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Abstract
This PhD thesis reports on two experiments in the field of quantum information pro-
cessing using trapped calcium ions. In addition, the text covers the setup and character-
ization of a new linear Paul trap accompanied by a novel implementation of single-ion
addressing using an acousto-optic deflector.

The first of the two experiments is concerned with the proof-of-principle implemen-
tation of digital quantum simulations using up to 6 ions and 100 gate operations. It
investigates the scaling behavior of simulations of elementary models of magnetism in
terms of the number of involved spins and the complexity of their mutual interactions.

The second experiment introduces the application of a Schrödinger cat state in the
indirect detection of photon scattering events on a broad electronic transition. The
method is shown to have a sensitivity down to the single photon level in a proof-of-
principle demonstration using a mixed-isotope crystal of 40Ca+ and 44Ca+.

A brief outlook towards future experiments and extensions of the experimental setup
concludes the manuscript.

Zusammenfassung
In dieser Dissertationsschrift wird über zwei Experimente auf dem Gebiet der Quan-
teninformationsverarbeitung mit gespeicherten Kalzium-Ionen berichtet. Zusätzlich
werden der Aufbau und die Charakterisierung einer neuen linearen Paul-Falle sowie
die Implementierung einer neuartigen akustooptischen Adressierung einzelner Ionen
vorgestellt.

Das erste der beiden Experimente beschäftigt sich mit dem Machbarkeitsnachweis
von digitalen Quantensimulationen unter Verwendung von bis zu 6 Ionen und 100 Gat-
teroperationen. Es untersucht die Skalierbarkeit von Simulationen elementarer Modelle
des Magnetismus im Hinblick auf die Anzahl der beteiligten Spins und die Komplexität
ihrer gegenseitigen Wechselwirkungen.

Das zweite Experiment stellt die Anwendung eines Schrödinger-Katzen-Zustands
zum indirekten Nachweis von Einzelphotonen-Streuvorgängen an einem breiten elek-
tronischen Übergang vor. In einer Machbarkeitsstudie mit einem Ionenkristall unter-
schiedlicher Isotope aus 40Ca+ und 44Ca+ wird die Empfindlichkeit der Methode bis
hin zum Niveau einzelner Photonen demonstriert.

Die Arbeit schließt mit einem kurzen Ausblick auf zukünftige Untersuchungen und
Erweiterungen des experimentellen Aufbaus.
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1. Introduction

The invention of traps for charged particles, namely the Penning and Paul trap [1, 2],
has given us access to a domain that was previously thought to be out of our reach,
as most famously put by Erwin Schrödinger in 1952: “[...] we never experiment with
just one electron or atom or (small) molecule. In thought-experiments we sometimes
assume that we do; this invariably entails ridiculous consequences [...]” [3].

With the ability to trap single electrons and atoms (in ionized form), it became
possible in the 1980s to take a closer look at these “ridiculous consequences” such as
instantaneous jumps between the quantized energy levels of an atom (more on that in
Chapter 6). Early experimental research was spurred by interest in the improvement
of atomic frequency standards [4]. In parallel, ideas were put forward that envisioned
how the control of individual quantum systems could be put to use. As one of the first,
Richard Feynman considered employing a well-controlled quantum system to simulate
another quantum system which, by itself, would pose a computationally intractable
problem [5] (more on this topic in Chapter 5).

Then, in 1994, Peter Shor discovered that a computer directly operating at the quan-
tum level could find the prime-factors of an arbitrary large number in polynomial time
compared to the exponential time scaling with problem size1 exhibited by classical algo-
rithms on ordinary computers [6]. A year later, Ignacio Cirac and Peter Zoller published
an influential proposal [7] which suggested a way to a practical realization of such a
quantum computer using trapped ions.

Motivated by these findings, quantum information science has grown enormously over
the last 20 years and now encompasses not only well-isolated atomic but also solid-state
and optical systems2. Each implementation has different strengths and weaknesses in
terms of the available coherence time, their scalability and the overhead required for
interfacing with “the classical world” and other quantum nodes3. In this light, the

1This very fact ensures the security of modern public-key encryption systems such as RSA.
2A review of currently pursued quantum computing architectures can be found in reference [8].
3See, e.g., reference [9] for a comparison of natural and artificial atoms.
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2 1. Introduction

full-fledged universal quantum computer of the future will likely be a hybrid system
that combines a classical processing part with a number of different special purpose
quantum components selected based on their respective merits.

Before, however, the first 2048-bit number4 will be factorized by a quantum computer
using Shor’s algorithm [10], a different subfield of quantum information processing is
likely to deliver on its promise first: quantum simulation [11]. Following Feynman’s
idea of using one controllable quantum system to mimmic the behavior of another,
already simulations using only tens of quantum bits can offer new insights into fun-
damental quantum mechanical models that underpin research in applied fields such as
materials science or pharmaceutical chemistry. Here, one particular method known as
digital quantum simulation is poised to play a large role in the quantum computer im-
plementation of the complex Hamiltonians that are associated with these models. The
first proof-of-principle implementation of this method in a trapped ion architecture is
discussed in Chapter 5.

The large amount of progress made in quantum information processing using trapped
ions [12–15] also has had its merits in the field of precision spectroscopy. High-accuracy
single-ion clocks have been demonstrated in the recent years [16–18] – accurate enough
to detect the gravitational red-shift affecting the passage of time at distances as small as
30 cm [19]. A technique known as quantum logic spectroscopy [20] was instrumental in
the most recent experiments and provides a tool to perform spectroscopic measurements
on formerly inaccessible atomic and molecular species. In this context, the experiment
discussed in Chapter 6 adds another variation of the technique to the toolbox of quan-
tum metrology [21], which is aimed at exploiting non-classical states to perform more
precise measurements.

In parallel to the scientific work reported in this thesis, a large amount of technical
work was carried out to enable the next steps on the way to more complex quantum
simulations. Large parts of this text are therefore devoted to the experimental setup
and the methods used in the initial characterization and daily operation of a newly
built linear ion trap.

The remainder of this thesis is structured as follows:

Chapter 2 introduces the theoretical framework used for the description of quantum
bits and the foundations of the interactions employed in the concrete implemen-
tation with Ca+.

4This is NIST’s 2007 recommendation for an RSA key length that is estimated to be secure until 2030.
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Chapter 3 showcases the experimental setup and the performance of a few selected
components such as the high-finesse reference cavity of the laser used to manip-
ulate the optical qubit (Section 3.3.3), site-resolved state detection (Section 3.4)
and a novel implementation of single ion addressing using acousto-optics (Sec-
tion 3.5).

Chapter 4 discusses a selection of experimental methods used in the manipulation of
trapped ion qubits. In addition, the chapter offers a hands-on description of the
first steps taken when setting up a new ion trap “from scratch”.

Chapter 5 summarizes an experiment demonstrating the first implementation of digital
quantum simulations on the trapped-ion architecture.

Chapter 6 reports on the work contributed to the field of precision spectroscopy. The
method of cat-state spectroscopy is applied to the detection of single-photon scat-
tering events in a mixed-isotope crystal of 40Ca+ and 44Ca+.

Chapter 7 concludes the thesis with a brief summary and provides an outlook towards
future work.





2. Foundations and theoretical framework

The key to all experiments presented in this text is the experimental control attained
over quantum bits encoded in a system of trapped calcium ions. This chapter introduces
the foundations and underlying concepts in quantum information, atomic physics and
quantum optics that enable these experiments. Considering the large number of books
and theses already available on these topics, each section is kept concise and cites
more detailed references. A compilation of useful relations used in or resulting from the
derivations below is given in Appendix B.

2.1. Quantum bits

In a calculation on a digital computer, information is processed in the form of so-called
binary digits or bits, representing its smallest unit. Each bit can have the value 0 or
1, corresponding to two discrete states commonly realized by two voltage levels in a
transistor. Underlying each of the millions of transitions in today’s electronic devices are
quantum mechanical processes – still, at the level of bits, the binary “either-or” is the
signature of classical logic. Moving the processing of information itself into the quantum
mechanical domain, one can, again, identify a two-level system now called quantum
bit, or qubit that is based on two distinguishable quantum states, e.g. |↑〉 and |↓〉. In
contrast to the classical bit however, the qubit can also be in a superposition state
|ψ〉, which corresponds to an arbitrary linear combination of these basis states and is
described by the relation

|ψ〉 = c↑ |↑〉+ c↓ |↓〉 . (2.1)

Here c↑ and c↓ are complex coefficients bound by the normalization |c↑|2 + |c↓|2 = 1.
Their values cannot be determined in a single measurement. It is only after a number of
N measurements that one finds |↑〉 with probability |c↑|2 and |↓〉 with probability |c↓|2,
where the corresponding uncertainty is determined by N and the respective probability
p ∈ [0, 1] in what is known as quantum projection noise ∆p =

√
p (1− p) /N [22].

5



6 2. Foundations and theoretical framework

z

x

y

Figure 2.1.: Bloch sphere represenation of a qubit.
The two-dimensional state space of complex vectors that describes all possible (pure) states
of a single qubit can be represented by the surface of a unit sphere in three dimensions. Two
exemplary pairs of orthogonal basis states are labeled (red points) and can each be used to
describe an arbitrary state |ψ〉 using the spherical coordinates Θ and ϕ, cf. Eq. (2.2).

Figure 2.1 shows a graphical representation of possible quantum states of a single qubit
on the so-called Bloch sphere. The basis states introduced before are associated with
the north and south pole of the sphere, following the usual convention. In the context
of quantum information they are often labeled as |0〉 and |1〉, in analogy to classical
bits. Throughout this text, however, the spin notation will be used. Making use of the
normalization, Eq. (2.1) can be rewritten in terms of spherical coordinates of a unit
vector as

|ψ〉 = eiγ
(

cos θ2 |↑〉z + eiφ sin θ2 |↓〉z
)
, (2.2)

where γ, θ and φ are real numbers. Since it has no effect on the measured probabilities
|c↑|2 and |c↓|2, one can set γ (the global phase) to zero. The coefficients for a given basis
can be written as a column vector represented by a “ket” in Dirac notation, e.g.(

c↑

c↓

)
=
(

cos θ2
eiφ sin θ

2

)
=⇒

(
0
1

)
≡ |↓〉z ,

for θ = π, φ = 0 in the z-basis. The choice of basis states is arbitrary as long as they
are orthonormal, i.e. orthogonal and of unit length. Counterintuitively, in the Bloch
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sphere representation this is true for every pair of points on opposite sides of the sphere’s
surface. Each basis state can be represented by a superposition in another basis, e.g.
|±〉x =

(
|+〉z ± |−〉z

)
/
√

2. The |±〉 notation used here relates to the eigenstates of the
Pauli spin matrices with eigenvalues ±1 introduced below. The complex vector space
spanned by all |ψ〉 is generally referred to as Hilbert space.

2.1.1. Single qubit gate operations

Gate operations that manipulate the state of a single qubit amount to rotations of its
state vector |ψ〉 on the Bloch sphere. A convenient way to describe rotations around
the set of axes k = {x, y, z} shown in Figure 2.1 is given by the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.3)

which are Hermitian unitary matrices whose eigenstates |±〉k (denoted by eigenvectors,
cf. Appendix B.1) are the points where the respective axis k intersects the Bloch sphere’s
surface. To express a rotation around an axis k, one can make use of Euler’s formula
exp(±ixσk) = cos(x)1± i sin(x)σk, where 1 is the identity matrix and σk is the k-th
Pauli matrix. It follows from Euler’s rotation theorem [23, and refs. therein] that an
arbitrary rotation by an amount θ can be described by a concatenation of at most three
(non-commuting) rotation matrices out of a set defined by

Uz(θ) = e−i
θ
2σz =

 e−i
θ
2 0

0 ei
θ
2

 and (2.4)

Uφ(θ, φ) = e−i
θ
2σφ =

(
cos θ2 −ie−iφ sin θ

2
−ieiφ sin θ

2 cos θ2

)
, (2.5)

with σφ = cos(φ)σx + sin(φ)σy. Here, Uφ corresponds to a clockwise rotation around
an axis at angle φ in the x-y-plane and Uz represents a clockwise rotation around the
linearly independent z-axis.
To give an example, a σx-rotation (φ = 0) of θ = π around |+〉x applied to |↓〉z causes
a spin flip

Uφ(π, 0) |↓〉z =
(

0 −i
−i 0

)(
0
1

)
=
(
−i
0

)
= e−i

π
2

(
1
0

)
≡ |↑〉z . (2.6)
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The example illustrates a property shared by qubits and spin-1/2 particles like electrons:
in order to fully return to the initial state, a rotation of θ = 4π is needed. Upon
measurement, however, any global phase incurred during operations (like −i in Eq. (2.6)
above) drops out as it has no effect on the measured probabilities.

2.1.2. Multiple qubits and entanglement

The description in terms of pure states denoted by the “ket”-vectors introduced above
can be extended to a system of N qubits (multipartite system). Here, a pure N -qubit
state |Ψ〉 is given by a tensor product of their state vectors ψi (Eq. (2.1)), a so-called
product state, e.g.

|Ψ〉 = |ψ〉1 ⊗ . . .⊗ |ψ〉N , (2.7)

or a superposition of tensor products. An example in a two qubit (bipartite) system is
the state vector

|Ψ〉 =
(
c↑,1 |↑〉+ c↓,1 |↓〉

)
⊗
(
c↑,2 |↑〉+ c↓,2 |↓〉

)
= a1 |↑↑〉+ a2 |↑↓〉+ a3 |↓↑〉+ a4 |↓↓〉 ,

(2.8)

where the (in general 2N ) complex state amplitudes ak again obey the normalization∑
|ak|2 = 1. Given the arbitrary single qubit gate operations of Eq. (2.3) on all N

qubits, only one multi-qubit gate operation is needed in order to be able to build up all
arbitrary operations on |Ψ〉 [24]. One example of such a multi-qubit gate operation is
the Mølmer-Sørensen (MS) gate (Section 2.5.2) which is represented by the operation

UMS (θ, φ) = e
−i θ2

∑
i<j

σiφ⊗σ
j
φ , (2.9)

where the indices denote the i-th and j-th qubit and φ is the rotation axis in the N-
qubit Hilbert space. As an example, in the two-qubit case of Eq. (2.8), starting with
both qubits in the ground state |↓↓〉, the MS gate with θ = π/2 and φ = 0 creates the
Bell state

|Ψ〉 = 1√
2

(
|↑↑〉 − i |↓↓〉

)
. (2.10)

It belongs to a class of states that are referred to as entangled, meaning that they exhibit
perfect correlations (or anti-correlations) in more than one measurement basis. Hence,
depending on the state prepared (angle φ), there are corresponding measurement bases
in which a measurement on one of the two qubits immediately reveals the value that
would be found if the same measurement were to be performed on the second qubit.
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The generally used formal definition of entanglement is:
If a state |Ψ〉 cannot be written as a product state of its constituents in the form of
equation (2.7), it is entangled.
Indeed, attempting to factor Eq. (2.10) immediately leads to a violation of the nor-
malization and the appearance of cross-terms that do not exist in the original state.
These non-classical correlations are at the core of many applications of quantum bits in
quantum computation and cryptography. A more thorough treatment of entanglement
and the description of pure and mixed quantum states of qubits can be found in the
quantum information textbooks listed in references [25–27].

2.2. Atomic structure of Ca+

The experiments presented in this thesis employ two isotopes of the alkaline-earth
element calcium (Table 2.1). Both have zero nuclear spin and consequently no hyperfine
structure. In order to confine them in a linear Paul trap (Section 3.1) they are ionized in
a two-step photoionization process illustrated in Figure 2.2.a. In the scheme depicted,
a tunable laser at a wavelength around λ = 422.79 nm provides isotope selectivity in
the first step. The second step is less crucial and can be performed with a free running
laser diode at 375 nm (as done in this thesis) or even an LED. An overview of other
photoionization schemes for neutral calcium can be found in reference [28].

In its singly ionized form, the calcium ion has one remaining outer valence electron
and therefore an electronic level structure similar to that of hydrogen. However, akin
to the alkali atoms often used in neutral atom experiments (e.g. rubidium), the inner
electrons do not entirely screen their associated charge in the nucleus. This situation is
commonly described by quantum defect theory [32] and leads to a deformation of the
outer electron’s orbitals, which gives rise to metastable electronic states in the energy
spectrum. Figure 2.2.b provides an overview of the electronic level structure of the three
lowest orbitals in Ca+. Following the ground state S-orbital, the lowest excited state is

Table 2.1.: Properties of two neutral calcium (Ca I) isotopes
Property 40Ca 44Ca ref.
natural abundance 96.941(156)% 2.086(110)% [29]
atomic mass (relative to 12C) 39.962 590 98(22) 43.955 481 8(4) [30]
λ(4s2 1S0 − 4s4p 1P1) and isotope shift 422.791 71 nm +773.8(2) MHz [31]
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4p 2P1/2
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Figure 2.2.: Reduced energy level scheme of calcium.
a) Energy levels and light wavelengths used in the photoionization process of neutral calcium. b)
Energy levels and transition wavelengths in Ca II relevant for this text. Not shown are the tran-
sitions 4p 2P3/2 ↔ 3d 2D3/2 at 850 nm, 4s 2S1/2 ↔ 4p 2P3/2 at 393 nm and 4s 2S1/2 ↔ 3d 2D3/2
at 732 nm.

a metastable D-orbital with the two fine-structure components5 3D3/2 and 3D5/2. The
latter has a lifetime of τ = 1.168(7) s [33] and can be reached from the S1/2 ground state
via an electric quadrupole transition at 729 nm with a linewidth of Γ/(2π) = 136 mHz.
The 4P1/2 excited state connects to the 4S1/2 ground and the 3D3/2 metastable state
via electric dipole transitions at 397 nm and 866 nm. Its lifetime of τ = 7.1 ns [34] leads
to a comparably large linewidth of Γ/(2π) = 22.4 MHz. Lastly, the short-lived 4P3/2

Table 2.2.: Transition wavelengths for 40Ca+, relative isotope shift (IS) of 44Ca+ and branching
ratios of the dipole transitions.

transition 40Ca+ (nm) ref. 44Ca+ IS (MHz) ref. branching ratio ref.
4S1/2 ↔ 4P3/2 393.366 [35] 842(13) [36] 93.47(3)% [37]
4S1/2 ↔ 4P1/2 396.849 934 [38] 842(3) [36] 93.565(7)% [39]
4S1/2 ↔ 3D3/2 732.389 [35] 5344(5) calc.
4S1/2 ↔ 3D5/2 729.152 176 [40] 5337(14) calc.
3D3/2 ↔ 4P3/2 849.802 [35] −4498(3) [41] 0.661(4)% [37]
3D3/2 ↔ 4P1/2 866.214 [35] −4502(4) [41] 6.435(7)% [39]
3D5/2 ↔ 4P3/2 854.209 [35] −4495(4) [41] 5.87(2)% [37]

5Instead of the full spectroscopic notation for multi-electron atoms nlx 2S+1LJ , where nl is the elec-
tron configuration with x electrons in orbital l, and S and J represent the total spin and angular
momentum, the reduced notation nLJ is used for compactness in the following.
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Figure 2.3.: Encoding an optical qubit in Zeeman levels of a quadruple transition.
a) Magnetic fields lift the degeneracy of the Zeeman states, each identified by their quantum
number mj . The marked transition is used as the default qubit in most experiments. b) Zeeman
shift with respect to ν0 of each of the transitions indicated in a). Their field sensitivity is given
on the right with the default qubit’s sensitivity marked in red.

state couples to the 3D5/2, 3D3/2 and 4S1/2 states via electric dipole transitions with a
linewidth of ∼23 MHz. Table 2.2 provides a summary of all transition wavelengths and
branching ratios as well as the isotope shift (IS) between 40Ca+ and 44Ca+ caused by
their respective mass difference.

The basis states |↓〉z and |↑〉z introduced before can now be identified with the S1/2

and D5/2 state, respectively, thereby allowing one to encode an optical qubit [42]. In
the presence of a magnetic field B, both fine structure states split into 2j + 1 Zeeman
levels. With respect to the bare transition frequency ν0 in the absence of a magnetic
field, the magnetic field-induced energy level shift changes the transition frequency by

∆ν(S,D) = µB
h

(
gj(D5/2)m′ − gj(S1/2)m

)
B, (2.11)

where µB is the Bohr magneton6, gJ the Landé g-factors7 and m′,m are the magnetic
quantum numbers of the D5/2 and S1/2 state, respectively. The selection rules for an
electric quadrupole transition (∆m = 0,±1,±2) [44] allow for a total of 10 transitions
that can be used to encode and manipulate a qubit (Figure 2.3).
The following experiments are carried out at a quantization field of B ≈ 4 G and use the
states

∣∣∣S1/2,mj = 1/2
〉

and
∣∣∣D5/2,mj = 3/2

〉
to encode a qubit, compromising between

high coupling strength (Section 2.3.3) and low sensitivity to B-field fluctuations.

6A useful quantity to remember is the value of µB/h = 1.399 MHz/G.
7gj(S1/2) = 2.00225664(9) ≈ 2 [43] and gj(D5/2) = 1.2003340(3) ≈ 1.2 [40]
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2.3. Fundamental interactions

This section introduces the theoretical framework underlying the description of an ion
in a harmonic trapping potential that is coherently manipulated by laser beams. First,
a useful transformation into an interaction picture is presented. Then, this approach is
applied separately to the inner (electronic) and external (motional) degree of freedom.

2.3.1. Interaction picture

The evolution of the state vector |ψ〉 of a quantum system follows the time-dependent
Schrödinger equation

i~
∂

∂t
|ψ〉 = H |ψ〉

which is governed by the Hamiltonian H corresponding to the energy of the system.
The operator can be split into two parts H = H0 +H1, where H0 is time-independent
and H1 is the time-dependent part that allows us to manipulate the system’s state. To
investigate the dynamics induced by H1 it is useful to change into the so-called inter-
action picture. In this way, the evolution driven by the interaction-energy is separated
from the time evolution of the unperturbed system. An interaction Hamiltonian Hint

is derived via the transformation

Hint = U †0H1U0,

where U0 = e−iH0t/~ is the time evolution operator of the time-independent part of the
Hamiltonian. Appendix B.2 lists a few relations that are useful in simplifying the ensuing
calculations. With knowledge of Hint, the time-evolved state following an interaction
UI = e−iHintt/~ can now simply be calculated as

|ψ(t)〉 = U0UIU
†
0 |ψ(0)〉 .

Interaction Hamiltonians Hint and the corresponding unitary matrices U derived in the
following sections always follow the principle outlined above.

2.3.2. Two-level atom interacting with a laser beam

In the following, a two-level atom encoding a qubit (or pseudo-spin-1/2) is interacting
with a laser beam described by an electrical field E = E0 cos(ωlt + φl) with frequency
ωl and phase φl. The goal of this section is to illustrate how the resulting interactions
allow us to practically implement the single qubit gates introduced in Section 2.1.1.
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The energy of the bare two-level atom is described by the Hamiltonian

Ha = ~ω0
2 σz, (2.12)

where ~ω0 is the energy difference between the two eigenstates |↑〉 = |+〉z and |↓〉 = |−〉z
of the Pauli operator σz (cf. Section 2.1.1)8. The perturbation introduced by a light
field (close to resonance) applied for time t leads to spin flips between the two states
(cf. Eq. (2.6)) induced by the interaction energy described by the Hamiltonian

Hl = ~Ωσx cos(ωlt+ φl),

where the Rabi frequency Ω ∝ E0 (see Section 2.3.3 below) represents the coupling
strength between the field and the atom. With the overall Hamiltonian H = Ha +Hl,
a transformation to an interaction picture with respect to Ha yields

Hint = ~Ω
2
(

cos(∆ t+ φl)σx + sin(∆ t+ φl)σy
)
,

where ∆ = ωl − ω0 is the detuning of the laser frequency from the atomic transition.
Here, a rotating wave approximation has been performed, dropping sum frequency terms
{(ωl + ω0) t} that oscillate much faster than the time scale given by the induced dy-
namics. Using the electronic raising and lowering operators σ± = (σx ± iσy)/2 and
trigonometric identities (Appendix B.4) the Hamiltonian can be rewritten as

Hint = ~Ω
2
(
e−i(∆t+φl)σ+ + ei(∆t+φl)σ−

)
. (2.13)

A laser beam on resonance (∆ = 0) then implements the unitary operation

U(θ, φl) = exp
(
−iHintt

~

)
=
(

cos θ2 −ie−iφl sin θ
2

−ieiφl sin θ
2 cos θ2

)
, (2.14)

in which one can immediately recognize the rotation described by Eq. (2.5). Here,
θ = Ωt corresponds to the pulse area, i.e. how far the state vector |ψ〉 is being rotated
in time t, and the optical phase of the light wave φl determines the axis of rotation in
the equatorial plane of the Bloch sphere (cf. Section 2.1.1).

8This definition of Ha follows from setting the zero energy value to be in the middle of the two qubit
levels.
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Figure 2.4.: Rabi oscillations and AC Stark shifts.
a) Rabi oscillations for Ω = 2π× 100 kHz and different detunings ∆ from the atomic transition
frequency. The curves follow Eq. (2.15) given below. b) Energy level shifts induced by a
negative and positive detuning with respect to the atomic transition frequency.

The oscillating electric field of the resonant laser beam leads to a continuous exchange
between the probability amplitudes (populations) of both states |c↑|2 and |c↓|2 at the
Rabi frequency Ω. While a higher electric field amplitude of the laser beam leads to
faster Rabi oscillations, their effective amplitude and frequency depends on the laser
detuning. From a solution of the optical Bloch equations [45, 46] one can obtain an
expression for the probability |c↑|2 of finding the atom in the excited state |↑〉 as a
function of the time t the laser field is applied for to an atom initially in |↓〉:

p↑ = |c↑|2 = Ω2

Ω2 + ∆2 sin2
(1

2
√

Ω2 + ∆2 t

)
. (2.15)

The oscillations follow an effective Rabi frequency Ωeff =
√

Ω2 + ∆2 at a reduced
amplitude ∝ 1/Ω2

eff (Figure 2.4.a). For detunings ∆ � Ω the population exchange is
largely suppressed but one is still left with a shift of the energy levels due to the presence
of the oscillating electric field. In order to see the magnitude of this dynamical or AC
Stark shift, it is convenient to change into a different interaction picture with respect to
the frequency of the applied laser field. By expressing the perturbation introduced by
the light field as Hl = −∆

2 σz+Ωσx cos(ωlt) a transformation with U0 = exp(−iωltσz/2)
followed by a rotating wave approximation yields

Hint = −∆
2 σz + Ω

2 σx =
(
−∆/2 Ω/2
Ω/2 ∆/2

)
.
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The eigenvalues λ± = ±1
2
√

∆2 + Ω2 of the Hamiltonian above are obtained from setting
|Hint − λ1| = 0 and correspond to energy levels shifted by

δ = λ± − λ±(Ω = 0) = ±Ω2

4∆ .

The detuning ∆ determines the sign of δ for the individual levels (as illustrated in
Figure 2.4.b) such that the overall shift of the atomic transition amounts to

∆AC = −Ω2

2∆ .

To arrive at the effective Hamiltonian for large detunings one can start at Eq. (2.13)
and take a shortcut following the approach of reference [47]. Here, the time average over
a period T � 2π/∆ neglects the rapidly oscillating terms yielding the simple formula

Heff = 1
~∆ [σ−, σ+] = ~ δAC

2 σz.

The corresponding unitary evolution under this Hamiltonian is then given by

U(δAC) = exp
(
−iHefft

~

)
=
(

exp(−i δAC
2 t) 0

0 exp(i δAC
2 t)

)
, (2.16)

in which the remaining single qubit rotation of Eq. (2.4) can immediately be recognized.

2.3.3. Rabi frequency

For the Rabi frequency Ω introduced above there are two different conventions in use
throughout the literature. Following the first convention, which this text will adhere
to, Ω corresponds to the (angular) frequency at which population is exchanged between
the ground and excited state of the two-level system such that for every time t = π/Ω
a spin flip occurs (cf. Figure 2.4.a). The alternative definition Ω′ = Ω/2 corresponds
to the frequency at which the wave function Ψ(r, t) or state vector |Ψ〉 returns to its
initial value (which accounts for the global phase factor, cf. Eq. (2.6)).

In the case of the optical qubit encoded in 40Ca+ (Section 2.2) the coupling mechanism
between a light field and the electronic state is based on the interaction of the atomic
quadrupole moment Q with the gradient of the electric field HI = Q ·∇E(t). The value
of the Rabi frequency can then be calculated from the expression [48, 49]
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Ω = eE0
2~

√
15
cα0

Γ(D5/2)
k3 Λ(m,m′) g∆mj , (2.17)

where c is the speed of light, α0 the fine structure constant, Γ the linewidth of the
excited qubit state, k the absolute value of the light beam’s wave vector and Λ(m,m′)
is the Clebsch-Gordan coefficient (given in Table 2.3 below) of the chosen transition.
The term g∆mj [48–50] accounts for geometrical factors in respect to the angle between
the laser beam and the magnetic field quantization axis as well as the light polarization
when considering a specific transition ∆mj = |m′ −m| (see also Figure 4.5).

Table 2.3.: Clebsch-Gordan coefficients Λ(m,m′) for the 40Ca+ quadrupole transition
|S1/2,mj = 1/2〉↔ |D5/2,mj = m′〉 (for |S1/2,mj = −1/2〉 exchange m′j → −m′j).

m′ -3/2 -1/2 1/2 3/2 5/2
Λ(1/2,m′)

√
1/5

√
2/5

√
3/5

√
4/5 1

2.3.4. Quantum harmonic oscillator and coherent states

Laser cooling techniques (Section 4.2) allow us to reduce the energy of an ion confined
in a linear Paul trap (Section 3.1) to a regime in which a quantized description of its
motional energy becomes warranted. This section introduces the quantum harmonic
oscillator, coherent states and the operators acting on both, which will be fundamental
to the description of the light-matter interaction in ion traps discussed in the follow-
ing. Coherent states in the context of the quantum harmonic oscillator are treated in
textbooks [45, 51] and the well-readable original paper by Roy Glauber [52].

The prime example of a classical harmonic oscillator is a particle of mass m moving in
a 1D quadratic potential V (xc) = mω2x2

c/2, where xc is the position coordinate and ω is
its (angular) oscillation frequency within the potential. Like any harmonic motion, the
oscillation can be described in the complex plane of phase space, where the oscillator’s
state traces out a circle following the relation αc(t) = |αc| eiωt, with αc = xc + ipc and
momentum coordinate pc.

Moving to a quantum mechanical description, xc and pc are replaced by operators x̂
and p̂. Analog to the classical case, the total energy of the particle is given by the sum
of its kinetic and potential energy in the form of Hamiltonian

Hh.o. = p̂2

2m + 1
2mω

2x̂2. (2.18)
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...

a) b)

Figure 2.5.: Graphical descriptions of a harmonic oscillator
a) Motion of an excited harmonic oscillator in phase space (normalized). A full oscillation
corresponds to a full circle in phase space, only half of which is shown. b) The quantized states
of a quantum harmonic oscillator with ground state energy E0 = ~ω/2 form an equidistant
ladder of energy levels.

Introducing the creation and annihilation operators

a† =
√
mω

2~
(
x̂− i

mω
p̂
)

and a =
√
mω

2~
(
x̂+ i

mω
p̂
)

(2.19)

the position and momentum operators can be expressed as

x̂ = (a+ a†)x0 and p̂ = i(a† − a) ~2x0
, (2.20)

where x0 =
√
~/(2mω) defines a characteristic length scale for the harmonic oscillator.9

For a 40Ca+ ion oscillating in a harmonic potential at frequency ω = (2π)× 1.23 MHz,
its value is close to 10 nm and corresponds to the RMS spatial extent of the ion’s ground
state wave function.
Using the operators a and a† defined above, Eq. (2.18) can now be cast into its familiar
form

Hh.o. = ~ω
(
a†a+ 1

2
)

= ~ω
(
N̂ + 1

2
)
.

The states |n〉 illustrated in Figure 2.5.b are called Fock10 or number states. They are
simultaneous eigenstates of Hh.o. and the number operator N̂ = a†a whose eigenvalues
n ∈ N correspond to the number of motional excitations (phonons) present in the
oscillator. Their ground state |0〉 with n = 0 and energy E0 = ~ω/2 is the starting
point of an equally spaced ladder of states.

9Analogously, the characteristic momentum scale is given by p0 =
√

(mω~)/2. These natural units
allow us to work with normalized amplitudes α̃c = x/(2x0) + ip/(2p0) in phase space.

10Vladimir Fock, Soviet physicist (1898-1974)
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As the name suggests, the application of creation and annihilation operators to a given
state |n〉 raises or lowers its energy by one phonon, respectively:

a† |n〉 =
√
n+ 1 |n+ 1〉

a |n〉 =
√
n |n− 1〉 , with a |0〉 = 0.

All Fock states |n〉 can be created by repeatedly applying the creation operator to the
ground state

|n〉 = 1√
n!

(a†)n |0〉 .

The closest quantum mechanical analogy to an excited motional state of a classical
harmonic oscillator presents itself in the form of a coherent state |α〉. The following
illustrates how such a state can be created by the action of an oscillating force.

The application of a time-dependent force

F (t) = A sin(ωdt+ φd) = A

2i [e
i(ωdt+φd) − e−i(ωdt+φd)]

of amplitude A, (drive) frequency ωd and phase φd to the quantum harmonic oscillator
leads to an additional interaction energy corresponding to Hi(t) = −x̂F (t) and the
new Hamiltonian H = Hh.o. + Hi(t). Just like in the previous section, the effect of
the perturbation introduced by the oscillating force can be separated out by going to
an interaction picture via the transformation U = exp(−iHh.o.t/~). The interaction
Hamiltonian then is given by

Hint = (ae−iωt + a†eiωt)x0F (t)

where Equations (B.7) and (B.8) from Appendix B.2 have been used in the transforma-
tion. For a drive frequency resonant with the eigenfrequency of the oscillator (ωd = ω)
and omitting the sum frequency terms (rotating wave approximation), the Hamiltonian
reduces to

Hint = Ax0
2i (aeiφd + a†e−iφd). (2.21)

It is worth pointing out the similarity to the on-resonance case of Eq. (2.13), clearly
illustrating the analogy between σ± and the annihilation and creation operators a, a†

introduced above.
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Figure 2.6.: Coherent state in phase space and Fock space
a) Phase space picture of a resonantly driven harmonic oscillator initially at rest. The state
vector rotates counter-clockwise while growing in amplitude. Once the drive stops, the state
continues to move on a circular trajectory around the origin at frequency ω. b) Phase space
picture in a frame co-rotating at frequency ω. Displacement of the motional ground state |0〉
creates a coherent state |α〉. A subsequent displacement (resonant but with phase φD = π/2)
creates a new coherent state |α+ β〉. All coherent states, including the ground state, are
represented by a disc corresponding to a Gaussian wave packet of minimum uncertainty that
retains its shape over time. c) Fock space representation of a coherent state with an amplitude
of α =

√
6.

By defining a complex, dimensionless11 amplitude

α = e−iφdAx0t/(2~) (2.22)

the corresponding unitary evolution U = exp(−iHintt/~) can now be written in terms
of the displacement operator

D(α) = eαa
†−α∗a. (2.23)

Applied to the harmonic oscillator ground state |0〉, it creates a displaced coherent state

|α〉 = D(α) |0〉 =
∑
n

e−|α|
2/2 αn√

n!︸            ︷︷            ︸
cn

|n〉 , (2.24)

Its Fock state probability amplitudes pα(n) = |cn|2 follow a Poisson distribution with
average phonon number n̄ = |α|2 and variance

√
n̄ as illustrated in Figure 2.6.c. Just

like the oscillator’s wave packet, the distribution retains its shape over time. Here, the
transition from the quantum to the well localized classical harmonic oscillator can be
seen for large values of n→∞ as the dispersion ratio

√
n̄/n̄ goes to zero.

11To see this, recall that [A] = N, [x0] = m, [t] = s and [~] = J · s = N ·m · s.
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Using Eq. (B.15) one can see that two consecutive displacements

D(α)D(β) = D(α+ β)e
1
2 (αβ∗ −α∗β) = D(α+ β)ei Im{αβ∗} (2.25)

are additive up to a phase factor (corresponding to the grey shaded area in Figure 2.6.b).
Their respective direction in phase space is determined by the phase relationship between
the harmonic oscillator and the driving force given by φd in Eq. (2.22).

2.4. Hamiltonian of the laser–ion interaction

Combining the previous discussions of the two-level atom and the harmonic oscillator
model, the following section derives a description for the interaction of a trapped ion
with a coherent laser beam [see 13, and references therein].

The unperturbed system is governed by the Hamiltonian H0 = ~ω0
2 σz+~ωt

(
a†a+ 1

2

)
,

where ωt is the ion’s oscillation frequency in the trapping potential and ω0 the bare
atomic transition frequency. Since the ion is now trapped, the phase of an incident
light field depends on the ion’s changing position. In the ion’s rest frame, the Doppler
shift caused by its motion results in a frequency modulation of the incoming laser light.
As a result, the appearance of corresponding motional sideband transitions at ω0 ± ωt
allows for a joint manipulation of the ion’s internal (“spin”) and external (motional)
degrees of freedom, now described by the ladder-like state space of Figure 2.7.a.

To formally describe the interaction between laser and trapped ion, Eq. (2.13) has to
be modified by an additional term exp(ikx̂) = exp{iη(a+ a†)} which yields

H1 = ~Ω
2 (σ+ + σ−)

(
eiη(a+a†)e−i(ωlt−φl) + e−iη(a+a†)ei(ωlt−φl)

)
.

Here, the Lamb-Dicke factor

η = kx0 cos θ = k

√
~

2mωt
cos θ, (2.26)

accounts for the ratio of the ion’s (confinement-dependent) ground state wave packet
size x0 and the laser’s wavelength λ = 2π/k as well as its angle θ with respect to the
ion’s direction of motion.

In the transformation to an interaction picture with respect to H0, Eq. (B.6) helps
to simplify the first bracketed term, Eq. (B.9) the second. Following a rotating wave
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Figure 2.7.: Fock space ladder of states and thermal distribution
a) Ladder of joint spin-motional states (|ψ〉 ⊗ |n〉) offset in energy by multiples of the motional
trap frequency ωt and connected via carrier (car), red (rsb) and blue (bsb) sideband transitions.
b) Thermal distribution of Fock states for a mean phonon number of n̄ = 10.

approximation (ignoring sum frequency terms at optical frequencies) one arrives at

Hint = ~Ω
2
(
e−i(∆t−φl)σ+ exp

{
iη
(
a e−iωtt + a† eiωtt

)}
+ h.c.

)
, (2.27)

where ∆ = ωl − ω0 is the laser detuning and h.c. refers to the hermitian conjugate.
The interaction Hamiltonian can be simplified further under the assumption that

the ion’s motional wave packet is confined to an extent x0 much smaller than the
light’s wavelength. This Lamb-Dicke approximation holds as long as η2(2n̄+ 1)� 1,
where n̄ is the mean number of phonons in the harmonic oscillator12. In this case, the
exponential can be Taylor-expanded to

exp
{
iη
(
a e−iωtt + a† eiωtt

)}
= 1+ iη

(
a e−iωtt + a† eiωtt

)
+O(η2). (2.28)

In typical situations with n̄ < 20, one can neglect the higher order terms O(η2) and
approximate Eq. (2.27) by

Hint = ~Ω
2
(
e−i(∆t−φl)σ+

{
1 + iη

(
a e−iωtt + a† eiωtt

)}
+ h.c.

)
. (2.29)

An ion’s motional state after laser cooling is given by a thermal distribution with a
mean phonon number of n̄ (Figure 2.7.b) following

pn(n̄) =
(

n̄

n̄+ 1

)n
. (2.30)

12This is usually satisfied at the end of Doppler laser cooling with n̄ ≈ 10− 20 (cf. Section 4.2).
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Figure 2.8.: Relative coupling strength as a function of n̄
a) Rabi oscillations on a carrier transition with Ω0 = 2π× 100 kHz for a range of mean phonon
numbers reachable by Doppler and resolved sideband cooling. b) Normalized coupling strength
of the carrier and first order motional transitions for η = 0.06.

Consequently, Rabi oscillations

|c↑|2 =
∞∑
n=0

pn(n̄) sin2
(Ω(n)

2 t

)
, where Ω(n) = (1− η2n)Ω0, (2.31)

now have frequency components Ω(n) whose weight corresponds to the motional state
distribution. The result is a damping of the oscillation around the steady-state average
of 0.5 at a rate proportional to n̄ (Figure 2.8.a), which can be used to assess the quality
of Doppler cooling.

Provided one operates in the resolved sideband limit (Ω � ωt), one can perform a
second rotating wave approximation in Eq. (2.29) neglecting terms oscillating at ωt.
Taking the fundamental coupling strength (at n̄ = 0) to be Ω0, one can now distinguish
three cases corresponding to the transitions marked in Figure 2.7.a:

• For a resonant laser beam (∆ = 0) one finds

Hcar = ~Ωn

2
(
eiφlσ+ + e−iφlσ−

)
, (2.32)

which couples |↓, n〉 ↔ |↑, n〉 and is called carrier transition as it leaves the mo-
tional state unchanged (“car” in Figure 2.7.a). The coupling strength is given as
Ωn =

(
1− η2n

)
Ω0. Here, a second order term in Eq. (2.28) has been included,

which is responsible for the damping of the Rabi oscillations seen in Figure 2.8.a.
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• The second case is the red motional sideband transition at negative laser detuning
∆ = −ωt which couples |↓, n〉 ↔ |↑, n− 1〉 at rate Ωn,n−1 = η

√
nΩ0 according to

Hrsb = i~η
Ωn,n−1

2
(
eiφlaσ+ − e−iφla†σ−

)
. (2.33)

• Lastly, the blue motional sideband at positive detuning ∆ = +ωt is described by

Hbsb = i~η
Ωn,n+1

2
(
eiφla†σ+ − e−iφlaσ−

)
, (2.34)

coupling |↓, n〉 ↔ |↑, n+ 1〉 with coupling strength Ωn,n+1 = η
√
n+ 1 Ω0.

As Figure 2.8.b illustrates in a log-log plot, in the limit of small mean phonon numbers
n̄ . 1 the blue sideband coupling strength barely depends on the phonon population.
Here, the ratio of red and blue sideband strength provides a good measure of n̄.

2.5. Bichromatic light field

Two superimposed laser fields at positive and negative detuning ±∆ from a common
center frequency, respectively, produce a bichromatic light field. Their phase-coherent
addition effectively results in a light beam at the common center frequency that is
amplitude modulated at the absolute value of their frequency difference (Figure 2.9).

To arrive at a laser-ion interaction Hamiltonian describing this case, one can con-
sider an ion simultaneously excited on the blue and red sideband. With their coupling
strengths made equal (Ω = Ωn,n−1 = Ωn,n+1) simply summing up Equations (2.33)
and (2.34) yields the Hamiltonian

Hbic = i~η
Ω
2
{(
eiφraσ+ + e−iφra†σ−

)
+
(
eiφba†σ+ + e−iφbaσ−

)}
,

where φb and φr are the respective phases of the light fields blue and red detuned by
ωt, respectively. This expression can be recast into the more convenient form

Hbic = ~ηΩ
2
(
σx cosφ+ − σy sinφ+

) (
(a+ a†) cosφ− + i(a† − a) sinφ−

)
, (2.35)

where
φ+ = φb + φr

2 + π

2 and φ− = φb − φr
2
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Figure 2.9.: Bichromatic light field.
a) Electric field of a bichromatic light field from two beams of equal amplitude. The time
domain is fully characterized by an amplitude modulation at the beat frequency (1/T ) and
the sum- and difference phases φ+ and φ− of the two components. b) Spectral power density.
In the frequency domain, equal powers in both components provide a perfect cancellation of
the intermediate carrier (CAR) frequency at ω0 maintaining all the power in the components
resonant with the blue (BSB) and red (RSB) sidebands at detuning ∆b,r.

are the sum and difference of the phases of the two fields and the prefactor i has been
lumped into φ+. As opposed to the pairwise coupling on the individual sidebands the
bichromatic Hamiltonian Hbic couples all Fock states

|↑, 0〉 ↔ |↓, 1〉 ↔ |↑, 2〉 . . . and

|↓, 0〉 ↔ |↑, 1〉 ↔ |↓, 2〉 . . .

shown in Figure 2.7.a simultaneously. It effectively realizes an oscillating force reso-
nantly driving the harmonic oscillator that describes the ion’s motional state. In this
case, however, the force is spin dependent and acts differently on the two electronic
eigenstates selected by the sum-phase φ+ (Figure 2.9.a). Both eigenstates of Eq. (2.35)
lie in the equatorial plane of the Bloch sphere (cf. Figure 2.1) and are displaced in
opposite directions in phase space, where the principal direction is determined by the
difference phase φ− (analog to φd in Eq. (2.21) before).

2.5.1. Coherent displacements

For the specific choice of φ+ = φ− = 0, Eq. (2.35) reduces to

Hbic = ~ηΩ
2 σx(a+ a†), (2.36)

with the two eigenstates |+〉x and |−〉x.
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Here one can distinguish two interesting cases:

• If a bichromatic pulse of duration t is applied to the initial state |ψ〉 = |+〉x |0〉,
where |0〉 is the coherent ground state of the harmonic oscillator, a displaced
coherent state is created

|ψ(t)〉 = e−iHbict/~ |ψ〉 = |+〉xD
(
−iηΩt

2

)
|0〉 ≡ |+〉x |α〉

in which, recalling that η = kx0, one can recognize the displacement operator
D(α) of Eq. (2.23) with φd = π/2.

• The ground state |ψ〉 = |↓〉 |0〉 can be rewritten as |ψ〉 = 1√
2 (|+〉x − |−〉x) |0〉 using

a superposition of the electronic eigenstates |±〉x of the displacement operator D.
Here, the application of a bichromatic light pulse creates a motional Schrödinger
cat state

|ψ(t)〉 = 1√
2

(|+〉x |α〉 − |−〉x |−α〉) , (2.37)

corresponding to a superposition of two coherent states |±α〉 that are maximally
entangled with the internal qubit states |±〉x.

2.5.2. Mølmer-Sørensen interaction creating entanglement

If the respective detuning of the bichromatic components is increased by an amount
δ to ∆ = ±(ωt + δ), the result is a state evolution corresponding to an off-resonantly
driven harmonic oscillator. Just like in the classical case, under the application of such
a Hamiltonian, a quantum harmonic oscillator initially at rest will return to its original
state at multiples of time t = 2π/|δ|.

This type of interaction was first investigated by A. Sørensen and K. Mølmer as well
as E. Solano [53–55] and allows us to create entanglement in a string of N ions sharing
a common motional mode. The details of the Mølmer-Sørensen gate operation and its
application to trapped ions have been thoroughly covered in [56, 57]. Here, only a brief
summary of the most important features for the simplest case of two ions is provided.

Due to the additional detuning δ, the light phases φl of the blue and red motional side-
bands in Eq. (2.33) and Eq. (2.34) become time-dependent resulting in φr = φr(0)− δt
and φb = φb(0) + δt, respectively. In the bichromatic Hamiltonian given in Eq. (2.35)
the time-dependence is only relevant in the difference phase φ− = (φr(0)− φb(0))/2− δt.
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Figure 2.10.: Mølmer-Sørensen gate operation.
a) Phase space picture of the gate operation. The electronic eigenstates |++〉x and |−−〉x of
the two ions are displaced on a trajectory following a circle of radius ∝ ηΩ/δ that closes every
tgate = 2π/|δ|. The geometric phase Φ imprinted on the state corresponds to the enclosed
area. The electronic eigenstates |+−〉x and |−+〉x (red dot at the origin) do not couple to the
motion. b) Numerical simulation of the population evolution for δ = 2π×15 kHz. A maximally
entangled state is created after tgate ≈ 66µs. Note that these correlations appear in the z-basis
and not the x-basis depicted in (a).

Consequently, the Mølmer-Sørensen interaction is described by

HMS = ~ηΩ′
(
σ(1)
x + σ(2)

x

) (
(a† + a) cos δt− i(a† − a) sin δt

)
= ~ηΩ′

(
σ(1)
x + σ(2)

x

) (
a†e−iδt − aeiδt

)
, (2.38)

where it was assumed that φr(0) = φb(0) = π/2.

Noting that the electronic ground state in the z-basis |↓〉 |0〉 = |−〉z |0〉 can be rep-
resented as a superposition in the x-basis 1√

2 (|+〉x − |−〉x) |0〉, the action of the gate
operation is as follows: The two electronic states |++〉x and |−−〉x are displaced in a
direction in phase space that changes continuously with δt, while the states |+−〉x and
|−+〉x remain stationary. The resulting circular trajectory shown in Figure 2.10.a can
be approximated by a sum of (integral over) small consecutive displacements according
to Eq. (2.25). It encloses an area in phase space that corresponds to a geometric phase
[58] which is given by Φ(t) = (Ω/δ)2(δt − sin δt). States |++〉x and |−−〉x to which
the spin-dependent force couples, therefore become entangled with the driven motional
degree of freedom. Whenever the N th circle is closed at time τN = 2πN/δ, spin and
motion become disentangled again and, while the latter has retuned to its initial state,
the accumulated phase Φ(τN ) = 2πN(Ω/δ)2sgn(δ) is left in the electronic state(s).
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Figure 2.11.: Spin-motional manifold associated with the two-ion MS-gate operation.
A bichromatic laser field with components slightly detuned by δ from the motional sidebands
at ωt connects the qubit states |↓↓〉 ↔ |↑↑〉 via four possible paths. The motional states are
denoted by |n〉 and form a joint manifold with the qubit’s electronic states.

The unitary evolution induced by Eq. (2.38) can be described by

UMS(t) = D (α(t)Sx) exp
(
iΦ(t)S2

x

)
, (2.39)

with the time-varying displacement amplitude α(t) = iΩ
δ (1 − eiδt) and the global spin

operator Sx = σ
(1)
x + σ

(2)
x , where the superscript corresponds to the ion number. It is

easy to see that every tN = 2πN/|δ| with N = 1, 2, . . . the displacement D vanishes,
resulting in an effective spin-spin interaction Heff ∝ σ

(1)
x ⊗ σ(2)

x that leads to pairwise-
correlated spin flips, i.e. spin 1 only flips if spin 2 flips at the same time.

If the Rabi frequency is set to Ω = δ/(4η), Eq. (2.39) effectively realizes the entangling
gate operation of Eq. (2.9) and creates at the gate time tgate = 2π/δ the maximally
entangled Bell state |Ψ〉 = (|↑↑〉 − i |↓↓〉)/

√
2.

A numerical simulation of the state evolution for a detuning of δ = 2π × 15 kHz is
shown in Figure 2.10.b. The electronic state populations plotted arise from the time-
dependent interference of the 4 possible interaction paths depicted in Figure 2.11. The
population, in which only a single ion spin is flipped, disappears every tgate, leaving the
system either in |↓↓〉, |↑↑〉 or a Bell state.





3. Experimental setup

The experiments presented in this text have been carried out in two different linear Paul
traps located at the Institute for Quantum Optics and Quantum Information (IQOQI)
of the Austrian Academy of Sciences (OEAW). The laser systems and computer control
were set up alongside with trap I by Jan Benhelm, Gerhard Kirchmair and others,
initially to investigate 43Ca+ as a qubit candidate. The original setup is described in
detail in the corresponding theses [50, 59–61] and, to a large extent, was still used in
the quantum simulation experiment described in Chapter 5. In parallel, a new linear
ion trap design (trap II) was modeled and optimized, subsequently built, set up and
characterized. The quantum enhanced measurement presented in Chapter 6 marked
the starting point of the new setup’s productive operation. All changes and additions
to the physical setup and software aim at enabling future work with long(er) ion strings
and have recently led to results using up to 15 particles (see Appendix A).

3.1. Ion trap

The blade design of the linear Paul traps [2] used in Innsbruck and elsewhere date back
to a design by Stefan Haslwanter from the early 2000s [62] that was aimed at increasing
the machining and alignment precision of the radial electrodes. The first trap built in
such a way has been successfully employed at the University of Innsbruck’s quantum
optics laboratory in numerous experiments over the last 13 years [63–66]. The relatively
large ion-electrode distances in the design lead to low heating rates (Section 4.7) and
allow for good optical access with little stray light. Trap I at the IQOQI laboratory
follows the same macroscopic design and is depicted in figure 3.1. The original blade
trap at the university laboratory has been used to entangle strings of up to 14 ions
[67]. It has only very rarely seen a chemical reaction with residual background gas in
the vacuum vessel which turn a trapped atomic into an unwanted molecular ion. The
(almost identical) trap I at IQOQI, however, is not able to stably confine strings of
more than three ions and suffered from chemical reactions often more than twice a day.

29
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While the exact reasons remain unknown, in 2009, efforts went underway to build a
new setup to remedy these problems. Table 3.1 provides a comparison between the old
and the new ion trap (again designed and manufactured by Stefan Haslwanter).

C
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A
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C

 6 mm

1.6   mm

5.0 mm
Figure 3.1.: Trap I (2006)
The ion trap consists of four blade-shaped electrodes (A) and two tip-shaped end-cap electrodes
(B) made from stainless-steel that are held together by two Macor® pieces. Twisted oxygen-free
high-conductivity (OFHC) copper wires deliver a radio frequency (RF) voltage to two opposite
blades while the other two are held at ground potential. Kapton-insulated copper wires connect
the tip (B) and stray-field compensation (C) electrodes to a high voltage feedthrough. (modified
from references [50, 59])

4.5 mm

1.13 mm

A

B B

C

C

D

D

D E

Figure 3.2.: Trap II (2011)
The tip-shaped end-caps (B) include a 0.5 mm diameter hole for optical access. Alignment rods
used during assembly and groves machined into the Macor® holders ensure proper alignment of
the ground (A) and RF blade (D) electrodes. Compensation (C) and tip (B) electrodes are
connected using OFHC copper wires insulated with Macor beads. The RF blades are connected
in series via a copper “bridge” (E). The photo, taken by M. Rambach, corresponds to the view
from the W viewport in Figure 3.6.
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Table 3.1.: Comparison of the two ion traps used for the experiments presented in the thesis.
The efficiencies refer to Figure 3.3 on the following page and the 2D quadrupole approximation
is equal to the ratio of the RF potential curvature in the (axial) z to the (radial) x,y directions.

trap I trap II unit
Characteristic dimensions

distance blade to blade 1.6 1.131 mm
distance between tip electrodes 5.0 4.5 mm
length of blades 6 4.02 mm
tip hole diameter — 0.5 mm

Simulation results
axial voltage conversion efficiency (ηax) 8.6 7.2 %
radial voltage conversion efficiency (ηRF) 93.5 92.4 %
2D quadrupole approximation at center 99 99.6 %

The newly built trap II, depicted in figure 3.2, also builds on the proven blade design
but again improves on mechanical stability and alignment precision (≤10 µm). The
minimal electrode-ion distance is reduced to 565 µm to achieve sufficiently strong radial
confinement already at lower RF drive powers. Further changes include the addition
of holes in the tip electrodes, which allows for direct optical access along the principal
trapping axis (z-direction, cf. Figure 3.6), and the ability to apply a DC offset voltage
to the two blade electrodes held at ground potential. To find a balance between the
achievable trapping depths and constraints given by the manufacturing and desired
assembly precision, several iterations of this geometry were modeled using finite element
method (FEM) simulations in Comsol Multiphysics (versions 3 and 4).

Ramsey experiments (Section 4.8) using a spin-echo sequence, in which the RF drive
power was rapidly changed to a different value for the second half of the free evolution,
later revealed that the geometry of the RF connection (possibly the “bridge” (E) in
Figure 3.2) produces an AC magnetic field in the trap region. This results in an energy
level shift of the Zeeman states13 in addition to the one created by the quantization
magnetic field (Section 3.6). A second trap of the same design (located in a neighboring
lab) uses a different wiring geometry and does not exhibit this behavior.

As detailed treatments of the classical dynamics of ion traps are readily available in
many places in the literature (for example, refs. [12, 13, 68] and almost every thesis
published in the field), the remainder of this section offers only a brief summary of the
equations used to characterize trap II in FEM simulations.
13360(21) Hz/WRF between the m = ±1/2 Zeeman levels of the S1/2 state and 67(7) Hz/WRF between

m = 1/2 and m = 3/2 of the D5/2 state; for ΩRF = 28.8 MHz at a DC bias field of B ≈ 4 G
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Figure 3.3.: Trap efficiencies from harmonic approximation
FEM simulation data (blue) and second-order polynomial fits (red) to regions ±200µm around
the trap center. The ratio of the respective values at the location of the radial (a) and axial (b)
electrodes yields a trap “efficiency” η with respect to the generated harmonic pseudo-potential.

The trapping potential Φ can be divided into a dynamical radial part Φrad and a
static axial part Φax [13]. Using a Taylor expansion around the center of the trap
Φrad = Φ(0)

rad + Φ(2)
rad + Φ(4)

rad . . ., the dynamical part can be approximated by

Φ(2)
rad(x, y, z, t) = VRF cos(ΩRFt) + Ur

2
(
αxx

2 + αyy
2 + αzz

2
)
. (3.1)

Here, VRF is the peak amplitude of the applied AC voltage oscillating at frequency ΩRF

and Ur is a DC bias voltage applied to one of the blade pairs. The geometric factors
αx, αy, αz account for the difference between blade/tip and ideal hyperbolic electrode
shapes as well as the possible 2D symmetry breaking in the case the RF voltage is only
applied to one pair of blades (as done in this thesis) and not both. In order to fulfill
the Laplace equation ∆Φ = 0, they are bounded by the requirement αx + αy + αz = 0.
Similarly, the static axial confining potential is approximated by

Φ(2)
ax (x, y, z) = UDC

[
βzz

2 − 1
2
(
βxx

2 + βyy
2
)]
,

where UDC is the voltage applied to the tip electrodes and, again, βx + βy + βz = 0.

In the limit of small excursions around the trap center, the harmonic motion of an
ion of charge e and mass m in direction i can be described by

eφi = 1
2
∑
i

mω2
i r

2
i with i ∈ {x, y, z}, (3.2)

with (secular) motional frequency ωi and the associated potential curvature φi/r2
i .
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In this pseudo-potential approximation of independent harmonic oscillators, anhar-
monic terms of the generating potential Φ (such as Φ(4)

RF) are neglected. A static FEM
simulation at t = 0 allows us to extract the potential curvatures in each spatial direc-
tion via second-order polynomial fits. Figure 3.3 shows the simulation results for 1 V
applied to the blade and tip electrodes, respectively. In both cases (a) and (b), the fits,
indicated in red, were made to a range of ±200µm around the trap center which was
simulated with a high-resolution mesh. In the inefficient axial direction (b), a ∼ 1% de-
viation between fit and the simulated potential is reached only at a distance of ±280µm
from the trap center. Therefore, even for longer chains of tens of ions (e.g. Figure 3.18)
anharmonicities of the trapping potential should not be a concern. A discussion of the
effects related to anharmonic trap potentials can be found in reference [69].

The extracted pseudo-potential curvatures can also be used to asses the overall quality
of the 2D quadrupole potential generated by the blade electrodes at the center of the
trap. A non-zero value along the axial (z) direction leads to an RF-induced driven
motion (“micromotion”, see also Section 4.5) which - especially when working with
longer chains of ions, where the effect cannot be circumvented - has to be minimized.
Both linear traps used in the experiment do well in this regard (cf. Table 3.1).

From solutions of Mathieu equations [13, 68], the secular frequencies of Eq. (3.2) can
be derived as a function of the electrode voltages to be

ωr = e√
2mΩ

αrVRF and ωz =
√

2e
m
βzUDC, (3.3)

where αr = (αx + αy)/2 and it was assumed that αz and Ur = 0. In practice, however,
the axial trapping potential leads to a weakening of the radial confinement, effectively
lowering the radial oscillation frequency to a value ω̃r =

√
ω2
r − 0.5ω2

z .
The potential (trap) depth D = 1

2mω
2r2 reaches 5 eV to 32 eV for radial frequencies

ωr/(2π) between 1.4 MHz to 3.5 MHz, which allows even hot ions from a thermal source
to be captured and retained easily.

When an RF voltage is applied to both pairs of blades with opposite phase and no
electric field lines end on the end caps, the radial oscillation frequency ωr is the same
in both radial directions x and y. However, when VRF is applied to only one pair of
blades the radial modes differ due to the symmetry breaking.

In Figure 3.4.b and Figure 3.5.b on the next page, the measured mean radial frequency
ωr = (ωx +ωy)/2 is plotted as a function of RF drive power and corresponding voltage,
respectively. The splitting of the radial modes depends on the radial confinement and
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Figure 3.4.: Trap frequencies of the center of mass (COM) modes
a) Axial frequency ωz/(2π) as a function of tip voltage in FEM simulation (dashed line) and
experiment. The scaling factors relate to Eq. (3.3). b) Measured radial center frequencies
ωr/(2π) for different RF powers P sent to a helical resonator. Its quality factor Q degraded over
time (see text) shifting the frequencies from the dashed to the solid line following ωr = ε

√
PQ.

The single datapoint at Q = 260 was taken right after the resonator was first installed.

can be tuned using a DC offset voltage Ur applied to the blade electrode(s) held at
ground potential. In our case, this feature, illustrated in Figure 3.5.a is essential for
efficient Doppler cooling; see also Section 4.2.
To reach the AC voltage amplitude necessary for the radial confinement shown in Fig-
ures 3.4 and 3.5, the trap is set up as part of a quarter-wave resonator that is driven
by amplified14 RF from a signal generator15. The current setup uses a tapped helical
resonator [70, 71]; see reference [72] for information on inductive coupling. The (loaded)
quality factor Q = bandwidth/(resonance frequency) of the resonator was determined
from a measurement of the full width at half maximum (FWHM) of the reflected power
(=bandwidth) with an RF network analyzer. Using the relation ωr = ε

√
PQ, the mea-

surement of Q = 260 at P = 6 W and ωr = 2π × 3.51 MHz allows us to calculate the
constant ε = 88.9 kHz/

√
W, which is determined by the resonator geometry and drive

frequency [70]. Combined with a fit of the equation (solid line in Figure 3.4.b) we infer
the Q-factor at the time the other measurements shown in the figure were taken.

The observed degradation of the resonator’s quality factor over the course of many
months seems to be due to tarnishing of the coils copper surfaces (skin depth ≈ 12µm
for ΩRF/(2π) = 28.8 MHz) as mechanical cleaning of the resonator’s inner helix using
organic solvents always led to improvements. A conductive coating that is less suscep-
tible to corrosion (e.g. silver) could be used to address this problem in the future.

14Minicircuits LZY-1
15Rhode+Schwarz SML 01
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Figure 3.5.: Radial COM mode frequency splitting and corresponding blade voltages
a) Induced splitting of the radial COM mode for different confinements. For each offset voltage
Ur added to the blade electrodes at ground potential the radial mode splitting was measured.
Extrapolation from linear fits yields a mode splitting of 13.4 kHz at ωr = 1.58 MHz and 8 kHz at
ωr = 3.79 MHz when no offset is applied. b) Observed mean radial frequency for different peak
RF voltages. The RF voltage is monitored as Vmon after rectification following a capacitive
divider that is placed at the vacuum feedthrough of the resonator. The top axis shows the
estimated peak RF voltage based (only) on the capacitive divider ratio of 1:133.3. The 8%
scaling difference between FEM simulation and experiment is comparable to that of Figure 3.4.a.

The DC voltages used for confinement in the axial direction via the tip electrodes are
derived from a dedicated high voltage supply16. The DC voltages applied to compensate
for stray electric fields (micromotion compensation, cf. Section 4.5) and the DC blade
offset inducing the additional radial mode splitting are supplied by standard laboratory
power supplies17. All voltages are low-pass filtered at the high voltage feedthrough of the
vacuum vessel (tip: R = 33 kΩ, C = 820 pF, compensation: R = 2 MΩ, C = 820 pF).

3.2. Vacuum vessel

The vacuum chamber (Figure 3.6) enclosing the ion trap (Figure 3.2) is a 316 stainless
steel octagon with eight CF63 flanges and a CF200 flange on top and bottom, both
modified to carry additional flanges. The trap carrier is attached to the top flange
right beneath a central CF40 power feedthrough that directly connects to the helical
resonator. An adjacent CF16 high-voltage feedthrough18 directly connects to a low-
pass filter board that provides connectivity for the compensation electrodes and each
tip electrode individually.
16EHS8020x-K2; iseg Spezialelektronik GmbH
17models PS 3646A and 3644A; EA Elektro-Automatik GmbH & Co. KG
18CeramTec 9871-08-CF
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Figure 3.6.: Laser beam directions
The schematic drawing (not to scale) of the vessel relates the laser beam and imaging directions
to the laboratory coordinate system and the cardinal directions (indicated by the compass
rose). The pair of coils at the north and south viewports provide the magnetic quantization
field (Section 3.6) along the axial (z) direction of the ion trap. A non-evaporative getter (NEG)
and a residual gas analyzer (RGA) provide vacuum pumping and analysis in addition to the
pumps and an ion gauge (not shown), which are attached to a 6-way cross. All laser beams are
delivered by optical fibers and directly focussed to the trap center by standard fiber collimators
and, in one case, dedicated focussing optics (addressed beam). Dichroic mirrors are used to
overlap the laser beams at 397 nm and 866 nm (729 nm) in front of the trap.

Five of the eight in-plane directions are equipped with standard vacuum viewports19

located at a distance of 18.6 cm (W viewport: 39.5 cm) from the trap center. Another
three directions are fitted with recessed (inverted) viewports20 that allow the placement
of custom-made objectives21 on three-axis translation stages very close to the ion trap
while still keeping them outside the vacuum. Two additional CF40 flanges are welded
each to the top and bottom CF200 flange and provide additional optical access at an
angle of 60° to the horizontal plane.

A commercial calcium source22 is mounted directly to a CF16 electrical feedthrough
underneath the trap. A non-evaporative getter (NEG)23 is located next to it. The
western horizontal flange is connected to a six-way cross carrying a titanium sublimation
19Caburn, fused silica with two-sided anti-reflection coating X/UIMCP/43 from Tafelmaier GmbH
20UKAEA, fused silica with one-sided anti-reflection coating X/UIMCP/43 from Tafelmaier GmbH
21Silloptics GmbH, Wendelstein
22Alvatec AS-2-Ca-50-C
23SAES Capacitorr D100
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pump24, a 20 L/s ion pump25, a Bayard-Alpert ion gauge26 and a CF40 all-metal valve27.
Motivated by repeated vacuum problems during multiple trap assembly runs, a resid-

ual gas analyzer (RGA)28 was added to one of the 60° viewports for in-situ vacuum
diagnostics. The problems manifested themselves in an increased rate of molecule for-
mation during trap operation (mostly CaOH+ and very rarely CaH+)29 – all while the
base pressure at the ion gauge remained at the low 10−11 mbar level. We later identified
contaminations on the blade electrodes facing the oven as a likely cause: As Ca-deposits
on stainless steel reduce its work function, light at 397 nm, used for laser cooling and
state detection, can produce photoelectrons when striking contaminated parts30. The
electrons are subsequently accelerated by the trap’s RF field and gain enough energy
to release and ionize all kinds of contaminants from surfaces close to the ions.

The ensuing problems have now been reduced to an acceptable level by rearranging
the UV laser beams to prevent illumination of the affected areas and the use of careful
focussing to keep all residual stray light at a minimum. The latter includes the separate
delivery of the laser beams at 422 nm and 375 nm used in the photoionization. When
delivered through the same fiber collimator (as done in many experiments), its lens’ focal
length shift between the two wavelengths leads to foci that can be many centimeters
apart, causing a significant amount of stray light and markedly reducing photoionization
efficiency. Light delivery through separate optical fibers and careful overlapping of the
2ω ≈ 100 µm foci allows us to send the two beams through the tip electrodes without
stray light, achieving decent loading rates for 10 µW to 20 µW optical power in each
beam. The beam overlap at the location of their foci is monitored via a CCD camera
that is placed at the same distance from a polarizing beam combiner as the trap.

The trap vacuum vessel is mounted onto a two-level breadboard support-structure
that is located inside a magnetic field shielding enclosure (Section 3.6). To allow for
precise manipulations with the enclosure doors closed, some of the opto-mechanical
elements next to the vacuum chamber are controlled remotely using stepper motors31.

24Varian/Agilent cartridge model 916-0050
25Varian/Agilent VacIon Plus 20 StarCell
26Varian/Agilent UHV-24p
27Series 540 “Easy close” all-metal angle valve; VAT Vacuumvalves AG
28RGA 100; Stanford Research Systems
29Photodissociation of both molecules is possible but requires deep-UV wavelengths [73, 74].
30With a large positive DC bias voltage applied to one set of blade electrodes via a large in-series resistor,

the voltage drop across the resistor was used to measure small photocurrents that were induced by
targeted UV-illumination. Visually contaminated parts gave large readings, while others did not.

31Newport NSC200 with NSA12 actuators
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3.3. Laser systems

A total of seven solid-state laser systems are used for the work presented in this text.
As the corresponding optical setups have already been described in detail in references
[50, 59–61], only schematics of the most relevant parts are presented in the following.

With the exception of the multi-mode fibers connecting to the wavelength meter,
all laser beams are carried by single-mode polarization maintaining fibers (PMF) with
angle-polished end-facets (FC/APC). To preserve the linear input polarization at the
output, half-wave plates in front of each fiber are carefully adjusted with the help of
commercial polarization analyzers32 to match the polarization direction to the fiber
axes. This way, polarization extinction ratios (PER) of 33 dB (23 dB) are achieved for
fibers in the infrared33 (UV-A)34. The quoted values correspond to the worst case, i.e.
the farthest point from the equator on a circle traversed on the Poincaré sphere when
stress (mechanical or thermal) is applied to the fiber. They are calculated from the
polarization ellipse as PER = −10 log10{tan2(|η| + |∆η|)}, where η is a constant ellip-
ticity (caused by non-linear input polarization, imperfect alignment to the fiber’s axes
and/or stress in the input connector) and ∆η is an additional stress-induced ellipticity.

Due to the lack of practical atomic references at the Ca+ wavelengths, all lasers are
locked to Fabry-Pérot cavities using a Pound–Drever–Hall (PDH) scheme [75, 76]. The
diode lasers are referenced to piezo-tunable cavities of finesse F ≈ 300 [59].

3.3.1. Diode lasers

Laser cooling, detection and optical pumping (397 nm)

The strong S1/2↔P1/2 dipole transition in 40Ca+ is used for laser cooling, state detec-
tion and optical pumping. The corresponding light at 397 nm is generated by a com-
mercial master oscillator power amplifier (MOPA) system35 through second harmonic
generation (SHG) in a resonant doubling cavity. The system is capable of producing
more than 100 mW of UV light but is usually operated with an output power between
25 mW and 30 mW. This is done in order to prolong the lifetime of its tapered amplifier
(TA) chip (and its coatings) and also to reduce the wear on optical elements in contact
with the UV light. The laser’s output is decoupled from the down-stream optics using
32Schäfter+Kirchhoff, polarimeter models SK010PA-UV & SK010PA-NIR
33Schäfter+Kirchhoff PMC-630-4.1-NA012-3-APC-1500-P at 729 nm
34Schäfter+Kirchhoff PMC-S400Si-2.7-NA012-3-APC-1200-V at 397 nm
35Toptica DL-SHG pro
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Figure 3.7.: 397 nm laser setup
Light at 397 nm is passed through a short end-capped polarization-maintaining fiber (PMF)
and is subsequently split into three beam paths. AOM 1 provides light for optical pumping,
AOM 2 for Doppler cooling. Here, a mechanical shutter allows the non-diffracted 0th order light
to be sent to the trap as well. The third beam path (AOM 3 and 4) bridges the isotope shift to
44Ca+ and is combined with the Doppler cooling beam for delivery through the same fiber.

a short PM-fiber that also acts as a mode cleaner. At 397 nm wavelength – even at the
seemingly low power levels used – it is important to use fiber connectors with coreless
end-caps. Their design effectively lowers the light intensity at the silica–air interface,
which significantly reduces light-induced damage at the fiber facets that is otherwise
observed to develop over a few months of operation. Each of the beam paths shown
in Figure 3.7 uses an acousto-optic modulator (AOM) at 220 MHz36 in a double-pass
(DP) setup37 to switch the corresponding light beam on or off. In addition, a me-
chanical shutter in the beam path of AOM 2 allows for propagation of the undiffracted
light beam, which is used to help re-crystallize longer ion strings after collisions with
background gas. For the experiments using 44Ca+, the S1/2 ↔ P1/2 isotope shift of
842(3) MHz (cf. Section 2.2) made it necessary to add an additional beam path along
AOMs 336 and 438.

Repumping and qubit reset (866 nm / 854 nm)

Commercial diode lasers39 provide the light necessary to repump the ion from the
D3/2 and D5/2 metastable states via the P-manifolds. Their light beams are controlled

36Crystal Technology, model 3220-120
37Note: Opposed to a standard double pass setup [77], the polarization sensitivity of quartz- and fused-

silica crystals used in many UV-grade AO devices require the use of a right angle folding prism (e.g.
FRP-040-UV, Rainbow Research Optics) to provide a vertical beam offset on the second pass.

38Brimrose FQM-400-100-393
39Toptica DL-100 and DL-pro
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Figure 3.8.: Repumper laser setups
All light beams are switched using acousto-optic modulators in single (SP) or double-pass (DP)
configuration. The laser marked by * is used to address the D3/2↔ P1/2 transition in 44Ca+

and has a separate single-mode fiber (SMF) connection to an adjacent laboratory (Lab 2) for
precise wavelength monitoring.

with AOMs40 running at 80 MHz (cf. Figure 3.8). As the D3/2↔ P1/2 transition of
44Ca+ is shifted by −4.5 GHz with respect to 40Ca+, a separate laser (866*) is used
for repumping and spectroscopy. During the experiment described in Chapter 6 the
laser’s wavelength was recorded on a high-precision wavelength meter41 in an adjacent
laboratory. To maintain the wavelength meter’s accuracy, the device was calibrated
every 60 s by referencing it to the Ti:Sapphire laser discussed in the following (see
Section 3.7 for more details on the wavelength meter’s performance).

3.3.2. Ti:Sapphire laser for qubit manipulation (729 nm)

An ultra-stable narrow-linewidth laser at 729 nm [60] provides the ability to coherently
manipulate the optical qubit encoded in the 40Ca+ S1/2/D5/2 states. The setup consists
of a diode-pumped Nd:YVO4 laser at 532 nm42 that pumps a titanium-doped sapphire
(Ti:Sa) crystal inside a modified dye laser43. Equipped with an intra-cavity electro-optic
modulator (EOM)44 for high-bandwidth feedback, a three-fold laser lock to a high-
finesse cavity (Section 3.3.3) provides a short-term linewidth of 1-10 Hz [50, 60]. The
system’s performance is regularly checked via beat-measurements using a 400 m optical
path-length stabilized fiber to a similar setup located at the university’s laboratories.
40Crystal Technology, model 3080-120
41Highfinesse WSU/2
42Coherent Verdi V-10
43Coherent model 899
44Qioptiq (formerly Linos) PM-25
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Figure 3.9.: 729 nm laser setup for coherent qubit manipulation (simplified)
The setup consists of three separate parts: (I) laser intensity stabilization at AOM 8, (II) cavity
light preparation (AOM 9 & 10), and (III) light preparation (AOM 11) and distribution to the
trap access ports (AOM 12-15). Part of the generated light is branched off for beat measurements
with the university laboratory and for seeding a TA system in the adjacent laboratory 2.

Figure 3.9 above shows a simplified schematic of the laser setup, split into three
parts: intensity stabilization (I), high-finesse cavity locking (II), and light preparation
and delivery (III).

(I) The laser intensity is stabilized in a PID45 loop with 100 kHz bandwidth by
directing 9% of its output light onto PD146 and adjusting the amount of RF power
sent to AOM 840 accordingly. Residual fluctuations in the transmitted 0th order light
are smaller than 1% [60]. However, vibration-47 and thermally-induced beam pointing
throughout the downstream optics following AOM 8 add fluctuations and drifts (up to
∼ 2%), such that this value does not hold at the location of the ion trap.

45Stanford Research Systems PID 960 analog PID controller
46Thorlabs PDA100A-EC
47The main source of vibrations is a HEPA fan/filter unit used to keep the laser area dust-free.
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(II) The short-term frequency reference for the laser is provided by a high-finesse
cavity (Section 3.3.3). To match the frequency of one of its TEM00 modes to the atomic
transition, high-frequency AOM 948 is set up in double-pass configuration, allowing to
scan over more than one free spectral range of the cavity.

The reference cavity vacuum vessel is housed in a sand-filled wooden box, into which
light is carried via a PM-fiber. Inside the box, a Glan-Thompson polarizer49 ensures
a match of the incoming light polarization to the Brewster-cut windows and crystals
of an EOM44 used to phase-modulate the laser light at 18 MHz. Careful alignment of
the Brewster-cut windows with respect to each other minimizes the residual amplitude
modulation that would distort the error signal generated in a PDH locking scheme using
PD450. An optical isolator (FI)51 is placed into the cavity beam path to suppress etalon
effects between flat surfaces, which were found to be responsible for laser frequency
shifts on the order of 50−100 Hz induced by thermal drifts and, with the enclosure
open, air-currents. The light intensity sent to the cavity is kept constant by detecting
the transmitted power on PD352 and controlling the RF power sent to AOM 1040 in
a feedback loop45. The same AOM is used to stabilize the optical path length of the
fiber carrying light to the cavity, actively cancelling out the effect of refractive index
modulations induced by acoustics and temperature changes. This method of fiber noise
cancellation [78] is implemented using a home-built, VCO-based phase-locked loop [60]
that is controlled via a beat-note detected on PD253 between laser light at the fiber
input and light reflected from the flat-polished (FC-PC) end of the fiber.

(III) A fraction of the laser light is branched off to seed a tapered amplifier in an
adjacent laboratory and to implement the beat measurement with laser light delivered
from the university setup (see [50, 60, 64] for details). The remaining light is sent to
AOM 1154 which is used to tune it into resonance with arbitrary transitions between the
Zeeman-split 40Ca+ S1/2 and D5/2 manifolds. The modulator also performs amplitude
shaping of the optical pulse [79] in order to adiabatically eliminate off-resonant excita-
tions, e.g. during gate operations [56]. AOMs 12−1440 deflect the produced light pulse
into polarization maintaining optical fibers that deliver it to the desired viewport at the

48Brimrose GPF-1500-100, 75 µm active aperture, diffraction efficiency ∼15 %
49Bernhard Halle Nachfl. GmbH, Germany
50home-built, based on Hamamatsu S5971
51QiOptiq FI-680-5 SV
52Thorlabs PDA520
53home-built, based on Hamamatsu S5973
54Brimrose, model TEF-270-100-800
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ion trap. Optionally, two RF signals can be sent simultaneously to one of the AOMs
marked with an asterisk* to convert the incoming laser beam to a bichromatic light field
(Section 2.5). They are set up in single-pass configuration as a double pass setup would
produce unwanted, co-propagating sum-frequency components that are resonant with
the carrier. Hence, the two 1st order diffracted beams after the first pass have to be
directly coupled into the fiber, off-center, on the side of their Gaussian profiles, which
worsens their sensitivity to vibrations. Here, the fiber-coupled AOM 1555 provides in-
creased mechanical stability, which is helpful especially when the bichromatic light field
is made from RF components with a large separation in frequency (> 2 MHz). This is
the case, e.g., when transverse motional modes at ±ωr are addressed.

3.3.3. High-finesse cavity (729 nm)

The Ti:Sa laser’s short term frequency stability is derived from a PDH lock to a vertical
Fabry-Pérot cavity56 with a spacer made from ULE57 glass, which possesses a near
zero58 linear coefficient of thermal expansion (CTE) at an optimal temperature Tm,
which allows for very high dimensional stability that is surpassed only by cryogenic
single crystal cavities [80, 81].

The cavity’s design and mounting structure is optimized to ensure that the mirror
distance remains largely unaffected by vertical accelerations59. Complemented by an in-
vacuum temperature stabilization keeping the cavity temperature close to Tm, residual
linear drift rates of 63 mHz/s have been observed [83]. Figure 3.10 shows the cavity
vacuum vessel used in the experiment following a design similar to reference [83]. The
midplane-mounted cavity is placed inside a two-stage heat shield, which is actively
temperature stabilized using two pairs of Peltier elements that are located between the
surrounding vacuum chamber and the outer shield. A quartz crystal, a fast-responding
NTC thermistor, as well as a slower but more accurate PT1000 provide access to the
temperature of the cavity surroundings. Contaminants outgassing from the unbaked
cavity or the Peltier elements are removed by a 20 L/s ion pump that is connected to
the vessel via a 20 cm bellows (not shown). After more than 3 years of continuous
operation, the assembly remains at a base pressure of 2× 10−9 mbar.

55Gooch+Housego, model MM080-1C2V14-5-F2SH-B
56Advanced Thin Films, Boulder, CO, USA
57Corning, ultra low-expansion (ULE) titania silicate glass
580± 30× 10−9 K−1 from 5 ◦C to 35 ◦C (Corning ULE data sheets)
59See ref. [82] for FEM simulations of the strain and acceleration sensitivity of various cavity designs.
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Figure 3.10.: Cavity vacuum vessel and electrical connections
A 316 stainless steel vacuum chamber encloses two stacked aluminum heat shields of 5 mm
thickness. The outer shield is temperature stabilized via in-vacuum Peltier elements using
either a quartz crystal or an NTC element as in-loop sensor. A PT1000 sensor mounted at the
cavity base inside the second shield is used for out-of-loop temperature monitoring. All sensors
and the 4 Peltier elements (A,B – pair-wise in series) are connected to the outside via Sub-D
vacuum feedthroughs. (Figure based on a drawing by Michael Chwalla; private communication)

The cavity length of L = 77.5 mm corresponds to a free spectral range (FSR) of
1.934 GHz, which allows us to determine the cavity finesse F according to

F = τ
cπ

L
= 2π τ FSR ≈ 407000,

where the exponential decay time τ = 33.49µs has been determined in a ring-down
measurement. The ratio of FSR/F yields a cavity linewidth of ∆ν = 4.75 kHz.

The assembly shown in Figure 3.10 was installed in October 2010 replacing an older
cavity of the same design. The older cavity, installed in 2006 [60], could only be heated
and thus not be operated near its optimal temperature Tm.

To determine the CTE-minimum temperature Tm before permanent installation of
the new cavity, the Peltier elements inside the vessel were used to cool/heat the outer
heat shield to various temperatures. For each temperature value, the corresponding
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Figure 3.11.: Measurement of the thermal expansion minimum
a) Temperature readings of the resistors and electrical power applied to the Peltier elements over
∼ 43 days. b) Frequency offset of the tracked cavity TEM00 mode with respect to the 729 nm
laser locked to the old reference cavity as a function of PT1000 temperature. The red line is a
fit of y = A+B(T − Tm)2 to the data, yielding B=−352(4) kHz/K2 and Tm = 21.53(7) ◦C.

frequency of a particular TEM00 mode was determined by tuning AOM 9 to bring the
frequency of the 729 nm laser, while it was locked to the old high-finesse cavity, into
resonance with the new cavity. The measurements were taken over many weeks to
allow the cavity to thermalize after each temperature step. A polynomial fit to the
data then yields Tm (Figure 3.11.b). Later fine-tuning of the temperature setpoint by
tracking the laser frequency in beat measurements with laser light from the university
lab during a temperature change, indicate a Tm closer to 21.8 ◦C – which illustrates the
error margin brought on by the trade-off between a thermally well-isolated cavity and
reliable measurements of Tm.

Figure 3.11.a also indicates the amount of electrical power needed to reach and main-
tain a given temperature. For temperatures Tm significantly below room temperature
this may become an issue as an equivalent heat load needs to be dissipated and water
cooling or electrical fans outside the vessel introduce additional vibrations that translate
to laser frequency noise. In this context, it is worth noting that a majority of ULE-
based cavities, albeit specified with a Tm close to room temperature, actually have their
thermal expansion minimum at lower temperatures. The two cavities investigated in
ref. [83] were found to have an optimum temperature at 7 ◦C and 12.5 ◦C, respectively.
In Innsbruck, a second vertical cavity of the same type was found to have a Tm at
7 ◦C. Based on discussions with colleagues in a number of laboratories, it is believed
that this discrepancy is related to a calibration issue in Corning’s ultrasound-method to
determine the CTE zero crossing, which, reportedly (late 2013)60, has improved since.

60Mark Notcutt of Stable Laser Systems, Boulder, CO, USA (private communication)
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Figure 3.12.: Cavity temperature stability and measurement resolution
The temperature at the cavity base measured by the out-of-loop sensor over 1 week (a) and 6
hours (b). The spikes visible in the TEC current are caused by electromagnetic interference.
The range shown is equivalent to an electrical cooling power of 76-88 mW. The regular pattern
visible in b) is an artifact caused by the laboratory air conditioning temperature cycle that
changes the temperature of the sensor card (PTC320 PCB) used to read out the PT1000 sensor
at the cavity base. (Red lines are produced by a 2nd order Savitzky-Golay filter of 10 (a) and
4 (b) points, allowing for an easier comparison of the pattern in both signals.)

Temperature stabilization

The cavity temperature is actively stabilized using a commercial digital PID controller
rack61. It is equipped with a single-channel sensor card62 for out-of-loop measurements
of the temperature at the cavity base and a thermoelectric cooler (TEC) driver card63 for
stabilizing the NTC temperature at the in-vacuum Peltier elements. Figure 3.12 shows
the effective temperature stability over the course of one week. The spikes seen in the
Peltier current are caused by changes in the magnitude of RF cross-talk from sources
surrounding the cavity into the temperature stabilization circuitry64. During “refreeze
events”, in which the trap’s RF drive power is briefly lowered to help re-crystalize
longer ion strings, these current spikes can reach up to 30 mA. Brief current changes
are not expected to cause major temperature changes at the location of the cavity as the
thermalization time of the outer aluminum heat shield is estimated to be around 300 s.
However, temporary offsets of longer duration can induce a “heat wave” of a magnitude
sufficient to shift the cavity temperature. Occasionally, this effect did lead to noticeable

61SRS PTC10
62SRS PTC320
63SRS PTC440
64Diodes on the TEC driver card could be rectifying RF signals picked up by the measurement leads

that go to the cavity which is likely to cause DC offsets in the measured values.
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Figure 3.13.: Drift rate of the old high-finesse cavity
The optical frequency shift introduced by AOM 9 is plotted as a function of time. a) Long-term
frequency drift rates of the old high finesse cavity obtained from linear fits to subsets of the data.
b) Short-term frequency drifts over the course of a week. The long term average of 88 mHz/s
is shown as a red line.

changes in the short-term frequency drift rate. To mitigate this problem, the in-loop
sensor of the temperature stabilization will be operated via an additional dedicated
sensor card65 in the future. The residual long term drift of the cavity base temperature
is likely due to the thermally “floating” inner heat shield following the black-body
radiation-induced drifts of the outer shield’s average temperature. A straightforward
improvement could be the addition of an inner-shield Peltier element (as done in [83]).

The quartz crystal shown in Figure 3.10 is meant for an alternative field-programmable
gate array (FPGA)-based temperature stabilization system, which was not being used
at the time of writing. During testing, its temperature sensitivity has been determined
to be ∼3.1 kHz/K.

Cavity drift rate

In order to correct for medium and longterm cavity drifts as well as possible changes of
the magnetic field at the position of the ions, Ramsey experiments are performed every
2-5 minutes (Section 4.8.1). A linear fit to the measurements taken within a certain
time-window is then used to continuously compensate the cavity drift and keep the
729 nm laser on resonance during experiments. Figures 3.13 and 3.14 show the measured
data points of multiple years in terms of the frequency shift at AOM 9. The old high
65In the SRS PTC320 card run in AC mode, offsets caused by electromagnetic interference are rejected

by reversing the sensor excitation current at every measurement.
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Figure 3.14.: Drift rate new high finesse cavity
The optical frequency shift introduced by AOM 9 is plotted as a function of time. a) Long term
frequency drift rate over the course of almost 3 years. b) Short term frequency drift rate over
the course of a week. The red line corresponds to the local long term average of 76 mHz/s.

finesse cavity installed in 2006 did not have in-vacuum temperature stabilization or heat
shields inside the vacuum vessel. To provide temperature stability, the outside of the
cavity vessel was heated to ∼30 ◦C and the surrounding wooden box was temperature
stabilized using water cooling [60]. While the longterm drift rate was similar to that
of the new cavity, short term drifts during the course of a day were found to be two
orders of magnitude larger, reaching one to a few Hz/s and sometimes even reversing
directions mid-day. The new high finesse cavity solved this problem (Figure 3.14) and
allows for a reliable feed-forward drift correction during measurements.

To put these numbers in perspective, one can relate the residual cavity drift to the
cavity length ∆ν/ν ≈ ∆L/L. A linear drift rate of 60 mHz/s (∆ν/ν = 1.46× 10−14)
corresponds to a cavity length change close to 24 proton diameters per hour, which
translates to just about 7 Bohr radii per year. The origin of this (locally linear) drift
is related to aging of the ULE material superimposed with a slow relaxation of the
optically contacted surfaces [84]. Using a decade-old ULE cavity, drift rates as low as
13(2) mHz/s have been reported in the literature [84].

3.4. Fluorescence and state detection

As long as the valence electron of a calcium ion is in the S1/2 state (≡ |↓〉), laser excita-
tion on the strong S1/2 ↔ P1/2 dipole transition at 397 nm combined with repumping
light on the P1/2 ↔ D3/2 transition at 866 nm (cf. Section 2.2) causes scattering of
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millions of photons per second66. If the electron is in the D5/2 state instead, no light
is scattered and the ion remains dark. This profound difference is at the core of the
detection technique known as electron shelving [86, 87] (see also Section 6.1) that is
used to detect the quantum state of the qubit encoded in the S1/2 and D5/2 manifolds
with almost unity fidelity (>99.99 % can be realized [88, 89]).

PMT detection

To detect the quantum state at the end of an experimental sequence (Section 3.8) and
monitor Doppler cooling at its beginning, light at 397 nm wavelength, emitted by the
trapped ions during those stages, is collected by the two custom-made 5-lens objectives67

shown in Figure 3.6. At the on-axis working distance of 58 mm between trap center
and the first lens surface, the numerical aperture (NA) is 0.289, which corresponds to a
collection efficiency of 2.5 % of the full 4π solid angle [59]. On the way to the detectors
about 4 % absorption loss occur in the objective and another 3.2 % at a band-pass
filter68 used to suppress light at other wavelengths. Further suppression of stray light
is performed using a variable slit aperture69. Despite these numbers, a photomultiplier
tube (PMT)70 still detects around 24× 103 photons/s or 24 kilocounts/s (kcps) from a
single fluorescing ion and around 2 kcps when the ion is dark. In general, the photon
count numbers are normalized by the duration of the detection time window, which is
usually on the order of a few ms. Given the PMT’s dark count rate of ∼100 Hz, around
95% of the “clicks” recorded when the ion is dark are from background light originating
from the detection laser beam.

By recording the number of detected PMT pulses N times, two photon count distri-
butions corresponding to the two cases above can be identified in a histogram. Due to
the low overall detection efficiency, they can always be approximated by Poissonian dis-
tributions with a mean value of x̄ and standard deviation of ∆x =

√
x̄ [90]. Ignoring the

finite lifetime of the D5/2 state for the moment (see below), the threshold to optimally
discriminate between the two distributions is then given by

√
x̄0 · x̄1. Figure 3.15.a

shows an example histogram for a single ion and illustrates, how the relative weight of
each population is derived from the number of counts that fall into each distribution.
66To calculate the actual scattering rate, eight-level Bloch equations describing the full S1/2−P1/2−D3/2

Λ-system have to be solved numerically [85] for a given set of experimental parameters.
67Silloptics, Germany; effective focal length f = 66.8 mm, pupil diameter D = 34 mm
68Semrock, SEM-FF01-390/18-25
69Owis, Spalt 40
70Sens-Tech, P25PC; quantum efficiency at 397 nm ∼27 %
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Figure 3.15.: PMT detection histograms
State discrimination thresholds are indicated by the red line(s) and dashed blue lines correspond
to Poisson distributions calculated for the mean dark and (multiples of) the mean bright photon
counts of a single ion. a) Histogram of photon counts registered in 200 trials after a superposition
state has been prepared in a single ion. Here, one can infer the coefficients of Eq. (2.1) directly
from the populations: p0 = |c↑|2 and p1 = |c↓|2. The single, well-separated event at 50 photon
counts is likely to correspond to a decay of the D-state during the second half of the detection
period. To reduce these effects, the threshold should be set around 50% of the bright count
rate (black dashed line). b) Cumulative histogram over 2050 experiments entailing collective
Rabi oscillations of 7 ions. The Poissonian distributions are shown scaled to the same height to
better illustrate their increasing overlap.

Extending this approach to n ions, one finds n thresholds and n+1 photon count distri-
butions, corresponding to populations (p0, . . . , pn). The subscript refers to the number
of bright ions associated with each population. An example of a histogram for 7 ions
is shown in Figure 3.15.b. Here, the main problem with the thresholded detection of
the overall fluorescence becomes apparent: for large count rates the first distributions
are well separated but the following ones begin to overlap at higher mean count rates,
leading to state discrimination errors.

A second source of errors is the finite lifetime τ of the D5/2 state, which leads to
a (small) “tail” of counts extending towards the bright count distribution(s). The
likelihood that the D-state decays during a detection time window T can be expressed
as 1−e−T/τ [49]. For the commonly used detection time of T = 5 ms this would add an
error probability of 0.5%, which can be reduced to ∼0.25 % by setting the first threshold
a bit higher (Figure 3.15.a). However, with more ions, the decay probabilities add up,
yielding 1.75% for 7 ions in the D-state. Clearly, the shortest possible detection time,
in which the count distributions can still be separated, is desirable.
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For each set of N experiments (cycles) carried out on n ions, the raw number of
detected counts in each cycle as well as the following derived numbers are recorded:

populations pj where j ranges from 0 to n, are derived from the ratios of the number
of events recorded in each thresholded range and the total number of experiments
N . Assuming perfect discrimination, the uncertainty of each probability value p
is governed solely by quantum projection noise [22]:

∆p = max

√p(1− p)
N

,
1

N + 2

 , (3.4)

where the second term is given by Laplace’s rule of succession for N trials and 2
possible outcomes (bright or dark). It accounts for the non-zero probability that
the N + 1st trial yields a different outcome [65]. Without this correction, the
extreme cases p = {1, 0}, which have no projection noise, would underestimate
the uncertainty in the measurements made.

mean excitation is the overall probability of finding the n-ion string in state |↑〉 over
N experimental cycles. It is determined as

p↑ ≡ pnD = 1− # of bright ions detected over all N cycles
N · n

,

with an uncertainty given by quantum projection noise, as above.

parity corresponds to the product of the eigenvalues of the σz-Pauli operators (Eq. (2.3))
over all n ions: P = σ1

zσ
2
z . . . σ

n
z . It can be calculated from the populations pj as

P =
n∑
j=0

(−1)jpj . (3.5)

P is a measure of the mean excitation rescaled to [−1, 1], which effectively corre-
sponds to the summed-up probability of all even populations minus the summed-
up probability of all odd populations [65]. In a Ramsey experiment (Section 4.8),
this quantity can be used to directly measure the coherence in a joint quantum
system of n ions [91, 92]. It is obtained from the amplitude of its cos(nφ) oscilla-
tion between 1 and −1, where φ is the phase of the analysis pulse in the Ramsey
experiment.
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Camera detection

Aside from the challenges in separating count distributions for larger numbers of ions,
threshold-based detection with a PMT cannot uniquely identify the actual quantum
state of an ion string. In order to do this, the fluorescence of the individual ions needs
to be spatially resolved. For this purpose, a back-lit EMCCD71 camera72 is set up about
1.50 m from the objective behind the eastern inverted viewport.

Numerical calculations of the distance of two trapped ions [48] for a given axial
confinement allows us to calibrate the spatial resolution of the imaging system. This is
done by relating the calculated real space distance to a distance in (fractional) pixels
of the camera image. These are obtained from a fit to distributions that result from
a summation of pixel brightness values orthogonal to the orientation of the ion string.
The procedure is illustrated in Figure 3.16 below and yields a magnification of 24.6 for
the current imaging setup.
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Figure 3.16.: Camera calibration
Using the calculated distance between two ions in a linear string [48] the spatial resolution of
the imaging system can be calibrated using fits to the intensity integrated along the y-direction.
Here, simple Gaussian fits are used to obtain the center pixel coordinates of the ion positions.

71electron-multiplying charge-coupled device
72Andor iXon “blue” DU-897-DCS-BBB, 512 × 512 pixel of 16 × 16 µm size; quantum efficiency at

397 nm ∼74 %; custom AR-coated front window with 98.27 % transmission at 397 nm
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Figure 3.17.: EMCCD camera performance
a) Count rate histograms of the brightest pixel (white dot in the inset picture) and a randomly
chosen dark pixel for different detection times. Due to the electronic gain, the distributions are
wider than Poissonian statistics would suggest. Additional pixels of interest with at least 20 %
of the bright pixel’s fluorescence are marked with a black dot. b) Scaling of the mean count
values of a dark and the brightest pixel for different detection times. At longer detection times
starting between 2-5 ms the number of counts seems to saturate. c) Total fluorescence used
in state detection (white and black dots in inset) as a function of the cut-off percentage with
respect to the brightest pixel (white dot). An identical curve is obtained for 0.75 ms and 5 ms
detection time. [2100 images of a 20x20 pixel region of interest, EMCCD gain 200]

A Labview73 program running on a dedicated computer determines the state of each
ion and the corresponding state of the whole quantum register in each of the N camera
images taken per data point. It uses an algorithm, implemented in Matlab74, similar
to the maximum likelihood detection method discussed in ref. [89].

Initially, a set of reference images is used to determine dark and bright reference
histograms for a selection of bright pixels clustered around the location of each ion.
The histograms shown in Figure 3.17.a represent only the single brightest pixel which
amounts to about 17 % (18 %) of the total detected fluorescence in 0.75 ms (5 ms).
Starting at the maximum fluorescence, additional pixels of interest (POI) are added
up to a 20 % of the maximum brightness value. In this way, more than 60 % of the
total detected fluorescence is taken into account in the state detection (Figure 3.17.c)
73“Laboratory Virtual Instrument Engineering Workbench”, visual programming language by National

Instruments
74programming language for mathematical computing developed by Mathworks
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Figure 3.18.: Imaging performance
False color images of long linear ion chains at a radial confinement ωr/(2π) ≈ 3.2 MHz. The
innermost of the 51 ions are 3.3 µm apart at the axial confinement given above.

that proceeds as follows: For each ion, the POI provide sets of pixel coordinates whose
log-likelihood sum is calculated for each ion in every image in order to decide whether
it was bright (s = 1) or dark (s = 0) with respect to the reference data.

The specific quantum state Q of a string of n ions is labeled by associating the
leftmost75 ion with the least significant bit of a binary string:

Q =
n∑
i=1

si 2i−1.

Examples for a 7-ion mapping are: 1111111 = 127, 0111111 = 126 and 1111110 = 63.
The corresponding value for each of the N cycles is stored and, over all cycles, the mean
excitation per ion is calculated. In addition to storing the online-processed data, the
raw images are archived to a compressed file to have the ability to post-process data at
later times and to allow for consistency checks independent of the analysis algorithm.

The spatial resolution provided by the camera makes it possible to perform ion-
resolved state detection in longer strings (Figure 3.18), which was crucial in the more
recent experiments listed in Appendix A.

75This deliberately goes against the binary convention to facilitate working with tensor products, where
the individual quantum systems are counted from the left.
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Figure 3.19.: Single ion addressing
a) Optical setup of the laser beam used to address single ions within a string. The collimating
lens of the Galilean beam expander (1:22) is mounted on a motorized 3-axis translation stage.
b) Beam profiles obtained from fitting Rabi oscillations of a single ion recorded at different
positions along the trap axis. The carrier measurement uses a single laser pulse of the focussed
beam, while the AC-Stark measurement uses the pulse sequence depicted in Figure 3.20 on
the following page. With the magnetic field shielding enclosure (cf. Figure 3.24) open, beam
pointing induced by slow thermal drifts (∼1 min measurement time for each data point) lead to
an estimated additional 100 nm uncertainty for both beam diameters.

3.5. Single ion addressing

In addition to collecting fluorescence light at 397 nm, the custom objective at the eastern
viewport is also used to focus a laser beam at 729 nm to a small spot at the location of
the ions. In order to achieve a spot size close to the diffraction limit76, a Galilean beam
expander enlarges the incoming beam before it is focussed by the objective as shown in
Figure 3.19.a. Its final FWHM diameter can be measured by recording Rabi oscillations
on the carrier transition of a single ion shifted to different positions along the orthogonal
trap axis. A high spatial resolution77 is obtained by applying an additional small DC
offset voltage of opposite sign, e.g. ±30 V, to the tip electrodes. A constrained Gaussian
fit to the normalized Rabi frequencies Ω then allows us to extract the beam width in
relation to the electric field E of the focussed laser beam. The same measurement can
be made in relation to its intensity (∝ E2) using the composite pulse sequence described
in the following. The measurement results shown in Figure 3.19.b above illustrate how
the composite sequence leads to a narrower beam which is routinely used to address
single ions in chains like those shown in Figure 3.18 before.

76theoretical 1/e2 diameter: 2ω = (4λ/π)(f/D) ≈ 1.8 µm→ FWHM = 2ω/1.699 = 1.1 µm
77At 950 V tip voltage the resolution is 186 nm/dV where dV is the voltage difference between the tips.
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Figure 3.20.: Composite pulse sequence affecting two ions
a) A beam illuminating both ions equally induces a σx(π/2) rotation on the carrier that takes
them from the electronic ground state |↓〉 ≡ |−〉z to |+〉y. b) The tightly focussed laser beam
is directed at ion 2, which is located at the acousto-optic deflector (AOD) position associated
with fAOD (see text). The light field induces an AC Stark shift equivalent to a σz(π) rotation.
c) A final −σx(π/2) rotation brings ion 1 back to |−〉z while ion 2 is brought to |+〉z.

The composite laser pulse sequence, illustrated in Figure 3.20, affects two ions as follows:
First, a global π/2 laser pulse resonant with a carrier transition rotates both ion’s state
vector into the equatorial plane of the Bloch sphere. Then, an addressed laser pulse
of length t is sent in with a frequency detuning between −50 MHz and −90 MHz from
the carrier transition (depending on the specific fAOD, see below). Given its large
detuning from the carrier transition, the pulse only induces an AC-Stark shift following
Eq. (2.16). It effectively rotates the addressed ion’s state vector within the equatorial
plane by an amount proportional to δAC t = (δD− δS) t, where δS and δD are the energy
level shifts induced by the off-resonant light field in the respective states of the chosen
qubit. A final, third laser pulse is set to be a global π/2 pulse on the carrier transition
again. With its optical phase shifted by π, it effectively undoes the first π/2 pulse for
the non-addressed ion and completes the rotation to for the addressed ion.

Note that at this large detuning from the carrier frequencies, the AC-Stark shifts δS

and δD induced by the light field mainly result from couplings to the far-detuned dipole
transitions S1/2 ↔ P1/2,S1/2 ↔ P3/2 and D5/2 ↔ P3/2, respectively. Compared to the
values δAC/(2π) on the order of 10 kHz seen in reference [93], the tight focus of the laser
beam allows us to reach AC-Stark Rabi frequencies of up to ΩAC/(2π) ≈ 100 kHz.

Due to the strongly off-resonant nature of the AC-Stark pulse, phase coherence is
only required between the two π/2 pulses. Therefore, they can be sent onto the ions
using a beam path different from that of the tightly focussed laser beam.

To ensure that the π/2 pulses interact equally along a string of ions, they are sent
into the trap using the global 729 nm beam of the southern viewport (cf. Figure 3.6).
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Figure 3.21.: Addressing error and intensity fluctuations
a) Addressed Rabi flops on the center ion of a 7-ion string held at 500 V tip voltage, which
corresponds to (ωz/(2π) = 898 kHz). The beam is slightly misaligned leading to a weak exci-
tation of the neighboring ion 5 (but not 3) at a distance of 3.3 µm. The ratio of the fit Rabi
frequencies Ωion4,AC/Ωion5,AC reveals an addressing error of ε(4)AC ≈ 3.5%. b) At longer times,
variations due to intensity fluctuations become apparent in phase-jumps that lead to a visible
mismatch of the initially fit Rabi oscillation (continued in cyan) and the observed data (black
squares). In this second data set black lines connect the individual data points to help visualize
the phase-jump around a pulse length of ∼ 165 µs and provide a guide to the eye.

This beam is focussed through the tip electrodes with a 2ω0 diameter chosen such that
its Rayleigh range78 ensures equal illumination of all ions in a string.

Figure 3.21 shows AC-Stark Rabi oscillations driven on the center ion in a string of
seven ions, held at an axial confinement where the neighboring ions are ±3.3 µm away.
As a figure of merit for the addressing quality on ion n, the ratio ε(n) = max(Ωn±1/Ωn)
is specified as addressing error associated with cross-talk. Careful alignment of the
focussing objective and the beam expander’s collimating lens in relation to the objective
is crucial for the composite pulse sequence. Alignment errors in which an ion is left on
the slope of the laser beam’s Gaussian envelope worsen the effect of vibration-induced
beam pointing, which is translated into intensity variations as illustrated Figure 3.21.b.

Despite a nonzero addressing error, however, in most cases only a single π-pulse on an
addressed ion is needed to “hide” it in a D5/2 Zeeman level different from the one used
to encode the qubit in the remaining ions. Once separated in frequency space in this
way, global beams can be used for most operations. It should be noted though, that a
superposition state hidden in the D-manifold will still acquire (small) phase shifts from
the off-resonant beams, which may need to be taken into account in later operations.
78zR = (πω0)/λ is the distance at which the area of the beam’s 1/e2 intensity doubles.
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Figure 3.22.: Deflector resolution
a) Number of resolvable spots N as the ratio of the angular deflector range ∆φ, here given
by the AO bandwidth ∆f and center frequency f0, and the beam divergence Θ (angles not to
scale). b) Rayleigh criterion: two spots can be resolved at wavelength λ, if the brightest spot of
the first diffraction pattern coincides with the first dark fringe of the second one. The aperture
factor a is 1.22 for a uniformly illuminated circular aperture of diameter A and 4/π ≈ 1.273 for
a non-truncated (A ≥ 1.7D) Gaussian beam of 1/e2 diameter D [94].

A key addition to the newly built setup of trap II is the ability to address individual
ions in long strings like those shown in the preceding section. The predecessor trap
I used offset voltages on the tip electrodes to shuttle the desired ion into the tightly
focussed addressed beam over a distance of 10 µm within 40µs [50]. For longer strings
in trap II, however, this approach becomes impractical as the switching speed has
to be kept low enough to avoid motional heating during ion transport and yet high
enough to allow for arbitrary addressing of multiple ions that could be at opposite
ends of a string79. The 40Ca+ linear trap experiment at the university has long been
using an electro-optical deflector (EOD) to, instead, move the focussed beam between
different ions [96]. Here, the switching speed (∼ 30µs) is given by the time it takes
to (dis)charge the deflector’s electrodes. However, its deflection range is limited to
3-5 mrad/kV, depending on the specific model80, and its speed is mainly determined by
the amount of current the high voltage amplifier used to drive the device can deliver.

Apart from speed, a central figure of merit for optical deflectors is the number of
resolvable spots N , i.e. the number of non-overlapping angular beam widths within the
deflection range ∆φ. It is given by N = ∆φ/Θ, where Θ is the angular spreading of
the optical beam derived from the Rayleigh criterion illustrated in Figure 3.22.b.

79Fast adiabatic switching using more complex electrode configurations and waveforms has been demon-
strated in Boulder and Mainz (see reference [95] for a summary).

80Leysop Ltd., United Kingdom
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To achieve a larger deflection range with a small deflector footprint, the setup of
trap II has been equipped with an acousto-optic deflector (AOD) [97, 98]. In such a
device, the switching speed is given by the acoustic transit time τa = D/va of an acoustic
wavefront travelling at speed va through the optical beam of diameter D. The deflection
range is given by the ratio of optical wavelength λ to the range of acoustic wavelengths
supported by the AOD’s crystal as ∆φ = λ∆f/va. Here, ∆f is the frequency bandwidth
of the device as illustrated in Figure 3.22.a. From this, the number of resolvable spots
N , if one assumes a non-truncated Gaussian input beam, can be calculated to equal

N = π

4
D∆f
va

= π

4 τa∆f,

illustrating its equivalence to the time-bandwidth product τa∆f that is often specified
for AO devices. Consequently, in contrast to an acousto-optic modulator where speed
and extinction ratio are the main concern, a deflector is optimized for a large diame-
ter, highly collimated beam and often employs a different crystal orientation to derive
benefit from lower acoustic velocities81.

The shear-mode deflector82 used in the experiment runs at an RF center frequency
of f0 = 70 MHz and is specified for a bandwidth of ∆f = 40 MHz. The corresponding
deflection range of ∆φ = 47 mrad even surpasses the acceptance angle of the addressing
optics (cf. Figure 3.19.a) and no longer is a limiting factor in the experiment.

The AOD’s first order diffraction efficiency (measured at 633 nm for 0.7 W RF power)
shows a relatively flat plateau close to a value of 92 % over a frequency range of ±10 MHz
around f0 with a fall-off to ∼72 % at the ±20 MHz bandwidth edges. The resulting
changes in light intensity are taken into account by calibrating the addressed Rabi
frequency Ωn,AC for each ion n individually at its corresponding location fAOD. This
approach is also necessitated by the fact that aberrations in the addressing optics are
only corrected for beam paths that traverse the center of the focussing objective – for
larger deflection angles this is no longer the case in the current setup.

The switching time (random access) is close to 12 µs for the currently employed beam
position and diameter. Here, about 8 µs correspond to the response time between the
application of an RF signal and the rising edge of the optical signal and about 4 µs are
contributed by the optical rise time to ≥ 98% intensity. The warmed-up device exhibits
less than 1 % intensity variations during optical pulses of typically ≤ 20µs duration.
81e.g. TeO2: va = 4.2 mm/µs (longitudinal mode [001]), va = 0.62 mm/µs (shear mode [110]) [98]
82Gooch&Housego, model 45070-5-6.5DEG-633
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Figure 3.23.: Addressing range
a) For three different values of fAOD a single ion is shifted along the trap axis using offset
voltages applied to both tip electrodes held at 950 V. The corresponding center positions of the
addressed beam are obtained from Gaussian fits and allow to calibrate the lateral focus shift at
the location of the ions to 3.79µm/MHz. b) AOD frequency scan across 11 ions confined at a
tip potential of 30 V (ωz = 214 kHz) using an AC pulse length that corresponds to a π-pulse
on the center ion. At this confinement the innermost ions are 6.7 µm apart.

In order to calibrate the lateral focus shift at the location of the ions provided by the
deflector, for three RF values sent to the AOD a single ion is shifted perpendicular to
the focussed beam using an offset voltage applied symmetrically around 0 V to both
tip electrodes. The mean excitation to the D5/2 state is measured at each location
and a subsequent Gaussian fit determines the center positions of the focussed beam.
The results, illustrated in Figure 3.23.a, yield a resolution of 3.79 µm/MHz showing
that a very precise control of the focus position is possible by adjustments of the RF
sent to the AOD. With the current set of relay and focussing optics, at least 11 ions
can be addressed even at a relatively low axial confinement corresponding to large ion
separations (Figure 3.23.b). However, for deflections >90µm, beam clipping sets in,
leading to significant aberrations.
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Figure 3.24.: Magnetic field shielding enclosure
a) Shielding enclosure with additional sliding mechanism for easier handling of the removable
doors (> 30 kg each). b) Factory test results of the empty shielding enclosure measured with a
Bartington MAG-03 MCL-70 sensor according to industry norm ASTM A 698-A. Static fields
are attenuated by 35 dB (corresponding to an amplitude ratio of 56). The red line marks the
strongest magnetic field noise component at 50 Hz, where an attenuation of 62 dB (factor 1256)
was measured.

3.6. Magnetic field shielding and quantization field

To attenuate (fluctuating) ambient magnetic fields, the trap vessel is placed inside a
magnetic field shielding enclosure83. The shield consists of a shell made from a soft
magnetic nickel-iron alloy (Magnifer84) enclosed in a welded aluminum case fitted with
two removable doors weighing ∼ 330 kg in total. Using electrically isolated feet, the
vacuum assembly is directly mounted to the optical table through 6 small holes in
the bottom of the shield. In addition, a further 6 openings are distributed on the
remaining 3 sides to allow access for electrical wires, fiber optic cables and imaging
optics. According to the factory measurement shown in Figure 3.24.b the shielding
properties extend from high values at AC fields down to DC fields85. However, due
to a number of electric cables running to and from the trap assembly the effective AC
magnetic field amplitudes at the location of the ion cannot be reduced as much. A
Ramsey experiment allows us to determine the 50 Hz magnetic field amplitude to be
83IMEDCO AG, Switzerland
84trademark of ThyssenKrupp
85According to the current WMM2010 model (http://www.ngdc.noaa.gov/geomag-web/) the

earth’s magnetic field in Innsbruck, Austria (2◦ declination, 63◦ inclination) has three components:
215 mGauss horizontal north, 9 mGauss horizontal east and 429 mG towards the ground. However,
deviations due to locally varying rock compositions should be expected in the Alps.

http://www.ngdc.noaa.gov/geomag-web/


62 3. Experimental setup

11:06 13:06 15:06 17:06
1.176800

1.176805

1.176810

36.1

36.3

36.5

 

co
il 

cu
rr

en
t (

A
)

time

 

 

de
vi

ce
 te

m
p.

 (º
C)

1.176795 1.176805 1.176815

2000

4000

6000

 

co
un

ts

Coil current (A)

 

 σ = 2.62 x 10-6 A

 1.50 x 10 -5 A

current stability over 24 hrsa) b)

full width

Figure 3.25.: Current driver stability over 24 hours
a) Correlation between the (measured) current driver temperature (PT100 resistor) and the
output current (Keithley DMM 2002). The oscillations directly line up with the laboratory
air conditioning temperature cycle. b) Histogram of the DC current values measured over 24
hours.

around 30 to 40 µG (cf. Section 4.8.2). Under these conditions, parity oscillations fit to
data computed from Eq. (3.5) show a contrast of ≥80 % at a wait time of 10 ms.

To lift the degeneracy of the Zeeman levels (Section 2.2), a pair of magnetic field coils
with 350 windings86 each is mounted to the north and south viewports (cf. Figure 3.6).
A current of 1 A produces a magnetic field of 3.62 G87 at the trap center. For practical
reasons, the ratio of the distance between the coils (l = 300 mm) and their inner
diameter (2r = 115mm) does not fulfill the Helmholtz criterion (l = r). However,
the dominant part of a small magnetic field gradient, observed along the trap axis, is
linear (potentially generated by the ion pumps magnets). When working with longer
strings and the most magnetic field sensitive transitions, additional coils in quadrupole
configuration can be used for compensation.

The current sent through the coils is actively stabilized using a home-built PI-
regulator with a stable reference resistor88. The driver’s stability, investigated over
24 hours in Figure 3.25, shows a relative stability of the DC value around the 10−6

level, even without a dedicated temperature stabilization. In measuring the voltage
across the coils on a spectrum analyzer, AC fluctuations can be compared in relative
strength. The strongest noise component is found at the power-line frequency of 50 Hz
with a total magnitude of 2× 10−5.

86Oswald Elektromotoren, Germany; copper wire with a cross section of 2.0 × 1.25 mm2

871 G = 10−4 T
88Vishay, VCS 302
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Figure 3.26.: Wavelength meter accuracy and stability
a) Comparison of two different models of HighFinesse wavelength meters monitoring the same
cavity-locked Toptica DL pro laser at 866 nm. The deviations are given with respect to the
median of all measured frequency values. b) Accuracy of the WSU/2 wavelength meter with
respect to published literature values (see text).

3.7. Wavelength meter

The laser wavelengths used in the experiment are monitored using a HighFinesse WS7
wavelength meter in conjunction with an 8-channel multimode fiberswitch. Its absolute
measurement accuracy is specified to be 60 MHz (150 MHz when using multimode
fibers) with a measurement resolution of 10 MHz. For the spectroscopy experiment
discussed in Chapter 6, a HighFinesse WSU/2 model with a resolution ≤ 1 MHz was
used in parallel. Figure 3.26.a demonstrates the relative stability of the two devices
with respect to the median of the values measured over 60 minutes.

The absolute accuracy of the WSU/2 model is specified to be 2 MHz within ±2 nm
of the calibration wavelength. The accuracy over a wider range was checked in collabo-
ration with the Sr-Rb experiment of Florian Schreck (formerly IQOQI, now University
of Amsterdam) [99]. Figure 3.26.b shows data taken with the device continuously
referenced to the laser at 729 nm. The line center of the S1/2 ↔ P1/2 transition in
40Ca+ was determined with the help of coherent population transfers and analysis on
the |S1/2,mj = +1/2〉↔ |D5/2,mj = +3/2〉 transition by first initializing a single ion
in |S1/2,mj = −1/2〉 and then varying the frequency of an optical pumping pulse at
397 nm for various laser powers and pulse lengths. As the UV light is generated by
frequency doubling, the laser’s fundamental wavelength at 794 nm could be compared
as well. In addition, the 5s 1S0 → 5p 3P1 intercombination line of atomic 88Sr at 689 nm
and the 5s 2S1/2 → 5p 2P3/2 D2 line of atomic 87Rb at 780 nm were measured.
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Both Fizeau-interferometer-based wavelength meters should be regularly calibrated
(at least every 6-12 months for the WS7) using a reference laser at a known wavelength
for which the device shows a deviation of at most 400 MHz. If this is not possible, an
interferometer spectrum of a known reference can be recorded and sent to the manufac-
turer, who can manually convert it into a usable calibration file. With the calibration,
the overall offset and fringe shifts between the built-in interferometers are corrected.
Without regular calibration – especially at short wavelengths – the correlations be-
tween the different interferometers can break down, resulting in deviations or jumps of
many GHz or even nanometers89. In fact, due to at least 5 years without calibration, a
systematic shift of around 18 GHz was observed in the WS7 readings when compared
with known reference wavelengths of 40Ca+ and 88Sr. The necessary re-calibration
subsequently had to be performed with the help of the manufacturer.

The WSU/2 provides a second fiber port to allow for near-continuous calibration
during measurements. Its measured frequency value, however, differs from the main
input port by around 30-40 MHz (changing with device temperature and air pressure).
Accounting for this correction, however, the data shown in Figure 3.26.b shows a re-
markable accuracy over a range much larger than that guaranteed by the manufacturer’s
specification.

3.8. Experiment control and sequencing

A schematic overview of the different components involved in the data collection and
control of the experiment is shown in Figure 3.27 on the next page.

Its central node is a Control PC on which a large multi-threaded Labview73 program90

coordinates the various devices used in the experiment and provides a graphical user
interface (GUI) to the user. A companion program running in Labview on a separate
Camera PC is dedicated to the EMCCD camera and performs a Matlab-based state
detection in real time. Throughout the course of this thesis, both programs have been
heavily extended and modified to support work on long ion strings and the simultaneous
handling of two Ca+ isotopes. The changes include the implementation of a completely
new camera detection and state discrimination routine, as well as the addition of an
adaptive “refreeze feature” that takes various escalating measures to recrystallize an
ion string quickly after a collision with background gas has been detected.
89private communication, HighFinesse GmbH (April 2013)
90“QFP 2.1”: “Quantized Fluorescence Program” (version 2.0 originally written by Timo Körber)
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Figure 3.27.: Computer control and interconnects
(red boxes) The three central control components of the experiment are two PCs and the “Pulse
box” (see text). The latter provides timing control with nanosecond resolution within each of
the programmed sequences and generates phase-controllable radio frequencies (orange arrows).
TTL trigger signals (marked in green) mark the start and stop of the execution of a set of cycles
implementing a pre-programmed sequence. Optionally, each cycle itself is synchronized to the
power line frequency using an additional line trigger. The data gathered via PMT and EMCCD
(marked in blue) is acquired and processed by the camera and control PCs. Asynchronous
interconnects are marked in black. The dashed lines correspond to Ethernet connections.

Pulse sequences, written in python91, correspond to one complete experimental cycle
and are compiled for a given parameter set by a software server based on the Innsbruck
branch [79] of the MIT-NIST-ARDA pulse sequencer92 project [100]. The compiled
program is then sent over Ethernet to the FPGA-based “Pulse box”, which is equipped
with two independent direct digital synthesizers (DDS) and multiple digital in- and
outputs. The device coordinates all laser pulses in their relative timings and durations
as well as the phase, pulse shape and frequency of the RF signals sent to the AOMs used
in coherent optical manipulations. Fluorescence counts (cf. Section 3.4) are gathered
by the control and camera PCs within triggered acquisition windows and processed in
batches of N experiment cycles.

Once acquisition and processing are complete, the results are displayed to the user
or automatically analyzed to implement feedback, e.g., in the laser frequency drift lock
described in Section 4.8.1.

91high-level programming language
92http://sourceforge.net/projects/pulse-sequencer/

http://sourceforge.net/projects/pulse-sequencer/
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Figure 3.28.: Typical sequence of single experimental cycle.
The numbered labels correspond to the lines in listing 3.1 below. (T) Line trigger with offset,
(2) Doppler cooling (3 ms), (3) optical pumping at 397 nm (20µs), (4) continuous sideband
cooling (5 ms), (5) frequency resolved optical pumping at 729 nm (500µs), (9–17) Coherent
operations, (20) Detection (5 ms)

An exemplary pulse sequence is shown in Figure 3.28. Electric power supplies emit
spurious magnetic fields at the power line frequency (50 Hz in Europe), which cause
time-dependent Zeeman shifts of the states that encode the qubit and, consequently,
lead to a loss of coherence. To mitigate this problem, a line trigger device93 can be used
to synchronize the experiment with the line cycle (cf. Section 4.8.2). Ideally, a variable
offset is introduced as well in order to shift the coherent operations into a part of the
line cycle at which the rate of change of the magnetic field amplitude is smallest.

Each pulse sequence is stored in a text file, which is initially parsed by the control
software. There, XML-style tags (<TAG> ... </TAG>) are used to identify parts that
command the setting of GUI parameters, the acquisition mode (processed data or raw
photon counts) and list the variables and transitions to be used in the specified exper-
iment. All the relevant data together with the actual <SEQUENCE> commands (see
listing 3.1 for an example) is then passed to the python server where it is translated to
machine code that is subsequently sent to the Pulse box over Ethernet.

Coherent manipulations to be carried out with laser pulses at 729 nm can be invoked
with a dedicated command that is structured as follows:

rf 729(ion, rotation angle θ, phase φ, transition, musec timebase = FALSE).

For each transition defined in the GUI, the desired laser beam power, transition fre-
quency (both parameters for AOM 11), pulse shape as well as the information which
93home-built circuit based on STMicroelectronics M74HC123AB1R
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beam path is supposed to be used (TTL combination that activates a specific AOM
branch shown Figure 3.9.III) are stored globally. In addition, each transition holds an
array of “π-times” tπ = π/Ω, specific to each ion, representing the time it takes to
carry out a π-pulse at the current coupling strength Ω (determined by laser power and
beam focus). Generally, array elements beyond the first are only needed in addressed
transitions, where the array index is used further to access a list of fAOD values that
correspond to each ion’s location (AOD frequency). Laser power, together with pulse
shape and duration t yield the pulse area that corresponds to the rotation angle θ = Ωt.
It is given to the command in terms of multiples of tπ or, depending on the setting of
the musec timebase boolean, directly as a pulse duration t in µs. Finally, the phase
argument φ allows the user to chose the phase of the RF sent from the Pulse box’s DDS
to AOM 11 that eventually produces the pulses.

With these arguments, the rf 729 command can be used to implement arbitrary
rotations around the z- or any equatorial axis of the Bloch sphere on either all or a
chosen single ion. For the x,y and z axes the map to the rotation matrices is as follows:

rf 729(1, θ, 0 * math.pi, ”carrier”) ←→ Ux(θ) = exp
(
−iθ2σx

)
(3.6)

rf 729(1, θ, 0.5 * math.pi, ”carrier”) ←→ Uy(θ) = exp
(
−iθ2σy

)
(3.7)

rf 729(2, θ, 0 * math.pi, ”AC-Stark”) ←→ Uz(θ) = exp
(
−iθ2σz

)
(3.8)

Here, the mapping in (3.6) of the phase φ = 0 to a σx rotation is an arbitrary choice
since the atomic states supporting the qubit are identified with the eigenstates of the
σz operator. The first pulse in a coherent set of laser pulses sets the absolute phase
reference φ = 0 and is thereby simply defined to be a σx rotation around |+〉x. More
information on the effects of the different rotations is given in Appendix B.1.

The z-axis rotation in (3.8) (corresponding to an AC-Stark shift as described in
Section 3.5) is carried out on ion 2. To do this, the addressed beam path has to be
set in the transition object ”AC-Stark”. A global stark shift on all ions is implemented
by typing a large (> 40 MHz) frequency shift directly into the GUI’s transition object.
The same technique (using shifts that are only on the order of a few MHz) is used to
globally address motional sideband transitions.

The pulse sequence illustrated in Figure 3.28 is realized by the python command
sequence shown on the following page.
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Listing 3.1: Python section of a sequence file parsed by QFP

1 <SEQUENCE>

2 incl.DopplerCooling40(gl doppler length, gl repump length)

3 incl.OpticalPumping40(gl pump length)

4 incl.SBCooling40(gl SBCool time, gl SBCool reps, gl pump length)

5 incl.OpticalPumping40_729(gl pump length 729)

6

7 # use composite pulse sequence to "hide" ion number 2 in carrier 1 qubit

8 if hide_ion :

9 rf_729(1,0.5,0,"carrier1")

10 rf_729(2,1,0,"AC Stark")

11 rf_729(1,0.5,math.pi,"carrier1")

12

13 # Ramsey experiment using carrier two on all ions that "see" carrier 2

14 if Ramsey :

15 rf_729(1,pulse length,0,"carrier2", musec_timebase=TRUE)

16 seq_wait(wait time)

17 rf_729(1,pulse length, phase * math.pi,"carrier2", musec_timebase=TRUE)

18

19 # simultaneous PMT and camera detection

20 incl.PMTDetection(gl det time, gl cam time)

21 </SEQUENCE>

All arguments marked in blue, are defined in the <VARIABLES> section (not shown)
of the sequence file such that they are extracted from the GUI before the sequence is
passed on to the python server for compilation. Transition objects defined in the GUI,
marked in red, are referred to by strings in quotation marks.

In lines 2–5 of the sequence, the incl commands embed standard sequence blocks
used for laser cooling and optical pumping that will be described in the following chap-
ter. They are separate files that contain definitions in terms of TTL pulses and repeti-
tions. The If statements (line 8 and 14) query the boolean value of a corresponding GUI
variable such that the following (tab-indented!) blocks of commands can be switched
on and off at will, without the need to modify the sequence file.

The control software also provides an additional scripting language that can be used
to implement complete multi-part measurement sequences combined with automated
evaluation and (if desired) feedback to experiment parameters. The calibration of laser
beam coupling strengths, measurements of the cavity drift and current magnetic field
are implemented in this fashion.



4. Trap characterization and experimental
techniques

This chapter provides a brief hands-on overview of experimental techniques. It is written
as a practical guideline based in the context of the setup, characterization and everyday
use of trap II. Hence, the first sections cover the initial steps in setting up an ion trap
before moving on to the basic techniques and calibrations required for high-fidelity qubit
manipulations.

4.1. First steps

The assembly and bake-out procedure used for trap II along with residual gas analyzer
spectra obtained during the process is provided in Appendix C. At this point, it is
assumed that the setup’s calcium oven has undergone its activation procedure and that
the residual pressure of the vacuum vessel has reached the low 10−10 to 10−11 mbar level.
The next steps involve the optics setup, neutral atom fluorescence detection, single ion
trapping as well as coarse stray field compensation and trap frequency calibration.

1. Imaging setup
An appropriate lens or multi-lens objective is set up to image the center of the
ion trap onto a PMT and/or EMCCD camera for detection. Here it is useful
to be able to send in light from the opposite side of the detector and image the
trap’s shadow onto a white sheet of paper at the detector’s location. In case of
a single PMT, imaging and the specific magnification are not that important as
there is no spatial resolution. However, as much fluorescence as possible should
be collected by using large NA optics as close to the trap as possible.

2. Atomic fluorescence
With the detector(s) in place and shielded against stray light, the laser beam at
422 nm is sent through the tip electrodes. If such an arrangement is not possible,

69



70 4. Trap characterization and experimental techniques

care has to be taken that the beam runs through the field of view of the detectors
and – most importantly – that it runs at a 90° angle to the atomic beam such
that the Doppler shift due to the motion of the hot atoms is minimized.
Now, the laser’s frequency is scanned slowly around the atomic resonance while
PMT or camera are checked for a correlated signal. It is worthwhile to keep
possible wave meter deviations in mind (cf. Section 3.7) and, if no other reference
is available, set up a Doppler-free [59, 101] or photogalvanic spectroscopy [102] for
cross-checks. Also, be aware that the light intensity of many diode laser sources
varies as they are scanned over many GHz, which should not be mistaken as a
correlated PMT signal.

3. Ion fluorescence
For the next step, the trap’s AC and DC voltages need to be operational. It
is also advantageous to already have a magnetic field applied, which provides a
well-defined quantization axis in order to prevent unwanted optical pumping and
dark resonances that could reduce the resonance fluorescence yield. The 866 nm
repumper and 397 nm cooling/detection beam (both linearly polarized) are now
overlapped and sent into the imaged trap region. Ideally, the 397 nm beam di-
rection has a projection onto all three trapping axes to improve laser cooling and
fluorescence. However, even sending both beams through the tip electrodes, i.e.
perfectly along one the weak trap axis, will yield some fluorescence that can be
used as a starting point. With the ion trap operating at low voltages94, the oven
and both photoionization beams are turned on, which should lead to a continuous
accumulation of ions. To make fluorescence detection easier, an optical band-
pass filter68 should be installed in front of the PMT/camera to block all but the
ion’s fluorescence wavelength. To further help distinguishing an ion fluorescence
signal from the background light, it is useful to employ a differential detection
technique. Here, the 866 nm repumper light is turned off periodically and the
count rate difference between the on and off state is used to extract a signal while
suppressing PMT counts from background scatter. As soon as a signal is visible,
the beam alignment can be optimized while iteratively loading fewer and fewer
ions at stepwise lowered oven currents.
Compared to a single or a few crystalized ions, the fluorescence signal of an ion
cloud will have a very weak frequency response as the lasers at 397 nm and 866 nm

94In our case, we used around 20 V tip voltage and sent 1.5-2 W to the helical resonator (cf. Figure 3.4).
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are scanned. On the PMT, the transition from an ion cloud to an ion crystal is
visible as a kink (sudden decrease in fluorescence) on the red-detuned side of the
397 nm resonance. Towards the resonance frequency, a higher fluorescence yield
is obtained as, once crystalized, the ions experience a much smaller Doppler-shift
and spend more time near the resonance’s transition frequency [103, 104].
Once the beams are aligned, the signal-to-noise ratio (SNR) can be further in-
creased by a variable-slit aperture69 to cut off stray light. Combined with spa-
tial filtering using a pinhole at an intermediate focus in the imaging system,
SNRs exceeding 200 can be achieved [105] even in the presence of stray light.
A background-free detection method [106], which requires two more laser wave-
lengths at 850 nm and 854 nm, provides an alternative approach.

4. Coarse micromotion compensation (see also Section 4.5)
Using a single ion, a first attempt can now be made to compensate stray electric
fields in the trapping region that shift the ion away from the nodal line of the trap’s
RF field. Depending on their magnitude, the stray fields can lead to a significant
degradation of the fluorescence signal and result in unstable trapping conditions
that cause frequent ion losses. Another clear hint of strong micromotion is the
observation of fluorescence counts when the 397 nm laser is blue-detuned from
the S1/2↔P1/2 resonance. Here, the fast RF-driven micromotion induces Doppler
shifts that broaden the fluorescence spectrum symmetrically [107] and wash out
the sharp edge otherwise observed at the resonance (cf. Section 4.2 below).
Two strategies can be employed to achieve a coarse compensation: (I) Using a
fast RF switch or directly controlling the RF power, the ion’s position is marked
on the camera at high RF confinement, where it is forced into the RF null in the
radial direction. Reducing the radial confinement again, the stray field-induced
shift becomes visible in the imaging plane. With the appropriate compensation
electrode, the ion can now be shifted back to the previously marked position. No
information, however, can be obtained in the direction orthogonal to the imaging
plane. (II) Stray fields perpendicular to the 397 nm beam cause a driven motion
in the direction of the beam (cf. Figure 4.7), which leads to the already mentioned
Doppler-broadening of the resonance line. Through variation of the compensation
voltage perpendicular to the 397 nm laser beam (as it is kept red-detuned from the
resonance), one can then attempt to narrow the observed width of the transition
by minimizing the observed fluorescence count rate.
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5. First measurement of the motional oscillation frequencies
At this point, it is worthwhile to perform a measurement of the motional oscil-
lation frequencies in the trap. This can be done by applying an oscillating drive
voltage to one of the compensation electrodes. The 397 nm laser frequency is
first set to a point where the fluorescence rate is at roughly half of its maximum
value and then the drive frequency is varied. As soon as it becomes resonant with
a motional oscillation frequency, the ion is resonantly heated which leads to a
Doppler broadening of the transition and a corresponding increase in the fluores-
cence count rate. In this way, the radial mode splitting naturally present in the
trap can be determined. When the frequency difference between the radial modes
is very small, efficient Doppler cooling will only be possible with the addition of
a DC offset potential Ur (Eq. (3.1)), applied to one pair of the blade electrodes.

4.2. Doppler cooling and fluorescence detection

The S1/2↔P1/2 transition at 397 nm wavelength is used for both laser cooling and state
detection. About one in fifteen excitations of the P1/2 state (cf. Table 2.2) will decay
to the metastable D3/2 state. Hence, the 397 nm laser is always used in conjunction
with a repumper laser at 866 nm that returns the ion to the cooling or detection cycle
by coupling the metastable state to the P1/2 manifold. The Zeeman manifolds of the
S1/2, P1/2 and D3/2 states contain a total of eight energy levels that can give rise to
dark resonances induced by the simultaneous presence of a magnetic field and the two
laser fields. In order to minimize the ensuing modification of the lineshape(s) (see, e.g.,
[49, 85]), it is advisable to keep the 866 nm repumper laser tuned to a frequency slightly
above the P1/2 ↔ D3/2 resonance.

In the simplified picture of a two-level atom interacting with a traveling laser field of
a power level much below the transition’s saturation intensity, Doppler cooling achieves
a minimum temperature (Doppler limit) of TD = ~Γ/(2kB) at a detuning of −Γ/2 [108].
Here, Γ = 2π×22.4 MHz is the linewidth of the transition and kB is the Boltzmann con-
stant. The Doppler temperature (∼0.5 mK for Ca+) can be related to a mean phonon
number n̄ = kBTD/(~ω) = Γ/(2ω) at a given oscillation frequency ω in the trap. For a
typical axial confinement of ω/(2π) ≈ 1 MHz and a Lamb-Dicke parameter η between
0.06 and 0.08, this shows that the Lamb-Dicke regime η2(2n̄+ 1)� 1 (cf. Section 2.4)
can easily be reached with Doppler cooling alone. At the detuning of −Γ/2, however,
the fluorescence count rate is lower than on resonance, which goes against the aim of
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Figure 4.1.: S1/2↔P1/2 line profile at 397 nm
a) Lorentzian line shapes for different laser powers. After establishing a maximum fluorescence
count rate for the state detection, the Doppler cooling power is set to produce at most half
the number of counts on resonance, before the laser frequency is red detuned until, again, half
the counts are observed. b) Experimental data illustrating the broadening of the transition’s
natural linewidth Γ = 2π × 21.6 MHz [38] by the magnetic quantization field of B = 4.2 G and
the presence of the repumper light field at 866 nm. Lorentzian fits to the data yield widths of
127 MHz for the detection and 87 MHz for the Doppler cooling power level. They are certainly
not ideal and it would be advisable to further vary the settings to narrow them. Additionally,
imperfect micromotion compensation could be contributing to the observed line broadening.

scattering as many photons as possible during state detection (Section 3.4). Therefore,
a higher laser power level is used during the detection phase. This way, much more
fluorescence can be obtained with minimal danger of heating the ion, which happens
as soon as the 397 nm laser frequency crosses the resonance. This is illustrated in the
theoretical fluorescence profiles shown in Figure 4.1.a by the sharp cut-off at the reso-
nance. The adjacent Figure 4.1.b shows experimental data of the same cases together
with Lorentzian fits. Here, the difference between the ideal two-level approximation
and the real experiment becomes apparent as Zeeman shifts and the presence of the
second light field at 866 nm broaden the line significantly beyond its natural linewidth.

Doppler cooling in ion traps is usually carried out using only a single laser beam
as opposed to the six-beam geometry found in, for example, an optical molasses used
to cool neutral atoms. This is made possible by the three-dimensional confinement
provided by the trapping potential. It necessitates, however, that the direction of the
cooling beam has a projection on all trap axes and that the oscillation frequencies in all
directions differ [108]. In an ideal linear Paul trap, symmetric application of the radial
voltages (i.e. +Urf to one electrode pair and −Urf to the other) generates a potential
that is cylindrical around the axial direction, yielding radial frequencies that are degen-
erate (ωx = ωy). The absorption of photons from the laser beam provides cooling in a
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direction determined by its k-vector, while orthogonal to it, the spontaneously emitted
photons will cause heating. A splitting in the radial mode frequencies, either present
naturally due to imperfections and voltage geometry or induced by Ur in Eq. (3.1),
turns the radial trapping potential’s circle into an ellipse. This breaks the symmetry
in the direction of the radial electrodes and leads to radial motional modes that now
both have a projection onto the cooling beam’s k-vector. The rate at which energy is
being transferred between the two degrees of freedom is inversely proportional to their
frequency difference ∆ωx,y. In practice, it is therefore desirable to have a radial splitting
between a few tens and 100 kHz to reach the Doppler limit in the radial motion.

4.3. Optical pumping

For fully coherent state manipulations, the qubit ground state first needs to be initialized
by optical pumping, which transfers all population into one of the two S1/2 Zeeman
levels. It exploits dipole selection rules (∆m = 0,±1) to realize a laser-driven pumping
cycle in which the decay of the excited state accumulates population in a target state, to
which the cycle does not couple. The experiment employs two different ways of optical
pumping in direct succession allowing to reach � 99.9% state initialization fidelity.

The first pumping cycle, shown in Figure 4.2.a, uses circularly polarized light at
397 nm to drive a σ+-transition between S1/2 and P1/2. It relies on the purity of the
light polarization seen by the atom to prevent leakage from the m = +1/2 state back
into the pumping cycle. While the beam geometry (cf. Figure 3.6) ensures an agreement
between the direction of the applied quantization magnetic field ~B and the laser beam’s
~k-vector, stray magnetic fields (e.g. by an ion pump magnet) may rotate the effective
B-field vector at the location of the ions slightly, which also allows unwanted ∆m = 0
transitions to be driven. Equally so, a high degree of circular polarization of the light
itself has to be ensured by careful alignment using a polarizing element and a quarter
wave plate. Commercial equipment32 can be helpful and allows us to measure a degree
of polarization > 99% for the desired left circularly polarized (LCP) light.

In this context, it is worth noting that there are two naming conventions in use with
respect to circular polarizations (Figure 4.2.c): convention 1 uses the handedness of
the polarization in respect to the direction of the photon’s spin angular momentum
(~p = ±~~k); convention 2 (often used in engineering and a number of optics contexts)
refers to the direction in which the electric field is rotating when the viewer looks
towards the source (left = counter-clockwise).
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Figure 4.2.: Optical pumping and polarization conventions
a) By dipole selection rules σ+-polarized light only drives the ∆m = +1 transition, leaving the
m = +1/2 state dark (transparent to the light). b) Frequency resolved optical pumping uses the
narrowband laser at 729 nm to selectively couple the m = −1/2 state to the D5/2 manifold, from
where it is pumped out using light at 854 nm. In both pumping cycles, repumper light at 866 nm
ensures that decays to the D3/2 state are returned to the pumping cycle. c) Naming conventions
for circular polarizations with respect to the direction of propagation and the magnetic field.

The second pumping cycle, illustrated in Figure 4.2.b, does not rely on the magnetic
field and light polarization but comes at the price of a much slower cycle time as it
incorporates the quadrupole transition at 729 nm, which is much weaker than the dipole
transitions. Its narrow linewidth, however, allows for a direct frequency selection of the
|S1/2,mj = −1/2〉↔ |D5/2,mj = +3/2〉 transition which is further coupled to the P3/2

manifold in a continuous fashion. Assuming no specific light polarization, the dipole
selection rules allow the coupling-laser at 854 nm only to populate the m = 1/2, 3/2
Zeeman levels of the P state, such that decays to the m = +1/2 target state dominate.
Decays to the D3/2 are returned to the pumping cycle by repumper light at 866 nm.

4.4. Rabi spectroscopy

When an experiment is first set up, the magnitude of the magnetic field at the location
of the ion is usually not known well enough to calculate the transition frequencies
between the Zeeman levels. Therefore, the initial step is to perform spectroscopy over
a wide range around the suspected S1/2↔D5/2 center frequency ν0 (cf. Figure 2.3).

First, a spectroscopy laser beam needs to be aligned onto the ion. This can be done
using quantum jumps (Section 6.1): The 729 nm light is shone into the trapping region
simultaneously with the detection and repumper lasers at 397 nm and 866 nm. The
presence of the additional light fields coupling to the strong dipole transitions leads to
a broadening of the S1/2↔ D5/2 transition to a linewidth on the order of that of the
S1/2↔P1/2 transition (Figure 4.1.b). Occasionally, the coherent transfer to the D5/2
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Figure 4.3.: Spectroscopy on the S1/2↔D5/2 transition of a single trapped ion
The excitation probability to the D5/2 manifold is plotted as a function of the laser frequency
offset from the |S1/2,mj = 1/2〉 ↔ |D5/2,mj = 3/2〉 carrier transition. The spectrum was
obtained using a single 2 ms long laser pulse at a quantization magnetic field of 4.236 G with
ωz/(2π) = 1.23 MHz axial and ωx,y/(2π) = (3.22, 3.30) MHz radial confinement, where the
radial splitting was induced by a DC offset voltage of Ur = 1.5 V. A number of motional
sidebands appear around the carriers at multiples of the motional oscillation frequencies, as
well as their sums and differences.

state will be successful and a quantum jump occurs causing the fluorescence to cease.
The rate at which this happens is directly proportional to the coupling strength Ω of
the 729 nm laser. As Ω is proportional to the square of the electric field strength at the
location of the ion, it can always be used as an alignment help.

Once the quantum jump rate cannot be increased further, the laser frequency of
a single pulse at 729 nm is scanned around ν0. The resulting spectra, like the one
shown in Figure 4.3 above, are recorded by repeating the following sequence N times
at each frequency value: (1) Doppler cooling and optical pumping at 397 nm, (2)
excitation of the S1/2 ↔ D5/2 transition by a single 729 nm laser pulse and (3) state
detection using 397 nm light. In addition to the carrier transitions between the Zeeman
states of the S1/2 und D5/2 manifolds, the motion of the ion leads to a number of
blue and red sideband transitions. They appear symmetrically around the carriers at
multiples of the motional oscillation frequencies as well as their sum and difference
frequencies. These sidebands can be easily identified from their response to a change in
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Figure 4.4.: Zeeman shift of the five |S1/2,mj = 1/2〉↔ |D5/2,mj〉 transitions
The magnetic field induced Zeeman shift of the carrier transitions (black) following Eq. (2.11)
is depicted together with their axial and radial sidebands at ωz/(2π) = ±1.23 MHz and
ωx,y/(2π) = (3.2, 3.35) MHz, respectively. Also shown are parts of the micromotion sideband
manifolds at ΩRF/(2π) = ±28.9 MHz. The red horizontal line marks the quantization magnetic
field strength used in Figure 4.3.

the trap’s confinement parameters. While optical pumping limits the number of carrier
transitions to five (based on the quadrupole selection rules ∆m = 0,±1,±2), a possible
complication arises from micromotion that leads to additional sidebands around the
carriers at the trap drive frequency ±Ωrf . Depending on its strength, they can appear
as strong as or even stronger than the carrier transitions, underlining the importance
of the coarse micromotion compensation at the beginning.

As illustrated in Figure 4.4 above, at sufficiently high quantization magnetic fields
overlaps between carrier and sideband transitions can be easily avoided. In cases where
the identification of resonances in the spectrum remains ambiguous, it can be further
simplified through the use of the geometrical factors g∆mj in Eq. (2.17). For example,
a linearly polarized spectroscopy beam sent in perpendicular to the magnetic field axis
(~k⊥ ~B and ~E⊥ ~B) can only drive ∆m = ±2 transitions, which are well separated in fre-
quency. A σ± circularly polarized beam sent in along the direction of the magnetic field,
leaves only one resonance corresponding to ∆m = ±1 that can be uniquely identified.
Useful plots for other geometries are shown in Figure 4.5 on the following page.
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Figure 4.5.: Geometrical factor g∆mj
of the coupling strength Ω

The Rabi frequency Ω of the quadrupole transition at 729 nm is scaled by a geometrical factor
[48–50] in Eq. (2.17) that can be used to maximize or minimize the coupling strength of specific
transitions. a) Angles relevant in the definition of the geometrical factor. The angle φ between
the incoming light beam characterized by its k-vector and the magnetic field direction spans the
plane of incidence. A linear polarization vector can be in plane or rotated out of it by an angle
γ. Circular polarization is defined with respect to the light beam’s k-vector (see also Figure 4.2).
b) Values of g∆mj

given along contour lines for linearly polarized light as a function of incidence
angle φ and orientation of the linear polarization γ. c) Values of g∆mj

for circularly polarized
light. Only the angle φ is relevant as every the circular polarization can be represented as a
superposition of two orthogonal linear polarizations. The middle panel illustrates that beyond
the desired ∆m = ±1 transitions also ∆m = ∓1 transitions can be driven at every non-zero
angle φ between the magnetic field vector and the laser beam.
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Figure 4.6.: Rabi spectroscopy
a) 2D plot of the mean electronic excitation to D5/2,m = 5/2 with a resolution of 1µs and
5 kHz. Each data point corresponds to the average excitation of two ground state cooled ions in
100 experiments (∼ 6 h total measurement time). The few white points correspond to erroneous
(empty) datapoints that the control software failed to reject and retake. b) Rabi oscillations
as seen in a cut through (a) along the indicated line on resonance. c) Fit of Eq. (2.15) to data
from a cut through (a) at a fixed pulse time of tπ = 12µs.

For illustrative purposes, Figure 4.6.a shows how the excitation to D5/2 around one of
the carriers changes, depending on the length of the excitation pulse and its respective
detuning. The familiar Rabi oscillations are obtained when the length of the laser
pulse is varied. In the example, a ground state cooled ion (n̄ � 1) was used, such
that oscillations do not damp over the time frame observed in Figure 4.6.b. In general,
however, higher motional excitations (cf. Figure 2.8) and other decohering processes
(for example magnetic field noise) lead to a damping over time, which leads to values
close to 0.5 for long pulses. Keeping the time fixed at or close to a π-pulse of length
tπ = π/Ω while scanning the laser frequency detuning around a resonance, a sinc-
like pattern emerges in Figure 4.6.c. Its central peak becomes more and more narrow
for longer interrogation times, nicely illustrating the Fourier transform relationship
between the time and frequency domain in spectroscopy. Even at short times, this
approach is a good way to find the center frequency of a transition, e.g. when refining
the position of a motional sideband. An alternative that allows for even more precise
frequency measurements on short time scales, is the method of separated oscillatory
fields invented by and named after Rabi’s student Norman Ramsey, which will be
described in Section 4.8 below.
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4.5. Micromotion compensation

At any position away from the exact RF null (or nodal line) along the trap’s symmetry
axis, the ion experiences a force from the electric field gradient generated by the radial
electrode voltage(s) Vrf at distance r0. The gradient oscillates at the RF drive frequency
Ωrf , which causes a driven motion in addition to the ion’s secular motion at frequency
ωr and amplitude xa characteristic for the (time-averaged) harmonic confinement after
laser cooling. The resulting ion motion is well approximated by [109]

x(t) = xa

(
1 + q

2 sin Ωrft

)
cosωrt,

where q = 2eVrf/(Ω2
rfmr

2
0) with ion mass m and ωr = qΩ/

√
8. Note that in order to

avoid unnecessary clutter, the axial DC confinement (cf. Section 3.1) is neglected in
this description.

If stray electric fields shift the center of the secular motion away from the nodal line of
the RF field, excess micromotion along the RF field lines sets in leading to Doppler shifts
due to the driven motion of the ion. In the rest frame of the ion, a laser beam exciting
the ion with an electric field E(t) = E0 e

−iωlt at frequency ωl will therefore appear
frequency modulated at the RF trap drive frequency. Hence, the effective electric field
is given by

E(t) = E0 e
−iωlt eikxa

q
2 sin(Ωrft)

= E0 e
−iωlt

∞∑
n=−∞

Jn(β) einΩrft,

where the second exponential was expanded in terms of Bessel functions Jn(β) that
relate the micromotion strength to the modulation index

β = kxa
q

2 . (4.1)

Here, xa is the position of the ion with respect to the RF null and k = 2π/λ is the
wavevector of the incoming laser beam at wavelength λ. The field strength of a static
electric stray field Es displacing the ion to xa can be calculated from the condition that
it settles at a position where the restoring force of the trapping field equals the electric
force of the stray field, mω2

rxa = eEs. As illustrated in Figure 4.7.a, horizontal micro-
motion is caused by vertical electric fields while horizontal stray fields lead to vertical
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Figure 4.7.: Micromotion compensation in horizontal and vertical direction
a) Radial micromotion directions, affected laser beams and the direction of the responsible
electric stray fields. Note that a laser beam along the micromotion’s direction has to be used to
observe it. The coordinate system on the left relates the directions to those used in Figure 3.6. b)
and c) Horizontal and vertical micromotion compensation voltages in trap II (see Section 3.1).
The hyperbolic fit following β(UC) = A

√
(U − UC)2 + V 2 takes into account an offset field

related to a potential V that is likely caused by a phase shift between the radial blade voltages
and, hence, cannot be compensated.

micromotion. It is worth noting that any phase shift between the voltages Vrf applied
to the blade electrodes results in a dipolar offset field that cannot be compensated and
leaves a minimal modulation index β > 0 [49, 109].

A number of methods are available [109] to determine the compensation voltages in
horizontal and vertical direction shown in Figure 4.7. Using light at 397 nm, measure-
ments correlating scattered fluorescence photons with the phase of the RF drive field can
be made. Less technically demanding is the minimization of the observed width of the
cooling transition, as discussed in Section 4.1. A refined method of this technique has
recently been demonstrated in reference [107], which uses time-separated laser pulses
at 866 nm and 397 nm to circumvent the additional broadening effects that result from
the simultaneous presence of both beams. The most accurate measurements, however,
can be made using the sideband-resolved S1/2↔D5/2 transitions at 729 nm. Here, in
the limit of low modulation, β can be calculated directly from the coupling strength
ratio of the micromotional sideband ΩSB to its carrier transition Ωcar as

ΩSB
Ωcar

= J1(β)
J0(β) = β

2 +O(β2). (4.2)

Figure 4.8.a on the following page illustrates this approach for a measurement of the
axial micromotion that is accessible with a laser beam sent through the tip electrodes.
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Figure 4.8.: Axial micromotion and inhomogeneity along the trap axis
a) Axial micromotion measurements that allow us to determine the micromotion suppression
(given in brackets) from the ratio of the carrier and sideband coupling strengths, which is
calculated from the respective π-times tπ. The modulation index β is then given by Eq. (4.2).
b) A 7 ion crystal is shifted along the axial direction by tip voltage imbalancing (cf. Section 3.5).
The measurement was made after increasing the radial confinement from a lower value without
re-optimizing the horizontal compensation voltage. The z-axis center position corresponds to
the equilibrium position of a single ion at an axial confinement of ωz/(2π) ≥ 1 MHz.

The very small, but non-zero modulation index is likely due to the asymmetric connec-
tion of the RF electrodes (Section 3.1). The homogeneity of the vertical micromotion
along the trap axis is investigated in Figure 4.8.b. The results can point to either a
dominant, localized stray potential or to an angle between the trap’s z-axis and the hor-
izontal compensation electrodes. With q ≈ 0.33 and ωr/(2π) = 3.35 MHz, the relatively
large modulation index of β = 0.54 seen in the center of the figure corresponds to a
displacement from the RF nodal line of x0 ≈ 380 nm caused by a field of Es ≈ 70 V/m.

4.6. Sideband cooling

While the Doppler cooling technique discussed in Section 4.2 can reach the Lamb-Dicke
regime, its lowest attainable phonon number n̄ = Γ/(2ω) is limited by the decay rate Γ
of the excited P1/2 state used for cooling and the trap frequency ω. Utilizing the narrow
linewidth of the S1/2↔D5/2 qubit transition, it is possible to create a sideband-resolved
cooling cycle that brings the thermal vibrational population after Doppler cooling to the
motional ground state |n = 0〉. Such a cycle is similar to the optical pumping discussed
in Section 4.3 in that the target state is decoupled from the cooling cycle.
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Figure 4.9.: Sideband cooling
a) Sideband cooling cycle consisting of a 729 nm laser beam resonant with a motional red
sideband (RSB) of the |S1/2,mj = 1/2〉 ↔ |D5/2,mj = 5/2〉 transition and a laser beam at
854 nm. Not shown is the decay channel to D3/2 which necessitates brief repumping pulses of
866 nm and 397 nm σ+ light. b) Sideband cooling in Fock space. Absorption of a photon on an
RSB transition incorporates the energy of one phonon ~ω into an electronic excitation to |↑〉.
A laser at 854 nm “quenches” the excitation via an auxiliary state, from which a spontaneously
emitted photon at 393 nm provides the desired energy dissipation. The motional ground state
|n = 0〉 no longer couples to the RSB transition.

The sideband cooling cycle [110, 111] shown in Figure 4.9.a follows Doppler cooling
and optical pumping (cf. Figure 3.28). Its first stage drives the red sideband (RSB) of
a particular motional mode via the quadrupole transition at 729 nm. Starting from the
|S1/2,mj = 1/2〉 ground state, photon absorption populates the upper Zeeman mani-
fold’s “stretched state”95 |D5/2,mj = 5/2〉 while at the same time lowering the ion’s
motional excitation in the particular mode. An auxiliary light field at 854 nm resonant
with the D5/2 ↔ P3/2 transition is used to artificially shorten the lifetime of the excited
state96 from ∼1.2 s to a few µs such that energy is quickly dissipated via a spontaneously
emitted photon at 393 nm and the cycle can begin anew. Figure 4.9.b illustrates this
process in Fock space: with every completed cycle the phonon number is reduced by
one until the motional ground state |n = 0〉 has been reached. Dipole selection rules
ensure that the 854 nm light couples only to the |P3/2,m = +3/2〉 state, which itself
can only decay back to the |S1/2,m = +1/2〉 ground state. However, due to a small
branching ratio of ∼0.7 % associated with decays to the D3/2 level, it is necessary to
repeatedly send in repump pulses using the 866 nm and 397 nm σ+ laser beams. In
case of polarization imperfections, the latter could lead to unwanted re-heating from
the scattering of multiple photons. To minimize this, it is advisable to keep the 397 nm
pulses during and at the end of the cooling sequence as short as possible.

95The state has the largest angular momentum quantum number within a manifold of spin states.
96This process is often referred to as “quenching” the excitation.
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The effective decay rate ΓD′ of the quenched D5/2 state is given by [112]

ΓD′ = Ω2
aux

Γ2
aux + 4∆2

854
Γaux,

where Γaux is the decay rate of the auxiliary P3/2 state and ∆854 the detuning of the
quenching laser from the D5/2↔ P3/2 transition. Its coupling strength Ωaux is a func-
tion of both power and polarization [48], which, in the specific cycle described before,
corresponds to its degree of σ− polarization. “Pump-out” experiments, illustrated and
described in panels a and b of Figure 4.10, provide an easy way to determine ΓD′ and to
verify the stability of the 854 nm beam’s polarization, as drifts would translate to vari-
ations in the sideband cooling performance. The presence of the 854 nm light induces
a positive AC-Stark shift (Section 2.3.2) on the S1/2↔D5/2 transition. Consequently,
the RSB resonance frequency shifts upwards as well by a few kHz, which is illustrated
in Figure 4.10.c for two values of Ωaux chosen via the 854 nm light intensity.

Under the assumption that the Rabi frequency of the 729 nm beam is small compared
to the effective decay rate (ηaΩ� ΓD′), the cooling limit close to the motional ground
state (n̄� 1) can be calculated [49] to

n̄ =
{(

ηd
ηa

)2
+ 1

4

}
Γ2

D′

4ω2 . (4.3)

Here, the Lamb-Dicke factor ηa takes the photon recoil of the stimulated absorption at
729 nm into account. The effective Lamb-Dicke factor ηd captures both the recoil of
the photon absorption at 854 nm and the subsequent, randomly directed spontaneous
emission at 393 nm, which form the cooling cycle’s dissipation process. Expression (4.3)
is calculated from a balance of the cooling rate

ΓC = ΓD′
(ηaΩ)2

Γ2
D′ + 2(ηaΩ)2 and Γlaser−heat =

( Ω
2ω

)2
η2

dΓD′ +
(
ηaΩ
4ω

)2
ΓD′ ,

which is a laser-induced heating rate where the first term corresponds to off-resonant
carrier excitations and the second term represents blue sideband excitations.

Moving away from the assumption used above, the cooling rate begins to saturate
while the Ω2-dependent off-resonant carrier excitations raise the minimum temperature
that can be attained. For this reason, the coupling strengths Ωaux and Ω should always
be chosen such that (ηa

√
n̄Ω) ≤ ΓD′ , where n̄ is the mean phonon number reached after

Doppler cooling in the respective mode.
In practice, sideband cooling is set up as follows: First, the 854 nm laser is put

on resonance by minimizing the quantum jump rate observed at low laser powers.
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Figure 4.10.: Sideband cooling in practice
a) After Doopler cooling (DC) and optical pumping (OP) a π-pulse is used to prepare the
|D5/2,mj = 5/2〉 state. A separate pulse at 854 nm is varied in length before the remaining
population in |↑〉 is detected. An exponential decay fit to the data yields an effective decay
rate ΓD′ = (2π) 9.95 kHz. b) Stability check of Ωaux. The pulse sequence shown in a) is used to
prepare two different initial states in an alternating fashion followed by an 854 nm pulse length
of fixed length. Thermal and mechanical stress applied to the optical fiber carrying the light to
the ion trap result in (anti-)correlated changes (marked in gray) between the two traces which
provides a way to distinguish power from polarization changes. c) The residual population in
states n > 0 after sideband cooling (SBC) is probed by a weak 2 ms laser pulse resonant with
the red sideband (RSB). The increase of the AC Stark shift δSD = −Ω2

aux/(2∆854−729) and the
cooling transition’s effective linewidth ΓD′ with the 854 nm power can be seen in the fit to the
data. A suitable choice of parameters yields a residual excitation (' n̄) close to 0.

Then, the sequence shown in Figure 4.10.c is used to check for residual population
in n > 0. This is repeated while the frequency of the RSB pulse used during the
cooling cycle is scanned around its bare resonance frequency. The minimum value of
the observed excitation is now compared for different 854 nm laser powers to find an
optimal combination similar to the one shown in the figure’s upper panel.

Thus far, motional heating by electric field noise has been neglected. Depending
on its strength with regards to the specific motional mode in question, it can prevent
the sideband cooling cycle from reaching the ground state and will increase the ion’s
motional energy during experiments. The corresponding heating rate is discussed below.

4.7. Heating rate measurements

A sideband-cooled ion does not stay in the ground state of its confining potential in-
definitely and gains motional energy over time. This heating process can have a variety
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Figure 4.11.: Heating rate measurement of the axial COM mode
a) Spectrum of the red and blue sideband of the axial COM motional mode using a pulse
duration close to t = π/Ω. The lines are sinc-fits to the data and provided as a guide to
the eye to distinguish the traces recorded at different times after the completion of sideband
cooling. b) By repeatedly probing both sidebands on resonance using pulses of equal length in
an alternating fashion, the mean phonon number n̄ can be determined from the ratio of the
respective excitations to |↑〉 using Eq. (4.4). The measurement is carried out at various wait
times and a linear fit to the data reveals the motional heating rate of the axial COM motional
mode at ωz/(2π) = 1.23 MHz.

of origins [113], the most obvious one being electric field noise that is brought in via
the trap electrodes. The noise fields couple to the ion’s charge and heat it by exerting
randomly fluctuating forces. However, even with dedicated filtering of the trapping volt-
ages, a mechanism persists that has been dubbed “anomalous heating” in the literature
[114]. Its origin appears to be related to surface contaminants on the trap electrodes
and fluctuating patch potentials associated with these. While the exact mechanisms are
still under investigation, two recent experiments [115–117] have used in-vaccum clean-
ing methods to remove surface contaminants and observed impressive reductions in the
heating rate of surface ion traps by up to two orders of magnitude.

As shown in Figure 4.11.b, the heating rate of a particular motional mode is obtained
by measuring its mean phonon number n̄ at various delay times after the completion
of sideband cooling. Each datapoint is derived from two successive measurements con-
sisting each of a single pulse resonant with the k-th motional sideband. For equal pulse
lengths, n̄ is directly obtained from the ratio

prsb
k

pbsb
k

=
(

n̄

n̄+ 1

)k
k=1−−−−−−→ n̄ = prsb

pbsb − prsb , (4.4)

where prsb (pbsb) correspond to the excitation probability found after resonant excitation
(cf. Figure 4.11.a) on the red (blue) sideband [113]. While Eq. (4.4) is valid even for



4.7. Heating rate measurements 87

0 2 4 6 8 10

20

40

60

80

100

120

140

 

 

ax
ia

l h
ea

tin
g 

ra
te

 (p
h/

s)

RF power sent to resonator (W)

a) b)

1.0 1.5 2.0 2.5 3.0 3.5

20

40

60

80

100

120

140

 

 

ax
ia

l h
ea

tin
g 

ra
te

 (p
h/

s)

mean radial frequency (MHz)

Figure 4.12.: Axial heating rate dependence on radial confinement
The heating rate of the axial COM mode is measured at different RF powers sent to the
resonator (a) using the technique outlined in the text. For each power setting, the axial COM
mode frequency as well as the mean radial mode frequency (b) were determined anew to ensure
the reliability of the technique. The exact cause of the increase in the heating rate is unknown,
but a (very rapid) temperature increase of the trap assembly at higher RF powers is suspected
to play a role (see text). No fits are made to the data in order to avoid suggesting a specific
relationship. Error bars are smaller than point size.

thermal states outside the Lamb-Dicke regime, high sensitivity is only achieved when
using a sideband order k that matches the expected mean phonon number n̄ [113].

Trap I maintained a heating rate around RH = 3 phonons/s [50]. Due to the reduced
ion-electrode distance (800 µm→ 565µm), trap II was expected to show a higher heat-
ing rate. Initially a value around RH = 20 ph/s was found in February 2012. 18 months
later, however, a heating rate of around RH = 40−50 ph/s was found repeatedly under
otherwise identical conditions. The heating rate also appeared to fluctuate on some
days over the course of multiple hours. The origin of this radical change could not yet
be identified with certainty and remains under investigation.

Additionally, a very significant increase in the axial COM mode heating rate as a
function of the radial confinement was observed (Figure 4.12), which – to the author’s
knowledge – has not been reported in the literature before97. However, the behaviour
was not found in a similar trap with identical dimensions that is available in an adjacent
laboratory. There, instead of the stainless steel and Macor holder of trap II, the setup
employs gold-coated titanium blades and a blade holder made from sapphire. It also
allowed us to monitor the trap’s temperature at the different RF powers using an
in-vacuum sensor. As opposed to trap II, where the trap temperature is likely around
100 ◦C (cf. Fig.3.5 in [64]), the other setup remains within ∼ 10 K of room temperature.
97A similar behavior was seen at NIST using a surface ion trap with 40 µm ion-electrode distance that

was used in the experiments of reference [115] (Y. Colombe, private communication).
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4.8. Ramsey spectroscopy

An alternative to the Rabi spectroscopy illustrated before is the method of separated
oscillatory fields invented by and named after Norman Ramsey [118]. Whereas in the
original experiments with molecular beams, the oscillatory fields were separated in
space, interrogation of the trapped ion makes use of laser pulses separated in time. The
basic pulse sequence is illustrated in Figure 4.13.a alongside experimental data in panel
b. It proceeds as follows:

Starting with an ion in the electronic ground state |↓〉 ≡ |−〉z, a π/2 pulse rotates the
state vector into the Bloch sphere’s equatorial plane. Being the first in a series of coher-
ent interactions, the initial pulse’s optical phase sets the reference φ1 = 0 to which all
of the later pulses refer. As such, the corresponding rotation in the equatorial plane can
be arbitrarily defined, e.g., to be around the x-axis as σx in Eq. (2.3), which is the con-
vention adopted in this text. The resulting superposition state |+〉y is then allowed to
evolve freely for a time τR as described by the state vector |ψ〉 = 1√

2
(
|↓〉+ ie−iω0τR |↑〉

)
.

Here, the frequency ω0/(2π) = ν0 ≈ 4× 1014 Hz corresponds to the energy splitting be-
tween the two basis states of the qubit, yielding a rapidly varying |ψ〉. To see the effect
of the second π/2 pulse in the sequence, it is convenient to change into an interaction
picture (Section 2.3.2). This amounts to changing into a co-rotating frame in which
the new state vector |ψ′〉 = 1√

2

(
|↓〉+ ie−i∆ωτR |↑〉

)
remains stationary as long as the

laser frequency ωl and qubit remain in resonance (∆ω = ωl − ω0 = 0). Depending on
its optical phase φ2 relative to the first pulse, the final π/2 pulse now rotates the state
vector to |+〉z for φ2 = 0 (≡ σx) or back to |−〉z for φ2 = π (≡ −σx). In the experiment,
the optical phase can be changed by varying the phase of the RF signal that is sent to
an AOM in the path of the laser beam. (Recall that the phase of the diffracted light is
the sum of the optical and acoustic phases in the device [97, 98].)

A detuning ∆ω , 0 is the result of a change in the energy separation of the qubit
levels ω0 (e.g., due to a change in the ambiant magnetic field) or a drift of the laser
frequency ωl. In the co-rotating frame, this causes a rotation of the state vector around
the z-axis by an amount98 δ = ∆ω τR, which is eventually mapped onto the observable
σz (|↑〉, |↓〉) by the second π/2 pulse. With knowledge of τR, the detuning ∆ω can then
be directly extracted from the mean excitation probability to the D5/2 state.

98For the moment only the free evolution period is considered; for the effective τR used in measurements,
see Section 4.8.1 below.
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Figure 4.13.: Ramsey experiments
a) Pulse sequence for a Ramsey experiment. Two π/2 pulses of length t = π/(2Ω) are separated
by a waiting time τR. The coupling strength Ω is usually controlled by the light intensity. The
optical phase φ allows us to select the rotation angle of the second π/2 pulse. b) Excitation at
various times of the pulse sequence shown in a) for a detuning ∆ω = 0. The insets show a Bloch
sphere representation (cf. Section 2.1) of the state vector at the end of each step (gray dashed
line). c) Excitation as a function of the analysis phase φ2 of the second pulse, assuming no
decoherence (= full amplitude). Phase shifts δ accumulated during τR shift the fringe pattern
left or right, depending on their sign. d) Extension of a Ramsey experiment to a spin-echo
sequence. A π pulse of duration t = π/Ω after half the waiting time exchanges the qubit state
populations allowing for the inverse free evolution in the second part of the sequence.

Deliberate variation of the second π/2 pulse’s phase φ2 at a fixed wait time reveals
the fringe pattern shown in Figure 4.13.c. Phase shifts by ±δ translate the pattern in
the horizontal directions. Its amplitude can be directly related to the qubit coherence
or Bloch vector length using Eq. (3.5).

A Ramsey experiment can readily be extended to the spin-echo [119] sequence shown
in Figure 4.13.d. Here, an intermediate π pulse is used to swap the electronic popula-
tions halfway during the wait time. Its phase φ is set such that it carries out a 180°
rotation of |ψ′〉 around a Bloch sphere axis orthogonal to that of the first π/2 pulse.
As a result, frequency shifts ∆ω that are common to both free evolution periods are
cancelled, unless they match the condition ∆ω = 1/τR.

In the context of what is known as dynamical decoupling [120, and references therein]
a variation of the spin-echo technique can be used to suppress noise-induced decoher-
ence or, deliberately using the condition given above, to identify the particular noise
frequencies acting on the qubit [121, 122].
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4.8.1. “The clock” – frequency drift correction via the qubit transition

Ramsey experiments, as outlined above, provide the foundation for a frequency drift lock
of the qubit laser at 729 nm, which allows us to compensate the drifts of its high finesse
cavity (Section 3.3.3). In the same way, changes in the magnetic field at the location
of the ion(s) can be detected. The gathered data is used in a feed-forward correction
that updates the frequency of AOM 9 (cf. Figure 3.9) every second. Once changes
in the ambient magnetic field are detected, all transition objects (cf. Section 3.8) are
automatically updated with the corresponding transition frequency shifts.

The lock is implemented using a total of four independent Ramsey experiments with
an equal wait time τR probing two transitions in the S1/2↔D5/2 manifold. For each
transition, two separate measurements with a different optical phase in the second
π/2 pulse are carried out [40]: measurement 1 uses the optical phase φ2 = +π/2 and
measurement 2 uses φ2 = −π/2 such that two complimentary points on the fringe
pattern shown in Figure 4.14 are obtained. Their respective distance allows us to
directly calculate the laser frequency detuning ∆ω from the S1/2↔D5/2 resonance at
2π × ν0 using

∆ω = 1
(τR + 2τπ/π) arcsin

(
pB − pA
pA + pB

)
. (4.5)

Here, the first denominator includes an effective Ramsey time that takes both π/2-pulses
of duration τπ/2 into account [59]. The denominator (pA + pB) of the arcsin-function
ensures that the measurement results are normalized, which allows the lock to operate
even in cases where optical pumping is incomplete or the pulse lengths τπ have not been
calibrated accurately (dashed lines in Figure 4.14). By probing the detuning ∆ω on
two different transitions, their measured frequency values99 can be used in combination
with Eq. (2.11) to extract the magnetic field strength B at the location of the ion.

Typical parameters used in the experiment are π/2 pulse lengths of tπ/2 ≈ 6 µs and
a Ramsey time of 50 µs ≤ τR ≤ 1 ms. The latter gives the lock a capture range between
±5 kHz and ±250 Hz, corresponding to the increased frequency resolution. Frequency
measurements are repeated every 1-5 minutes and their results are stored together with
a timestamp and the relevant experimental parameters. A polynomial fit (usually only
to first order, cf. Figure 3.14) is automatically applied to a subset of the data in a
user-selected time window. After weighing each measurement based on its timestamp
with an exponential decay, the fit results are used in the feed-forward correction of the
99Transition frequencies are stored in terms of the frequency shift induced by DP AOM 11. It is

centered around frequency f0, where ν0 = νlaser + 80 MHz + f0 (cf. Figure 3.9).
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Figure 4.14.: Laser drift lock via Ramsey measurements
Two separate measurements with a Ramsey wait time τR are carried out on a single S1/2↔D5/2
transition. The phase φ2 of the analysis pulse is set to be shifted by ±90° with respect to the
first pulse. Without a phase shift δ both measurements yield an excitation of p↑ = 0.5. The
positive detuning ∆ω, indicated on the left, shifts the measured excitations (A, B) along the
fringe lines in opposite direction. Incomplete optical pumping or inaccurate π/2 pulses, i.e. a
pulse length τπ that is either too large or too small, shift the lockpoint (L) to lower values
(dashed lines), thereby reducing the frequency lock’s overall gain.

laser frequency (→ AOM 9) and, optionally, the magnetic field value employed in the
calculation of the transition frequencies (→ AOM 11).

4.8.2. Line cycle induced frequency shifts

The mains electricity at 50 Hz alternating current (AC) used to power devices in the
laboratory produces spurious AC magnetic fields that affect the energy levels encoding
the qubit. The fields originate from insufficiently shielded power supplies and ground
loops that can form when two devices that are already grounded via the power outlet
are directly connected. Common culprits are connections to oscilloscopes in which the
cable’s outer conductor may provide an additional path to ground for the connected
device, effectively forming a loop between the two ground points.

Mains electricity is commonly delivered via a three-phase-AC system. The three line
phases (L1, L2, L3) shown in Figure 4.15.a share the same neutral return line, in which
their currents will cancel if all of them are under equal load. Different loads yield a
current in the neutral conductor at the third (and higher) odd harmonic, producing a
strong noise component at 150 Hz in addition to the 50 Hz.

If the equipment in the vicinity of the experiment is powered by only one line-phase
(which is highly recommended), the effect of the ambient magnetic field noise can be
greatly mitigated through the use of a line trigger (see also page 66). The device
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Figure 4.15.: Line cycle measurements and line trigger
a) Mains voltage over one 50 Hz power line cycle. The power usually is supplied over three
different phases (L1, L2, L3) that are each shifted by 120° and referred to the same neutral
line and protective earth. Each phase is usually distributed to standard single phase outlets via
separate fuses. b) Ramsey pulse sequence used to measure the magnetic field associated with
the power line cycle. The sequence is triggered at a fixed line phase offset (T ) and comprises
Doppler cooling (DC), optical pumping (OP) and detection in addition to the coherent manip-
ulations (θ = π/2, φ = {0, π/2}). c) Result of a Ramsey experiment shown in b) performed on
the |S1/2,mj = 1/2〉↔ |D5/2,mj = 5/2〉 transition with τR = 400 µs and 600 experiments per
datapoint. The line cycle amplitude at 50 Hz calculated from the pattern is 30(8) µG.

generates a TTL signal synchronous with the power line frequency at a variable phase
offset. It relies on the fact that the commonly used switching power supplies only draw
current close to the peak of the power line voltage. Consequently, the noise magnetic
field amplitude changes over time and usually shows a few “quiet” periods in which very
little change occurs. A line trigger offset phase (T ) is then selected such that coherent
operations happen during the quiet periods in experimental cycle.

To identify the quiet periods and quantify the overall magnitude of the line cycle-
induced shifts, the amplitude of the magnetic field at various points in the cycle is
obtained using the Ramsey sequence shown in Figure 4.15.b. Here, the analysis phase
of the second pulse is set such that the sensitivity to shifts is maximized (cf. Figure 4.13).
Its results, shown in Figure 4.15.c, can be evaluated as follows:

Without any wait time τR between the π/2 pulses, the excitation signal would remain
centered around a value of p = 0.5. Introducing a wait time τR > 0, small changes
around this value (0.3 ≤ p ≤ 0.7) can be approximated as

p = 1
2
[
1 + sin

(
∆ω τR

)]
≈ 1

2
(
1 + ∆ω τR

)
→ ∆p = 1

2∆ωτR.
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The frequency shift ∆ν = ∆ω/(2π) can now be used in combination with Eq. (2.11) to
directly relate the overall signal change ∆p to the 50 Hz magnetic field strength

B50Hz = 2∆p
πγτR

.

Here, γ is the field sensitivity (cf. Figure 2.3) of the S1/2↔D5/2 transition probed in the
measurement. The field amplitude measured inside the magnetic shielding enclosure of
trap II (30-40 µG) constitutes a significant improvement over that measured in trap I
(1.4 mG, [57]). However, given the 50 Hz attenuation factor of 103 shown in the factory
calibration (Section 3.6), one would hope to measure even lower values. Residual AC
noise in the quantization magnetic field coils has been excluded by driving both the
coils as well as the regulator from batteries. The likely source therefore is electrical
equipment that remains in close proximity to the ion trap.

More information on electrical power distribution and how to avoid noise problems
related to ground loops etc. can be found in reference [123].

4.8.3. Motional coherence

Ramsey experiments are not just limited to the electronic, internal degree of freedom.
With the addition of coherent sideband pulses, the motional coherence can be probed as
well. In this case, illustrated in Figure 4.16, a superposition of Fock states is prepared
by a carrier π/2 pulse that is followed by a π pulse on the blue motional sideband of the
mode of choice. After a wait time τR, the same sequence is applied in reverse. A scan
of the optical phase of the second π/2 pulse then allows one to recover the same fringe
pattern as before in Figure 4.13. The phase shift δ = ∆ωτR is now related to changes
in the motional oscillation frequency ω and, with the electronic state being entirely in
state |↑〉 during the wait time, largely independent of changes in the laser frequency or
ambient magnetic field. By repeating the same experiment at a fixed wait time over
and over, changes of the motional frequencies, which are equivalent to changes of the
trapping voltages (c.f. Section 3.1), can be quantified based on the observed changes in
the excitation signal.

The experiment presented in Chapter 6 relies on the motional stability of the axial
center of mass (COM) mode and future experiments will make use of the radial modes
of motion. Therefore, the stability of both COM modes has been checked yielding the
results shown in Figure 4.16.c and d on the next page. While the axial motional mode
relies solely on the intrinsic stability of the high-voltage power supply connected to the
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Figure 4.16.: Motional Ramsey experiment
a) The motional Ramsey experiment uses a superposition of two Fock states to probe the
stability of the trap frequency ωt = 2πνt. b) Two additional pulses on a motional sideband
make the experiment sensitive to the motional phase, while at the same time the electronic state
remains largely unaffected by magnetic field noise. Again, by scanning the analysis phase φ of
the second π/2 pulse, the fringe pattern of Figure 4.13.c can be observed. c) Axial COM mode.
The frequency stability of ∆νz/νz = 1.7× 10−5 is based only on the internal stabilization of
the high voltage power supply connected to the tip electrodes. d) Radial COM mode. The
frequency stability of ∆νr/νr = 3.1× 10−5 shown in the histogram is seen only with active
feedback to the amplitude of the RF drive signal. It is based on an error signal derived from
the rectified voltage of a capacitive divider placed at the end of the helical resonator. Without
the active feedback, the distribution has a width on the order of 10 kHz.

tip electrodes, the RF voltage responsible for the radial confinement does not reach
the level of stability seen in the figure just by itself. Here, the rectified signal from a
capacitive divider at the output of the helical resonator has been used to implement
active feedback to the amplitude of the signal generator that produces the RF used to
drive the resonator. The data shown in Figure 4.16 represents the best case of an early
attempt to stabilize the radial confinement over the course of ∼ 30 min and has to be
compared to drifts on the order of 10 kHz with the feedback turned off.
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published in: Science 334, 57–61 (2011)
arXiv:1109.1512 [quant-ph]

With significant progress in experimental control, the field of quantum simulation has
grown significantly in the 21st century, establishing itself as a cornerstone in today’s
quantum physics research [124–126]. This chapter is about one particular contribution
to the field: the proof-of-principle demonstration of digital quantum simulations using
trapped ions. All of the experiments presented in the following have been performed
using trap I (cf. Section 3.1) and, for experiments with more than two ions, an almost
identical setup [62] at the university laboratory was used. The chapter begins with
a brief review illustrating the fundamental obstacle associated with the simulation of
many-body quantum systems: the memory problem. Two approaches to overcome this
problem are outlined in the following, namely analog and digital quantum simulation.
The remainder of the chapter is then devoted to the experimental demonstration of the
first digital quantum simulations in a system of trapped ions.

5.1. Introduction – the quantum simulation problem

Quantum mechanics is one of the fundamental theories of physics. It is at the basis
of many phenomena observed in many-body systems in physics and chemistry and, as
recent investigations show, possibly even biology [127, 128]. Given the wide success and
vast impact that its formalism has had in the description of nature, as well as the tech-
nological breakthroughs it helped to achieve in applied fields, it is an imperative to be
able to efficiently simulate quantum mechanical models. This need is furthered by the
fact that, in many systems described by quantum mechanical models, the underlying
parameters cannot, or only with extreme difficulty, be accessed and controlled experi-
mentally. However, already for rather small physical systems, the required calculations
very quickly become computationally inefficient on classical computers as the resources
needed to carry them out scale exponentially with the size of the problem.
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To understand the fundamental issue underlying this problem, one can start with the
smallest possible simulation of a simple quantum mechanical two-level system. An
electron is a spin-1/2 particle with the two states |↑〉 and |↓〉 as demonstrated in the
famous Stern-Gerlach experiment [129] in the connection to magnetism at its most
fundamental level. It behaves just like the qubit or “pseudo-spin-1/2” introduced in
Section 2.1 and can exist in a superposition |Ψ〉 = α |↑〉+ β |↓〉 of its two logical basis
states. Any simulator therefore needs to store the complex coefficients α, β to faithfully
represent its quantum state. Advancing to two qubits, as described by Eq. (2.8), four
coefficients have to be stored. More generally, to simulate an n-qubit system, the
simulator has to store 2n coefficients just to record its state. Notably, each additional
qubit doubles the amount of memory needed for this task – which leads to the memory
problem that is further illustrated in the box below. (Note that only the internal spin
degree of freedom has been taken into account here. Just a single qubit with quantized
motional degrees of freedom, like a trapped ion, can pose a similar challenge [e.g. 130].)

Qubits vs. bits – memory requirements on a classical computer

qubits 1 2 42 51 69 . . .
coefficients 2 4 4.3× 1012 2.2× 1015 5.9× 1020 . . .
state vector 32 Bytes 64 Bytes 64 TB 32 PB 8 ZB . . .

(classical) bits 256 512 5.6× 1014 2.8× 1017 7.5× 1022 . . .

A general n qubit state is described by a complex-valued state vector of length 2n.
Using double-precision floating-point numbers (8 bytes each) one needs 2n+4 bytes
of memory, just to encode all of the vector’s elements corresponding to the complex
coefficients. The associated memory demand is indicated for a few examples in
the table above. Classical computer simulations of a universal quantum computer
have been run on supercomputers with results for 36 simulated qubits published
in reference [131] and a press release in 2010 reporting the factoring of 15707 into
113 × 139 using 42 simulated qubits (“JUGENE”: IBM BlueGene/L at the Jülich
supercomputing center). However, given the memory scaling shown above, it will
not be possible to increase the size of the simulated register much further: just the
storage of the state of 69 qubits (in zetabytes) surpasses, by almost an order of
magnitude, the number of bits stored by humanity in all of its technological devices
by the end of 2014 (based on estimates given in reference [132]). The number of 51
qubits corresponds to the ion chain shown in Figure 3.18.
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Proceeding to the actual simulation itself, the next step after the encoding is to
calculate the evolution of the simulated system. In the general case, this comes down
to solving a time-(in)dependent Schrödinger equation, that is represented by a 2n × 2n

Hamiltonian matrix in addition to the 2n state vector. The ensuing exponentially
scaling number of differential equations can in some cases be significantly reduced by
the use of symmetries, approximations and optimized numerical methods. With their
help, only a subset of the full matrix has to be stored at a given time, which allows
for some larger problems of tens of spins to still be simulated on a classical computer.
However, many other simulations, especially when reaching a size relevant to practical
applications, still remain out of reach even for state-of-the-art supercomputers.

It is this “exponential explosion”, both in the size of the Hilbert/computational space
and the number of equations describing the quantum state dynamics, that prompted
Richard Feynman in 1981 [5] to suggest that one might be able to escape the associated
problems by employing a (well-controlled) quantum system itself to perform quantum
calculations. Implementations following this paradigm, generally involve three steps
performed on a given number of qubits:

1. repeated, controlled preparation of the initial state

2. simulation of the desired dynamics and

3. read-out of the result.

For this to work well, the Hamiltonian underlying the quantum simulator needs to be
very well understood and has to be controllable with high fidelity over the parameter
range of interest. In addition, the read-out has to be possible in a way that allows one
to infer the quantities relevant to the simulation result.

As candidates for such quantum simulators, a variety of quantum systems have been
suggested, ranging from atoms in optical lattices, to ions in linear strings or 2D arrays,
to solid state implementations in arrays of quantum dots or superconducting circuits,
to photons in integrated waveguides. An overview of the different approaches can be
found in references [125, 133]. The implementations mainly differ in

• the number of particles (qubits) involved,

• the degree of control that can be exerted over the simulator,

• the interactions naturally present in the respective system and

• the fidelity with which a simulation result can be retrieved.
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5.2. Analog vs. digital quantum simulation

There are two distinct approaches to quantum simulation, commonly referred to as
analog quantum simulation and digital quantum simulation [124, 133]. Both differ in
the requirements as to what interactions have to be naturally present in the simulator
and in the way the Hamiltonian of the system to be simulated is implemented and
processed in the simulator.

Analog quantum simulators take the approach of finding a one-to-one correspon-
dence between the terms of the Hamiltonian Hsys = ∑

i hi to be simulated and those
terms corresponding to interactions {hsim} directly available in the simulator. This
mapping (Hsys ↔ Hsim) between the Hamiltonians essentially allows the simulator to
directly mimic the unitary evolution of the system to be simulated. Here, the main task
is to identify and relate the accessible simulator variables to the relevant parameters of
the simulated system.

While in this approach the fidelity of the simulation itself is only limited by the quality
of the three steps listed in Section 5.1 above, the class of problems that can be simulated
is bounded by the interactions that are directly available in the simulator. An early
application of this technique in trapped ions investigated non-linear interferometers
[134]. Later, the analog approach has been successfully used to perform simulations of a
basic quantum magnet [135], Ising interactions with more than 100 spins [136], quantum
phase transitions in frustrated systems [137–141], a model of interacting polaritons [142]
and even mimic relativistic quantum dynamics [130, 143]. Additionally, the scope of
analog simulations in trapped ions has been extended towards open quantum systems,
where the coupling to the environment is no longer a bug detrimental to the simulation
but instead a well controlled feature [144].

Digital quantum simulation translates the unitaries describing the dynamics of
the system to be simulated into quantum circuits built up from elementary gate oper-
ations on a quantum computer [25]. This is the kind of quantum simulation Feynman
suggested in his 1981 lecture, but only in 1996 Seth Lloyd showed [145] that by sim-
ply turning on and off a special but finite set of Hamiltonians, a quantum system can
be made to evolve in close correspondence to any unitary operator involving local in-
teractions, i.e. interactions that decay in strength with distance. In this way, one is
effectively using the universal operations set [24] of a quantum computer to calculate
the simulated system’s evolution. As such, the errors resulting from the approximation
Hsys ' Hsim can be directly controlled, quantified and potentially corrected.
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Encoding Simulation Read-out

Figure 5.1.: Trotter approximation in a digital quantum simulation algorithm.
Each local evolution operator hi of the full Hamiltonian H is implemented either via an inter-
action directly available in the simulator (h2, h3) or as a composite sequence that effectively
realizes the desired interaction (h1). The interactions hi do not necessarily commute. Following
the Trotter approximation, they are only switched on for a fraction t/n of the simulated time
step t. The resulting sequence is then concatenated n-times to arrive at the total time step t.

To demonstrate the procedure used in this approach, one can imagine the case of a
time-independent Hamiltonian where the solution of the Schrödinger equation takes the
form ψ(t) = e−iHt/~ψ(0) = Uψ(0). In general, the global unitary evolution operator U
can be directly implemented on the simulator only in certain specific cases (cf. analog
simulation). Local evolution operators Uk = e−ihkt/~, however, can always be realized
as long as a fixed number of operations from a universal set is available on the simu-
lator degrees of freedom. Even so, the corresponding terms generally do not commute(
U ,

∏
k e
−ihkt/~

)
and can therefore not be applied in an arbitrary order, as would be

necessitated by the composite operation shown in Figure 5.1. This is where the Trotter
formula [146], the central part of a digital simulation, comes to the rescue:

e−iHt = lim
n→∞

(∏
k

e−
i
~
hkt/n

)n
, n ∈N. (5.1)

In such a Trotter decomposition, the Hamiltonian H describing the system dynamics
is divided up into its individual terms, each of which is then sequentially applied for a
time t/n within a discrete block or single Trotter step. The length of each of its parts,
hence, depends on the total number n of blocks used in the discretization of the real
time step t. As n is always finite, the corresponding error in this approximation of
the global unitary is bounded and can be made arbitrarily small at the expense of a
polynomially growing number of additional operations [147]. Notably, in many cases n
does not need to be very large as the approximation often converges rather quickly.
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5.3. Digital quantum simulation using trapped ions

A digital quantum simulation following the algorithm outlined above can be imple-
mented using the universal operations set presented in Section 2.1 in combination with
the single ion addressing capability introduced in Section 3.5. To recap and introduce
respective shorthands, we define:

1. a local AC Stark shift on ion j, rotating its state by θ

O1(θ, j) = exp(−iθσjz),

2. a global AC Stark shift, shifting the phase on all ions equally by θ

O2(θ) = exp(−iθ
∑
j

σjz),

3. a global carrier rotation on all ions by θ around an axis set by phase φ

O3(θ, φ) = exp(−iθ
∑
j

σjφ) and

4. a Mølmer-Sørensen (MS) gate entangling all ions in a basis set by phase φ

O4(θ, φ) = exp(−iθ
∑
j<k

σjφσ
k
φ), where

σjk denotes the k-th Pauli matrix acting on the j-th qubit and σjφ= cosφ σjx + sinφ σjy.
Each operation uses one of two beam paths that impinge on the trapped ions from

different directions. The first beam, referred to as “global beam”, illuminates the ions
equally and is used to perform the global spin rotations of O2 and O3 as well as the
effective ion-ion (spin-spin) interaction O4. The second beam, referred to as “addressed
beam”, is sent in at an angle of 90° to the z-axis (68° for the trap at the university
laboratory), along which the ions form a linear string. It is tightly focused close to the
diffraction limit and can be used to address individual ions using the composite pulse
sequence described in Section 3.5, which effectively implements O1. In the experiments
involving more than two ions the position of the beam can be changed within ≈ 30µs
using an electro-optic deflector.



5.3. Digital quantum simulation using trapped ions 101

In the case of the resonant operation O3 the interaction between the j-th qubit and
the laser beam with optical phase φ is described by the Hamiltonian H3 = ~Ωσjφ. The
rotation angle θ3 = Ωt is given by the Rabi frequency Ω (cf. Section 2.3.3) that can be
tuned via the optical power as well as a variable pulse length t.

The off-resonant interaction O2 additionally employs a large detuning ∆� Ω of the
laser frequency with respect to the qubit transition frequency. Its effective Hamiltonian
hence becomes H2 = ~Ω2

4∆ σjz (cf. page 15).
Operation O4 makes use of the global beam’s projection onto the z-axis of the ion

string which allows the laser to couple to that direction’s motional COM mode at
frequency ωz ≈ 1.2 MHz. The laser beam is then simultaneously detuned from the
qubit carrier frequency by ±(ωz ± δ) realizing a bichromatic light field (cf. Section 2.5)
that implements an effective spin-spin interaction following the approach of Sørensen
and Mølmer. Values of δ vary between 10 kHz and 100 kHz and every tMS = 2π/δ the
interaction effectively generates the unitary operation O4 with Θ4 = η2Ω2/δ2.

The following sections begin with a proof-of-principle test of the convergence of the
Trotter decomposition with increased digital resolution and higher order approxima-
tions. Then, a time-dependent Hamiltonian is investigated in a protocol for adiabatic
state preparation. The final sections demonstrate the versatility and scaling behavior
of the digital simulation by (I) adding more interactions and (II) adding more qubits
to the experiments. Finally, Hamiltonian spectroscopy is presented as a direct appli-
cation enabled by the digital approach. Quantum state or process tomography carried
out for certain points in the observed dynamics of each simulation, provide a way to
directly quantify the simulation quality in a comparison with analytical solutions and
theoretical predictions based on the Trotter approximation.
Note: To make it easier to calculate and visualize the simulated system’s time evo-
lution for the different input states, Hamiltonians H and terms hk used in the exper-
iment, we define dimensionless Hamiltonians H̃ = H/E such that unitary evolutions
U(t) = e−iH̃Et/~ are quantified by a unitless phase Θ = Et/~.

5.3.1. Ising model / Proof-of-principle demonstration

A simple model of ferromagnetism and phase transitions is the Ising model of interacting
spin-1/2 particles which is described by the Hamiltonian
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Figure 5.2.: Digital simulation of a two-spin Ising system
a) Dynamics for the initial state of |↓↓〉 for increasing levels of digital resolution (n = 1, 2, 3, 4).
A single digital step corresponds to D.C = O4(θa/n, 0).O2(θa/2n), where θa = π/(2

√
2). b)

First and second order Trotter-Suzuki approximations with their respective pulse sequences
employing D = O4(π/8, 0) and C = O2(π/8) are compared for the initial state |→→〉x .

H = J
∑
i,j

σixσ
j
x +B

∑
i

σiz. (5.2)

Here, B determines the strength of a uniform external magnetic field in the z-direction
and J quantifies a uniform spin-spin interaction strength along an orthogonal direction
in space. The indices i, j refer to the i-th and j-th spin-1/2 particle. The simplest case
of the model employs two particles and serves as a building block of more complex spin
models investigated later. While an analog simulation of the Ising model is possible
in trapped ions [135], we implement a digital approach to investigate the convergence
of and errors accumulated in the Trotter approximation. Mapping the spin states |↑〉
and |↓〉 to our optical qubit’s logical states, we realize sequences of Trotter steps using
operation O2 to simulate the interaction with the external magnetic field and operation
O4 to realize the spin-spin interaction in an orthogonal direction.

First, we investigate a time-independent case with J = 2B, where Eq. (5.2) couples
the state |↓↓〉 to the maximally entangled superposition 1/

√
2(|↑↑〉 + |↓↓〉). Results of

the simulation using the “trotterized” unitary U(t) ≈
(
e−iCt/ne−iDt/n

)n are shown in
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Figure 5.3.: Quantum process matrices at θa for n = 1 and n = 4 in Figure 5.2
The absolute values of the experimentally reconstructed process matrices (i.) are shown in
the Pauli basis next to theoretical calculations of a simulated digitized evolution (ii.) and the
exact analytical calculation (iii.). The overlaps given as percentage are calculated using the
full, complex process matrices and the mixed-state fidelity [148]. One standard deviation of
uncertainty, given in brackets, is obtained from a Monte-Carlo bootstrapping technique [149].

Figure 5.2.a for increasing digital resolutions using n = 1 up to n = 4 pairs of (O2, O4)
operations. In each case, the size (in terms of θ) of an individual Trotter step is set by
adjusting the pulse length t2 in O2 and the detuning δ in O4.

The simulator state at the point marked by θa, is investigated by full quantum process
tomography [150–152]. The tomography entails feeding a complete set of the possible in-
put states into the simulation process and measuring each output, again, in a complete
basis. As quantum projection noise can lead to unphysical results, the most likely quan-
tum process matrix is determined in the following by an iterative maximum-likelihood
reconstruction algorithm [153], which yields the results shown in Figure 5.3.

Errors of a first-order Trotter approximation are on the order of t2/n. A second-order
Trotter-Suzuki approximation [25, 154] implementing U(t) ≈

(
e−iDt/2ne−iCt/ne−iDt/2n

)n
readily improves on this, yielding an error of t3/n at the expense of more operations.
The results of both cases are directly compared in Figure 5.2.b for the initial state
|→→〉x, showcasing the improved convergence.
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Figure 5.4.: Time-dependent Ising model
a, b) A linear increase in the spin-spin coupling strength J from 0 to 4B is divided into sequences
of discrete building blocks α, β. c) The initial state |↓↓〉 evolves into an entangled superposition

1√
2 (| ←←〉x + | →→〉x), which is close to the ground state of the final Hamiltonian (step 8).

The black percentages are calculated mixed-state fidelities F between the measured state (•)
and the ideal digitized state (�). Orange percentages quantify the amount of entanglement in
the measured state by its tangle τ .

Digital simulations are not limited to time-independent cases. In figure 5.4 we now
investigate a case in which J increases linearly from 0 to 4B. Starting in the ground
state |↓↓〉 of the external magnetic field, the system evolves adiabatically into the anti-
ferromagnetic entangled ground state 1√

2(|←←〉x + |→→〉x) of the final Hamiltonian.
With a total simulated phase spanning θ = [0, π/2], the ramp increasing the spin-spin
coupling strength J is divided into 8 digital steps, leading to oscillations that can be
understood as non-adiabatic effects. Full quantum state tomography [151, 155, 156] is
used to calculate the mixed-state fidelity F [148] and tangle τ [157] at each digital
step in the simulation. As Figure 5.4.c shows, the data is in good agreement with the
theoretically calculated states expected for the chosen discretization and rate of change
of the control parameter J .

The procedure used in the simulation of the time-dependent Hamiltonian can also be
regarded as a protocol for quasi-adiabatic digital state preparation, which provides us
with a way to initialize ground states of system Hamiltonians that cannot be encoded
directly.

5.3.2. Scaling up to more complex Hamiltonians

Additional spin-spin interactions in the y and z directions can be added by simply
extending the operation sequence in each Trotter step accordingly. Figure 5.5 shows
the dynamics of the initial state |→←〉x under three increasingly complex spin models.
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Figure 5.5.: Scaling up to more complex Hamiltonians
a to c) Dynamics of the initial state | →←〉x. A single digital step is built up according to
the diagram shown in each panel. The operations used in the simulations are C = O2(π/16),
D = O4(π/16, 0), E = O4(π/16, π), F = O3(π/4, 0). Unfilled shapes correspond to the ideal
digitized dynamics, filled shapes are data and lines represent the exact dynamics obtained from
analytical calculations.

The particular input state has been chosen because the ideal evolution is markedly
different in each model. In all cases the digital resolution (size of a Trotter step) is
fixed to θ = π/16. In terms of the basic building blocks, this corresponds to a total of
24, 48 and 84 gate operations in the Ising, XY and XYZ model, respectively. After 4
steps, process fidelities were determined as before yielding values of 88(1)%, 85(1)% and
79(1)% for the respective models. Estimates based on a numerical simulation assuming
perfect operations in the digital simulation yield process fidelities of 98% in all cases,
already hinting at inaccuracies due to imperfect operations beyond the expected Trotter
errors.
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5.3.3. Scaling up to a larger number of spins

Starting at three spins, the question of non-symmetric interaction distributions arises.
They can be implemented with sequences of O4 and O1 operations, where the single
particle manipulation of the latter allows us to restrict the effect of the former’s spin-
spin interaction to a subset of the whole simulator register. An example is given in
Figure 5.6.a, where one coupled state |↑↓↓〉 is populated faster than the others owing
to the broken symmetry.

A long-range 4-spin Ising interaction is investigated in Figure 5.6.b. The increased
complexity of the multi-body interactions leads to a rich structure in the dynamical
evolution. The different oscillation frequencies observed in the data can be used, for
example, to extract information about the energy gaps in the spectrum of the simulated
Hamiltonian, which is demonstrated in the following section.

The largest simulation implemented in this project is the six-spin many-body inter-
action shown in Figure 5.6.c. It directly couples the states |↑↑↑↑↑↑〉 and |↓↓↓↓↓↓〉 which
periodically creates a maximally entangled Greenberger-Horne-Zeilinger (GHZ) state.

In any simulation beyond two qubits the direct characterization of the simulation
quality via quantum process tomography becomes impractical. The required number of
different experimental configurations that needs to be measured scales as 12n, where n
is the number of qubits. In the four- and six-ion cases above, this would correspond to
20 736 and 2 985 984 measurement settings, respectively. However, an average process
fidelity Fp can be bounded more efficiently [158]. Following this approach, it is sufficient
to perform 2n(n + 2) (512 for n = 6) measurements in order to at least put a bound
on the simulation quality. To keep this discussion brief, the reader is referred to the
comprehensive (32 page) supplementary material available with the publication for
further details and data tables of parity measurements used in the analysis.

Especially in simulations involving operation O1 and those that populate highly en-
tangled GHZ states, a damping of the dynamics is observed which results from accu-
mulated errors over the course of many gate operations. In case of the former, single
ion addressing errors (cf. Section 3.5) multiply while the latter is influenced by “su-
perdecoherence” [67] corresponding to the increased fragility of an n-body entangled
state.
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Figure 5.6.: Scaling up to a larger number of spins
a) Example for the implementation of an anisotropic spin-spin interaction in a system of three
ions. The addressed operation G = O1(π/2, 1) allows us to selectively manipulate spin 1 and
compose the desired Hamiltonian from an equal-strength interaction and another with twice the
strength between one pair. b) Simulation of a four-spin long-range Ising system with the initial
state |↓↓↓↓〉. The blue, black and red lines (symbols) correspond to cases where an even number
of spins are pointing down. Each digital step corresponds to D.C = O4(π/16, 0).O2(π/32).
c) Six-body interaction using the operations 4D = O4(π/4, 0) and F = O1(θ, 1). At θ = π/4
(marked by the gray line) the average process fidelity Fp is bounded to have a value between
56(1) ≤ Fp ≤ 77(1) (see text). — In b) and c) the symbol key is given by the probability Pi of
finding i spins pointing up (�P0 _P1 �P2 NP3 IP4 HP5 JP6).
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Figure 5.7.: Hamiltonian spectroscopy
a) Energy level diagram of the 4-body Hamiltonian simulated in Figure 5.6.b. The initial
state |↓↓↓↓〉 is a superposition of three different energy eigenstates (marked in red) with the
respective population probabilities given as percentages. Unpopulated energy levels are shown
in gray. The energy gaps between the populated states are labeled A, B and C. b) Frequency
spectrum obtained from a Fourier transformation of the time evolution data (black trace, P2
in Figure 5.6.b), together with the values theoretically expected from a digitized simulation
(unfilled squares) and the actual spectrum calculated analytically (red line).

5.3.4. Hamiltonian spectroscopy

The oscillation frequencies seen in the time evolution of the various observables of a
quantum system correspond to energy gaps in the underlying Hamiltonian. A Fourier
transformation can be used to extract them and infer information about the energy
spectrum of the simulated Hamiltonian. Specific energy gaps of interest could be tar-
geted by preparing superpositions of eigenstates via an initial quasi-adiabatic digital
evolution as shown before in Figure 5.4 [159].

An example for this method is given in Figure 5.7. Here, the spectral components
of the 4-body Ising interaction shown in Figure 5.6.b are obtained with the input state
|↓↓↓↓〉 from the observable corresponding to the probability of finding all combinations
of two spins pointing up and two spins pointing down. While at least one energy gap can
be clearly identified, the results also show the limitation of this approach: depending
on the coupling strength of the laser-mediated simulator Hamiltonian (and thereby
the speed of the time evolution) the spectral resolution remains limited. However,
the recording of longer time-domain traces is further hampered by decoherence whose
strength generally is state- and protocol-dependent, as shown in the prior section.
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5.4. Conclusion

Digital quantum simulation provides access to arbitrarily engineered interactions and
facilitates the quantification of intrinsic simulation errors. However, the concatenated
approach mandated by the Trotter approximation comes at the price of a higher sensi-
tivity to errors in the experimental implementation of the repeatedly applied “building
blocks” of the simulated interactions. Whereas analog simulations can often be tailored
to correct for systematic experimental errors and fluctuations in control parameters,
digital simulations rely on the overall constant quality of each individual operation.
Depending on the simulation protocol, small errors can accumulate and be detrimental
to the quality of the obtained results. However, the gate-based digital model provides
the advantage that it is readily compatible with protocols for quantum error correction
which can be used to counteract these adverse effects. First results of repetitive quan-
tum error correction have been shown in reference [160] and are certainly needed for
larger simulations than those presented in this chapter. Recently, the digital approach
has been extended to include the controlled simulation of dissipation [161], further
extending the range of models accessible by quantum simulations.





6. Entanglement-enhanced detection of
single-photon scattering events
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This chapter presents a spectroscopy technique designed to enhance the detection sen-
sitivity for scattering events on a broad optical transition towards the single photon
level. The method relies on sensing the small recoil that the scattering of a single pho-
ton imparts on an atomic or molecular ion. Its novelty lies in the “amplification” of
this very weak “momentum kick” by means of a Schrödinger cat state’s high sensitivity
to external perturbations. It is demonstrated in a proof-of-principle experiment in the
newly-built trap II (cf. Section 3.1).

The chapter begins with a brief discussion of ways to investigate the light-matter
interaction at the single particle level. Then, it expands on the effect of a photon re-
coil on a trapped ion and provides a description in terms of displacement operators
in phase space. In the following, motional Schrödinger cat states are introduced and
their creation using an optical qubit and as well as their size and coherence are inves-
tigated. Finally, the cat state spectroscopy protocol is described, demonstrated and
benchmarked in a two-ion crystal of 40Ca+ and 44Ca+. The chapter concludes with a
discussion on heating-rate-induced decoherence and its adverse effects on the protocol’s
attainable detection sensitivity.

6.1. Light-matter interactions at the single particle level

A fundamental element of quantum optics and spectroscopy is the interaction of a single
photon with a single atom or molecule. The many advances in atomic, molecular and
optical (AMO) physics made over the 20th century [162] have brought investigations of
this fundamental light-matter interaction into reach. However, to this day – even with
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Figure 6.1.: Electron shelving
a) Energy level structure considered in the electron shelving method. Photon absorption on
the targeted (1)↔ (2) transition is detected via the cessation of fluorescence observed from the
scattering of photons on the auxiliary transition (1)↔ (3). b) Under the influence of a (near)
resonant excitation on the (1) ↔ (2) transition, changes between two fluorescence levels occur
at random, indicating “quantum jumps” between states (1) and (2). c) Mapping of the electron
shelving method to the energy level structure of Ca+.

state of the art technology – the detection of single photons emitted or absorbed by an
atom or molecule remains a formidable challenge.

In fluorescence measurements it is crucial for the detection optics to cover a large
solid angle to efficiently collect the emitted photon(s) in the first place. Absorption
measurements, taking the inverse approach, rely on a good mode-matching between
the atom and the light field used to probe it. Both techniques require detectors with
a high quantum efficiency specifically tailored to the wavelength in question. However,
even with sophisticated optical setups, such as those in references [163, 164], no more
than a few percent overall detection efficiency have been achieved thus far.

A way around this issue has been proposed by Hans Dehmelt already in 1975 [86, 87].
His indirect detection method, known by the name electron shelving, is applicable to
the following case (illustrated in Figure 6.1 above): Suppose one wants to detect the
absorption or emission of a photon on a transition between a ground (1) and an excited
state (2) in a single atom. The atom’s electronic level structure additionally contains
a third level (3), that also connects to the ground state (1) but has a much higher
decay rate than state (2). Suppose finally, one can drive the strongly allowed (1)↔ (3)
auxiliary transition with resonant light and collect at least a fraction of the scattered
fluorescence photons. If a photon now gets absorbed on the (1) → (2) transition, the
electron “jumps” to state (2) and the single absorption event is immediately indicated
by the sudden cessation of the previously abundant fluorescence observed from the
(1) ↔ (3) transition. The electron, figuratively speaking, has been “shelved” to the
(2)-state, which gave the detection technique its name.
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One of the fundamental questions arising from the quantum mechanical description of
light-matter interactions is “Do quantum jumps (really) exist?” . Already in 1952, Erwin
Schrödinger published his respective doubts in a two-part article [3, 165] with that very
question as its title. Still, only in the mid-1980s, ion trapping and laser technology had
advanced sufficiently to approach that (up to then thoroughly debated) question [see,
e.g., references in 4]. Dehmelt’s electron shelving technique, with its very high signal to
noise ratio and near 100 % detection efficiency, was the essential ingredient to perform
an experiment. Finally, in 1986, using single trapped ions, the first observations of
“quantum jumps” were reported [166–168]. In its use for spectroscopy, however, the
electron shelving’s prerequisite of a suitable level scheme limits its applicability to only
a few ionic species.

Almost 20 years later, following significant progress in the development of methods
conceived for quantum information processing using trapped atomic ions [12–15], a
new technique was devised to enable the application of the electron shelving method
to atomic species that lack suitable transitions. Bearing a name that provides a clear
indication of its origin, quantum logic spectroscopy (QLS) [20] confines a “spectroscopy
ion” of interest together with an auxiliary “logic ion” of a different species. A joint
vibrational mode shared by the two particles is then used to map the internal state of
the spectroscopy ion to the internal state of the logic ion, where it can subsequently
be read out using electron shelving. In addition to enabling precision spectroscopy on
atomic species previously out of reach, the strong Coulomb interaction between both
trapped particles allows this approach to extend the benefits of laser cooling to elements
where direct laser cooling is not feasible. Recently, such sympathetic cooling [169] via
the logic ion made it possible to develop extremely accurate single-ion optical atomic
clocks [17, 18] that interrogate the 1S0 ↔ 3P0 clock transition of 27Al+.

A key requirement needed for quantum logic spectroscopy is the ability to spectrally
resolve motional sidebands of the transition in question. Typical motional frequencies
ω/(2π) are in the range of one to a few MHz, which again limits the kind of transitions
that can be investigated to those with a linewidth Γ� ω.

Furthermore, the linewidth of a transition is not the only concern in the investigation
of optical spectra in atomic and molecular ions. In some cases, scattering events are
limited to only a few or even just a single photon. This can be due to technical reasons,
e.g. difficulties in producing or delivering the light needed for spectroscopy, or simply
result from the fact that a transition is not closed. In this case, a decay does not lead
back to the initial state, preventing repeated scattering events on the same transition.
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6.2. Photon recoil

Instead of detecting the spectroscopy ion’s electronic state directly or via QLS, one
can also use another signature of a scattering event: the mechanical recoil experienced
by the ion upon absorption or emission of a photon characterized by wavelength λ,
momentum p = ~k and wavenumber k = 2π/λ. In order to quantify its magnitude,
the “momentum kick” has to be compared to the energy of a motional quantum ~ω
of the ion oscillating at (angular) frequency ω in the harmonic trapping potential (cf.
Section 2.3.4). The square root of this ratio takes the form of the dimensionless Lamb-
Dicke parameter η =

√
Erec/~ω as seen before in Eq. (2.26), which for experiments

on optical transitions typically satisfies η � 1. Here, the recoil energy is given by
Erec = p2/(2m), where m is the mass of the ion.

For an ion cooled to the motional ground state, the action of a photon recoil is de-
scribed by a coherent displacement D(iη) in phase space (Figure 6.2.a) as the following
calculation, using Eqs. (2.20) and (B.12), shows:

〈0|D†(iη)p̂D(iη) |0〉 = p0i 〈0|D†(iη)(a† − a)D(iη) |0〉

= p0i 〈0|D†(iη)D(iη)((a† − iη)− (a+ iη)) |0〉

= p0(2η) 〈0|D†(iη)D(iη) |0〉

= p02η = p02kx0

=

√
~mω

2 2

√
~

2mω = ~k.

Consequently, the probability P of being promoted out of the ground state by absorption
of a single photon is (Figure 6.2.b)

P(0→1) = 1− |〈0|D(iη)|0〉|2 ≈ η2.

This makes a direct detection of the recoil imparted by a single photon rather inefficient.
While each scattering event contributes very little motional energy, the scattering of
100’s of photons does lead to a measurable heating and has been used to reconstruct
spectral lines of broad transitions from the observed fluorescence change of a Doppler-
cooled control ion [170]. Using a ground state cooled ion crystal of 24Mg+ and 40Ca+,
a very recent experiment [38] has determined the line center of the 40Ca+ S1/2↔P1/2

transition by detecting the recoil-induced heating of as little as 15 scattered UV photons.
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...a) b)

Figure 6.2.: Photon absorption by a ground state cooled ion
a) Phase space representation. An absorption event displaces the motional ground state (circle)
by a small amount in phase space. b) Fock space representation. Most scattering events of a
photon of momentum p = ~k do not change the motional state. The likelihood of increasing
the ion’s energy by one motional quantum ~ω is η2.

The next sections will show how one can apply a non-classical state of motion to
amplify the photon recoil to a level that allows for a very efficient detection of events in
which only a single infrared photon is scattered. Unlike any of the techniques mentioned
above, the method of Schrödinger cat state spectroscopy introduced in Section 6.4 below
is able to maintain a similar sensitivity even in the absence of ground state cooling.

6.3. Schrödinger cat states of motion

In 1935, Erwin Schrödinger put forward his famous thought experiment involving a
cat whose fate is entangled with the state of an atom, leaving it simultaneously dead
and alive for as long as it is not observed [171]. This superposition of distinguishable,
macroscopic quantum states, since then referred to as “Schrödinger cat states”, was
meant to exemplify the inherent peculiarities of quantum theory. In order to create
and preserve states with the same properties in the laboratory, a well-controlled and
well-isolated quantum system is needed. A single trapped ion confined in a harmonic
potential is an ideal candidate. With the ability to perform coherent manipulations of
the motion using laser beams that couple to the trapped ion’s internal states, proposals
on how to create various non-classical states of motion where put forward, e.g. references
[172–174]. Shortly afterwards, the first “mesoscopic” Schrödinger cat state, in which
the ion’s motion becomes entangled with its internal electronic states, was created in
the laboratory [175]. Now accessible experimentally, investigations into the decoherence
of such states under controlled coupling to the environment followed [176, 177]. Both of
these experiments made use of a two-photon Raman coupling that coherently displaced
the |↑〉 state of a qubit encoded in the hyperfine ground states of 9Be+ in phase space.
By interleaving the displacement operation with a carrier π/2 and a π pulse, both qubit
states were sequentially displaced in opposite directions, effectively creating a cat state.
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Creation of single-ion motional cat states using an optical qubit

The optical qubit in 40Ca+ allows us to create a Schrödinger cat state using only a
single bichromatic laser pulse [178]. With the appropriate choice of optical sum and
difference phase, the bichromatic Hamiltonian of Eq. (2.35) directly implements the
state-dependent coherent displacement D(α) introduced in Eq. (2.23). To illustrate the
effect of its application to the trapped ion, we start with the ground state of both the
ion’s internal and external degree of freedom

|Ψ0〉 ≡ |−〉z |0〉 = 1√
2

(
|+〉x − |−〉x

)
|0〉 .

Here, the electronic ground state |−〉z has been rewritten in the form of a superposition
of the σx basis states |±〉x, which are eigenstates of the specific bichromatic Hamiltonian
in Eq. (2.36). The motional ground state |0〉 corresponds to a Gaussian distribution of
position and momentum in phase space (green circle in Figure 6.3). Application of the
displacement operator now creates the state

|Ψcat〉 = D(α) |Ψ0〉 = 1√
2
(
|+〉x|α〉 − |−〉x| − α〉

)
,

in which the |+〉x electronic eigenstate has become entangled with a coherent state
displaced to |α〉 and likewise |−〉x has become entangled with a coherent state displaced
to |−α〉. A this point, the spin-motional cat state |Ψcat〉 is fully characterized by the
distance d = 2|α| of the two coherent states in phase space, where α is the dimensionless
displacement amplitude of Eq. (2.22).

If a projective measurement in the qubit’s logical basis 〈σz〉 = 〈Ψcat|σz |Ψcat〉 is
carried out on |Ψcat〉, the probability to find the ion in its electronic state |↑〉 is

p↑ = 1
2
(
〈σz〉+ 1

)
= 1

2
(
1− e−2|α|2

)
. (6.1)

As the measurement ignores the motional part of |Ψcat〉, a complete statistical mixture
of the qubit’s basis states (p = 0.5) is found for α → ∞. However, even at α ≈ 1.8
(p↑ = 0.499) the remaining overlap of the two Gaussian distributions in phase space is
already negligible, as is illustrated in Figure 6.3.

In the experiment, we first prepare the initial state |Ψ0〉 by optical pumping and
sideband cooling (Sections 4.3 and 4.6). Then, the displacement is applied in the form
of a single bichromatic laser pulse of duration t whose spectral components are resonant
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Figure 6.3.: Creation of a Schrödinger cat state using a bichromatic light field
a) Mean excitation to |↑〉 as a function of bichromatic pulse length. Based on Eq. (6.1), the red
line is a fit of p↑ = 1

2 (1− e−2(a(t−t0))2) to the data. The experimental parameters relating to the
displacement α = ηΩt were determined independently to be η = 0.08 and Ω ≈ 2π × 294 kHz.
Pulse shaping with a 4 µs Blackman window (cf. page 42) is used to suppress off-resonant
excitation of the carrier transition and restricts data points to those ≥5µs. b) The coherent
ground state wave packet splits further and further into two parts, the longer the bichromatic
light field is applied for. The size of the resulting cat state is given by their distance d and
directly determined by the length of the applied pulse t.

with the red and blue sideband of the chosen motional mode. The two corresponding
frequency components are produced by AOM 12 (cf. Figure 3.9) and subsequently cou-
pled into the same single-mode optical fiber. In terms of the experimental parameters,
the displacement amplitude α = ηΩ t is directly proportional to the bichromatic pulse
length t, the Lamb-Dicke factor η and the coupling strength Ω of the laser beam used
in the experiment. The latter assumes an equal intensity in the beam’s red- and blue-
detuned frequency components (Ωn,n−1 = Ωn,n+1). After a first optimization during
fiber coupling, this condition is regularly checked by sequentially shifting either com-
ponent onto the carrier frequency (using AOM 11) and comparing Rabi-flops. The RF
power levels sent to AOM 12 are used for fine-tuning.

Cat state size

Once the cat state has been created, its size d = 2|α| can be determined from the mean
number of phonons 〈n〉 = |α|2 that characterize the coherently displaced parts moving
back and forth in the harmonic oscillator (c.f Section 2.3.4). The value of 〈n〉 can be
obtained from a fit to Rabi-flops driven on resonance with the blue motional sideband
(BSB). In this case, the excitation probability p↑ is fit by Eq. (2.31) with Ω = Ωn,n+1.
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Figure 6.4.: Cat state size
Fits to Rabi flops on the blue motional sideband (BSB) after a Schrödinger cat state has been
produced by a resonant bichromatic excitation of different length. Before the traces are recorded,
the electronic excitation was “traced out” by incoherent light at 854 nm.

Beforehand, the electronic state components have to be recombined in |−〉z or “traced
out” [25] from the joint state |Ψcat〉 using an incoherent pulse of 854 nm light. This
leaves the motional state unchanged (for all practical purposes) and “frees” the internal
state for excitation on the blue sideband.

Figure 6.4 above shows the results obtained after the application of a bichromatic
pulse of t = 50µs and t = 100µs. Both were acting on a single ion with a similar coupling
strength to the one used in Figure 6.3 before. The RMS size of the ion’s ground state
|0〉 is x0 = ~/(2mω) ≈ 10 nm at the axial trap frequency ωz/(2π) = 1.229 MHz used
in the experiment. The distance between the superimposed motional wave packets in
the trapping potential is 2|α|x0. Clearly showing their separation, this corresponds to
68 nm in the 〈n〉 = 11 case and 132 nm for 〈n〉 = 44, respectively.
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Figure 6.5.: Cat state coherence
Phase coherence of the cat states shown in the corresponding panels of Figure 6.4. In the pulse
sequence shown above, a cat state is created (CAT) and interfered (CAT−1) using bichromatic
pulses of the same length but with an optical phase difference of π. The relative phase of the
cat state’s components is varied via a σx carrier rotation placed in between. The contrast of
the retrieved fringe pattern is indicative of their coherence. The gray shaded area in panel (b)
indicates the expected reduction of the fringe contrast from motional heating at rate RH .

Coherence of motional cat states

Cat states are well known for their sensitivity to perturbation from the environment
and exhibit a decoherence rate that scales with |α|2 [176, 177]. In our case, decoherence
is mainly caused by two mechanisms: motional heating, that randomly displaces the
coherent superposition in phase space (Sections 4.7 and 6.5.2) and drifts of the trap
frequency (Section 4.8.3), that rotate both components around the origin in phase space.

Figure 6.5 shows an interference experiment that, akin to the parity signal in Fig-
ure 4.13, allows us to directly determine the remaining coherence from the contrast of
the observed fringe pattern. Here, a σx carrier rotation of variable length placed after
the creation of the cat state modifies the state to

|Ψcat〉 = 1√
2
(
e−iδ|+〉x|α〉 − eiδ|−〉x| − α〉

)
.

The phase factor δ is proportional to the length of the σx rotation and causes the signal
p↑ to oscillate between p = 0 and p = 1 after interfering the cat state with a second
bichromatic pulse of opposite phase.
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6.4. Cat state amplification of a recoil signal

In the same way as the quantum logic spectroscopy introduced in Section 6.1, cat state
spectroscopy employs a logic ion to implement sympathetic cooling and state detection
via electron shelving in the investigation of a co-trapped spectroscopy ion.

The procedure used to create the spin-motional cat state of a single ion is readily
extended to the two-ion case. Here, the bichromatic light field is tuned in resonance
with the sidebands of the two-ion crystal’s center of mass mode and a cat state |Ψcat〉
is created in the same way as before. This time, however, only the logic ion’s spin state
becomes entangled with the motion.

The cat state’s two superimposed coherent states oscillate in phase space at the
frequency ω of the motional mode that was addressed by the bichromatic pulse. For
clarity, Figure 6.6.a depicts a co-rotating frame, such that the displacement in the cat
state creation is linear along one direction in phase space (cf. Figure 2.6 in Section 2.3.4).
Note that the bichromatic pulse, being the first coherent pulse interacting with the
motion of the ions, sets the phase reference for all subsequent interactions.

In the following step, spectroscopy light is sent into the trap. If now a single photon
is absorbed by the spectroscopy ion, its recoil causes both vibrational components to
be displaced in the same direction in phase space by an amount ηabs that corresponds
to the Lamb-Dicke factor of the absorbing transition. As a result, the cat state changes
to

|Ψ′cat〉 = 1√
2

{(
|+〉x|α+ β〉

)
−
(
|−〉x| − α+ β〉

)}
,

where β = ηabse
iϕsc and the scatter phase ϕsc = ωτ relates the time τ of the absorption

event to the oscillatory motion at frequency ω of the cat state’s components in phase
space. Consequently, the displacement vector’s direction in phase space is now given
by ϕsc in the co-rotating frame of Figure 6.6.b.

Finally, a second bichromatic pulse, in which the overall optical phase is shifted by π
with respect to the first pulse, recombines both motional parts and disentangles them
from the logic ion’s internal state. If a photon was absorbed, the complete trajectory
in phase space now encloses an area, depicted by the gray shading in Figure 6.6.c, that
corresponds to a geometric phase [58]. To see how it affects the electronic states, we
calculate the effective unitary evolution associated with the three displacements in each
case. State |+〉x is displaced byD(−α)D(β)D(α) and |−〉x undergoesD(α)D(β)D(−α).
In order to show how both states accumulate a phase of opposite sign, it is convenient to
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Figure 6.6.: Cat state spectroscopy in phase space
a) Schrödinger cat state preparation. A qubit encoded in a logic ion, initialized in | ↓〉z (inset
Bloch sphere), becomes entangled with a joint vibrational mode of the two-ion crystal formed
with the co-trapped spectroscopy ion. b) Absorption of a photon by the spectroscopy ion causes
a displacement of size ηabs (magnified for clarity) in a direction determined by the event’s timing
ϕsc relative to the cat state’s oscillation phase. c) The cat state is reinterfered, disentangling the
internal state from the motion and leaving the geometric phase φabs in the logic ion’s internal
state, where it can be read out via standard electron shelving.

add a fourth (hypothetical) displacement D(−β) to the end of the sequence, such that
the motion is completely retuned to its original state and drops out in the calculation.
In the case of |+〉x we now have

D(−β)D(−α)D(β)D(α) = D(−β − α)eiIm(α∗β)D(β + α)eiIm(α∗β) = ei2Im(α∗β),

where Eq. (2.25) was used in the calculation, and similarly e−i2Im(α∗β) for state |−〉x.
Hence, for a real-valued α, the geometric phase

φabs = 2 Im(αηabse
iϕsc) = 2αηabs sinϕsc (6.2)

ends up in pre-factors associated with the logic ion’s electronic states and transforms
its state to

|−〉z → |Ψf 〉 = 1√
2

(
eiφabs |+〉x − e

−iφabs |−〉x
)

= cosφabs |−〉z + i sinφabs |+〉z .

The signature of the photon scattering process can now be obtained from a measure-
ment of the logic qubit’s spin projection 〈Ψf |σz |Ψf 〉 = − cos(2φabs). If an additional
σx(π/2) pulse is carried out prior to detection, a phase factor of π/4 is added to φabs

such that the spin projection 〈σy〉 = sin(φabs) is detected instead. As the initial state
|−〉z can be represented as an equal superposition of the σy basis states |±〉y, the signal
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is now centered around 0. However, while its sinusoidal character allows for the highest
sensitivity at this point, the 〈σy〉-signal vanishes in all cases where the absorption event
is not synchronized with the oscillation of the cat state as β has to be averaged over
all possible ϕsc = [0, 2π]. The 〈σz〉, on the other hand, always yields a non-zero signal
that is centered around −1 such that ϕsc =]0, π[ and ϕsc =]π, 2π[ do not cancel.

Varying the scatter phase ϕsc of the spectroscopy pulse allows us to retrieve a signal
in the form of a sinusoidal fringe pattern similar to that seen in Section 4.8. In this
respect, cat state spectroscopy can be seen as a Ramsey-like experiment.

6.5. Random geometric phases

The treatment presented so far neglected the fact that a complete scattering event
involves two momentum kicks, one in absorption and one in emission. As the spec-
troscopy light comes from a directed laser beam, it is advantageous to have it pointing
in the direction of the motional mode supporting the cat state, such that the Lamb-
Dicke factor ηabs is maximized. When its application is synchronized with the cat state
oscillation, the phase φabs remains constant in every experiment. The direction of the
emitted photon associated with the Lamb-Dicke factor ηem and phase φem, however, is
random and hence needs to be averaged over. The same applies to a third phase φH

that is due to fluctuating electric fields heating the ion crystal. Therefore, in total, we
detect the the overall phase 〈σz〉 = − cos(2φabs)cos(φem + φh), where the bar indicates
the averaging, whose individual terms will be calculated in the following.

6.5.1. Spontaneous emission

To calculate cos(φem) we rely on the isotropic emission of the spontaneous emission
from P1/2 → S1/2, yielding a phase φem = φ̃em cos θ. Here, θ denotes the angle between
the motional mode supporting the cat state and the emission direction of the photon
and φ̃em = 2αηem sinϕsc corresponds to the maximum value possible at θ = 0. Carrying
out the averaging in the spherical coordinates θ and ϕ̃, we find

cos(φem) = 1
4π

∫ 2π

0
dϕ̃
∫ π

0
dθ sin θ cosφem

= 1
2

∫ π

0
dθ sin θ cos(φ̃em cos θ)

= sin φ̃em/φ̃em = sinc(φ̃em).



6.5. Random geometric phases 123

The last line follows from expanding the cosine of the preceding line into a Taylor series,
exchanging summation and integration, evaluating the integrals and finally resumming
the resulting Taylor series. As the scatter phase ϕsc of the spontaneous emission cannot
be controlled, it only contributes to the 〈σz〉-signal, while it averages away in 〈σy〉
measurements, effectively leaving those to only detect the absorbed photon.

6.5.2. Heating-induced decoherence

Fluctuating electric fields give rise to motional heating during the cat state generation,
photon scattering and cat state recombination. The random phase φH accumulated
during the time in τ in which a cat state is created is given by〈

φ2
h

〉
= 16

3 ncatRhτ, (6.3)

where ncat = |α|2 is the size of the cat state and Rh the heating rate associated with the
motional mode supporting the cat state (cf. Section 4.7). Expression (6.3) is derived
in the following way:

The time interval T = 2τ corresponding to cat state creation and recombination is
divided into N small intervals of length dt = T/N . In each of these intervals, fluctuating
electric fields will displace the motional state by an amount dβi = dxi + dpi, where the
two terms corresponding to projections onto the phase space’s x- and p-axis are normally
distributed independent random variables with variance σ2 = 1

2Rhdt. After the total
time T , the motional ground state n = 0 has become displaced by

β(T ) =
N∑
i=1

dβi =
N∑
i=1

dxi + dpi

such that the average mean phonon number reaches

n̄ =
〈
|β(T )|2

〉
=

N∑
i=1

(〈
dx2

i

〉
+
〈

dp2
i

〉)
= RhdtN = RhT,

in agreement with the definition of the heating rate.
In a first step, we study the effect of motional heating on a coherent state |0〉 that is

displaced in phase space by some classical well-controlled driving force by an amount
α(t). Assuming that the motional excitation by the coherent drive is much bigger than
the excitation by the random fluctuating force, we now look at the effect of a heating
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event at time ti on the state. Before this event, the state was coherently displaced by
an amount α1 = α(ti) − α(t = 0) where α(t = 0) = 0. After the event, the coherent
displacement is given by α2 = α(T )−α(ti). The heating event itself displaces the state
by an amount dβi. In the absence of heating, the final state at time T is given by

|α(T )〉 = D(α(T ))|0〉 = e−iIm(α∗1α2)D(α2)D(α1)|0〉

where the phase factor cancels the phase arising from the multiplication of the two
displacement operations as shown in Eq. (2.25). In the presence of heating at time ti,
the state is modified to

|ψ〉 = e−iIm(α∗1α2)D(α2)D(dβi)D(α1)|0〉

= eiIm(α∗1dβi+dβ∗i α2)D(α2 + dβi + α1)|0〉

= eiIm(α∗1dβi+dβ∗i α2)|α(T ) + dβi〉,

i.e., the state experiences a small additional displacement and is multiplied by the
heating-induced random phase

φi = Im(α∗1 dβi + dβ∗i α2) = Im(α∗1 dβi) + Im(dβ∗i α2)

= Im(α∗1 dβi)− Im(dβi α∗2)

= Im((α1 − α2)∗ dβi). (6.4)

If the coherent displacement α(t) is much bigger than the heating-induced displacement,
the final state is to a good approximation equal to |α(T )〉 multiplied by the product of
all heating-induced phase factors occuring in the interval [0, T ]. Equation (6.4) can be
further simplified by splitting dβi into two random variables dui (dvi) that are oriented
orthogonal (parallel) to (α1 − α2)∗ and each have variances σ2 so that

φi = |α1 − α2|dui sin θi

where θi=±π/2 is the angle between the orthogonal component of dβi and (α1−α2)∗.
After simple substitution, the total heating-induced geometric phase acquired by the
coherent state α(T ) is given by a sum of N sequential heating-induced random phases

φg =
N∑
i=1

φi =
∑
i

|2α(ti)− α(TN )− α(0)|dui sin θi,
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which reduces to
φg = 2

∑
i

|α(ti)|dui sin θi

in the case α(0) = α(TN ) = 0, where a cat state is created and recombined. Both of its
components acquire heating-induced phases ±φg of opposite sign, resulting in a relative
phase of φh = 2φg and its mean-squared value can be calculated to:

〈φ2
h〉 = 16

N∑
k=1
|α(tk)|2〈du2

i 〉 = 8Rh
N∑
k=1
|α(tk)|2 dt = 8Rh

∫ T

0
|α(t)|2 dt. (6.5)

In this expression, the heating-induced displacements
〈
du2

i

〉
were averaged over all ran-

dom directions θi.

For

α(t) =
{ √

ncat t/τ : t ≤ τ
√
ncat (2τ − t)/τ : τ ≤ t ≤ 2τ

the mean squared phase is given by

〈φ2
h〉 = 16

3 Rhτncat (6.6)

which is the result stated at the beginning in Eq. (6.3). It is easy to include an additional
waiting time twait between cat creation and recombination in the calculation. For

α(t) =


√
ncat t/τ : t ≤ τ
√
ncat : τ ≤ t ≤ τ + twait
√
ncat (2τ + twait − t)/τ : τ + twait ≤ t ≤ 2τ + twait

integration of Eq. (6.5) yields the mean-squared phase

〈φ2
h〉 = 8Rhncat(

2τ
3 + twait). (6.7)

For a random variable X that has a Gaussian distribution with 〈X〉 = 0, the equality

〈cosX〉 = exp(−〈X
2〉

2 )

holds which enables us to calculate the loss of Ramsey contrast of the cat state spec-
troscopy from Eqs.(6.6), like in Figure 6.5, or (6.7).
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6.6. Experimental demonstration

In the experimental implementation of the cat state spectroscopy protocol, we employ
two ions of two different calcium isotopes. With the relevant energy levels illustrated
in Figure 6.7, laser cooling and state detection are provided by 40Ca+, which is used
as logic ion, while spectroscopy is performed on a co-trapped 44Ca+ ion. The choice
of 44Ca+ is merely a practical one as it has the second highest natural abundance
(∼ 2%) of all calcium isotopes and can therefore be loaded relatively efficiently from a
standard calcium source. However, its isotope shift of 842(3) MHz on the S1/2↔P1/2

transition at 397 nm and −4.49 GHz on the D5/2↔ P3/2 transition at 866 nm (cf. Sec-
tion 2.2) necessitates the use of a second set of laser beams for resonant initialization
and spectroscopy. To differentiate the beams from those used to address the logic ion,
the corresponding wavelengths are marked with an asterisk (∗) in the following.

To characterize the sensitivity of the cat state spectroscopy method, we compare
both of its signals, 〈σz〉 and 〈σy〉 as discussed before, with a (direct) detection of the
photon recoil that simply probes the red sideband of the two-ion crystal’s center-of-
mass (COM) mode. In addition, we demonstrate an extension of this direct detection
method, which enables the technique to resolve the relative phase of the Fock states
involved and thereby provides a significant sensitivity increase even without the use of
a cat state. Common to all sequences are the initial preparation and the final read-out.
The abbreviations given in brackets are used in the figures on the following pages:

Each experimental cycle starts with Doppler cooling (DC) and resolved sideband
cooling (SBC) implemented on 40Ca+ to initialize the two-ion crystal in the ground
state |0〉 of its COM vibrational mode at ν = 1.199 MHz. Optical pumping (OP) first
initializes the logic ion spin state to |↓〉z. 44Ca+ is then optically pumped to its meta-
stable D3/2 state by a 397∗ nm pulse of appropriate length. The corresponding pulse
is enclosed by two carrier π-pulses on 40Ca+, referred to as (hide) and (unhide), that
serve to prevent residual, off-resonant light scattering on the logic ion during the 44Ca+

initialization.
In all experiments, independent of the specific method, spectroscopy light is sent into

the trap along the axial (z) direction. Absorption of a single infrared photon by the
spectroscopy ion populates its P1/2 electronic state that has a lifetime of 7.1 ns [34].
With 96.6% probability [39] it will decay to the S1/2 ground state under emission of a
single blue photon at 397 nm wavelength.
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Figure 6.7.: Reduced electronic level schemes relevant in the experiment
A mixed-species ion crystal consisting of the isotopes 40Ca+ and 44Ca+ is confined in the
harmonic trapping potential. (left) The S1/2↔P1/2 transition at 397 nm in 40Ca+ is used for
Doppler cooling and optical pumping; the quadrupole transition at 729 nm encodes the qubit
used in the spectroscopy protocol and provides the means for resolved-sideband cooling. (right)
Spectroscopy is being performed on the D3/2↔ P1/2 using 866 nm light. The asterisk * indicates
isotope shifts between 40Ca+ and 44Ca+.

Each cycle of a measurement sequence produces a binary result x ∈ {0, 1}: the logic
ion either fluoresces (s = 1) or it does not (s = 0), which is decided upon thresholded
PMT count data as described in Section 3.4. After N measurement cycles, the mean
excitation probability is given by

p↑ = 1− 1
N

N∑
i=1

si

= 1
2
(
〈σz〉+ 1

)
where the second line illustrates the connection to the expectation value of the detected
σz spin projection. Measurements of 〈σy〉 are made by applying a carrier σx(π/2) pulse
prior to detection, effectively rotating the y-eigenstates into the z-basis.

As the uncertainty of the mean excitation probability p↑ in N measurement cycles
is determined solely by quantum projection noise as defined in Eq. (3.4), the signal-to-
noise ratio (SNR) can always be increased by simply taking more measurements. To
quantitatively compare the different methods, it is therefore useful to renormalize by
the number of measurements made and, instead, consider the measurement sensitivity
β = SNR/

√
N provided by each sequence. The way in which signal S and noise ∆S

are determined from the measured excitations depends on the specific experiment and
is therefore explicitly given for each of the sequences presented in the following.
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Figure 6.8.: Pulse sequence used in the direct detection experiment
Spectroscopy is performed using a single pulse of 10 µs duration on the D3/2 → P1/2 transition
of 44Ca+. The red sideband (RSB) pulse prior to detection is calibrated to be a π pulse on the
|n = 1〉 → |n = 0〉 motional transition of the COM mode.

6.6.1. Direct red sideband detection

The simplest way of detecting a motional energy increase due to a photon scattering
event is to probe for excitation of the logic ion with a laser pulse resonant with the
COM mode’s red sideband. Using all the elements discussed above, the corresponding
pulse sequence is shown in Figure 6.8. To exclude contributions from imperfect or
fluctuating sideband cooling, the signal is obtained from the difference between the
mean excitation detected in N1 experiments taken with the spectroscopy pulse present
and N2 experiments without it S = p↑(N scatter

1 ) − p↑(Nno scatter
2 ). Data is taken in sets

of N = 50 experiments at a rate of 50 Hz, alternating between the two configurations.
The signal error ∆S =

√
∆p2

scatter + ∆p2
no scatter is taken as the geometric mean of the

quantum projection noise of each case. Table 6.1 below lists the obtained results. The
total measurement time in this case was 16.7 min to reach a signal-to-noise ratio (SNR)
of 2.84, which yields a measurement sensitivity β = SNR/

√
N = 0.018(6).

Table 6.1.: Results of the direct red sideband detection.
p↑ ∆p # of cycles SNR

scatter 0.0551 0.0014 25000 38.17
no scatter 0.0494 0.0014 25050 36.09
signal 0.0057 0.002 S/∆S → 2.84

Direct detection using motional phase information
As shown in Section 6.2 before, photon scattering provides a momentum kick to

the ground-state-cooled two-ion crystal associated with a small coherent displacement.
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Figure 6.9.: Phase-sensitive direct detection
a) Initially identical to Figure 6.8, the pulse sequence is modified to include amplitude-
modulated spectroscopy pulses (see text) that are separated by 800 ns (= 1/ν) within the
10 µs “envelope” as well as a variable time delay and σx analysis pulse. b) Fringe pattern ob-
tained through a variation of the time delay ∆t. The oscillation’s mean value is shifted down
from 0.5 due to incomplete sideband cooling.

With respect to the oscillation of the ground state at frequency ν, the specific time
of the absorption event corresponds to a motional phase φ that can be approximated
as |0〉+ iηabse

iφ|1〉. A π-pulse on the red sideband maps it from the motion to the
logic ion’s electronic state, |↓〉(|0〉+ iηeiφ|1〉) −→ (|↓〉+ iηeiφ|↑〉)|0〉, where a σx(π/2)
rotation can be used to extract it via interference in the electronic state population.

So far, however, we have used a single spectroscopy pulse of 10 µs duration in the
sequence shown in Figure 6.8 and detected only the population in |↑〉. During the
10 µs pulse time, the ion crystal performs multiple oscillations in the trapping potential
completing one full period every 1/ν ≈ 830 ns. As the scattering event can happen
at any time during the oscillations, the motional phase φ is randomized over many
repeated experiments and thereby lost.

To make the phase available for the detection of a scattering event, a fast RF TTL
switch can be used to gate the RF sent to AOM 6 (cf. page 40) in addition to the
switching that generates the 10 µs envelope. With this capability, the amplitude of the
spectroscopy light is now modulated at frequency ν, which effectively produces a series
of short (60 ns) pulses that are separated by 1/ν (cf. Figure 6.9.a). If now the frequency
of the amplitude modulation (AM) is identical to the laser frequency difference between
the RSB and σx pulse, the value of φ remains constant in every cycle (to an extend
limited by the length of the short AM pulses).

By introducing a variable delay time between the scattering- and the two analysis
pulses, the fringe pattern shown in Figure 6.9.b can be recovered that directly reveals
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Figure 6.10.: Cat state amplified detection
A bichromatic laser pulse creates (CAT) and reinterferes (CAT−1) a motional Schrödinger cat
state |Ψ〉 before and after the application of amplitude-modulated (AM) spectroscopy light.
Consisting of 60 ns pulses separated by 800 ns (= 1/ν), the timing of the photon scattering
can be shifted with respect to the oscillation phase of |Ψ〉 within the 10 µs pulse “envelope”
(effectively varying ϕSC). An optional π/2 carrier pulse prior to detection rotates the σy-
eigenstates into the measurement basis.

the motional phase between the Fock states |0〉 and |1〉. In this case, the signal is
obtained from the difference of the excitation at a fringe maximum and minimum.

Table 6.2 below details the measurement results. The total measurement time in this
case was 6.6 min to reach a signal-to-noise ratio (SNR) of 10.67. The measurement
sensitivity β = SNR/

√
N = 0.107(10) is almost 7 times higher than in the previous

direct detection case.

Table 6.2.: Results of the phase sensitive direct red sideband detection.
p↑ ∆p # of cycles SNR

fringe maximum 0.4464 0.0050 9850 89.12
fringe minimum 0.3719 0.0049 9900 76.57
signal 0.0745 0.007 S/∆S → 10.67

6.6.2. Cat state amplified detection

As opposed to the direct detection methods outlined above, the cat state spectroscopy
method described in Section 6.4 allows for an indirect detection of the photon scatter-
ing through amplification of the recoil-induced motional excitation via an adjustable
geometric phase. Consequently, here, the sensitivity can be tuned via the size of the
cat state and the spin projection chosen for detection.

As before, the measurement sequence illustrated in Figure 6.10 starts with Doppler
cooling and optical pumping. This is followed by (optional) sideband cooling and the
initialization of the spectroscopy ion. The bichromatic light field (cf. Section 2.5)
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Figure 6.11.: Cat state spectroscopy results
Photon scattering signals on the broad D3/2 ↔ P1/2 transition in 44Ca+ for a cat state size
of α = 2.9(2). a) Cat state interference fringes observed by varying ϕsc (the relative timing)
of a single photon scattering event with respect to the cat state oscillation phase. Weighted
sinusoidal fits (solid lines) yield a signal amplitude S in the two detection bases σz (blue curve)
and σy (red curve). To maximize the contrast for the cat state size used, the data is taken at light
intensities that ensure a complete pump-out of the D3/2 level, such that with 93.6% probability a
single photon is scattered and with 6.4% probability ≥ 2 photons are being scattered. The P1/2
state’s lifetime of ∼ 7.1 ns leads to the small phase shift between the two oscillations (marked
in gray) as the contribution of the emitted blue photon is delayed from the absorption process.
b) Detection in the σy basis without the application of sideband cooling.

employed next first creates (“CAT”) a Schrödinger cat state and then recombines it
(“CAT−1”) after the spectroscopy laser pulses have been sent into the trap. They are
amplitude modulated (AM) in the same way as described in the previous section. How-
ever, instead of a delay time between cat state recombination (analysis) and scattering,
here, the RF phase offset of the frequency generator responsible for the modulation is
varied. Its absolute phase reference is provided by the same 10 MHz clock signal that
stabilizes the frequency generators supplying the RF used to create the bichromatic
light field. A scan of the AM phase therefore is equivalent to a variation of ϕsc. As
the spectroscopy pulse train is shifted within its 10 µs envelope, the time of the absorp-
tion and emission events shift accordingly with respect to the cat state’s components’
oscillation at frequency ν.

As described in Section 6.4 before, a variation of ϕsc reveals a fringe pattern either
in the 〈σz〉 eigenbasis or, with a σx(π/2) rotation prior to detection, in the orthogonal
〈σy〉 basis. Both signals are shown Figure 6.11 above, where the red signal of larger
signal amplitude includes the σx(π/2) rotation and the blue signal does not. Also, the
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former is sensitive only to the absorption process of a single infrared photon, while the
contribution of the emitted blue photon at 397 nm wavelength averages out. In the
〈σz〉 detection case, the ∼ 7.1 ns lifetime of the P1/2 state leads to a small phase shift
corresponding to the delay of the 397 nm photon emission after an absorption event.
The curve’s mean is representative of the contribution by the isotropic emission while
the modulation is due to the absorbed photon’s momentum kick. Figure 6.11.b shows
how even in the absence of sideband cooling with the thermal state reached after the
end of Doppler cooling, the absorption of a red photon at 866 nm can be detected in the
σy basis. As a thermal state can be understood as a distribution of Fock states sampled
in each experiment, a sensitivity similar to the phase sensitive direct red sideband
detection can be expected and is observed. However, the significant loss of contrast
observed in the fringe pattern requires further study, which includes the question as to
why the signal in this case is centered around 0.61 instead of the expected value of 0.5.

By alternating between ϕsc settings corresponding to a fringe minimum and maxi-
mum, the photon scattering signature can be detected reliably, once the fringe pattern
has been identified. Tables 6.3 and 6.4 below detail the results of the measurements
used in the calibration of the sensitivity. The measurements in the 〈σy〉 (〈σz〉) basis
have taken 2.8 min and yield sensitivities of β = 0.338(16) (β = 0.162(16)). Without
sideband cooling, a 3.4 min measurement yields a sensitivity of β = 0.109(14).

Table 6.3.: Results of the cat state amplified detection.
p↑ ∆p # of cycles SNR

fringe maximum 〈σy〉 0.6083 0.0075 4200 80.77
fringe minimum 〈σy〉 0.3757 0.0075 4200 50.28
signal 〈σy〉 0.2326 0.0106 S/∆S → 21.92
fringe maximum 〈σz〉 0.2664 0.0068 4200 39.06
fringe minimum 〈σz〉 0.1721 0.0058 4200 29.55
signal 〈σz〉 0.0943 0.009 S/∆S → 10.51

Table 6.4.: Results of the cat state amplified detection without sideband cooling.
p↑ ∆p # of cycles SNR

fringe maximum 〈σy〉 0.6499 0.0067 5050 96.82
fringe minimum 〈σy〉 0.5751 0.007 5050 82.67
signal 〈σy〉 0.0749 0.0097 S/∆S → 7.74
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Figure 6.12.: Line profile for different spectroscopy laser powers
The error bars are derived from quantum projection noise and enter the Gaussian fits as weights.
The observed linewidths are given as FWHM values: � 7µW : 38(5) MHz; � 73µW : 57(6) MHz;
N 115µW : 75(12) MHz

A line profile of the D3/2 ↔ P1/2 dipole transition in 44Ca+ can be retrieved by
recording the difference between the minimum and maximum of the 〈σy〉 fringe pattern.
The corresponding measurements for three difference power levels in the spectroscopy
beam are shown in Figure 6.12. To prevent power broadening, the light level has to
be reduced significantly, yielding a smaller signal amplitude Sy when compared to the
fringe pattern in Figure 6.11 as not in all experimental cycles a photon will be scattered.
The observed linewidth of 2π × 38(5) MHz for the lowest power setting is close to the
width expected from a combination of the transition’s natural linewidth (2π×22.4 MHz)
with the energy splitting between the Zeeman levels of the S1/2 and P1/2 states induced
by the quantization magnetic field of 4 G. It is worth noting that, given the branching
ratio of the P1/2 → S1/2 decay channel, this profile is due to the absorption of only a
single infrared photon at 866 nm wavelength with 93.6 % probability.
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Table 6.5.: Comparison of spectroscopic techniques
The sensitivity of various cat state spectroscopy (CSS) techniques using α = 2.9(2) the direct
detection are compared. All errors are calculated from quantum projection noise.

method sensitivity
(β)

measurements
for 3σ

measurement time
for 3σ @ 50 Hz

Direct detection (single pulse) 0.018(6) 2.7(1.9)×105 9.3 min
Direct detection with AM 0.107(10) 7.8(1.5)×102 15.6 s
CSS 〈σz〉-signal 0.162(16) 3.4(0.6)×102 6.8 s
CSS 〈σy〉-signal 0.338(16) 7.9(0.8)×101 1.6 s
CSS 〈σy〉-signal without SBC 0.109(14) 7.6(2.0)×102 15.2 s

6.7. Conclusion

Table 6.5 summarizes the results obtained with the different measurement techniques
before. Based on the sensitivity determined for each method, the number of measure-
ments that are required to reach a confidence level of 3σ (SNR = 3) is given in the
second column. Assuming the same 50 Hz cycle time used in the experiments presented
before, the third column calculates the total measurement time needed in each case.

The highest sensitivity of all methods is achieved by cat state spectroscopy detecting
the 〈σy〉-signal of the absorbed photon. The sensitivity can, in principle, be increased
further simply by making the cat state larger. However, the motional heating dis-
cussed in Sections 4.7 and 6.5.2 will bound the maximally useful cat state size. The
corresponding loss of contrast was illustrated for the single ion case in Section 6.3. A
notable sensitivity increase is also observed without the use of a cat state, when phase
information is used in the direct detection. However, this detection method could not
be applied without ground state cooling, whereas cat state spectroscopy in the 〈σy〉-
basis still achieves a similar sensitivity for thermal states – even under the observed
loss of fringe contrast.

Given the high sensitivity that can be attained using cat state spectroscopy, its
application in spectroscopic measurements of very weak transitions, e.g. in molecular
ions, can be envisioned. In addition, quantum information processing might benefit
from the technique in the transfer of quantum information between ions and photons
as the protocol does not obtain any information about the scattered photon or the
electronic state of the spectroscopy ion after photon absorption or emission.



7. Summary and outlook

The work presented in this thesis covers both, a large amount of technical work, as
well as two selected publications to the fields of quantum simulation and precision
spectroscopy.

After the introductory motivation in chapter 1, the foundations in atomic physics
and quantum information were briefly discussed before the theoretical framework un-
derlying the light-matter interaction was introduced. In the following Chapter 3, the
experimental setup was presented in detail, starting with the new linear ion trap has
been designed and optimized in FEM simulations at the start of the work presented in
this text. The experimental methods used in the characterization of the new setup as
well as the daily operation were detailed in Chapter 4, which is hoped to be a useful ref-
erence for experimenters performing similar work in the future. The final two chapters
discussed the contributions to the research areas of quantum simulation and precision
spectroscopy that were made during the course of this thesis.

In Chapter 5 the well-established theoretical method known as Trotter expansion
was implemented experimentally to realize digital quantum simulations of elementary
models of magnetism. The focus and motivation was to gain concurrent access to inter-
actions that the system of trapped ions does not provide naturally. Here, the Trotter
approximation was used to implement discrete sequences realizing these interactions.

In a first proof-of-principle experiment, the rapid convergence of the “trotterized”
simulation approach in a minimal Ising model implemented on two ions was verified.
As expected from theoretical simulations of the ideal behavior, higher-order Trotter-
Suzuki approximations were found to improve the simulation quality in experiments
that naturally incur detrimental effects absent in theoretical models. In addition to
the simulation of time-independent Hamiltonians, a time-dependent situation was in-
vestigated. This approach one could, for example, use to realize an adiabatic state
preparation at the beginning of a simulation, for which the ground state cannot be
encoded directly.
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The more interesting question from the perspective of quantum simulations reaching
beyond what can be realized on classical computers is the scaling behavior (I) in terms of
complexity of the simulated interactions and (II) in terms of the number of simulated
spins. To investigate these questions, first, the two-ion case was expanded from the
Ising to the more complex XY and XYZ models, and second, the number of ions was
increased to up to 6 particles.

During the course of the project, variations of the laser-ion coupling strength were
found to be a major contribution to the simulation error seen to accumulate in sequences
of up to 100 gate operations. Traced back mostly to light intensity fluctuations, these,
however, do not constitute a fundamental limitation and provide a direction for future
technical improvements to the setup.

A separate contribution that has been made to the field of precision spectroscopy
was discussed in Chapter 6. Here, a motional Schrödinger cat state was applied to
the amplification of the small displacement caused by the recoil associated with the
emission and/or absorption event of a single photon on a broad dipole transition. The
experiment made use of the capability to create motional Schrödinger cat states with a
single bichromatic laser pulse as opposed to the sequential state generation using Ra-
man beams employed by earlier experiments. First, the effects of heating-rate induced
decoherence (Chapter 4) were investigated using only a single ion by creating large cat
states of a size up to α = 6.6. The implementation of the cat-state amplified spec-
troscopy was then demonstrated using a two-ion crystal of 40Ca+ and 44Ca+. Here, it
was used to obtain a line profile of the D3/2 → P3/2 transition using only single-photon
scattering events. It was shown that the method can also be used without the need
for ground state cooling, which is expected to provide benefits, for example, in the
spectroscopy of molecular ions.

At the time of writing, the advanced capabilities offered by the extensions made to the
optical setup and computer control have already been used in a number of publications
listed in Appendix A. In the most recent example, the newly introduced acousto-optic
deflector has been used to realize single-ion addressing in an experiment simulating a
1D spin chain with 15 ions and investigate the propagation of entanglement using the
redesigned camera software discussed Section 3.4. After early attempts to stabilize the
radial vibrational modes had been able to reach the level of 100 Hz, many additional
improvements to the stabilization and optical access were made for this experiment by
Petar Jurcevic. They will be detailed in his forthcoming Ph.D. thesis.
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Spatial light modulators provide a versatile tool to engineer optical potentials and tai-
lor the light-ion interaction to a higher degree. A high-performance device arrived just
as the writing of this thesis concluded and is currently being investigated by Sebastian
Schunke. Results will be presented in his forthcoming Master thesis.

With coherent operations now involving longer ion chains on a regular basis, many
motional modes need to be cooled to the quantum ground state. Given their large
number of 3n for n ions, the sideband cooling technique discussed in Chapter 4 is no
longer efficient in terms of the overall time needed for the laser cooling. A further
constraint is given by the motional heating rate discussed in Section 4.7 that tends
to heat up previously ground state cooled modes during the sideband cooling of other
motional modes. To address this issue, Christine Maier recently set up EIT cooling
to replace or complement sideband cooling in future work with long ion strings. The
corresponding setup will be described in her forthcoming Ph.D. thesis.
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B. Useful definitions and relations

The following definitions and relations were used in the derivations of many of the
equations given in this text and are meant to provide a quick reference rather than
proper derivation and proof.

B.1. Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(B.1)

With det(σi) = −1 and Tr(σi) = 0, the Pauli matrices have eigenvalues ±1. The
corresponding normalized eigenvectors |±〉i (cf. Figure 2.1) are given by:

|+〉z =
(

1
0

)
, |−〉z =

(
0
1

)
(B.2)

|+〉x = 1√
2

(
1
1

)
, |−〉x = 1√

2

(
1
−1

)
(B.3)

|+〉y = 1√
2

(
1
i

)
, |−〉y = 1√

2

(
1
−i

)
(B.4)

Unitary rotations of θ = π/2, invoking the Pauli matrices above, transform eigenstates
in the following way:

Ux(θ) = exp
(
−iθ2σx

)
=⇒ |−〉z → |+〉y → |+〉z → |−〉y → |−〉z

Uy(θ) = exp
(
−iθ2σy

)
=⇒ |−〉z → |+〉x → |+〉z → |−〉x → |−〉z

Uz(θ) = exp
(
−iθ2σz

)
=⇒ |+〉y → |−〉x → |−〉y → |+〉x → |+〉y
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B.2. Transformation to an interaction picture

Pauli matrices and raising/lowering operators

ei
θ
2σiσje

−i θ2σi = cos(θ)σj + i

2 sin(θ)[σi, σj ] (B.5)

ei
θ
2σzσ±e

−i θ2σz = e±iθσ± (B.6)

Annihilation and creation operators

eiθa
†aae−iθa

†a = e−iθa (B.7)

eiθa
†aa†e−iθa

†a = eiθa† (B.8)

eiθa
†aeiη(a+a†)e−iθa

†a = eiη(ae−iθ+a†eiθ) (B.9)

eiη(a+a†) = e−η
2/2eiηa

†
eiηa (B.10)

B.3. Coherent displacements

aD(α) |0〉 = D(α)(a+ α) (B.11)

a†D(α) |0〉 = D(α)(a† + α∗) (B.12)

D†(α) = D(−α) (B.13)

Using Eq. (B.11) and Eq. (B.12) the average phonon number of coherent state |α〉 can
be calculated to be:

〈α|n̂|α〉 = 〈α|a†aD(α)|0〉

= 〈α|D(α)(a† + α∗)(a+ α)|0〉

= 〈0|(a† + α∗)(a+ α)|0〉

= |α|2 (B.14)
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B.4. Various

Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B] (B.15)

Select trigonometric identities

eiθ = cos θ + i sin θ (B.16)

cos(θ) = 1
2
(
eiθ + e−iθ

)
(B.17)

sin(θ) = 1
2i
(
eiθ − e−iθ

)
(B.18)

cos(2θ) = cos2(θ)− sin2(θ) (B.19)

sin(2θ) = 2 sin(θ) cos(θ) (B.20)





C. Vacuum bake of trap II

The following pages give a brief summary of the cleaning and bakeout procedures used in
the assembly of trap II. All partial pressures given have been recorded with a residual gas
analyzer (RGA)100 directly attached to the vacuum vessel and a second RGA attached
to an external turbo pump station101 used throughout the baking procedure. To ensure
uniform heating of all parts, the bakeout is performed by placing the complete vessel
into an industrial oven102.

The steps marked with an asterisk (*) were taken as a precaution after previous
attempts to attain UHV conditions good enough for experiments with long ion strings
had failed. The issues encountered were mostly related to collision rates (How often
does the ion string get hit by background gas?) and chemical reactions after collisions
(Do ions turn into molecular “dark” ions?).

1. Chemical cleaning of all individual parts
With the exception of the pre-cleaned vacuum chamber, all machined parts were
first manually cleaned using standard dishwashing detergent. This was followed
by a 3-stage chemical cleaning process in an ultrasonic bath103 using 1st acetone,
2nd isopropanol and 3rd deionized water. The last step helps to remove residue
from the organic solvents and was followed by blow-drying using pressurized he-
lium or dry nitrogen. For the safety of their glass-metal transition and coatings,
windows and inverted viewports were hand-cleaned using “KimWipes” and de-
ionised water.

2. Air baking of steel parts
This step took place at a temperature of 300 ◦C (limited by the maximum oven
temperature) over about 12 hrs followed by chemical cleaning by hand (methanol)
and storage wrapped in clean aluminum foil.

100SRS RGA 100
101TMU071P turbomolecular pump and Duo 2.5 rotary vane pump, both Pfeiffer Vacuum GmbH
102ConThermo GmbH & Co. KG
103joke Technology GmbH
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Figure C.1.: Partial pressures vs. time
Partial pressures observed by an RGA (electron multiplier switched off) connected to the exter-
nal pump station as the temperature of the bakeout-oven was ramped up at a rate of 0.3 ◦C/min.
The rate is chosen such that the vacuum windows of the vessel do not get damaged by large
temperature differentials with respect to the surrounding metal. Dashed lines indicate the end
of each temperature ramp.

3. Vacuum baking of sensitive parts
Enclosed in a small tube connected to the turbo pump station, parts were were
heated to 314 ◦C for 14 hrs, grouped by material (steel, copper, macor). This was
followed by a second round of chemical cleaning and subsequent storage wrapped
in clean aluminum foil.

4. (*) Vacuum bake of the bare chamber without ion trap or calcium oven
The entire vacuum vessel was put into the bakeout-oven and heated to 200 ◦C
(to prevent degradation of the window’s anti-reflection coatings) while remaining
connected to the external turbo pump station via bellows. Figure C.1 shows the
importance of heating to high temperatures to effectively remove water and other
adsorbates, which is related to the large binding energy of chemisorbed monolayers
on a metal surfaces104. Note that this has to be repeated every time surfaces are

104For details see, e.g., the textbook “A User’s Guide to Vacuum Technology” by John D. O’Hanlon.
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Figure C.2.: Final partial pressures observed after 1 week of baking at 200 ◦C
The data shown was taken at room temperature using the RGA (electron multiplier switched
on) directly attached to the vacuum chamber. While the mass spectrum shown above is for
the empty vacuum vessel only, the fully assembled chamber, including the ion trap and calcium
oven, showed similar final pressures within at most a factor of two. Table C.1 below provides a
useful list to help identify common residual contaminants by their atomic weight.

exposed to air. After a week of baking at 200 ◦C and subsequent cool-down to
room temperature, the partial pressures shown in Figure C.2 were measured using
the RGA directly attached to vacuum vessel to have a reference prior to repeating
the procedure with ion trap and oven installed.

5. Vacuum bake of the completely assembled system
The final assembly of the vacuum system took place in a “clean environment”
consisting of a HEPA fan filter unit on top of an enclosed box to create a dust-
free work environment. Mouth protection and hair nets were used in addition to
gloves and a lab coat. All tools used to assemble in-vacuum parts were chemically
pre-cleaned.
To ensure good electrical connectivity, all copper feedthroughs and connectors
were cleaned with nitric acid (HNO3) followed by water rinsing just prior to
assembly. The fully assembled system was then baked at 200 ◦C (0.3 ◦C/min
temperature ramp) for 25 days. At 166 ◦C oven temperature spikes in the argon
and nitrogen pressures indicated the melting of the commercial calcium oven’s
(Alvatec AS-2-Ca-50-C) indium seal (melting point: 156.6 ◦C).
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Figure C.3.: Vertically integrated CCD camera images over time
The CCD camera is set to integrate/bin pixels orthogonal to the symmetry axis of the ion
trap. The values of all bins (integrated columns) within a region of interest are then read out
at a rate between 1-3 Hz yielding a 1D line per time slice. a) Example illustrating the time
dynamics of loading a string of six ions. The background glow is related to stray light. b) Part
of a collision rate measurement. The traces monitor configuration changes of the ion crystal,
i.e. the positions of non-fluorescing (molecular) ions in the string. The number of changes over
time are used to estimate the collision rate. The actual rate is likely to be a bit higher as only
changes in the configuration can be detected. In the example shown, the rate was determined
to be 0.012 Hz, corresponding to one collision every 86 s.

During the bakeout procedure, the ion getter pump105 on the chamber vessel
was switched on for 30 minutes to 1 hour periodically in order to help clean out
contaminants and remained switched on permanently during ramp-down of the
oven temperature.

6. Oven degassing and activation
The commercial calcium oven was conditioned before the valve to the pump station
was closed. This has to be done in order to outgas contaminants as well as
“activate” the oven which converts the calcium alloy contained in it, to pure
calcium. If possible, it is advisable to insert a loose glass plate into the line of
sight between calcium oven and trap during assembly such that contaminants
released at this stage hit the glass plate and not the trap electrodes. Depending
on the geometry, the loose glass plate might then be removed by simply tilting
the vacuum vessel. During the activation process, the hydrogen partial pressure
seen by the pump station RGA increased by almost three orders of magnitude
(water: two orders of magnitude). We therefore fired the titanium:sublimation
pump after activation and baked the system again for 24 hrs at 200 ◦C.

105The Curie temperature of the getter pump’s magnets (Varian/Agilent Starcell 20 l/s) is high enough
for them to remain installed during the bakeout.
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Figure C.4.: Collision rates and “dark” ion numbers after NEG activation
a) Collision rate estimate based on a recording like Figure C.3.b. The red line is a linear fit to
the accumulated number of changes in the ion string’s configuration. b) Number of dark ions
occurring in the string considered in a). The cases in which all 6 ions went dark can correspond
to laser cooling issues in which the whole crystal briefly melted.

7. (*) Ion trapping and lifetime check
At this point the initial steps described in Section 4.1 were quickly performed to
see how many ions could be trapped stably (which was the main limitation of
trap I discussed in Section 3.1) and whether chemical reactions producing “dark”
(molecular) ions occur.

8. NEG activation and closed bake
Activation of the non evaporative getter (NEG) releases copious quantities of
hydrogen into the vacuum system which, combined with the oxygen adsorbed
to the getter surface, forms a layer of water on the surfaces inside the vacuum
chamber. This was reflected in very short ion “lifetimes” post-activation and a
fivefold-increased collision rate (cf. Figure C.4). We therefore baked the system
for an additional two days at 180 ◦C just using the attached ion getter pump,
i.e. without opening a gate valve to an external turbo pump. This was sufficient
to recover the vacuum quality again, bringing the rate at which a single dark
changes positions in a linear crystal of six ions back to 12 mHz (once every 86
seconds). In a 20 ion crystal the rate is at 37 mHz (once every 27 seconds).
Note, however, that not all of these collisions are energetic enough the heat the
ion crystal to an extent where a “refreeze” intervention is necessary. The latter
includes a temporary lowering of the radial confinement as well as an additional
cooling laser beam with a detuning of about −400 MHz.
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Table C.1.: Atomic weights of common residual contaminants and ionization fragments seen in
RGA spectra

amu 2 12 13 14 15 16 17 18 28 44
formula H+

2 C+ CH+ N+ CH−3 O+, CH+
4 OH+ H2O+ N+

2 CO+
2

Useful in the identification of molecular species is NIST’s molecular weight database,
available online at http://webbook.nist.gov/chemistry/mw-ser.html.

http://webbook.nist.gov/chemistry/mw-ser.html
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[104] Blümel, R. et al. - Phase transitions of stored laser-cooled ions. Nature 334,
309–313 (1988).

[105] Sawamura, H., Kitamura, H., Toyoda, K. & Urabe, S. - Observation of motional
sidebands in single 40Ca+ ions with improved detection efficiency. Applied Physics
B 80, 1011–1014 (2005).

[106] Linke, N. M. et al. - Background-free detection of trapped ions. Applied Physics
B 107, 1175–1180 (2012).

[107] Pruttivarasin, T., Ramm, M. & Haeffner, H. - Direct spectroscopy of the
2S1/2−2P1/2 and 2D3/2−2P1/2 transitions and observation of micromotion mod-
ulated spectra in trapped Ca+. Journal of Physics B: Atomic, Molecular and
Optical Physics 47, 135002 (2014).

[108] Wineland, D. J. & Itano, W. M. - Laser cooling of atoms. Physical Review A 20,
1521–1540 (1979).

[109] Berkeland, D., Miller, J., Bergquist, J., Itano, W. M. & Wineland, D. J. - Min-
imization of ion micromotion in a Paul trap. Journal of Applied Physics 83,
5025–5033 (1998).

[110] Diedrich, F., Bergquist, J., Itano, W. M. & Wineland, D. J. - Laser Cooling to
the Zero-Point Energy of Motion. Physical Review Letters 62, 403–406 (1989).

[111] Roos, C. et al. - Quantum State Engineering on an Optical Transition and De-
coherence in a Paul Trap. Physical Review Letters 83, 4713–4716 (1999).

http://quantumoptics.at
http://quantumoptics.at
http://dx.doi.org/10.1103/PhysRevLett.59.2931
http://dx.doi.org/10.1038/334309a0
http://dx.doi.org/10.1007/s00340-005-1856-8
http://dx.doi.org/10.1007/s00340-005-1856-8
http://dx.doi.org/10.1007/s00340-011-4870-z
http://dx.doi.org/10.1007/s00340-011-4870-z
http://dx.doi.org/10.1088/0953-4075/47/13/135002
http://dx.doi.org/10.1088/0953-4075/47/13/135002
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1063/1.367318
http://link.aps.org/doi/10.1103/PhysRevLett.62.403
http://dx.doi.org/10.1103/PhysRevLett.83.4713


160 Bibliography

[112] Marzoli, I., Cirac, J. I., Blatt, R. & Zoller, P. - Laser cooling of trapped three-
level ions: Designing two-level systems for sideband cooling. Physical Review A
49, 2771–2779 (1994).

[113] Turchette, Q. A. et al. - Heating of trapped ions from the quantum ground state.
Physical Review A 61, 063418 (2000).

[114] Deslauriers, L. et al. - Scaling and Suppression of Anomalous Heating in Ion
Traps. Physical Review Letters 97, 103007 (2006).

[115] Hite, D. A. et al. - 100-Fold Reduction of Electric-Field Noise in an Ion Trap
Cleaned with In Situ Argon-Ion-Beam Bombardment. Physical Review Letters
109, 103001 (2012).

[116] Hite, D. A. et al. - Surface science for improved ion traps. MRS Bulletin 38,
826–833 (2013).

[117] Daniilidis, N. et al. - Surface noise analysis using a single-ion sensor. Physical
Review B 89, 245435 (2014).

[118] Ramsey, N. F. - Experiments with separated oscillatory fields and hydrogen
masers. Reviews of Modern Physics 62, 541–552 (1990).

[119] Hahn, E. - Spin Echoes. Physical Review 80, 580–594 (1950).

[120] Biercuk, M. J. et al. - Optimized dynamical decoupling in a model quantum
memory. Nature 458, 996–1000 (2009).

[121] Kotler, S., Akerman, N., Glickman, Y., Keselman, A. & Ozeri, R. - Single-ion
quantum lock-in amplifier. Nature 473, 61–65 (2011).

[122] Kotler, S., Akerman, N., Glickman, Y. & Ozeri, R. - Nonlinear Single-Spin
Spectrum Analyzer. Physical Review Letters 110, 110503 (2013).

[123] Ott, H. W. - Electromagnetic Compatibility Engineering (Wiley, 2009).

[124] - Insight – Quantum Simulation. Nature Physics 8, 263–299 (2012).

[125] Georgescu, I. M., Ashhab, S. & Nori, F. - Quantum simulation. Reviews Of
Modern Physics 86, 153–185 (2014).

http://link.aps.org/doi/10.1103/PhysRevA.49.2771
http://dx.doi.org/10.1103/PhysRevA.61.063418
http://link.aps.org/doi/10.1103/PhysRevLett.97.103007
http://dx.doi.org/10.1103/PhysRevLett.109.103001
http://dx.doi.org/10.1557/mrs.2013.207
http://dx.doi.org/10.1103/PhysRevB.89.245435
http://dx.doi.org/10.1103/PhysRevB.89.245435
http://link.aps.org/doi/10.1103/RevModPhys.62.541
http://link.aps.org/doi/10.1103/PhysRev.80.580
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1038/nature10010
http://dx.doi.org/10.1103/PhysRevLett.110.110503
http://www.nature.com/nphys/insight/quantum-simulation/index.html
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/RevModPhys.86.153


Bibliography 161

[126] Johnson, T. H., Clark, S. R. & Jaksch, D. - What is a quantum simulator? EPJ
Quantum Technology 1, 10 (2014).

[127] Ball, P. - Physics of life: The dawn of quantum biology. Nature 474, 272–274
(2011).

[128] Lambert, N. et al. - Quantum biology. Nature Physics 9, 10–18 (2012).

[129] Gerlach, W. & Stern, O. - Das magnetische Moment des Silberatoms. Zeitschrift
für Physik 9, 353–355 (1922).

[130] Gerritsma, R. et al. - Quantum Simulation of the Klein Paradox with Trapped
Ions. Physical Review Letters 106, 060503 (2011).

[131] De Raedt, K. et al. - Massively parallel quantum computer simulator. Computer
Physics Communications 176, 121–136 (2007).

[132] Hilbert, M. & Lopez, P. - The World’s Technological Capacity to Store, Commu-
nicate, and Compute Information. Science 332, 60–65 (2011).

[133] Buluta, I. & Nori, F. - Quantum Simulators. Science 326, 108 (2009).

[134] Leibfried, D. et al. - Trapped-ion quantum simulator: Experimental application
to nonlinear interferometers. Physical Review Letters 89, 247901 (2002).

[135] Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. - Simu-
lating a quantum magnet with trapped ions. Nature Physics 4, 757–761 (2008).

[136] Britton, J. W. et al. - Engineered two-dimensional Ising interactions in a trapped-
ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

[137] Kim, K. et al. - Quantum simulation of frustrated Ising spins with trapped ions.
Nature 465, 590 (2010).

[138] Edwards, E. E. et al. - Quantum simulation and phase diagram of the transverse-
field Ising model with three atomic spins. Physical Review B 82, 060412 (2010).

[139] Islam, R. et al. - Onset of a quantum phase transition with a trapped ion quantum
simulator. Nature Communications 2, 377 (2011).

[140] Islam, R. et al. - Emergence and Frustration of Magnetism with Variable-Range
Interactions in a Quantum Simulator. Science 340, 583–587 (2013).

http://www.epjquantumtechnology.com/content/1/1/10
http://www.epjquantumtechnology.com/content/1/1/10
http://dx.doi.org/10.1038/474272a
http://dx.doi.org/10.1038/nphys2474
http://dx.doi.org/10.1007/BF01326984
http://dx.doi.org/10.1007/BF01326984
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://linkinghub.elsevier.com/retrieve/pii/S0010465506003390
http://linkinghub.elsevier.com/retrieve/pii/S0010465506003390
http://dx.doi.org/10.1126/science.1200970
http://dx.doi.org/10.1126/science.1177838
http://prl.aps.org/abstract/PRL/v89/i24/e247901
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nature10981
http://dx.doi.org/10.1038/nature09071
http://dx.doi.org/10.1103/PhysRevB.82.060412
http://dx.doi.org/10.1038/ncomms1374
http://dx.doi.org/10.1126/science.1232296


162 Bibliography

[141] Richerme, P. et al. - Quantum Catalysis of Magnetic Phase Transitions in a
Quantum Simulator. Physical Review Letters 111, 100506 (2013).

[142] Toyoda, K., Matsuno, Y., Noguchi, A., Haze, S. & Urabe, S. - Experimental
Realization of a Quantum Phase Transition of Polaritonic Excitations. Physical
Review Letters 111, 160501 (2013).

[143] Gerritsma, R. et al. - Quantum simulation of the Dirac equation. Nature 463,
68–71 (2010).

[144] Barreiro, J. T. et al. - An open-system quantum simulator with trapped ions.
Nature 470, 486–491 (2011).

[145] Lloyd, S. - Universal quantum simulators. Science 273, 1073–1078 (1996).

[146] Trotter, H. F. - On the product of semi-groups of operators. Proceedings of the
American Mathematical Society 10, 545–551 (1959).

[147] Berry, D., Ahokas, G., Cleve, R. & Sanders, B. - Efficient quantum algorithms for
simulating sparse hamiltonians. Communications in Mathematical Physics 270,
359–371 (2007).

[148] Jozsa, R. - Fidelity for mixed quantum states. Journal of Modern Optics 41,
2315–2323 (1994).

[149] Efron, B. & Tibshirani, R. - Bootstrap Methods for Standard Errors, Confidence
Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1, 54–75
(1986).

[150] Poyatos, J. F., Cirac, J. I. & Zoller, P. - Complete characterization of a quantum
process: the two-bit quantum gate. Physical Review Letters 78, 390 (1997).

[151] Chuang, I. L. & Nielsen, M. A. - Prescription for experimental determination of
the dynamics of a quantum black box. Journal Of Modern Optics 44, 2455–2467
(1997).

[152] Riebe, M. et al. - Process tomography of ion trap quantum gates. Physical Review
Letters 97, 220407 (2006).
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AC magnetic field, 31
AC Stark shift, 14
acousto-optic deflector, 59
addressing error, 57
analog quantum simulation, 98
anharmonicity, 33
annihilation operator, 17, 142
AOD, see acousto-optic deflector

Bell state, 8
bichromatic light field, 23
Bloch sphere, 6

calcium, 10
camera detection, 52
cat state, see Schrödinger cat state
cavity, high finesse, 43
circular polarization, 74
coherent state, 19, 25
coupling strength, 16, 78
creation operator, 17, 142
CTE measurement, 45

digital quantum simulation, 98
diode laser systems, 38
displacement operator, 19, 25
Doppler limit, 72

drift rate (high finesse cavity), 47
dynamical Stark shift, see AC Stark shift

eigenstates, 7, 141
eigenvectors, 7, 141
electron shelving, 49, 112
entangled state, 8

fiber noise cancellation, 42
Fock states, 17

global phase, 6
ground state wave packet size, 17

harmonic oscillator, 16
heating rate, 85, 123
helical resonator, 34
hiding sequence, 56–57
Hilbert space, 7

interaction picture, 12
ion trap, 29
Ising model, 102

Lamb-Dicke factor, 20
Lamb-Dicke regime, 21, 72
line cycle, 66, 91
line trigger, 66, 91
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local interactions, 98
lowering operator, 13

magnetic field, 11, 61, 77
mean excitation, 51
mean phonon number, 72
micromotion, 80
modulation index, 80
motional coherence, 93
MS gate, see Mølmer-Sørensen gate
Mølmer-Sørensen gate, 25

number of resolvable spots, 58
number states, see Fock states

optical pumping, 74
optical qubit, 11

parity, 51
partial trace (“trace out”), 118
Pauli matrices, 7, 141
PER, see polarization extinction ratio
phonons, 17
pi-time, 67
PMT detection, 49
polarization extinction ratio, 38
populations, 49
process tomography, 103
product state, 8
projection noise, 51
projective measurement, 116
pseudo-potential, 33
pseudo-spin, 12
pulse area, 13

Q factor (RF resonator), 34
quantum jumps, 75, 113

quantum logic spectroscopy, 113
qubit, 5, 96
quench, 83

Rabi frequency, 15
Rabi oscillations, 14
raising operator, 13
Ramsey experiment, 88
Ramsey time, 90
refreeze (ion crystal), 39
resolved sideband regime, 22
rotating wave approximation, 13, 18, 22

Schrödinger cat state, 25, 116
secular frequency, 33, 80
single ion addressing, 55
spin dependent force, 24
state tomography, 104
stretched state, 83

temperature stabilization (cavity), 46
titanium sapphire laser (Ti:Sa), 40
trap depth, 33
trap frequencies, see secular frequency
trapping potential, 32
Trotter formula, 99

ULE, 43

wavelength meter, 63

Zeeman shift, 11
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