom at a fixed
position within the cavity field. So far, such deterministic
coupling has been demonstrated only for intense light
fields [2,3]. However, the transport of quantum informa-
tion implies coupling of an atomic quantum bit to the
cavity vacuum field, which in turn modifies the sponta-
neous emission properties of the atom. To demonstrate the
feasibility of this approach, we investigate the stationary
interaction of a single trapped Ca� ion with the vacuum
field inside an optical cavity by measuring the modifica-
tion of the spontaneous emission lifetime of the meta-
stable D5=2 level (�1 s) at various positions within the
cavity. Because of the good localization of the ion we are
able to map the standing-wave vacuum field.

The enhancement or inhibition of spontaneous emis-
sion due to the modification of the vacuum field by a
resonator has long been predicted by Purcell [4] and
Kleppner [5]. There have been experimental demonstra-
tions with ensembles of emitters coupled to resonant
structures [6,7] and with few or single emitters coupled
to cavities: a single electron trapped in a microwave
cavity [8], Rydberg atoms traversing microwave cavities
[9,10], dilute atom beams traversing optical resonators
[11,12], a single trapped ion interacting with a single
mirror [13], and a single semiconductor quantum dot
coupled to a microcavity [14,15]. Among these, only
the experiments with ions and quantum dots have been
carried out with one and the same single quantum emitter.
In addition, besides the work involving a trapped ion [13],

these experiments lack either the stationary coupling or
the deterministic control of the emitter position with
respect to the resonator mode. In our experiment, the
motional wave packet of a laser-cooled trapped ion is
confined to a region much smaller than the optical wave-
length � (to approximately �=50), and its position within
a cavity standing-wave (SW) field is controlled with a
precision of up to 7 nm [3].

The lifetimes of the metastable D levels of 40Ca� have
been subject to several investigations, both theoretical
and experimental, because of their high relevance to
frequency standards [16] and atomic structure theory.
All previous lifetime measurements of the D5=2 level of
single 40Ca� ions employed the quantum jump technique
(see [17], and references therein). This technique is based
on monitoring the fluorescence on the S1=2-P1=2 dipole
transition [see Fig. 1(a)], while at random times the ion
is shelved to the metastable state where the fluorescence
falls to the background level. Statistical analysis of
these dark times yields the lifetime �. The most precise
measurement using this technique resulted in � �
1168�7� ms [17].

Here, we introduce a new measurement technique
based on coherent excitation and quantum state detection.
The quantum jump method is not appropriate in our
experiment as the 397 nm light that is used to monitor
the fluorescence would broaden the S1=2 ground state by
dipole coupling to far beyond the linewidth of the cavity,
and hence the vacuum effect would become negligible.
Instead, we use an improved version of a technique that
was used to measure the D3=2 metastable level lifetime of
single Ba� ions [18]. The method is to first excite the ion
deterministically with a � pulse and then measure the
remaining excitation after a fixed waiting period, during
which all lasers are shut off. The main advantage of this
‘‘state detection’’ method is that no residual light is
present during the measurement which could affect the
free decay of the atom. Thus we are able to measure the
free-space lifetime with high precision. For the measure-
ment of the cavity-modified lifetime, however, we cannot
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avoid residual light. The far off-resonant transfer laser
light that is needed to keep the cavity frequency locked
causes additional deshelving of the D5=2 state by admix-
ing a small fraction of the fast-decaying P3=2 level.
This effect has been carefully measured and is described
below.

The experimental setup is shown schematically in
Fig. 1 and is described in detail elsewhere [3,19]. The
general experimental procedure starts with loading a
single 40Ca� ion into a spherical Paul trap with radial
and axial secular frequencies �!r1; !r2; !ax� � 2��1:9;
2:6; 4:5� MHz. The trap is located inside a near-confocal
resonator with a finesse of F � 35000 at 729 nm and a
waist of 54 �m. The mirrors are both mounted on piezo-
electric translators (PZT) to allow for independent
movement. The cavity is frequency stabilized using the
Pound-Drever-Hall technique to a transfer laser (ex-
tended cavity diode laser at � 785 nm) [19]. The transfer
laser is frequency stabilized to the same ultrastable refer-
ence cavity as the Ti:Sapphire laser used to drive the
729 nm transitions. By an appropriate frequency tuning
of the transfer laser with an acousto-optical modulator
(AOM), the cavity is made resonant for both the transfer
laser and the 729 nm laser [beam 1 in Fig. 1(b)]. This
ensures that the cavity is resonant with the quadrupole
transition without using resonant light.

The lifetime measurements described here consist of a
repetition of a laser pulse sequence applied to the ion. The

sequence generally is composed of three steps [see
Fig. 1(c)]: (i) state preparation and Doppler cooling con-
sisting of 2 ms of Doppler cooling (397 and 866 nm light),
repumping from the D5=2 level (854 nm light), and optical
pumping into the S1=2�m � �1=2� Zeeman sublevel
(397 nm � polarized light), (ii) coherent excitation at
729 nm [beam 2 in Fig. 1(b)], with pulse length and
intensity chosen to obtain near unity excitation (� pulse)
to the D5=2�m � �5=2� Zeeman level, and (iii) state de-
tection for 3.5 ms by recording the fluorescence on the
S1=2-P1=2 transition with a photomultiplier to discrimi-
nate between the states S and D. The state is measured
before and after a fixed waiting period �t between 10 and
500 ms to determine whether a decay of the excited
state has occurred. This three-step cycle [steps (i)–(iii)]
is repeated typically several thousand times to yield
the decay probability p. For the calculation of the life-
time � we use an exponential fit function 1� p �
A expf��t=�g. For �t we use the time interval between
the ends of the two detection periods. Poissonian noise of
the count rate or decay of the atom during the detection
period can lead to a small error in the quantum state
detection [20]. We model this error as a deviation of the fit
parameter A from its ideal value of one.

As a first step, the natural free-space lifetime of the
D5=2 level is determined without the cavity influence to
assure the accuracy of our measuring scheme and to
exclude possible inconsistencies and systematic errors.
The results for various waiting periods between 10 and
500 ms, based on several 105 decay measurements each,
are displayed in Fig. 2. The exponential fit function
described above yields a lifetime of 1161(22) ms, in
good agreement with earlier results [17] (the number in
parentheses being the 1 confidence level). The fit also
verifies that the decay probability satisfies an exponential
law. For the data in Fig. 2 we find A � 0:999 39�50�,
indicating that the error in quantum state detection for
the given length of detection periods is only 6�5� 	 10�4.
We stress that this lifetime measurement is an indepen-
dent check of earlier results since we used a different
measurement technique.

We note that the lifetime measurement was found to be
extremely sensitive to any background radiation at the
repump wavelength of 854 nm, which can either originate
from residual light of the 854 nm diode laser itself,
background fluorescence of the 866 nm diode laser, or
residual light from the laboratory environment. Great
care was taken to avoid these sources of systematic error.
The 854 nm light is switched by a mechanical shutter in
the beam path (40 dB attenuation by an AOM in double
pass configuration was found not to be sufficient) and the
866 nm beam is shut off by an AOM in single pass
(attenuation >30 dB) during the waiting time. Other
possible effects that result in a lifetime reduction include
collisional effects, such as quenching and J-mixing
[21,22]. Collisional quenching effects are neglected on

FIG. 1. (a) Ca�-level scheme with relevant transitions.
(b) Sketch of the experimental setup with a single ion in the
standing wave of a two-mirror near-confocal cavity at 729 nm.
Laser beam 1 is used to measure the ion’s position in the SW;
beam 2 prepares the ion in the D state by a � pulse.
(c) Schematic pulse sequence of one experimental cycle for
the lifetime measurement (see text for details).
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grounds of low pressures (<3	 10�10 mbar). J-mixing is
neglected as measurements using coherent excitation and
deexcitation after 100 ms did not indicate any decoher-
ence beyond the expected spontaneous decay.

As our state detection technique yields consistent life-
time results, we can now use it to investigate the influence
of the cavity vacuum field on the atomic lifetime. For
lifetime measurements with the frequency-stabilized cav-
ity, the largest systematic error is due to the presence of
transfer laser light at 785 nm. To investigate its influence,
the D5=2 decay rate was measured as a function of the ac
Stark shift of the D5=2 level induced by the transfer laser
(Fig. 3). We determined the ac Stark shift by excitation
spectroscopy on the S1=2-D5=2 transition and use it as a
measure for the intracavity power of the transfer laser
since the latter is difficult to determine. The linear fit in
Fig. 3 yields the additional deshelving rate of
0:002 7 s�1=kHz on the D5=2-P3=2 transition due to the
transfer laser light.

To measure the spatial dependence of the enhanced
spontaneous emission, we frequency stabilize the cavity
as described above, using the minimum possible transfer
laser power (approximately 20 mW intracavity power) to
keep the frequency lock stable. The SW pattern is mea-
sured by exciting the ion with short pulses at 729 nm
(pulse length approximately equal to the �=2 time at the
node) through the locked cavity [beam 1 in Fig. 1(b)] and
varying the voltage of the offset PZT, resulting in the
phase of the SW being shifted with respect to the spa-
tially fixed ion (see inset of Fig. 4). To place the ion at a
specific position in the SW, we then apply the correspond-
ing offset voltage. This procedure is done before and after
each lifetime measurement (a few 1000 sequences) to
account for thermal drifts. Several measurements over
around 15 h showed that the drift is linear over several
hours and corresponds to a displacement by �=4 in 3.9 h.
Each measurement was limited to 19 min (2	 104 single
experiments), yielding a position uncertainty of ��=50.

The measurements of the cavity-modified lifetime
were performed with a fixed waiting time �t � 50 ms.
The raw data from many experimental runs are combined
to yield the results of the lifetime measurement at five
different points in the vacuum SW, shown in Fig. 4. The
indicated lifetime errors are the 1 statistical errors,
while the errors in the phase result from the deviation of
the SW phase in the individual measurements. Note that
the drift during the time of the measurement (15 nm in
19 min) is not a systematic error but corresponds to an
averaging over the sinusoidal variation and a loss of
contrast. In addition, the spatial extension of the ion’s
wave packet (on the order of 20 nm, taking into account
a heating rate of 0:1 ms�1 during 50 ms) also leads to a
loss of contrast [23]. The combined effect yields a visi-
bility of the SW of V � 90%. To exclude any residual

FIG. 3. Total decay rate from the D5=2 state versus ac Stark
shift on the S1=2-D5=2 transition induced by the transfer laser.
The open dot represents the decay rate in free space measured
without transfer laser.

FIG. 4 (color online). D5=2 state lifetime measured at various
positions in the cavity vacuum standing-wave field. The solid
line shows a simulation of the Purcell effect, assuming � �
1075 ms, a Purcell factor F � 1:175, and a visibility of V �
0:9. The inset shows a measurement of an intense cavity
standing wave by coherent excitation (c.f. [3,19]).

FIG. 2. Decay of the D5=2 level as a function of waiting time.
An exponential fit (solid line) yields the natural lifetime.
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systematic errors (lifetime reduction due to effects other
than the cavity field), the lifetime is also measured off
resonance with the cavity shifted more than ten line-
widths away from resonance by changing the frequency
of the transfer laser by 2 MHz. This off-resonance life-
time was 1069(37) ms. The ac Stark shift for these mea-
surements was maximally 16 kHz, which results in an
additional deshelving rate of 0:04 s�1. This appears as a
<5% lifetime reduction, which varies sinusoidally with
the transfer laser SW in the cavity. This transfer laser SW
has, in general, a different phase than the vacuum SW,
which was not determined independently for the cavity
lifetime measurement. Thus each data point in Fig. 4 has
an additional error of �5

�0% due to the additional deshelv-
ing induced by the transfer laser. It is important to point
out that the observed lifetime reduction is a genuine
cavity QED effect, consistent with the measured phase
of the vacuum SW, and can not be explained only by the
deshelving effect of the transfer laser.

The observed maximum lifetime reduction in the node
of the vacuum field is 15
 5%. With our experimentally
determined parameters, i.e., ion-field coupling constant
g � 2�	 120 Hz, cavity decay rate � � 2�	 102 kHz,
and spontaneous emission rate � � 1=� � 2�	
0:137 Hz, we calculate the cooperativity parameter [24]
C0 � g2=2�� � 0:52 and a Purcell factor [24] F �
2C0 � 1 � 2:04, which should yield a 50% lifetime re-
duction [3]. However, there are several experimental im-
perfections that contribute to the reduction of the
expected effect. First, disturbance (acoustical, etc.) of
the cavity lock leads to an inhomogeneous broadening
of the cavity linewidth. The resulting effective finesse
found from scanning the 729 nm laser slowly over the
locked cavity resonance is F eff � 22 000, which reduces
the cooperativity to 0:62C0. Second, the coupling is re-
duced by a suboptimal lateral position of the ion in the
waist of the cavity mode. This position has been opti-
mized by moving the trap mount with micrometer screws
and recording Rabi oscillation frequencies driven through
the cavity field at every position. This positioning
achieves an estimated precision of 20 �m, resulting in a
reduced cooperativity of 0:57C0. Taking into account the
SW visibility V � 90%, as discussed above, the total
effective cooperativity is Ceff � 0:62	 0:57	 0:9	
C0 � 0:165, corresponding to an expected 25% lifetime
reduction. In the antinode of the cavity SW (SW phase �
0 in Fig. 4), the lifetime �a should be approximately equal
to the free-space lifetime (�a � 0:98� � 1138 ms).
However, in our experiment we measure a maximum
lifetime of �a � 1075�30� ms in the cavity SW.
Therefore we assume the following worst-case scenario:
the transfer laser deshelving rate of 0:04 s�1 leads to a
reduction of the maximum observable lifetime in the SW
antinode by �5% (expected �a � 1089 ms) and leaves

the minimum lifetime in the SW node unchanged, yield-
ing an expected 21% lifetime reduction.

In summary, we have demonstrated the deterministic
coupling of a single ion to the vacuum field inside a high
finesse cavity over an extended time. The spatial variation
of the spontaneous emission rate has been investigated by
measuring the D5=2 state lifetime with a new method
based on deterministic excitation and quantum state de-
tection. As the position in the standing wave and the
lifetime are measured independently, our experiment is
a genuine demonstration of single-atom cavity QED.
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[2] G. R. Guthöhrlein et al., Nature (London) 414, 49 (2001).
[3] A. B. Mundt et al., Phys. Rev. Lett. 89, 103001 (2002).
[4] E. M. Purcell, Phys. Rev. 69, 681 (1946).
[5] D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).
[6] K. H. Drexhage, in Progress in Optics, edited by E. Wolf

(North-Holland, Amsterdam, 1974), Vol. 12, p. 163.
[7] F. DeMartini et al., Phys. Rev. Lett. 59, 2955 (1987).
[8] G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67

(1985).
[9] P. Goy et al., Phys. Rev. Lett. 50, 1903 (1983).

[10] R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. Lett.
55, 2137 (1985).

[11] W. Jhe et al., Phys. Rev. Lett. 58, 666 (1987).
[12] D. J. Heinzen et al., Phys. Rev. Lett. 58, 1320 (1987).
[13] J. Eschner et al., Nature (London) 413, 495 (2001).
[14] A. Kiraz et al., Appl. Phys. Lett. 78, 3932 (2001).
[15] G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev.

Lett. 86, 3903 (2001).
[16] R. J. Rafac et al., Phys. Rev. Lett. 85, 2462 (2000).
[17] P. A. Barton et al., Phys. Rev. A 62, 032503 (2000).
[18] N. Yu,W. Nagourney, and H. Dehmelt, Phys. Rev. Lett. 78,

4898 (1997).
[19] A. B. Mundt et al., Appl. Phys. B 76, 117 (2003).
[20] C. Roos, Ph.D. thesis, University of Innsbruck, 2000.
[21] M. Knoop, M. Vedel, and F. Vedel, Phys. Rev. A 52, 3763

(1995); 58, 264 (1998).
[22] P. Staanum et al., Phys. Rev. A 69, 032503 (2004).
[23] J. Eschner, Eur. Phys. J. D 22, 341 (2003).
[24] Q. A. Turchette, R. J. Thompson, and H. J. Kimble, Appl.

Phys. B 60, 1 (1995).

P H Y S I C A L R E V I E W L E T T E R S week ending
21 MAY 2004VOLUME 92, NUMBER 20

203002-4 203002-4

87



E Spontaneous emission lifetime of a single trapped Ca+ ion in a high finesse cavity

88



F New experimental and
theoretical approach to the 3d
2D-level lifetimes of 40Ca+

Submitted to Phys. Rev. A, online version on arXiv-server: physics/0409038

89



F New experimental and theoretical approach to the 3d 2D-level lifetimes of 40Ca+

New experimental and theoretical approach to the 3d 2D-level lifetimes of 40Ca+
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Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
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(Dated: September 7, 2004)

We report measurements of the lifetimes of the 3d 2D5/2 and 3d 2D3/2 metastable states of a single

laser-cooled 40Ca+ ion in a linear Paul trap. We introduce a new measurement technique based
on high-efficiency quantum state detection after coherent excitation to the D5/2 state or incoherent
shelving in the D3/2 state, and subsequent free, unperturbed spontaneous decay. The result for the
natural lifetime of the D5/2 state of 1168(9) ms agrees excellently with the most precise published
value. The lifetime of the D3/2 state is measured with a single ion for the first time and yields
1176(11) ms which improves the statistical uncertainty of previous results by a factor of four. We
compare these experimental lifetimes to high-precision ab initio all order calculations and find a
very good agreement. These calculations represent an excellent test of high-precision atomic theory
and will serve as a benchmark for the study of parity nonconservation in Ba+ which has similar
atomic structure.

I. INTRODUCTION

The lifetime of the metastable D-levels in Ca+ is of
high relevance in various experimental fields such as
optical frequency standards, quantum information and
astronomy. Trapped ion optical frequency standards
[1] and optical clocks [2] are based on narrow absorp-
tion lines in single laser-cooled ions. With transition
linewidths in the 1 Hz range [3], Q-values (frequency of
the absorption divided by its spectral width) of ≈ 1015

can be achieved. As the lifetimes of the D-levels in Ca+

are on the order of 1 s, yielding sub-Hz natural linewidths
of the D-S quadrupole transitions, Ca+ has long been
proposed as a promising candidate for a trapped ion fre-
quency standard [4]. Such long lifetimes together with
the ability to completely control the motional and elec-
tronic degrees of freedom of a trapped ion [5] make it
ideally suited for storing and processing quantum infor-
mation [6]. In Ca+ a quantum bit (qubit) of information
can be encoded within the coherent superposition of the
S1/2 ground state and the metastable D5/2 excited state
[7] with very long coherence times [8, 9]. In astronomy,
absorption lines of Ca+ ions are used to explore the kine-
matics and structure of interstellar gas clouds [10, 11]
and the D-level lifetimes are required for interpretation
of the spectroscopic data. On the other hand, in the-
oretical atomic physics Ca+ is an excellent benchmark
problem for atomic structure calculations owing to large
higher-order correlation corrections and its similarity to
Ba+. The size and distribution of the correlation correc-

∗Electronic address: Christoph.Becher@uibk.ac.at
†also with: Institut für Quantenoptik und Quanteninformation,
Österreichische Akademie der Wissenschaften, Technikerstraße 25,
A-6020 Innsbruck, Austria

tions make it ideal for the study of the accuracy of various
implementations of the all-order method. The properties
of Ba+ are of interest due to studies of parity nonconser-
vation in heavy atoms and corresponding atomic-physics
tests of the Standard model of the electroweak interac-
tion [12].

3d 2D5/2

40Ca+

3d 2D3/2

4p 2P1/2

4p 2P3/2

4s 2S1/2

866 nm

397 nm

729 nm

850 nm

393 nm

854 nm

732 nm

FIG. 1: Ca+-level scheme with relevant transitions.

Experimental investigations of long atomic lifetimes
have profited enormously from the development of ion
trap technology and laser spectroscopy. Early exper-
iments on the measurement of the D-level lifetimes in
40Ca+ [13–17] used large clouds of ions and the lifetime
was determined by recovery of fluorescence on the UV-
transitions (S1/2 - P1/2 or S1/2 - P3/2, see Fig. 1) after
electron shelving in the D-states or by observing UV fluo-
rescence after driving transitions from the D-states to the
P-states. Shelving in this context means that the elec-
tron for a certain time remains in a metastable atomic
level which is not part of a driven fluorescence cycle.
These lifetime measurements were limited by deshelving
induced by collisions with other ions or the buffer gas
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used for cooling. Similar results using the same tech-
niques have been obtained in an ion storage ring [18].

Much more accurate results can be obtained by per-
forming lifetime measurements with single trapped ions
[19–23] or strings of few trapped ions [24] and employing
the quantum jump technique. This technique is based
on monitoring the fluorescence on the S1/2 - P1/2 dipole
transition while at random times the ion is shelved to the
metastable D5/2-state where the fluorescence falls to the
background level. For observing fluorescence both the
S1/2 - P1/2 (397 nm) and the D3/2 - P1/2 (866 nm) tran-
sition have to be driven to prevent the ion from residing
in the metastable D3/2-state. Shelving to the D5/2-state
is initiated by applying laser light at 850 nm (D3/2 - P3/2)
[19] or at 729 nm (S1/2 - D5/2) [23]. Statistical analysis
of the fluorescence dark times yields the lifetime τ . The
most precise measurement using this technique was car-
ried out by Barton et al. [22] who found the result of
τ=1168(7) ms.

Here, we introduce a measurement technique [25] based
on deterministic coherent excitation to the D5/2 state
or incoherent shelving in the D3/2 state, followed by
a waiting period with free spontaneous decay and fi-
nally a measurement of the remaining excitation by high-
efficiency quantum state detection. During the waiting
time all lasers are shut off and no light interacts with
the ion. This method basically is an improved version
of a technique that was used earlier to measure the D3/2

metastable level lifetime in single Ba+ ions [26]. The
main advantage of this ”state detection” method is that
no residual light is present during the measurement which
could affect the free decay of the atom. In addition, it al-
lows for the measurement of the D3/2 level lifetime which
otherwise is inaccessible with the quantum jump tech-
nique. There exist only a few reported D3/2-level lifetime
results for Calcium [15, 16, 18] but none from a single ion
experiment.

Figs. 2 and 3 compare the different experimental [13–
24] and theoretical [27–32] methods and results for the
D5/2- and D3/2-level lifetimes. From Fig. 2 it is evi-
dent that the single ion measurements are the most ac-
curate ones. Generally, lifetime measurements on single
ions or crystallized ion strings are more accurate as sys-
tematic errors, e.g. due to collisions, can be reduced to
the highest possible extend. Therefore, single ion D-level
lifetime measurements for Calcium are of special inter-
est. The existence of accurate D-state lifetime values is
of special interest for theory as well since most studies
of alkali-metal atoms were focused on the measurements
of the lowest nP-state lifetimes and D-states are much
less studied. The properties of D-states are also gener-
ally more complicated to accurately calculate owing to
large correlation corrections.
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FIG. 2: Theoretical and experimental results for the D5/2-
level lifetime.

WIWRXYXZWIWR[YXZWI\]X]X^WI\][]X

_ `�a b�c#dIe f 

gihkj l�m]n o pYqrn stp]utvwstuyx

z|{ a }�} {+~F� �����
�0� { _ { _I��� � � �R�)�
� � {�� f { _+�+� � � �6�+�
� e �6� {P{ _+��� � � �����
� a �.c � �����
� a {+� d ~ _ { _I��� � � �����

� a �+� { e � { _+��� � � ����� a d ~ � { � �
��~ d�d+} { _+��� � � ����� a d ~?� � d � �
� e � { b { _+��� � � �6�I� a d ~?� � d � �

_ ` { d+e �{6� } { e a �?{I~ _

FIG. 3: Theoretical and experimental results for the D3/2-
level lifetime.

II. EXPERIMENTAL SETUP AND METHODS

For the experiments, a single 40Ca+ ion is stored in a
linear Paul trap in an ultra high vacuum (UHV) envi-
ronment (10−11 mbar range). The Paul trap is designed
with four blades separated by 2 mm for radial confine-
ment and two tips separated by 5 mm for axial confine-
ment. Under typical operating conditions we observe
radial and axial motional frequencies (ωr1, ωr2, ωax) =
2π(4.9, 4.9, 1.7) MHz. 40Ca+ ions are loaded into the
trap using a 2-step photoionization procedure [33]. The
trapped 40Ca+ ion has a single valence electron and no
hyperfine structure (see Fig. 1). Doppler-cooling on the
S1/2−P1/2 transition at 397 nm puts the ion in the Lamb-
Dicke regime [5, 6]. Diode lasers at 866 nm and 854 nm
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prevent optical pumping into the D states during cool-
ing and state preparation. For coherent excitation to the
D5/2 state we drive the S1/2 to D5/2 quadrupole transi-
tion at 729 nm. A constant magnetic field of 3 G splits
the 10 Zeeman components of the S1/2 – D5/2 multiplet.
We detect whether a transition to D5/2 has occurred by
applying the laser beams at 397 nm and 866 nm and
monitoring the fluorescence of the ion on a photomulti-
plier (PMT), i.e. using the electron shelving technique
[34]. The internal state of the ion is discriminated with
an efficiency close to 100% within approximately 3 ms
[35]. The following stabilized laser sources are used in
the experiment: two frequency-stabilized diode lasers at
866 nm and 854 nm with linewidths of ≈ 10 kHz and
two Ti:Sa lasers at 729 nm (< 100 Hz linewidth) and
794 nm (< 100 kHz linewidth), of which the 794 nm laser
is externally frequency doubled to obtain 397 nm. The
experimental setup and the laser sources are described in
more detail elsewhere [7, 36].

III. MEASUREMENT OF THE D5/2 STATE

LIFETIME

A. Measurement procedure and results

det 1 det 2prep	 �

�
t

FIG. 4: Simplified pulse scheme for the D5/2 lifetime measure-
ment: the preparation consists of Doppler cooling, repump-
ing, and optical pumping (2ms); followed by a π-pulse (few
µs) and a detection periods (3.5 ms). The waiting time is
varied between 25 ms and 5 s.

The measurements consist of a repetition of laser pulse
sequences applied to the ion. The sequence generally is
composed of three steps (see Fig. 4):

1. State preparation and Doppler cooling, consisting
of 2 ms of Doppler cooling (397 nm and 866 nm light),
repumping from the D5/2 level (854 nm light) and op-
tical pumping into the S1/2(m=-1/2) Zeeman sublevel

(397 nm σ− polarized light).
2. Coherent excitation at 729 nm with pulse length and

intensity chosen to obtain near unity excitation (π-pulse)
to the D5/2(m = −5/2) Zeeman level.

3. State detection for 3.5 ms by recording the fluores-
cence on the S1/2 - P1/2 transition with a photomulti-
plier. Discrimination between S and D state is achieved

by comparing the fluorescence count rate with a thresh-
old value. The state is measured before and after a fixed
waiting period ∆t to determine whether a decay of the
excited state has happened.

This three-step cycle is repeated typically several thou-
sand times. The decay probability p is then determined
as the ratio of D-state results in the second and the
first state detections. For the calculation of the D5/2-
state lifetime τ(5/2) we use an exponential fit function
(1 − p) = exp{−∆t/τ(5/2)}. For ∆t we use the time in-
terval between the ends of the two detection periods.

Fig. 5 shows the measured D5/2-level excitation proba-
bility (1−p) after several delay times ranging from 25 ms
up to 5 s. A weighted least squares fit to the data yields
the lifetime τ(5/2) = 1168(9) ms using the fitting func-
tion described above, where the only fitting parameter is
τ(5/2). The statistical error (in brackets) is the 1σ stan-

dard deviation. The fit yields χ2
ν = 0.47, indicating that

the experimental decay is consistent with the expected
exponential decay behavior. The least-squares method
is justified by the normal distribution of the mean decay
probabilities which is a result of the ’central limit theo-
rem’ of statistics. This was also verified using simulated
data sets (see next section).
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FIG. 5: D5/2-level excitation probability after delay times
from 25 ms to 5 s plotted on a logarithmic scale. The solid line
is a least squares fit to the data yielding τ(5/2) = 1168(9) ms.
The residuals (difference of data points and fit curve) of the
fit are shown in the lower diagram.

B. Systematic errors

There are several types of systematic errors that may
affect the lifetime result. In UHV single ion experiments
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the biggest error source is usually radiation which irradi-
ates the ion due to insufficient shielding of room light
or insufficient shut-off of laser beams. In our experi-
ment, the strongest influence stems from residual light
at 854 nm. The influence of this radiation on the D5/2

-level lifetime has been investigated extensively in [22]. If
radiation at 854 nm is present during the delay interval it
may de-excite the D5/2-level to the ground state via the
strongly coupled P3/2-level. This additional ”decay chan-
nel” artificially shortens the observed lifetime. The ob-
vious source for residual 854 nm radiation is the 854 nm
diode laser itself. In our experiment, it is eliminated by
a fast mechanical shutter [37] which is closed during the
delay interval. The 40 dB attenuation of the double-pass
AOM which usually switches the 854 nm light was shown
to be insufficient: In an earlier experiment without the
shutter the lifetime was determined to 1011(6) ms [8]. In
addition, the results observed without shutter were found
to fluctuate by approximately ±50 ms depending on the
specific AOM and diode laser adjustments.

Another source for 854 nm radiation is background flu-
orescence at 854 nm from the 866 nm diode laser. To
eliminate this radiation an AOM in single pass with an
attenuation of more than 20 dB was used to shut the
866 nm beam. As the systematic lifetime error with-
out AOM was found to be of the order of a few percent,
this attenuation is sufficient. Note that this source of
error cannot, in principle, be directly eliminated in the
quantum-jump technique where 866 nm light must be ra-
diated onto the ion continuously. In that case, the only
way to correct for this systematic error is to measure at
different light powers and extrapolate the lifetime to zero
power which in turn implies a larger statistical error. In
summary, radiation at 854 nm did not influence the mea-
sured D5/2 -level lifetime at the given level of statistical
uncertainty.

The D5/2 -level lifetime could in principle be also re-
duced by transitions between the D-levels, i.e. by a M1-
transition stimulated by thermal radiation. The corre-
sponding transition rate is given by W12 = B12ρ(ν) with
the Einstein coefficient for stimulated emission B12 and
the energy density per unit frequency interval for thermal
radiation ρ(ν). With the rate of spontaneous emission
A12 = (8πhν3/c3)B12, W12 is rewritten as:

W12 =
A12

ehν/kT − 1
(1)

With ν = 1.82 THz and A12 = 2.45×10−6 s−1 taken from
[38] we get W12 = 7.23 × 10−6 s−1 at room temperature
which changes the D5/2 -level lifetime by much less than
the statistical error of our measurement.

Residual radiation could also induce lifetime-
enhancing systematic effects. Both radiation at 393 nm
(roomlight) or 729 nm (Ti:Sa laser, double-pass AOM
attenuation of ≈ 40 dB) can lead to re-shelving of the
ion. This effect, however, leads also to a different decay
function. It is modeled by a simple rate equation for the

excited state population pD

˙pD = −ΓpD + R(1 − pD) (2)

where Γ = 1/τ denotes the natural decay rate and R the
reshelving rate induced by laser radiation. The solution
of eq. (2) is of the form

pD = Ae−Γ′t + B (3)

with A = 1−R/Γ′, an offset B = R/Γ′ and the new decay
rate Γ′ = Γ + R. Thus, an offset B is the signature of a
re-shelving rate. The result from fitting the experimental
data in Fig. 5 with the modified exponential fit function
(3) is τfit = 1165(10) ms and Rfit = 3(2) × 10−3 s−1.

To evaluate the systematic error due to a repumping
rate R we use the following technique: We generate simu-
lated data sets from random numbers by considering the
fact that the decay probability for a given waiting time
is distributed binomially around a mean that is given by
an exponential function with an expected mean decay
time τ(5/2). For these data sets we also take into account
the particular experimental waiting times and number of
measurements. In this way ’ideal’ data sets are created
that contain a purely statistical variation of data accord-
ing to the experimental settings and that are free of any
systematic errors. First, a fit of Eq. (3) to such an ideal
simulated data set yields an additional repumping rate
R = 0 with a standard deviation of ∆R = 3 × 10−3 s−1.
Thus, the above fitted repumping rate Rfit is consistent
with zero and not sufficiently significant to allow any con-
clusion about the actual rate or the model, i.e. the sta-
tistical error is too large for this small systematic error
to be resolved in a fit to the data. Second, to obtain an
upper limit for the systematic error of the lifetime due to
a possible re-pumping rate we assume that such a rate
Rsim exists in the experiment. We then simulate data
sets including the rate Rsim and the lifetime τ(5/2) and
fit these data sets with a normal exponential fit func-
tion (1 − p) = exp (−∆t/τsim). The deviation of the fit
result τsim from τ(5/2) used for the simulation gives the

systematic lifetime error. For Rsim = 3 × 10−3 s−1 this
systematic error is ∆τ = −3 ms.

Another systematic effect that implies a different fit
model is the state detection error. Even though the de-
tection efficiency is close to unity, Poissonian noise in the
PMT counts and the possibility of a spontaneous decay
during the detection period produce a small error [39].
The first error, i.e. the probability ε1 to measure the
ion in the wrong state due to noise of the count rate,
depends on the discrimination between S and D state in
the electron shelving technique. Such discrimination is
achieved by comparing the fluorescence count rate dur-
ing the detection window with a threshold value. Proper
choice of this threshold value leads to an error as small as
ε1 = 10−5 which can be neglected for the following analy-
sis. The second error, i.e. the probability ε2 for a wrong
state measurement due to spontaneous decay, also de-
pends on the length of the detection window, fluorescent
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count rates for the ion in S and D states and the thresh-
old setting. For the chosen parameters in the experiment
we evaluate ε2 = 10−3. The measured excitation proba-
bility is then (1−p)meas = (1−ε2)(1−p)real and implies a
model function of the form (1−p) = (1−ε2)e

−Γ∆t. A fit
to simulated data as described above yields a statistically
consistent limit for this detection error of ε2 = 1× 10−3.
Again, it cannot be resolved by a fit to the measured
data. From simulated data including an assumed detec-
tion error of ε2 = 1 × 10−3 we get an upper limit of the
systematic lifetime error ∆τ = 7 ms.

In addition to radiative effects, non-radiative lifetime
reduction mechanisms exist, namely, inelastic collisions
with neutral atoms or molecules from the background
gas. Two relevant types of collisions can be distinguished:
Quenching and j-mixing collisions. Quenching collisions
cause direct deshelving of the ion into the ground state.
In the presence of high quenching rates lifetime measure-
ments have to be done at different pressures. An extrap-
olation to zero pressure then yields the natural lifetime.
Measurements of collisional deshelving rates for differ-
ent atomic and molecular species have been performed
in early experiments [14, 16]. Ref. [16] finds specific
quenching rates for Ca+ of Γq

H = 37 × 10−12 cm3s−1

for H2, and Γq
N = 170 × 10−12 cm3s−1 for N2. Colli-

sions may also induce a change of the atomic polariza-
tion, a process called j-mixing or fine structure mixing
where a transition from the D5/2 to the D3/2 state or
vice versa is induced. These rates have also been de-
termined in Ref.[16] to Γj

H = 3 × 10−10 cm3s−1 for H2

and Γj
N = 13 × 10−10 cm3s−1 for N2. Such collisional

effects cannot be distinguished from a natural decay pro-
cess. Collisional effects are most prominent in experi-
ments with large clouds of ions or at higher background
pressure. To give an upper limit of the effect in our ex-
periment estimates of the constituents of the background
gas must be made. If a background gas composition of
50% N2 and 50% H2 is assumed [40] and the pressure
p < 2× 10−11 mbar in the linear ion trap set up is taken
into account, an upper limit for the additional collision
induced rate of γ = 3 × 10−4 s−1 is calculated. This
effect is well below a promille relative error and can be
neglected here.

In summary, the result for the lifetime of the D5/2 level
can be quoted as: τ(5/2) = 1168 ms ±9 ms (statistical)
-3 ms (repumping rate) +7 ms (detection).

IV. MEASUREMENT OF THE D3/2 STATE

LIFETIME

A. Measurement procedure and results

For the measurement of the D3/2-level lifetime some al-
terations in the pulse sequence are required (see Fig. 6).
To populate the D3/2 state we use indirect shelving by
driving the S-P transition at 397 nm and taking advan-
tage of the 1:16 branching ratio into the D3/2 level. After

a few microseconds the D3/2 level is populated with unity
probability.

Furthermore, because that level is part of the closed 3-
level fluorescence cycle used for state detection its popu-
lation cannot be probed with the state detection scheme
described in the previous paragraph. In that sense the
D3/2 level is not a shelved state. The method used here
is that prior to state detection the decayed population
is transferred to the D5/2 shelving state. The measured
excitation probability of the D5/2 state divided by the
shelving probability then corresponds to the decay prob-
ability from the D3/2 level and the further analysis is
analogous to the one in Sec. III. Shelving in the D5/2

state is achieved by coherent excitation (π-pulse). How-
ever, it must be taken into account that the D3/2 state
may decay into both Zeeman sublevels of the S1/2 ground
state. Hence, two π pulses from both sublevels are re-
quired to transfer all decayed population to the D5/2-
state. In our experiment we chose the two ∆mj = 2
transitions (mj = −1/2 to mj = −5/2 and mj = 1/2
to mj = 5/2). The combined transfer efficiency Pπ of
the two pulses is determined in the first part of the pulse
sequence (cf. Fig. 6): after Doppler cooling the ion is not
optically pumped into the S1/2(mj = −1/2) ground state
as usual but might populate both Zeeman sublevels. The
measured transfer efficiency Pπ is used for calculation of
the decay probability.

det 1 det 2prep	 �

�
t

prep	 
�

s

FIG. 6: Simplified pulse scheme for the D3/2 lifetime mea-
surement. It consists of a measurement of the π-pulse trans-
fer efficiency on the S1/2-D5/2 transition (prep, π and det1);
D3/2-state preparation (prep, s); waiting period ∆t and state
detection (π and det2). For details of the pulse sequence see
text. The waiting time is varied between 25 ms and 5 s.

The measurement of the D3/2-level lifetime τ(3/2) thus
consists of a repetition of the following laser pulse se-
quences applied to the ion. The sequence generally is
composed of three steps (cf. Fig. 6):

1. Measurement of transfer efficiency Pπ: state prepa-
ration and Doppler cooling, consisting of 2 ms of Doppler
cooling (397 nm and 866 nm light), repumping from
the D5/2 level (854 nm light) and spontaneous decay
into the S1/2(m=-1/2) or (m=+1/2) Zeeman sublevel;
π-pulses on the S1/2 to D5/2 transitions (mj = −1/2 to
mj = −5/2 and mj = 1/2 to mj = 5/2); state detection
for 3.5 ms by recording the fluorescence on the S1/2 -
P1/2 transition with a photomultiplier.

2. State preparation and shelving in the D3/2-level:
2 ms of Doppler cooling (397 nm and 866 nm light),
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repumping from the D5/2 level (854 nm light) and op-
tical pumping into the S1/2(m=-1/2) Zeeman sublevel

(397 nm σ− polarized light); shelving pulse at 397 nm
for a few µs.

3. Measurement of decay probability: free decay for a
variable delay time; π-pulses on the S1/2 to D5/2 tran-
sitions (mj = −1/2 to mj = −5/2 and mj = 1/2 to
mj = 5/2); state detection for 3.5 ms by recording the
fluorescence on the S1/2 - P1/2 transition with a photo-
multiplier.

The measured D3/2-level excitation probability (1− p)
is plotted vs. various delay times between 25 ms and
2 s in Fig. 7. Again, the data have been fitted using
the least squares method and the fit function 1 − p =
exp(−∆t/τ(3/2)). Here, p denotes the corrected decay
probability p = Pex/Pπ, i.e. the detected excitation of
the D5/2 level Pex corrected for the near-unity shelving
probability Pπ (which is typically 0.98-0.99 on average).
Since there is no correlation between Pπ and Pex in one
experiment it is more appropriate to use for the correc-
tion the average of Pπ for each delay time. The output
from the fit is τ(3/2) = 1176(11) ms with χ2

ν = 0.68 indi-
cating good agreement of data and exponential model.

0.25

0.5

1

D 3/
2
 P

op
ul

at
io

n

∆t (ms)
0 500 1000 1500 2000

-0.01

0.00

0.01

R
es

id
ua

ls

FIG. 7: D3/2-level excitation probability for delay times from
25 ms to 2 s plotted on a logarithmic scale. The solid line is
a least squares fit to the data yielding τ(3/2) = 1176(11) ms.
The residuals (difference of data points and fit curve) of the
fit are shown in the lower diagram.

B. Systematic errors

Also for this experiment systematic errors due to resid-
ual light have to be investigated. The measured lifetime
might be reduced by residual light at 866 nm or 850 nm

present during the delay interval. This light would de-
excite the D3/2 level via the P1/2- or P3/2-levels, respec-
tively, and results in a faster effective decay rate. The
main source of light at 866 nm is the corresponding diode
laser itself which is switched with a single pass AOM with
an attenuation of 20 dB. As this attenuation was found
to be insufficient a fast mechanical shutter (cf. Sec. III)
was installed which remained closed throughout the en-
tire waiting period. The fluorescence background of the
854 nm diode laser at 866 nm was found to be negligible.
Light at 850 nm could de-shelve the ion via the P3/2 state
and is expected to mainly originate from the fluorescence
background of the 854 nm diode laser. For this laser, a
double-pass AOM attenuation of 40 dB was proven to
be sufficient since no effect on the lifetime could be mea-
sured within a 5% error even if the laser was switched on
at full intensity during the whole waiting time.

Lifetime reducing effects are not obviously detectable
because they only increase the decay rate while the func-
tional shape of the decay curve remains the same, i.e. no
offset is introduced for long delay times. The main con-
cern in our experiment is the 866 nm light and extreme
care has been taken to ensure that the shutter was indeed
closed during the delay time. Before the 397 nm shelving
pulse and between the π pulse and the second detection a
1 ms period has been inserted to allow for shutting time
and jitter. During the lifetime measurements the correct
shutting was checked by monitoring the transmission on
photodiodes. In fact the shutters close fast within about
400 µs but the start time is not well defined and jitters
by about 500 µs.

Lifetime prolonging effects can be induced by residual
light at 397 nm or 729 nm which might re-excite the ion
after it has already decayed. This re-shelving process
can be detected as an offset as already pointed out in
Sec. III. The 397 nm laser light is switched by two single
pass AOMs in series (one before a fiber, one behind it,
combined attenuation ≈ 55 dB). Nonetheless, we used a
shutter to exclude the influence of 397 nm laser light to
the largest possible extent. To give a limit on the sys-
tematic effect of any re-pumping source the same method
as in section III B is applied. The experimental data is
fitted with the rate model function Eq. (3) yielding a rate
of Rfit = 3(10)× 10−3 s−1. The standard deviation of R
for an simulated ideal data set is ∆R = 1.5 × 10−2 s−1

(with mean R = 0), so again the rate is concealed by the
statistical error. From simulations an upper limit for the
systematic lifetime error of ∆τ = −2 ms is obtained.

Another source of systematic error is vibrational heat-
ing of the ion during the delay time. If, due to heating,
the transfer efficiency Pπ(∆t) is smaller after the waiting
time than Pπ(0) determined in the first part of the pulse
sequence the correction for the transfer efficiency is too
small and the actual decay rate is higher than measured.
A π pulse only has high transfer efficiency if the ion is
in the Lamb-Dicke regime [5, 6], i.e. η2n̄ << 1 where η
is the Lamb-Dicke parameter and n̄ is the mean phonon
number. If the factor η2n̄ becomes significant both the
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Rabi frequency Ωn̄ and the maximum transfer efficiency
decrease as Ωn̄ = Ω0(1 − η2n̄), where Ω0 is the coupling
strength on the S-D transition. Taking the mean phonon
number after Doppler cooling of n̄ ≈ 10 and the measured
heating rate in the linear ion trap of ∂n/∂t ≈ 10 s−1 [35]
we can estimate the transfer efficiency after a waiting
time of 2 s, Pπ(2 s) = 0.98 if the π-pulse time was initially
chosen to fulfill Pπ(0) = 1. We experimentally checked
the degradation of transfer efficiency with waiting time
by introducing a delay time ∆t between the Doppler cool-
ing pulse and the π-pulse in the first step of the pulse
sequence and subsequently performing a state detection
measurement. Figure 8 shows an average of various mea-
surements of π-pulse transfer efficiency Pπ(∆t) vs. delay
time ∆t. A linear fit Pπ(∆t) = 1 − a∆t to the data

0.0 0.5 1.0 1.5 2.0

0.95

0.96

0.97

0.98

0.99

1.00

tr
an

sf
er

 e
ffi

ci
en

cy
 o

f 
π  

- 
pu

ls
e 

∆t(s)

FIG. 8: Average transfer efficiency of the π-pulses on the S1/2

to D5/2 transition after various delay times between Doppler
cooling and π-pulses.

yields a = −4(2) × 10−3 s−1. With simulated data sets
including such a decreasing transfer efficiency Pπ(∆t) we
determine a systematic lifetime error of ∆τ = −7 ms.

Finally, the detection error is considered, in analogy to
section III B. From simulated data sets with a detection
error of ε2 = 1 × 10−3 a systematic error for the life-
time of ∆τ = +8 ms is found. Systematic errors due to
collisional effects (quenching and j-mixing) can be again
neglected as argued above.

Summarizing the analysis, the lifetime for the D3/2

level is given as: τ(3/2) = 1176 ms ±11 ms (statistical)
-2 ms (repumping rate) -7 ms (heating) +8 ms (detection
error).

V. AB INITIO ALL ORDER CALCULATION OF

THE D-STATES LIFETIMES

We conducted the calculation of the 3d 2D3/2 - 4s
2S1/2 and 3d 2D5/2 - 4s 2S1/2 electric-quadrupole ma-

trix elements in Ca+ using a relativistic all-order method
which sums infinite sets of many-body perturbation the-
ory terms. These matrix elements are used to evaluate

the 3d-level radiative lifetimes and their ratio.
In this particular implementation of the all-order

method, the wave function of the valence electron v is
represented as an expansion

|Ψv〉 =

[

1 +
∑

ma

ρmaa†maa +
1

2

∑

mnab

ρmnaba
†
ma†nabaa+

+
∑

m6=v

ρmva
†
mav +

∑

mna

ρmnvaa†ma†naaav

+
1

6

∑

mnrab

ρmnrvaba
†
ma†na†rabaaav

]

|Φv〉, (4)

where Φv is the lowest-order atomic wave function, which
is taken to be the frozen-core Dirac-Hartree-Fock (DHF)
wave function of a state v. This lowest-order atomic wave
function can be written as |Φv〉 = a†v|0C〉, where |0C〉 rep-
resents DHF wave function of a closed core. In equation

(4), a†i and ai are creation and annihilation operators,
respectively. The indices m, n, and r designate excited
states and indices a and b designate core states. The first
two lines of Eq. (4) represent the single and double exci-
tation terms. The restriction of the wave function to the
first five terms of Eq. (4) represents a single-double (SD)
approximation. The last term of Eq. (4) represents a class
of the triple excitations and is included in the calculation
partially as described in Ref. [41]. We carried out the all-
order calculation with and without the partial addition
of the triple term; the results of those two calculations
are labeled SD (single-double) and SDpT (single-double
partial triple) data in the text and tables below. The ex-
citation coefficients ρma, ρmv, ρmnab, and ρmnva are ob-
tained as the iterative solutions of the all-order equations
in the finite basis set. The basis set, used in the present
calculation, consists of the single-particle states, which
are linear combinations of B-splines [42]. The single-
particle orbitals are defined on a non-linear grid and are
constrained to a spherical cavity. The cavity radius is
chosen to accommodate the 4s and 3d orbitals.

The matrix element of the operator Z for the tran-
sition between the states w and v is obtained from the
expansion (4) using

Zwv =
〈Ψw|Z|Ψv〉

√

〈Ψv|Ψv〉〈Ψw|Ψw〉
. (5)

The resulting expression for the numerator of the Eq. (5)
consists of terms that are linear or quadratic functions
of the excitation coefficients. We refer the reader to
Refs. [41, 43, 44] for further description of the all-order
method.

The numerical implementation of the all-order method
requires to carry out the sums over the entire basis set.
We truncate those sums at some value of the orbital an-
gular momentum lmax; lmax = 6 in the current all-order
calculation. The contributions of the excited states with
higher values of l which are small but significant for the
considered transitions, are evaluated in the third-order
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TABLE I: Electric-quadrupole reduced matrix elements E2
in Ca+ (in a.u.) calculated using different approximations:
Dirac-Hartree-Fock (DHF), third-order many-body pertur-
bation theory (Third order), single-double all-order method
(SD), and single-double all-order method including partial
triple excitation contributions (SDpT). The all-order data cal-
culated with lmax = 6 are listed separately. The contribution
of basis set states with orbital angular momentum l = 7− 10
calculated using third-order MBPT is listed in rows labeled
“Extr.”. This correction is added to obtain the values listed
in rows labeled “SD” and “SDpT”.

Transition Method Value

3d 2D3/2 - 4s 2S1/2 DHF 9.767

Third order 7.364

SDlmax=6 7.788

SDpTlmax=6 7.971

Extr.a -0.038

SD 7.750

SDpT 7.934

3d 2D5/2 - 4s 2S1/2 DHF 11.978

Third order 9.046

SDlmax=6 9.562

SDpTlmax=6 9.786

Extr.a -0.046

SD 9.516

SDpT 9.740

aThis value is the difference of the third-order result obtained
with the same basis set as the all-order calculation (the number
of splines N = 35/40 and lmax = 6) and third-order result with
N = 70 and lmax = 10.

many-body perturbation theory (MBPT). To evaluate
those contributions, we carried out a third-order MBPT
calculation with the same basis set and lmax, used the
all-order calculation and then repeated the third-order
calculation with larger basis set containing the orbitals
with l up to lmax = 10. The difference between these
two results is added to the ab initio all-order results.
The convergence of the MBPT terms with l is rather
rapid; the differences between the third-order calcula-
tions with lmax = 4, 6, 8, 10 are 1.8%, 0.4%, and 0.1%,
respectively. The last number is well below the expected
uncertainty of the current calculation. Thus, the contri-
bution from orbitals with lmax > 10 can be omitted at
the present level of accuracy. The contribution from the
excited states with lmax > 6 relative to the total value
of the matrix elements is significantly larger for 4s − 3d
electric-quadrupole transitions (about 0.5%) than for the
primary ns−np electric-dipole transitions in alkali-metal
atoms. We note that while the all-order matrix elements
contain the entire third-order perturbation theory con-
tribution there is no straightforward and simple way to
directly separate it out (see Ref. [45] for the all-order vs.

perturbation theory term correspondence issue). Thus,
we have conducted a separate third-order calculation fol-
lowing Ref. [46]. The results of the third-order and the
all-order calculations (with and without partial inclusion
of the triple excitations) are listed in Table I. The contri-
bution from the excited states with orbital angular mo-
mentum l > 6 calculated as described above is listed in
the row labeled “Extr.”. The all-order values corrected
for the truncation of the higher partial waves are listed
in rows labeled “SD” and “SDpT”.

We also investigated the effect of the Breit interaction
to the values of the electric-quadrupole matrix elements.
The Breit interaction arises from the exchange of a vir-
tual photon between atomic electrons. The static Breit
interaction can be described by the operator

Bij = −
1

rij
αi · αj +

1

2rij
[ αi · αj − (αi · r̂ij) (αj · r̂ij)]

(6)
where the first part results from instantaneous magnetic
interaction between Dirac currents and the second part
is the retardation correction to the electric interaction
[47]. In Eq. (6), αi are Dirac matrices. The complete
expression for the Breit matrix elements is given in [48].
To calculate the correction to the matrix elements arising
from the Breit interaction, we modified the generation of
the B-spline basis set to intrinsically include the Breit
interaction on the same footing as the Coulomb inter-
action and repeated the third-order calculation with the
modified basis set. The difference between the new val-
ues and the original third-order calculation (conducted
with otherwise identical basis set parameters) is taken
to be the correction due to Breit interaction. We give
the breakdown of the third-order calculation with and
without inclusion of the Breit interaction in Table II.
The Dirac-Hartree-Fock values are given in column DHF.
The random-phase approximation (RPA) values, iterated
to all orders, are listed in column RPA. The third-order
Brueckner-orbital, structure radiation and normalization
terms are listed in the columns BO, SR, and Norm, re-
spectively. The breakdown of the third-order calcula-
tion to RPA, BO, structure radiation and normalization
terms follows that of Ref. [46]. The reader is referred to
Ref. [46] for the detailed description of the third-order
MBPT method and the formulas for all of the terms. We
find the Breit correction to the DHF contribution to be
dominant, with the contributions from all other terms be-
ing insignificant. The total Breit correction is very small
and below the estimated uncertainty of our theoretical
values discussed below. However, the Breit contribution
to the ratio of the matrix elements is found to be small
but significant owing to higher accuracy of the ratio.

The procedure described above does not include a
class of the Breit correction contributions referred to in
Ref. [49] as two-body Breit contribution [50]. To con-
duct the study of the possible size of the two-body Breit
contribution we calculated the Breit contribution to 10
different electric-dipole matrix elements (6s−6p, 6s−7p,
7s− 7p, 7s− 6p, and 5d3/2 − 6p) in Cs using the method
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TABLE II: The Breit correction to the third-order values of the 4s 2S1/2 - 3d 2D3/2 and 4s 2S1/2 - 3d 2D5/2 electric-quadrupole
matrix elements. The Dirac-Hartree-Fock values are given in column DHF. The random-phase approximation (RPA) values,
iterated to all orders, are listed in column RPA. The third-order Brueckner-orbital, structure radiation, and normalization
terms are listed in the columns BO, SR, and Norm, respectively.

Transition DHF RPA BO SR Norm Total

4s 2S1/2 - 3d 2D3/2 no Breit 9.7673 -0.0553 -2.2136 0.0621 -0.1588 7.4018

with Breit 9.7611 -0.0552 -2.2131 0.0621 -0.1589 7.3961

Difference -0.0062 0.0001 0.0005 0.0000 -0.0001 -0.0057

4s 2S1/2 - 3d 2D5/2 no Breit 11.9782 -0.0662 -2.7006 0.0756 -0.1945 9.0926

with Breit 11.9672 -0.0662 -2.7001 0.0756 -0.1946 9.0820

Difference -0.0110 0.0000 0.0005 0.0000 -0.0001 -0.0106

described above and compared those values with the re-
sults from [49]. Cs is chosen as “model” atom as it is a
similar system compared to Ca+. The Breit contribution
to Cs properties was studied in detail owing to its impor-
tance for the interpretation of Cs parity nonconservation
experiments. In Ref. [49], both one-body and dominant
two-body Breit contributions have been taken into ac-
count. We find the largest difference between our data
and that of [49] to be 25%. For most of the transitions,
we either agree to all the digits quoted in [49] or differ by
10% or less. Therefore, the two-body contribution was
not significant for any of the Cs electric-dipole transitions
that we could compare with. We agree with the values of
the Breit correction to the DHF matrix elements given in
Ref. [49] exactly, as expected, since the two-body Breit
contribution only affects the correlation part of the cal-
culation. Thus, we found no evidence that the two-body
Breit correction may exceed the already calculated one-
body correction, especially considering the fact that the
Breit correction to the lowest-order DHF value dominates
the one-body Breit correction to the 4s − 3d matrix ele-
ments in Ca+. Therefore, we assume that the two-body
Breit contribution does not exceed the already calculated
part. In summary, the omission of the two-body Breit
interaction introduces an additional uncertainty in our
calculation and we take the uncertainty to be equal to
the value of the correction itself. Most likely, it is an
overly pessimistic assumption based on the comparison
with the calculation of the Breit correction to Cs electric-
dipole matrix elements carried out in Ref. [49].

Next, we use a semi-empirical scaling procedure to
evaluate some classes of the correlation correction omit-
ted by the current all-order calculation. The scaling pro-
cedure is described in Refs. [44, 45]. Briefly, the single-
valence excitation coefficients ρmv are multiplied by the
ratio of the corresponding experimental and theoretical
correlation energies and the calculation of the matrix el-
ements is repeated with those modified excitation coeffi-
cients. This procedure is especially suitable in this partic-
ular study since the matrix element contribution contain-
ing the excitation coefficients ρmv overwhelmingly dom-
inates the correlation correction for the considered here
transitions. We conduct this scaling procedure for both

SD and SDpT calculations; the scaling factors are differ-
ent in these two cases as SD method underestimates and
SDpT method overestimates the correlation energy.

Table III contains the summary of the resulting matrix
elements; the Breit correction is included in all values.
We note that the scaled values only include DHF part of
the Breit correction to avoid possible double counting of
the terms (because of the use of the experimental corre-
lation energy in the scaling procedure). The final values
are taken to be scaled SD values based on the compar-
isons of similar calculations in alkali-metal atoms with
experiment [41, 45, 51]. The uncertainty is calculated as
the spread of the scaled values and ab initio SDpT val-
ues. The uncertainty in the Breit interaction calculation
is also included; it is negligible in comparison with the
spread of the values.

TABLE III: Electric-quadrupole reduced matrix elements E2
in Ca+ (a.u.)

Transition Method ab initio scaled

3d 2D3/2 - 4s 2S1/2 SD 7.744 7.939

SDpT 7.928 7.902

Final 7.939(37)

3d 2D5/2 - 4s 2S1/2 SD 9.505 9.740

SDpT 9.729 9.694

Final 9.740(47)

We use our final theoretical results to calculate the life-
times of the D3/2 and D5/2 states in Ca+. The transition
probabilities Avw are calculated using the formula [52]

Avw =
1.11995 × 1018

λ5

|〈v‖Q‖w〉|2

2jv + 1
s−1, (7)

where 〈v‖Q‖w〉 is the reduced electric-quadrupole matrix
element for the transition between states v and w and λ is
corresponding wavelength in Å. The lifetime of the state
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v is calculated as

τv =
1

∑

w Avw
. (8)

In both D3/2 and D5/2 lifetime calculations we consider
a single transition contributing to each of the lifetimes.
The transition probabilities of other transitions (M1 D3/2

- S1/2, M1 D5/2 - D3/2, and E2 D5/2 - D3/2) have been
estimated in Ref. [38] and have been found to be 6 to 13
orders of magnitude smaller that the transition probabil-
ities of the D3/2 - S1/2 and D5/2 - S1/2 E2 transitions.
Thus, we neglect these transitions in the present study.
The experimental energy levels from Ref. [53] are used
in our calculation of the lifetimes. From the calculations
we yield τ(3/2) = 1196(11) ms for the D3/2-state and
τ(5/2) = 1165(11) ms for the D5/2-state. These lifetime
values are compared with experimental and other theo-
retical results in Figs. 2 and 3.

The all-order calculation is in agreement with the
present experimental values and recent experiments [22–
24] within the uncertainty bounds. The present calcu-
lation includes the correlation correction, which is large
(23%) for the considered transitions, in the most com-
plete way with comparison to all other previous calcu-
lations [27–29, 31, 38] and is expected to give the most
accurate result. It is also the only calculation which gives
an estimate of the uncertainty of the theoretical values.

In Ref. [22], the issue of the theoretical ratio of the
τ(3/2)/τ(5/2) lifetimes was raised. It appeared that there
was a disagreement between previously calculated theo-
retical ratios; Barton et al. [22] quotes the values 1.0283
[28], 1.0175 [29], and 1.0335 [31]. Such a disagreement
appears to be rather puzzling since this particular ra-
tio is far less sensitive to the correlation correction than
the values of the corresponding matrix elements. Thus,
we studied the value of the ratio and its uncertainty in
detail. We list the values of the ratio of the D3/2 and
D5/2 lifetimes calculated in various approximations in
Table IV. The experimental energy levels from Ref. [53]
are used in all our calculations of the lifetimes for consis-
tency. We include results with and without the addition
of the Breit correction. As mentioned before, we find that
the ratio does not change substantially with the addi-
tion of the correlation correction; in fact, the correlation
only contributes about 0.15% to the final value. Thus,
we calculate the uncertainty in the ratio by considering
the spread of the high-precision values of the ratio itself
(SDsc, SDpT, and SDpTsc), rather than calculating the
uncertainty in the ratio from the uncertainties in the in-
dividual matrix elements. We also find that the while
the Breit correction to the values of the matrix elements
was insignificant at the current level of accuracy this is
not the case for the ratio. In fact, the shift of the ratio
values with the addition of the the Breit interaction is of
the same order of magnitude as the spread of the high
precision values as demonstrated in Table IV. We take
the SDsc value to be our final result for consistency with
the calculation of the matrix elements. The uncertainty

of the final value includes both the uncertainty in the
correlation correction contribution and the uncertainty
in the Breit interaction. As in the case of the individual
matrix elements, the uncertainty in the Breit interaction
is taken to be equal to the contribution itself. The Breit
correction to the ratio is determined as the shift in the
final ratio value due to addition of the Breit interaction.

We compare our final theoretical value of the lifetime
ratio with the experiment and other theory in Table V.
The ratios of the other theoretical values [27–29, 31, 38]
are calculated from the numbers in the original publi-
cations; care was taken to keep the number of digits in
the ratio consistent with the number of digits in the val-
ues of the lifetimes or transitions rates quoted in the pa-
pers. First, we discuss the above mentioned discrepancy
of the theoretical ratios. Ref. [22] lists the following ra-
tios: 1.0283 [28], 1.0175 [29], and 1.0335 [31]. We have
listed the data from the original publications in Table V
which shows that the actual numbers with taking into ac-
count the number of digits quoted in the original papers
should have been 1271/1236=1.028 [28], 1.16/1.14=1.02
[29], and 1080/1045=1.033 [31]. The first result is essen-
tially a third-order relativistic many-body perturbation
theory calculation with addition of semi-empirical scaling
and omission of the some classes of small but significant
third-order terms. It is very close to our third-order num-
ber 1.0286 from Table IV. The next paper [29] quotes
only 3 digits in the lifetime values (1.16s and 1.14s) so
the accuracy is insufficient to obtain the fourth digit in
the ratio. We note that the method description in [29]
is that of the non-relativistic calculation and it is un-
clear how the separation to D3/2 and D5/2 lifetimes was
made. The last calculation yields a larger ratio but that
calculation has serious numerical issues such as taking
only 20 out of 40 B-splines and including too few partial
waves. It also omits all terms except Brueckner-orbital
ones and possibly even third-order Brueckner orbital con-
tributions, which are large. The paper is not clear on
the subject of the treatment of the higher-order contri-
butions. Thus, we do not consider the result of [31] to
be reliable. Therefore, there are essentially no incon-
sistencies in the previously calculated theoretical ratios
when the accuracy of the calculations is taken into ac-
count. Our theoretical value of the lifetime ratio is higher
than the experimental value. The spread of all values in
Table V, including even lowest-order DHF values, is so
small that it does not appear probable that any omitted
Coulomb correlation or two-body Breit interaction can
be responsible for the discrepancy. The only transition
which can actually reduce the value of the theoretical
ratio is the D3/2-S1/2 M1 transition. Thus, an accurate
calculation of this transition rate will be useful in search
for a theoretical explanation of the discrepancy. How-
ever, the transition rate published in [38] is extremely
small (AM1 = 7.39 × 10−11s−1) and has to be incorrect
by many orders of magnitude to affect the ratio at such a
level which does not appear likely since the same calcu-
lation gives a reasonably good (within 18%) number for
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TABLE IV: The ratio of the D3/2 and D5/2 lifetimes in Ca+ in various approximations. The lowest-order Dirac-Hartree-Fock
results are labelled “DHF”, third-order many-body perturbation theory results are in column labelled “Third”, the results of
the ab initio all-order calculation including single and double excitations are labeled “SD”, the results of the ab initio all-order
calculation including single and double excitations with partial addition of the triple excitations are labeled “SDpT”, and the
results of the corresponding scaled calculations are given in columns labeled “SDsc” and “SDpTsc”, respectively.

DHF Third SD SDpT SDsc SDpTsc Final

No Breit 1.0251 1.0286 1.0275 1.0272 1.0266 1.0267

With Breit 1.0245 1.0278 1.0267 1.0265 1.0259 1.0260 1.0259(9)

TABLE V: Comparison of the present values of the ratio of
the D3/2 and D5/2 state lifetimes in Ca+ with other theory.

Reference Value

Theory [38] 1.03

[27] 1.02

[28] 1.028

[29] 1.02

[31] 1.033

Present 1.0259(9)

Expt. Present 1.0068(122)

the D3/2-S1/2 E2 transition rate.

VI. DISCUSSION

Figures 2 and 3 show an overview of the most recent
experimental and theoretical results for the lifetime of the
D5/2 and D3/2 states, respectively, in an chronological or-
der. It is remarkable that the theoretical predictions scat-
ter rather widely, with no noticeable convergence while
the experimental results show a trend towards longer life-
times in the recent years as more systematic errors are
identified and stamped out.

In comparison with previous work it can be concluded
here that our lifetime result for the D5/2 level agrees with
and thereby confirms the most precise value of Barton
et al.. We stress that this lifetime measurement is an
independent check of earlier results as we used a different
measurement technique. In addition, the result for the
D3/2 level represents the first single ion measurement and
reduces the statistical uncertainty of the previous values
for the lifetime by a factor of four.

For the calculated lifetimes we find excellent agree-
ment of the theoretical all-order lifetimes with the ex-
perimental results. Such agreement demonstrates the
necessity of including partially the triple contributions
to the all-order calculations for these types of transitions
and confirms that scaling of the single-double all-order
results, which is significantly simpler and less time con-
suming calculation in comparison with ab initio inclusion

of partial triple excitations, is adequate for these types
of transitions. This is an important result for the evalu-
ation of the accuracy of similar theoretical calculation in
Ba+ which is important to parity violating experiments
in heavy atoms. Such experiments are aimed at the tests
of the Standard model of the electroweak interaction and
at the study of the nuclear anapole moments. One of the
features of most PNC studies in heavy atoms is the need
for comparable accuracy of theoretical and experimental
data. The current study is also of interest in regard to
recently found discrepancy between the 5d lifetimes and
the 6s − 6p Stark shifts in Cs [54]. Atomic properties of
cesium were studied extensively by both experimental-
ists and theorists owing to a high-precision measurement
of parity non-conserving amplitude in this atom. Both
of these quantities depend on the values of the 5d − 6p
matrix elements. While those matrix elements are the
electric-dipole ones rather than the electric-quadrupole
ones studied here, the calculation itself as well as the
breakdown of the correlation correction terms is very sim-
ilar to the present calculation. Thus, the current study
presents an important benchmark in the field of high-
precision measurements and calculations. The study of
the lifetime ratio demonstrated that the Breit interac-
tion, which produces only a very small correction to the
values of the actual matrix elements, is important in
high-precision calculations of the corresponding matrix
element ratios.
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Appl. Phys. Lett. 78, 2828 (2001)

[39] A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu,
W. V. Schoenfeld, and P. M. Petroff, Appl. Phys. Lett. 78, 3932 (2001)

[40] G. S. Solomon, M. Pelton and Y. Yamamoto, Phys. Rev. Lett. 86 3903 (2001)

[41] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, M. Kamp
and A. Forchel, Phys. Rev. B. 66 041303(R) (2002)

[42] Y.Z. Wang, B.L. Lu, Y.Q. Li, and Y.S. Liu, Opt. Lett. 20, 770 (1995)
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