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Chapter 1

Introduction

Computers have come a long way since the first machines like Zuse’s Z4 and
the ENIAC. Today’s microprocessor computers can calculate millions of digits
of π, forecast the weather or render three dimensional environments for video
games. Even modern cell phones are more powerful than the computer that
brought Apollo 11 to the moon and back. Yet there are problems which are
hard to solve, even for the best computers and sometimes we even rely on this
fact. The high difference in difficulty between the multiplication of numbers
and its reverse, the finding of a number’s prime factors is the basis of modern
encryption technology.
While this seems like a topic that only spies would be interested in, other prob-
lems are of more general interest. Calculating properties of solids, such as mag-
netism and superconductivity is of great interest for material sciences, however
today systems of no more than a few dozen atoms or electrons can be simulated.
While this allows some insight into the properties of many body systems it is of
course far from predicting bulk properties. Problems like these are the target of
quantum information research. With ever increasing control over isolated quan-
tum systems scientists are trying to build machines, that allow the simulation of
complex systems, which go beyond the capabilities of modern supercomputers.
It may yet take some time for quantum computers to factorize numbers, which
are relevant for encryption purposes, in the regime of simulations however, ex-
periments are slowly leaving the realm of proof of principle and are approaching
the problems which are still unsolved.
To achieve these incredible feats precise control over experimental parameters is
necessary. Ultra stable lasers, with linewidths of less than 1Hz have become so
common that implementing them is now the topic of master’s theses. But not
only spectral properties of light are important for experimental control. Single
particle addressing through high-NA optics is just as elementary as uniform il-
lumination of many particles at the same time.
This thesis introduces and characterizes an optoelectronic device, which can
further raise the level of experimental control, by correcting optical aberrations,
as well as being able to create almost arbitrary patterns of light.

3



In the following chapters the theoretical background for the operation of this
device is introduced. The theory of diffraction and Fourier optics is presented
in chapter 3 and the device itself and its principle of operation are introduced
in chapter 4. Chapter 5 presents several experimental results, such as the cali-
bration of the device and characterization of its capabilities in terms of beam-
shaping and aberration correction. The thesis concludes with a summary of the
results and a suggested setup to integrate the device with the current ion trap
setup of our group.
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Chapter 2

Quantum Information with
trapped ions

This chapter briefly introduces the foundations of quantum information technol-
ogy and the approach through trapped atomic ions. It shall serve as a motivation
for the following work.

2.1 Quantum Simulation

The theory of quantum mechanics has revolutionized our understanding of the
world. But not only the scientific world has profited from the development of
this strange theory [12] [17]. However, only in the beginning of the 1980s scien-
tists started to seriously think about manipulating individual quantum systems
in order to process information or gain information about another system [5] [2].
The notion of universal processing of information information, where one de-
vice can perform any task, is known as quantum computation, while the idea
of gaining information about quantum systems, which are hard to calculate, by
emulating them with well controlled systems is called quantum simulation. By
inspecting differences between classical computers and their quantum counter-
parts the power of quantum information becomes more visible.

2.1.1 The Qubit

In classical information processing the basic building block of information is
the bit. It can take either of two states, usually denoted as 0 and 1. The
actual implementation of a bit is not attached to a single physical quantity
and can be achieved in many ways, but it is very often connected to electronic
quantities such as current and voltage, e.g a current flowing through a transistor
signifying ”1” and no current flowing signifying ”0”. A classical bit can only
occupy one of its possible states at the same time, even if the quantity used
to implement the bit is continuous, like a voltage. In the quantum world the
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situation is profoundly changed. If one considers a quantum mechanical system
of two states (a two-level system), one must consider the unique properties of
quantum mechanics. Let the two states be denoted in the bra-ket formalism of
Paul Dirac as |0〉 and |1〉. Now, in contrast to the classical bit, the state of the
two-level system can be in arbitrary superpositions of its basis states:

|Ψ〉 = c0 |0〉+ c1 |1〉 (2.1)

where c0 and c1 are complex coefficients, bound by the condition |c0|2+|c1|2 = 1.
These coefficients can, be explicitly written as

|Ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

(2.2)

with γ, θ and φ now real numbers.
While different representations are perfectly possible, this one gives rise to a
special visualization of a qubit’s state. Since the global phase γ does not influ-
ence any measurement outcomes it can be neglected by setting it equal to zero.
The parameters θ and φ can now be interpreted as spherical coordinates and
give rise to the picture of the Bloch sphere. (Fig. 2.1) In this representation
two states whose vectors point to opposite sides of the sphere are orthonormal.
That is to say, that against the usual intuition points on opposing sides have a
zero scalar product, while points with relative angle equal to π/2 do not.

Figure 2.1: Bloch sphere representation of the quantum two level sys-
tem The complex coefficients of a two-level quantum state can be interpreted
as spherical coordinates. Here the two states introduced in equation 2.1 corre-
spond to the north and south poles of the depicted sphere. In general any pair
of orthonormal states can be used to represent the two-level system, which in
this picture means any pair of points on opposing sides of the sphere. From [14]
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When several two-level systems are combined the number of possible states
grows exponentially. This is analogous to the classical bit, but the number of
coefficients, used to describe the state of classical bits, rises linearly with the
number of bits, while the number of coefficients for the qubits rises exponentially.

|Ψ〉2 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 (2.3)

This property at the same time makes the classical computation of quantum
mechanical systems very challenging but also provides new possibilities for com-
putational approaches.

2.2 Trapped Ions as Qubits

The key to utilizing quantum mechanics for computational purposes is to find
a system, which can be controlled well enough. To quantify this notion David
DiVincenzo formulated five criteria [3]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation
time

4. A universal set of quantum gates

5. A qubit-specific measurement capability

A very successful approach to fulfilling these criteria are cold trapped ions. In
the implementation considered here 40Ca+-ions are trapped in a linear Paul
trap, which is depicted in figure 2.2. Unfortunately it is not possible to trap
charged particles in three dimensions using only static electric fields. The solu-
tion in the Paul trap is to apply AC voltages along two axes. In this trap the
blades, which form an x-shape in the direction transversal to the image plane,
form a quadrupole field, by applying an equal voltage to one pair of opposing
blades, while applying a voltage of same magnitude but opposing sign to the
other pair of blades. This kind of potential would confine a particle along one of
the transversal directions, while anti-trapping it along the other. Therefore the
voltages on the blades change their signs with frequencies in the radio frequency
range. In combination with constant (DC) voltages applied to the tips, which
repel the particles along the axis perpendicular to the quadrupole potential,
an effective three dimensional trapping of charged particles can be achieved.
Through these voltages the trapped ions experience an effective harmonic trap-
ping potential. This approximation holds better, the more the ions sit in the
center of the potential, viz. the saddle point of the quadrupole potential. The
trap geometry was chosen such, that the trapping potential is elongated along
the axis between the DC tips. This results in a trapping situation, where the
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Figure 2.2: Picture of the linear Paul trap, similar to the one used
in the quantum simulation experiment in Innsbruck This device traps
charged particles in a string along the horizontal axis. To do so, the two pairs of
blades, two of which are visible in this picture, create an electrical quadrupole
field, which alternates at radio frequencies and create an effective harmonic
potential perpendicular the string. To confine the particles along the direction
of the string the two tips, visible in the picture are set to a constant voltage,
which repels the particles.

state of lowest energy for N ions is a linear string along the axis of weakest
confinement, instead of a spherical or other geometry. (Fig. 2.3)

Figure 2.3: A string of trapped calcium ions Due to their Coulomb repulsion
and the trap geometry ions will arrange in a string, since the confinement along
one axis is significantly lower compared to the other two axes. Here a string of
30 ions, with an overall length of 120µm is shown.

2.3 Laser-Ion Interaction

Trapped ions are fairly easy to manipulate, since they can be localized to well
below one micron by laser cooling techniques. In the experiment considered here
the singly positively charged ions of the calcium isotope 40Ca are trapped. Since
calcium has two electrons in its outermost shell the singly charged ion 40Ca+

will exhibit a level structure similar to that of the hydrogen atom. Figure
2.4 shows a simplified scheme of the first few levels of the 40Ca+ ion without
the Zeeman structure. The most notable difference to the hydrogen energy
levels is the existence of metastable states, D3/2 and D5/2 with a lifetime of
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Figure 2.4: Simplified level-scheme of 40Ca+ The qubit is encoded into
the S1/2 → D5/2 transition, which has a natural lifetime of about 1,17s. The
transitions at 397nm, 866nm and 854nm are used for cooling the ions, repumping
them to the electronic ground state and readout techniques. From [14]

about 1s. The S1/2 and D5/2 states are used to encode the qubit and it can be
manipulated with light of about 729nm wavelength. This transition is chosen
because of its long natural lifetime of 1.17s. This long lifetime is the reason why
a laser at 854nm wavelength is needed. It connects the D5/2 state to the much
more rapidly decaying P3/2 state, which allows fast repumping of the electron
population to the S1/2 state. To detect the state of an ion the transition at
397nm is used. Light of this wavelength is scattered off the ion if it is in the S
state and it remains dark if it is in the D state and the scattered light is detected
with a photomultiplier tube or a CCD camera. Both P states decay to the S
state with probabilities over 90%, nevertheless some population will decay into
the D states, which is why a laser at 866nm is needed to pump populations from
the D3/2 back to the S1/2 state. Encoding a qubit in a two-level system, whose
transition is driven by frequencies in the optical range is called an optical qubit.
An alternative, which does not exist for 40Ca+ would be a hyperfine qubit, which
is encoded in two hyperfine sub-levels of one level. The transitions at 397nm
and 729nm are also used to cool the motional state of an ion. The 397nm light
is used for Doppler cooling, while the 729nm laser is used for sideband cooling,
which enables the preparation of the ions in the motional ground state.
The interaction between individual atoms and lasers is typically described in a
semi-classical treatment, with a quantized atom and a classical electrical field.
A more detailed introduction of this model is given in appendix A. Starting

9



with the Hamiltonian
H = H0 +HI (2.4)

and the ansatz for the wave function of the electron in the atom

|Ψ〉 = c1 |1〉 e−iω1t + c2 |2〉 e−iω2t (2.5)

a simple equation for the evolution of the states under the influence of the light
is obtained:

|c2(t)|2 = sin2

(
Ωt

2

)
(2.6)

Here H0 is the Hamiltonian of the unperturbed atom, with |1〉 and |2〉 its eigen-
states. Ω is the so called Rabi frequency, which characterizes the strength of
the coupling between the two levels via the light field.
If the atom is illuminated with a pulse of light of duration, such that Ωt = π it
follows from this equation, that all population of an atom initially in the state
|1〉 is transferred to the state |2〉. This is called a π-pulse The same holds for
the opposite direction, which can be seen in the discussion in the appendix.
Manipulation tools like the π-pulse are the fundamental building blocks to uti-
lize trapped ions for quantum information purposes and fulfill the fourth DiVin-
cenzo criterion. To completely realize a universal set of quantum gates however,
another ingredient is essential.
Up to this point only the interaction between a single ion and a light field has
been considered. The maybe most important quantum mechanical effect for all
quantum information purposes however is the concept of entanglement, which
of course only occurs between multiple qubits. This spooky action at a distance,
as it was famously called by Einstein, Podolsky and Rosen in 1935 [4], here dis-
cussed for two qubits is the notion of non classical correlation. In the quantum
mechanical formalism it appears as inability of writing a two particle state as
the product of single particle states:

|ΨAB〉 6= |Ψa〉 ⊗ |Ψb〉 (2.7)

An example state for this concept is one of the so called Bell states:∣∣Φ+
〉

=
1√
2

(|↑↑〉+ |↓↓〉) (2.8)

In our experiments such states are prepared via a multi qubit gate, called the
Mølmer-Sørensen gate, which utilizes the common motional modes of the ions
to create state dependent optical forces, which mediate entanglement between
the electronic states of the ions, in the trap [21].
For these interactions it is necessary, to illuminate all participating ions simul-
taneously. Even if all parameters in the trap are the same for all ions in the
string the Rabi frequency and accordingly the time needed to perform π and
π/2-pulses is directly proportional to the amplitude of the laser at the location
of the ion. (cf. equation A.10).
If we wanted to achieve at most 1% of amplitude drop between the most and
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least illuminated parts of an ion string, a laser beam’s intensity should drop by
1.99% over the length of the string. Assuming a Gaussian intensity profile of

I (r) = I0

(ω0

ω

)2

e−
2r2

w2 (2.9)

yields an intensity drop by 1.99% at a radius of r = 0.066w. For an ion string
of 120µm length, the respective r would be 60µm and accordingly w = 909µm.
The fractional intensity inside a certain interval of a Gaussian distribution is
given by the error function:

Iz = erf

(
z√
2

)
(2.10)

It follows that 5.3% of the total intensity of a Gaussian beam lie within the
0.066w interval, required above. So almost 95% of the light are wasted to both
sides of the illuminated string. And this fraction only holds under the assump-
tion, that no light is lost above and below the string of ions!
In the following chapters the problem of shaping laser beams to facilitate the
desired interaction will be addressed and a device to improve on already imple-
mented technologies is introduced.
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Chapter 3

Diffraction, Fourier optics
and Holography

In the previous chapter the interaction between light and ions was introduced.
During this discussion the light was assumed to be made up of plane waves.
However, in a practical implementation this is usually only approximately the
case and often not at all. Especially when considering the cost of modern laser
systems it is very undesirable to use plane waves of large extent, when they are
not needed.

3.1 A scalar theory of diffraction

This chapter is adapted from [10] unless otherwise stated. The central part of
Fourier optics and thereby for this thesis is a lens’ property to perform a Fourier
transformation on a light field that propagates through it. This provides a
convenient tool for tasks such as spatial filtering, where the quality of a Gaussian
beam can be improved by blocking out features in the frequency domain as well
as spatial light modulation. In the latter case an amplitude or phase pattern is
imprinted onto a plane wave, chosen such, that the Fourier transform, performed
by a lens yields a desired beam shape, such as top-hats or more complex shapes
like Bessel beams. The effect goes well beyond geometrical optics and therefore
a treatment of lenses in the formalism of diffraction is necessary. First an
introduction to the theory of diffraction is given and special care is devoted to
the derivation of effects of lenses in different setups.
Maxwell’s equations describe classical electrodynamics and with it optics at the
most fundamental level, which makes them the usual starting point in textbooks
and theses. So let us start from the equations for electromagnetic phenomena:

∇× ~E = −µ∂
~H

∂t
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∇× ~H = ε
∂ ~E

∂t

∇ · ε ~E = 0

∇ · µ ~H = 0

Here ~E and ~H are the electric and magnetic field in vectorial notation respec-
tively. µ and ε are the permeability and permittivity of the medium in question.
These equations apply for the case of no present free charges. The first step will
be to reduce the problem to a scalar one through appropriate approximations.
Defining the index of refraction

n =

(
ε

ε0

)1/2

and the vacuum speed of light

c =
1

√
µ0ε0

where µ0 and ε0 are the permeability and permittivity of the vacuum, the op-
eration ∇× can be applied to the first and third equation. With use of the

vector identity ∇ ×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
− ∇2 ~E six independent differential

equations are obtained. Therefore the following steps can be performed on one
equation of the form

∇2u (P, t)− n2

c2
∂2u (P, t)

∂t2
= 0 (3.1)

where u stands for all ~E and ~H fields’ components and P are the spatial coor-
dinates. If only monochromatic waves are considered, which is sufficient in the
scope of this thesis, the optical wave can explicitly be written down as:

u (P, t) = Re{U (P ) exp (−2iπνt)} (3.2)

where Re{} signifies the real part of what is inside the brackets and U(P ) is a
complex function called phasor.

U (P ) = A (P ) exp [−iφ (P )] (3.3)

Hereby the spatial and temporal dependencies of the optical wave have been
separated and the focus can be put on the spatial propagation and transverse
effects without having to carry the temporal dependency through the whole
calculation. Also the aforementioned simplification of the vectorial nature of
electromagnetic waves into a scalar theory was performed. This however is only
valid in cases, where the fields’ components are independent of each other. This
assumption can be made, as long as the structures with which the light interacts
are large, compared to the light’s wavelength.
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Figure 3.1: Describing diffraction with Green’s functions To obtain the
field at P0 the field in a volume around it needs to be considered. With Green’s
functions this can be reduced to considering the surface S1 +S2 of this volume.
In further steps the surface S2 will be neglected, since no light is incident on P0

from there. From [10]

Until now only the free propagation of the light wave has been considered. To
take into account the interaction between the light and a diffracting aperture
consider the situation of figure 3.1. Here a monochromatic plane wave is incident
perpendicularly on the screen from the left. Seeking the resulting field at the
observation point P0 the influence of the light diffracted by every point P1 in the
aperture Σ needs to be calculated. In general it would be necessary to calculate
the influence of all the light within a volume around P0, however according to
Green’s theorem [11], this can be reduced to calculating the influence from a
surface around P0. Then the field at position P0 is given by:

U (P0) =
1

4π

¨
S1+S2

(
G
∂U

∂n
− U ∂G

∂n

)
ds (3.4)
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G is a so called Green’s function that can be chosen arbitrarily, within two con-
straints. G and its first and second partial derivatives need to be single valued
and continuous. If it is chosen in a smart way the integration can be simplified
significantly. For example it would be desirable to discard the integration over
S2 since it is intuitively clear that, since no light is coming from there, this
surface should not contribute to the integration. Let G be

G− (P1) =
exp (ikr01)

r01
− exp (ikr̃01)

r̃01
(3.5)

where r01 is the length of the vector that points from the observation point P0

to the point P1 within the aperture and r̃01 is the length of the vector pointing
from P1 to a mirror image of P0, mirrored by the diffracting screen. The quan-
tity k is called wave number and is defined as k = 2π

λ . Under the assumption,
that the field and its derivative within the aperture Σ are exactly the same
as they would be the without the presence of the screen, and the field and its
derivatives are exactly zero outside of Σ the integration can be limited even
to the transparent part of the screen. This holds for an opaque screen every-
where far (compared to the wavelength λ of the light) from the border between
the opaque and transparent regions. If Σ is large compared to λ the evanes-
cent waves, which appear at the border and extend a few wavelengths into the
opaque region, can be neglected.
This is the so called first Rayleigh-Sommerfeld solution to the diffraction prob-
lem. Simpler functions can be chosen for G, for example the Kirchhoff solution,
which is roughly the first term of the Rayleigh-Sommerfeld solution, but ad-
ditional boundary conditions need to be imposed here, which make the theory
inconsistent.
Substituting G− in 3.4 leads to

U (P0) =
1

iλ

¨

Σ

U (P1)
exp (ikr01)

r01
cos θds (3.6)

where θ is the angle between the vectors ~n and ~r01. This can be interpreted as
the Huygens-Fresnel principle, which says that the field at P0 can be seen as
originating from secondary point sources with diverging spherical waves at each
point P1 within Σ.
This formula allows the calculation of the electromagnetic fields of a diffracted
wave in its most general form. In the following approximations will be intro-
duced that radically simplify the calculation of the spatial distribution of light
after diffraction.

3.2 Fresnel and Fraunhofer diffraction

Figure 3.2 is a three dimensional extension of figure 3.1, where the direction
transversal to the light’s propagation has been extended to two dimensions. For
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the first approximation the assumption is made, that the distance z, from the
aperture plane to the observation plane is much larger, than the spatial extent of
the diffracting aperture Σ. In this case cos θ ' 1 and the denominator r01 ≈ z,
yielding

U (P0) =
1

iλz

¨

Σ

U (P1) exp (ikr01) ds (3.7)

To further simplify the expression an assumption for r01 in the exponent is

Figure 3.2: Extended scheme of diffraction geometry. Light is incident
from the left onto the aperture plane, with transversal coordinates (η, ξ) and
is diffracted there. At a distance z is the observation plane with transversal
coordinates (x,y), containing the observation point P0. From [10]

made. r01 is given exactly by

r01 =

√
z2 + (x− ξ)2

+ (y − η)
2

= z

√
1 +

(
x− ξ
z

)2

+

(
y + η

z

)2

(3.8)

which can be simplified using the Taylor expansion

√
1 + b = 1 +

1

2
b− 1

8
b2 + ... |b| < 1 (3.9)

Keeping only the first two terms of the expansion yields

z

√
1 +

(
x− ξ
z

)2

+

(
y − η
z

)2

' z

[
1 +

1

2

(
x− ξ
z

)2

+
1

2

(
y − η
z

)2
]

(3.10)

An assumption on the two terms in brackets needs to be made in order to secure
small enough influence of the dropped terms in the expansion. One could impose
the condition, that the b2/8-term does not change the phase of the exponential
by more than one radian. To meet this condition the following must hold:

z3 � π

4λ

[
(x− ξ)2

+ (y − η)
2
]2
max

(3.11)
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For a circular aperture of 1cm diameter, an observation region of 1cm diameter
and a wavelength of 500nm this would mean z � 25cm.
Inserting equation 3.10 to equation 3.7 ultimately yields:

U (x, y) =
eikz

iλz

∞̈

−∞

U (ξ, η) exp

{
i
k

2z

[
(x− ξ)2

+ (y − η)
2
]}

dξdη (3.12)

An alternative form is found if the term exp ik
2z

(
x2 + y2

)2
is factored outside

the integral, yielding

U (x, y) =
eikz

iλz
e
ik
2z (x2+y2)

∞̈

−∞

{
U (ξ, η) e

ik
2z (ξ2+η2)

}
e−i

2π
λz (xξ+yη)dξdη (3.13)

which can be identified, apart from the quadratic phase exponential, as the
Fourier transformation of the complex field just after the aperture, where the
frequencies would be fx = x/λz and fy = y/λz. This is called Fresnel approxi-
mation or referred to as the near field.
If another, more strict approximation is applied the quadratic phase exponen-
tial can be removed. This is the so called Fraunhofer approximation or far field.
The assumption made is

z �
k
(
ξ2 + η2

)
max

2
(3.14)

and it yields the equation

U (x, y) =
eikz

iλz
e
ik
2z (x2+y2)

∞̈

−∞

U (ξ, η) e−i
2π
λz (xξ+yη)dξdη (3.15)

where again fx = x/λz and fy = y/λz are the spatial frequencies in the Fourier
transform of the light field directly after the aperture.
For example, for a diffracting aperture of 1 cm diameter and light of 500 nm
wavelength z would have to satisfy

z � 300m (3.16)

This condition is rarely satisfied or satisfiable in laboratory conditions, but in
the next chapter it will be shown, how the conditions of Fraunhofer diffraction
can be realized at much shorter distances through the use of a converging lens.

3.3 Thin lenses

The central component of Fourier optics, which makes its application practical
is the lens. A commonly made approximation to real lenses is that of the thin
lens. It states, that the propagation of light through the lens can be viewed as

17



a phase retardation.
One can write this phase retardation as a transformation of the form U ′ (x, y) =
t (x, y)U (x, y) with U ′ the field directly after the lens and U the field directly
before the lens, as shown in figure 3.3. Here the maximum thickness of the

Figure 3.3: Schematic of a thin lens. If light propagates through a thin
lens the retardation of its phase is directly proportional to the lens’ thickness
for each ray. Here ∆0 is the lens’ maximum thickness and ∆ (x, y) is the local
thickness, depending on the transversal coordinates. From [10]

lens is denoted by ∆0 and the local thickness, depending on the transversal
coordinates by ∆ (x, y). The transformation is then

t (x, y) = exp [ik∆0] exp [ik (n− 1) ∆ (x, y)] (3.17)

where n is the refractive index of the lens’ material. This can be expressed in
words as a global phase retardation due to propagation of the light over the
thickness of the lens plus an additional retardation, due to the higher index of
refraction of the lens’ material and its local thickness.
Before any approximations or simplifications can be made it is helpful to split
the thickness function ∆ (x, y) into three parts, as shown in figure 3.4. To
parametrize the thickness of the lens it is split into three regions. The left an
right curved surfaces and the area of constant thickness between them. Here
the maximum thicknesses of the three parts are denoted as ∆01, ∆02 and ∆03

with ∆0 = ∆01 + ∆02 + ∆03. The radii of curvature of the surfaces are chosen
such, that with light propagating from left to right, convex surfaces have a
positive radius and concave surfaces have a negative one. This allows for the
description of several types of lenses, such as biconcave, biconvex, planoconcave
and meniscus lenses without changing any formulae. The thicknesses of the
curved surfaces are given by

∆1 (x, y) = ∆01 −R1

(
1−

√
1− x2 + y2

R2
1

)
(3.18)

and

∆3 (x, y) = ∆03 +R2

(
1−

√
1− x2 + y2

R2
2

)
(3.19)
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Figure 3.4: Parametrization of the thickness of a lens. The lens is split
into three parts, the left and right curved surfaces and the volume of constant
thickness between them. ∆01 trough ∆03 are the maximal thicknesses of each
of the three parts. As a convention the radii of curvature are chosen as follows.
With light propagating through the lens from the left to the right convex surfaces
(R1) have a positive radius of curvature, while concave surfaces (R2) have a
negative radius. Adapted from [10]

Joining the three parts and identifying ∆0 = ∆01 + ∆02 + ∆03 yields

∆ (x, y) = ∆0 −R1

(
1−

√
1− x2 + y2

R2
1

)
+R2

(
1−

√
1− x2 + y2

R2
2

)
(3.20)

∆02 is just a constant term originating from the region of constant thickness of
the lens.
To simplify this parametrization an approximation known from geometrical op-
tics is applied. In the so called paraxial approximation only light is considered,
which propagates approximately through the center of the lens, that is with
small x and y coordinates. Then the square root can be simplified using the
series expansion of equation 3.9.√

1− x2 + y2

R2
i

≈ 1− x2 + y2

R2
i

(3.21)

Using the simplified terms in equation 3.20 leads to

∆ (x, y) = ∆0 −
x2 + y2

2

(
1

R1
− 1

R2

)
(3.22)

Now the transformation t takes the following form

t (x, y) = exp [ikn∆0] exp

[
−ik (n− 1)

x2 + y2

2

(
1

R1
− 1

R2

)]
(3.23)

Additionally all physical properties of the lens can be combined into one quantity
f , which is defined by

1

f
= (n− 1)

(
1

R1
− 1

R2

)
(3.24)
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called the focal length of the lens. Substituting the focal length and dropping
the constant phase retardation in the above equation now yields

t (x, y) = exp

[
−i k

2f

(
x2 + y2

)]
(3.25)

This equation approximates the effect of a spherical lens by parabolic surfaces
for the case of paraxial illumination. In the non-paraxial case the behavior of
the lens will differ significantly from this approximation and the differences are
quantified and discussed in the context of aberrations in section 5.3.
As stated above the sign convention for the radii of curvature of the spherical
surfaces allows the description of different types of lenses and it can be shown,
that equation 3.25 yields meaningful results in all cases with the sign of f
indicating the type of lens. f > 0 means that the focal point of the lens is
at a distance f behind it and a plane wave is turned into a spherical wave
converging on the focal point. That is the case for biconvex, planoconvex and
positive meniscus lenses. These are therefore called positive or converging lenses.
f < 0 describes lenses with a focal point behind the lens, meaning that a plane
wave would be turned into a spherical wave, appearing to diverge from the focal
point in front of the lens. These lenses are biconcave, planoconcave or negative
meniscus lenses. They are called negative or diverging lenses and are depicted
in figure 3.5.

Figure 3.5: Two types of lenses. Lenses with f > 0 are called converging
lenses, since a plane wave incident onto the lens converges onto a point after
the lens. Lenses with f < 0 are called diverging lenses, because a plane wave
diverges, after propagating through the lens. From [10]
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3.4 Fourier transforms with lenses

As mentioned above thin lenses can be used to perform Fourier transforms, as
in the Fraunhofer approximation of diffraction, without having to observe the
diffracted field at distances of the order of 1000 m. To show this property two
different setups shall be discussed, as shown in figure 3.6.

Figure 3.6: Setups to perform Fourier transformations with lenses. On
the left the aperture is placed at a distance d in front of the lens. On the right
the aperture is placed behind the lens, a distance d from the focal plane of the
lens. The latter case is equivalent to illuminating the aperture with a spherical
wave. From [10]

Aperture before the lens

The first setup to be discussed is shown on the left side of figure 3.6. The
aperture is placed a distance d in front of a converging lens and the observation
plane is the focal plane of said lens. Here the angular spectrum of the wave will
be considered, which is defined as

FU (fx, fy) = F{U} =

∞̈

−∞

U (x, y) exp [−2πi (fxx+ fyy)] dx dy (3.26)

It is assumed that the aperture is illuminated by a plane wave of amplitude
A and has a complex transformation function t0 (x, y), which can be a simple
binary function, with value 1 inside the aperture and 0 outside it or something
more complicated with phase delays and amplitude modulations, depending on
the transversal coordinates. The spectrum of the light At0 directly after the
aperture is F0 = F [At0] and the spectrum of the light Ul directly in front of the
lens is Fl = F [Ul]. This angular spectrum can be interpreted as plane waves
propagating in different directions and interfering to make up the field in real
space.
The spectra directly behind the aperture and directly behind the lens can be
related by an equation that holds in the case of Fresnel diffraction

Fl (fx, fy) = F0 (fx, fy) exp
[
−iπλd

(
f2
x + f2

y

)]
(3.27)

where d is the distance between the aperture and the lens. This follows from
equation 3.12, which can be viewed as a convolution of U with the kernel
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h (x, y) = eikz

iλz exp
[
ik
2z

(
x2 + y2

)]
. For the spectra the convolution turns into

a product as in equation 3.27, where the transformed kernel is

H (fy, fy) = eikz exp
[
−iπλz

(
f2
x + f2

y

)]
= F {h (x, y)} (3.28)

This can be interpreted as an additional phase, collected by the different spatial
frequencies originating from their different directions and thereby different path
lengths. Considering again the equation for Fresnel diffraction

Uz (x, y) =
eikz

iλz
e
ik
2z (x2+y2)

∞̈

−∞

{
U (ξ, η) e

ik
2z (ξ2+η2)

}
e−i

2π
λz (xξ+yη)dξdη (3.29)

helpful observations can be made. Since the observation plane is the focal plane
of the lens, z is set equal to the focal length f. Now the exponential eikf in
front of the integral can be dropped, since it is a global phase. Setting U (ξ, η)
according to the preceding chapter

Ul (ξ, η) = At0 (ξ, η) exp

[
−i k

2f

(
ξ2 + η2

)]
(3.30)

where t0 is again an arbitrary complex function, that contains the modifications
to the amplitude of the field and A is the amplitude of the plane wave. Now
the two exponentials depending on ξ and η cancel and the field Uf at the plane
z = f is

Uf (x, y) =
exp

[
ik
2f

(
x2 + y2

)]
iλf

∞̈

−∞

At0 (ξ, η) exp

[
−i 2π
λf

(xξ + yη)

]
dxdy

(3.31)
Identifying fx = ξ/λf and fy = η/λf allows substitution of the angular fre-
quency spectrum, yielding

Uf (x, y) =
exp

[
ik
2f

(
x2 + y2

)]
iλf

Fl

(
x

λf
,
y

λf

)
(3.32)

As the last step equation 3.27 is substituted into equation 3.32, yielding

Uf (x, y) =
exp

[
ik
2f

(
x2 + y2

)]
iλf

F0

(
x

λf
,
y

λf

)

=
A exp

[
ik
2f

(
1− d

f

) (
x2 + y2

)]
iλf

∞̈

−∞

t0 (ξ, η) exp

[
−i 2π
λf

(xξ + yη)

]
dξdη

(3.33)

Apart from the phase exponential in front of the integral this is the Fourier
transform of the field, that propagated from the aperture to the lens. In the
special case of d = f , meaning the aperture being placed in the front focal
plane of the lens, the exponential in front drops out, leaving the exact Fourier
transform of the light diffracted by the aperture.
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Aperture behind the lens

Placing the aperture behind the lens, as is depicted in figure 3.6 on the right is
equivalent to illuminating the aperture with a converging spherical wave, if the
lens is in turn illuminated by a plane wave of amplitude A. From geometrical
optics it follows, that the local amplitude at distance d behind the lens is given
by A f

d , where d is now the distance of the aperture to the focal plane. That
means in the case d = f the aperture would be placed directly against the lens
and would be illuminated by the unchanged amplitude, since no focusing has
occurred yet. For d = 0 the amplitude diverges, since in this approximation of
a lens of infinite size the focus spot would be infinitely small.
Using again the formalism from before the light transmitted by the aperture
becomes

U0 (ξ, η) =

(
Af

d
exp

[
−i k

2d

(
ξ2 + η2

)])
t0 (ξ, η) (3.34)

Again substituting this into the equation for Fresnel diffraction yields

Uf (x, y) =
A exp

[
i k2d
(
x2 + y2

)]
iλd

f

d

∞̈

−∞

t0 (ξ, η) exp

[
−i2π
λd

(xξ + yη)

]
dξdη

(3.35)
which is, again up to a quadratic phase factor, the Fourier transform of the
transmission function of the aperture. But in this case an additional feature
appears. The factor f

d means, that by moving the aperture closer to or farther
from the lens the size of the image, formed in the focal plane, can be controlled.
It is important to note, that in the above discussion no constraints were put
on the aperture function t0. In general t0 can be an arbitrary complex-valued
function, although in practice a device or optical element taking the role of the
aperture will not manipulate both degrees of freedom of an incident wave.

3.5 Aberrations

In the previous section the description of a thin lens was introduced, albeit with
a couple of assumptions. Most importantly the spherical surface of the lens was
approximated through parabolic functions, which only hold for light propagat-
ing through the lens close to the optical axis.
Deviations from the ideal behavior of an optical system are called aberrations.
They limit the performance of optical systems, such as telescopes or photo-
graphic lenses and great effort is taken to minimize the aberrations of an optical
system.
To develop a description of aberrations I will consider the response of an optical
system being illuminated by a plane wave. A perfect system would image the
plane wave onto a point in the image plane, whose position depends on the plane
wave’s angle of incidence onto the entrance pupil of the system. The deviation
of the image from this ideal point focus is called point-spread-function.
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An ideally focussed plane wave would leave the optical system as a spherical
wavefront, converging on a point in the image plane. Let this spherical wave-
front be denoted as S and the actually produced wavefront as W, as depicted
in figure 3.7. Let P ′1 be the point in the plane of the output pupil from which
an imagined ray of light propagates to the image point. Now P ∗1 is the point
in the image plane, where the image of the plane wave is expected to appear
for an ideal optical system. The actual point of convergence for the wavefront
after the exit aperture is denoted as P1. The points Q and Q′ are defined as
the points, where a ray from P1 or P ∗1 intersects the ideal or actual wavefront,
which crosses the center of the pupil.
Now the aberration can be quantified through the optical path length Φ = [QQ′].
Instead of continuing the geometrical discussion of the optical aberration, Φ shall
now be expanded in a power series.

Figure 3.7: Quantifying the distortion of a wavefront through an optical
system The planes at O′1 and O1 correspond to the exit pupil of the optical
system in question and the image plane respectively. The ideal wavefront S
would lead to a focus spot at location P ∗1 , while the actual distorted wavefront
W produces the focus point at location P1. The optical path length between
S and W, denoted by the points Q and Q′ is used to measure the degree of
aberration for each point in the exit pupil. The points Q and Q′ are defined as
points in the wavefronts, which cross the center of the pupil plane, where a ray
from P1 or P ∗1 crosses these wavefronts. From [1]

This expansion will be done in terms of the Zernike polynomials V ln (X,Y ),
which in polar coordinates take the form V ln (ρ sin θ, ρ cos θ) = Rln (ρ) eilθ. The
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radial functions Rln are defined by:

R±mn (ρ) =

n−m
2∑
s=0

(−1)
s (n− s)!
s!
(
n+m

2 − s
)
!
(
n−m

2 − s
)
!
ρn−2s (3.36)

Here n ≥ 0 and l are integer numbers, with n ≥ |l| and n − |l| even, as well as
m = |l|.
While the polynomials V are complex, real polynomials can be defined,yielding
even and odd functions in θ.

Umn =
1

2

(
V mn + V −mn

)
= Rmn (ρ) cosmθ (3.37)

U−mn =
1

2i

(
V mn − V −mn

)
= Rmn (ρ) sinmθ (3.38)

The path length difference Φ now becomes

Φ (ρ, θ) =
∑
n

∑
m

anmR
m
n (ρ) cosmθ + a′nmR

m
n (ρ) sinmθ (3.39)

The terms of this expansion are well known deformations of optical systems
and the lowest of them are listed in table 3.1. Expanding a wavefront in the
Zernike polynomials yields a unique set of coefficients, as is shown in [1] and
these coefficients can be used to quantify the amount of aberrations in an optical
system. Some of the most notable aberrations are:

• Tilt is just as the name suggests a tilting of the overall wavefront along
an axis.

• Defocus is the distortion of a focus due to a shifted image plane.

• Astigmatism results, when the optical system has a different focal lengths
along two perpendicular axes. That means, that at a certain distance a
focus will appear as a line along one of these axes, and at another distance
another focus will appear as a line along the other axis.

• Coma appears, when the magnification of an optical system varies with
the position inside the pupil. It leads to a distorted focus with the shape
of a comet’s tail.

• Spherical aberration is a varying focal length, depending on the position
within the optical system’s pupil.

Aberrations can severely limit the performance of optical systems and a part
of this thesis will be to explore the capabilities of a spatial light modulator to
correct for the aberrations in an optical setup. Section 5.3 describes the optical
setup that was tested and the experimental scheme that was applied to correct
for the aberrations present in that system.
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Name Polynomial Depiction

Piston a0 -

X-tilt a1 ∗ ρ cos θ
-1

-0.5
0

0.5
1 -1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1

Y-tilt a2 ∗ ρ sin θ
-1

-0.5
0

0.5
1 -1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1

Defocus a3 ∗
(
2ρ2 − 1

) -1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0◦ Astigmatism a4 ∗ ρ2 cos (2θ)
-1

-0.5
0

0.5
1 -1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1

45◦ Astigmatism a5 ∗ ρ2 sin (2θ)
-1

-0.5
0

0.5
1 -1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1

X-coma a6 ∗
(
3ρ2 − 2

)
ρ cos θ

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

Y-coma a7 ∗
(
3ρ2 − 2

)
ρ sin θ

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

Spherical a8 ∗
(
6ρ4 − 6ρ2 + 1

) -1
-0.5

0
0.5

1 -1

-0.5

0

0.5

10
0.5

1
1.5

2
2.5

3

Table 3.1: Some of the most notable Zernike polynomials Using the
coefficients a0 to an a distorted wavefront can be quantitatively analyzed and
the aberrations can be corrected for accordingly. There is no image for the
polynomial ”piston” since it only corresponds to a constant phase shift of the
wavefront, without any features in need of depiction.
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3.6 Holography

The first thing that comes to mind when thinking of apertures are simple geo-
metrical forms like rectangles and circular apertures. However, these are only
of scientific interest in the context of resolution of optical systems or for educa-
tional purposes, since their diffraction patterns are relatively easy to calculate.
Transparencies with absorptive structures and modern electro optical devices
allow the construction of far more complex apertures, which are capable of
creating arbitrary light patterns and are limited only by technology. These
apertures are called holograms.

Classical holograms

Typically holography, as Dennis Gabor envisioned it [8], is a technique to record
the amplitude and phase of light, that gets scattered off an object, as opposed
to photography, which is only sensitive to the intensity of the scattered light.
To do so the same detectors as for photography can be employed, but the
phase differences need to be turned into amplitude differences through inter-
ferometry. The light to be recorded is overlapped with light from another
source with known relative phase, e.g a plane wave. The recorded image is
then converted into a transparency, where the recorded intensities are turned
into transmittivities. (cf. figure 3.8) Let a (x, y) = a (x, y) exp [−iφ (x, y)] and

Figure 3.8: Example of a hologram recording scheme. A hologram is cre-
ated through the interference of the light scattered off the object to be recorded
and light from a reference source. In the case depicted here the reference is
created by reflecting part of the incident light off a mirror and overlapping the
reflected light with the scattered at the recording medium. From [10]

A (x, y) = A (x, y) exp [−iψ (x, y)] be the wavefronts of the scattered light and
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the reference light respectively and let us assume, that the intensity |A|2 is
uniform. Then the intensity of the sum becomes:

I (x, y) = |A|2 + |a (x, y) |2 + 2Aa (x, y) cos [ψ (x, y)− φ (x, y)] (3.40)

The resulting intensity contains information about the amplitude and the phase
of the scattered light. A transparency recording this intensity is called a holo-
gram. First we assume, that the transparency has high average transmittivity
and the recording changes that only by small amounts.

t (x, y) = t0 + ∆t (x, y) (3.41)

where |∆t| � |to|. If we assume the recording medium to be linear, that means,
the resulting transmittivity of the, for example, film is directly proportional to
the incoming intensity, the transparency takes the form:

t (x, y) = β
(
|A|2 + |a|2 + A∗a + Aa∗

)
(3.42)

β is a coefficient, characterizing the response of the recording medium. The
term β|A|2 = tb creates a constant transmittivity, which will be called bias
and which also includes the transmitted light from the t0 term. To reconstruct
the wavefront this transparency is now illuminated with a new coherent wave
B (x, y).

B (x, y) tf (x, y) = tbB + βaa∗B + βA∗Ba + βABa∗ (3.43)

= U1 + U2 + U3 + U4

Now, if B is exactly equal to A the third term becomes

U3 (x, y) = β|A|2a (x, y) (3.44)

Since we assumed |A|2 to be uniform, this term is up to a constant factor a
replica of the original wavefront. An observer behind the transparency would
therefore detect light, as if it were scattered off the original object, even though
it is not present anymore.
Under the assumption of small variations to the transmittivity the term U2 is
negligible. U4 is proportional to a∗ and therefore yields the conjugate of the
object wave.
In other words the reconstruction process will yield a virtual image of the object
in front of the screen, the original wave, and a real image, behind the screen, the
conjugate wave. The real and virtual image will appear at locations, which are
mirror images of each other, from the hologram transparency. This means, that
by recording the hologram with an angle between the object and the reference
wave, will separate these two images automatically.
A point, that will be important in the following section is, that for these tech-
niques the object whose wave is to be recorded needs to be present in the
recording apparatus at some point and therefore needs to exist.

28



Computer generated holograms

Thanks to the high computational power of modern computers a new field of
holography has emerged. Through specialized algorithms it has become possi-
ble to calculate the structure of transparencies for a given object. In turn this
means that in contrast to the techniques presented above, the object, whose
light field is to be reconstructed, need not have existed at any point in time!
While it is possible to calculate holograms, that form three dimensional images,
this thesis will focus on a technique to create a two dimensional image, simply
because depth information is not of interest in our application. Holograms which
are calculated, instead of recorded are called computer generated holograms, or
CGH and the type of CGH considered here is of the Fourier hologram type,
because it employs the Fourier transforming properties of lenses. Two kinds
of Fourier holograms can be distinguished: Amplitude holograms encode the
information into the amplitude of the transparency, similar to classical holog-
raphy. On the other hand phase holograms assume a transparency of uniform
transmittivity but encode the image into relative phase shifts of the transmitted
wavefront. For a comparison of an amplitude and a phase hologram of a simple
rectangle, see figure 3.10. It is sufficient to use only one degree of freedom to
encode the hologram, since we are only interested in controlling one degree of
freedom, namely the amplitude, in the image plane. The value of the phases for
the reconstructed image is of no concern, as long as it is fixed.
Since the device used to encode the CGH in this thesis is a phase-only spatial

Figure 3.9: Fourier hologram A Fourier hologram assumes that the hologram
to be calculated (Uh) is the Fourier transform of the light in the object plane(Uo).
E.g. the light was imaged through a lens, which is indicated with dotted lines
here. In the reconstruction of the object a real lens is used to transform the
light from the hologram once more. From [10]

light modulator (cf. section 4.3) the focus will lie on phase holograms in the
following.
The creation of a CGH can be split into three problems, sampling, computation
and encoding. While the computation problem is addressed in the following

29



section, the encoding problem is discussed in chapter 4 where liquid crystals as
a means of modulating the phase of a light field are discussed and the device
used in this thesis is introduced.
The sampling problem is concerned with the necessary sampling distance in the
hologram plane, to achieve a desired resolution in the image plane. It is only of
minor importance in this thesis, since the sample distance in the hologram plane
is fixed through the physical properties of the device that encodes the hologram.
However, in reversing the problem, a formula for the size of the reconstructed
image can be given:

Lξ =
λf

∆x
(3.45)

Limiting the discussion to one spatial dimension Lξ is the extent of the recon-
structed image in the image plane, f is the focal length of the lens used in
the reconstruction, λ is the wavelength of the light used and ∆x and is the
sample spacing in the hologram plane in the x direction. This formula can
be derived with a few simple considerations. The hologram can be seen as a
means to diffract light into different directions. If the hologram were chosen as
a diffraction grating the maximum deflection of the light can be obtained from
the grating equation

nλ = d · sin θ (3.46)

where n is the index of the diffraction maximum, which shall be one here, d is
the grating constant, in this case this is 2∆x, which is the finest grating that
can be displayed with a sample spacing of ∆x and θ is the corresponding angle
of deflection. Using a lens to image the deflected light leads to

tan θ =
L

f
(3.47)

with L the distance of the deflected light from the optical axis in the image
plane and f the focal length of the lens. In the case of small deflection angles
the approximations tanx = x = sinx can be used to get

λ = 2∆x · L
f

(3.48)

Recognizing that the extent of the image Lξ is twice the deflection distance L
equation 3.45 is obtained.

3.7 Algorithms to calculate CGHs

The holograms considered here encode the information in the phase of the
light field and are therefore called phase-holograms. The calculation of phase-
holograms is significantly more difficult than that of amplitude holograms and
it is usually very hard, if not impossible, to infer anything about the image by
looking at a phase hologram. In an amplitude hologram the connection between
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features of the hologram and features of the image is readily made, since the
transverse locations in the hologram plane can be associated with spatial fre-
quencies, which can be identified in the image plane. For example in figure 3.10
the rectangular structure of the input pattern is easily recognized, although its
shift from the central position is not obvious even here. In phase-holograms the
correspondence between spatial frequencies in the image plane and transverse
points in the hologram of course also exists, but since the amplitude of all points
in the hologram plane is usually equal no information can be inferred form this.
Instead the points in the hologram plane are assigned relative phases. The right
side of figure 3.10 shows such a phase hologram. Here the gray levels no longer
signify a transmitted amplitude, but rather the relative phases of the light field’s
components.
The modulated light that propagates from the hologram plane is usually imaged
by a positive lens, as shown in the previous chapter. The different components’
interference then leads to the formation of the desired pattern in the image
plane. Apart from very simple cases, such as diffraction gratings and lenses it is

Figure 3.10: Comparison between an amplitude and a phase hologram
These images show an amplitude hologram in the center and a phase holo-
gram calculated by the GS algorithm on the right. The starting point for the
holograms was the shifted rectangle depicted on the left. For the amplitude
hologram on the left the contrast was enhanced, to emphasize the spatial com-
ponents, which allow an identification with the spatial directions of the numeral.
Although it is not obvious, that the rectangle in the input image was shifted
from the central position, the general shape is quickly recognized. In the phase
hologram on the right no such identification is possible, since the gray levels
here correspond to relative angles in the interval [0; 2π].

usually not possible to predict the image from simply looking at the hologram.
The algorithms used to calculate phase holograms can be divided into two fam-
ilies: Point source algorithms [26] and iterative Fourier transform algorithms.
Only the latter shall be discussed in this thesis. An iterative Fourier transform
algorithm (IFTA), starts with an initial guess of the hologram and approaches a
solution, which approximates the desired image to a predefined amount of error.
An example of an IFTA is given and a first extension of the algorithm is shown.
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3.7.1 Gerchberg-Saxton Algorithm

A very basic algorithm of the iterative transform type is the so called Gerchberg-
Saxton algorithm [9]. It is schematically depicted in figure 3.11. This algorithm
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Figure 3.11: Schematic depiction of the Gerchberg-Saxton algorithm.
To initialize the algorithm the amplitude of the incident light (ainc) and an
initial guess for the phases (ϕ0) are combined to form a complex field. Through
iterative Fourier transformation and application of constraints on the complex
field the pattern of phases approaches the solution. If the resulting image (Aout)
approximates the desired image up to a predefined measure of error the iteration
is stopped and the phase pattern is extracted.

is initialized, by creating a complex field from the amplitude of the incident
light, (ainc) which is usually chosen to be uniform over the whole hologram,
and an initial guess for the phases (ϕ0). This field ainc exp [iϕ0] is then Fourier
transformed to yield Aout exp [iφ].

Aout exp [iφ] = F (ainc exp [iϕ]) (3.49)

This is the image plane and Aout corresponds to the amplitude of the light field,
that would form, if ϕ were used as an actual hologram. Now the convergence
criterion is invoked. For each point in Aout the difference from the corresponding
point of the desired, or target, image Atarg is calculated and the root-mean-
squared error is calculated. If this value lies below a preset bound, which is
usually chosen to be a few percent, and does not change by a preset amount
between two iterations, the algorithm is considered converged and ϕ is the

32



desired hologram.
The root mean squared error is given by

RMSE =
1√
n

√∑
i,j

(Aout (i, j)−Atarg (i, j))
2

(3.50)

where i and j index the points in the sampled fields and n = i · j is the overall
number of samples. To ensure the comparability of both amplitudes they need
to be normalized appropriately. If the algorithm is not converged the next step
is to replace the amplitude of the output Aout with the amplitude corresponding
to the target pattern Atarg, while the calculated angles are kept.

Aout exp [iφ]→ Atarg exp [iφ] (3.51)

In the next step the inverse Fourier transform of the expression above is taken

ain exp [iϕ] = F−1 (Atarg exp [iφ]) (3.52)

Finally ain is replaced by the incident amplitude ainc and the next iteration
begins

ain exp [iϕ]→ ainc exp [iϕ] (3.53)

In principle the algorithm propagates the field back and forth between the holo-
gram plane and the image plane and uses the amplitude of the incident light
and the target image as constraints on the evolution of the phases.
Figure 3.12 shows an example for the GS algorithm. In a) the chosen target can
be seen, which was put into the algorithm as Atarg and b) shows the output
phase pattern, with the brightness values from 0 to 255 translating into a relative
phase from 0 to 2π. c) is the reconstructed image, from applying the phase pat-
tern to the SLM and imaging the diffracted light onto a CCD camera. While the
general shape of the target pattern is reconstructed fairly well, the homogeneity
of the shape however is very poor, due to speckle and imperfect convergence.
The first step to improve image quality is given in the following chapter on
the MRAF algorithm, and further improvements are discussed in section 5.4.
General convergence of this algorithm can only be proven in the weak sense,
that means, that from one iteration to the next the error measure, in this case
the RMS error can not increase [6]. It is immediately obvious, that this leads to
a problem, since the algorithm can never escape from a local minimum of the
convergence criterion, should it encounter one.

3.7.2 MRAF

There are different improvements on the Gerchberg-Saxton algorithm, which
aim at avoiding getting stuck in local minima of the convergence, one of which
will be presented here. The mixed region amplitude freedom (MRAF) algorithm
[19] improves on the GS algorithm by relaxing the constraints on the amplitudes
in the image plane. This is achieved by splitting the image plane into two parts,
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Figure 3.12: Example images for the GS algorithm: a) Shows the chosen
target pattern, a shifted rectangle. b) Is the pattern that was calculated, using
the GS algorithm, c) shows the reconstructed image, when the calculated pattern
is applied to the SLM and the diffracted light is imaged with a CCD camera.
This image was cropped, to improve visibility. Here it can be seen, that the GS
algorithm reconstructs the shape of the target, to a certain amount of precision,
but a large amount of speckle remains and reduces the image quality.

a signal region (SR), which contains the desired image and a noise region (NR),
where the amplitude is not constrained at all. During the iteration the amplitude
Aout is replaced by Atarg only for the pixels in the signal region, while the
evolution of the amplitudes in the noise region is fully unconstrained. In practice
that means, that the usable area of the image plane is reduced, compared to
the GS algorithm, since the number and size of pixels in the hologram plane are
fixed.
Here, equation 3.51 becomes:

Aout exp [iφ]→ (m ·Atarg|SR + (1−m) ·Aout|NR) exp [iφ] (3.54)

Also the signal and noise region are weighted against each other, using a mixing
factor ’m’. While a higher mixing factor reduced the number of iterations until
the algorithm converges it also reduces the smoothness of the output. To yield
a good balance between these properties the mixing factor was chosen to be 0.3
but lower values can be explored, since fast calculation is not a strict requirement
in our implementation.
Apart from the division into two regions the procedure of the MRAF algorithm
is the same as for the GS. The noise region can for example be chosen to frame
the signal region but in general the relative positioning is arbitrary. Figure 3.13
shows example images for the MRAF algorithm, equal to those of figure 3.12.
First the target pattern is shown, as before, the shifted rectangle. Sub-figures
b) and c) show the calculated phase pattern, Sub-figure c) shows the image,
produced in the focal plane of a positive lens, imaged with a CCD camera.
It can be seen, that the quality of the image has improved, compared to the
GS algorithm, but to achieve acceptable homogeneity of homogeneous areas,
further improvements are necessary. A straightforward way to compare the two
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Figure 3.13: Example images for the MRAF algorithm: a) Shows the
chosen target pattern, a shifted rectangle. b) Is the pattern that was calcu-
lated, using the MRAF algorithm, c) shows the reconstructed image, when the
calculated pattern is applied to the SLM and the diffracted light is imaged with
a CCD camera. Improvement, in comparison with the GS algorithm (cf. figure
3.12 d) can be observed but further tricks and improvements are needed for
acceptable image quality

algorithms is to compare their output intensities. These are the “ideal” images,
that the algorithms predict, if the implementation of the phase hologram were
perfect. In contrast to that, the reconstructed image, or intensity is always what
was actually measured in a test setup. The output amplitude Aout is extracted
during the last iteration of the algorithm and squared to yield the intensity.
A row from the two output intensities of the GS and the MRAF algorithms is
depicted in figure 3.14 left and right, respectively. A row of the output was
selected, which cuts through the rectangle horizontally. Comparison with the
naked eye already reveals the higher smoothness of the output intensity of the
MRAF algorithm. The smoothness of this output could be further increased
by raising the number of iterations for the algorithms, however no observable
difference in the reconstructed image quality appears in that case. To quantify
the smoothness the root mean squared (rms) error (eq. 3.50) of the bright pixels,
from their average value is calculated. For the output of the GS algorithm a rms
error of 11.8% is obtained, while the MRAF algorithm reduces the rms error to
2.0%. However, in this example the GS algorithm performed 100 iterations of the
Fourier transform loop, while the MRAF algorithm was deemed converged after
60 iterations. Comparing this increase in smoothness with figures 3.12 and 3.13,
which show the reconstructed intensities of the GS and the MRAF algorithm
respectively, shows that other factors limit the quality of the holograms, since
the improvement there is much lower. Further improvements on the algorithms
are necessary, as can clearly be seen from the above figures. Tricks on how to
improve the MRAF algorithm are presented in section 5.4.
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Figure 3.14: Qualitative comparison of the smoothness of the presented
algorithms A cut through the output intensity of the GS (left) and MRAF
(right) algorithms are plotted respectively. A horizontal line roughly through
the center of the pattern, shown in figures 3.13 and 3.12 a) was selected. It
is immediately visible, that the output of the MRAF algorithm contains much
less relative roughness in the homogeneous areas of the rectangle. The GS
algorithm underwent 100 iterations for this output, while the MRAF algorithm
was terminated after 60 iterations.
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Chapter 4

Liquid Crystals,
Interaction, our Device

To introduce the liquid crystal spatial light modulator, which is the main sub-
ject of this thesis, an introduction to liquid crystals is given, their interaction
with light is described and finally the device itself is introduced. Unless stated
otherwise this section follows [22].

4.1 Introduction

In 1888 Friedrich Reinitzer found, that cholesteryl benzoate behaved rather
strange when heated. Instead of simply changing from solid to liquid state at a
certain temperature the substance would turn liquid and opaque at 145◦C and
turn clear at 179◦C. He reported his findings to Otto Lehmann, who studied
the phenomenon and coined the term liquid crystal [17].
This name indicates the seemingly incompatible properties of these substances.
On the one hand they are liquid, that means the molecules are not arranged
in a rigid lattice but move freely among each other. On the other hand, liquid
crystals show optical phenomena characteristic to crystals, such as birefringence.
Devices based on liquid crystals have become basically omnipresent in our world,
allowing for digital screens of unprecedented size. Neither the large screens of
modern tv-sets nor the incredibly small screens of smartphones and wristwatches
would be possible with cathode ray tubes.

4.2 Interaction with light

The characteristic property of liquid crystal materials is that almost all of them,
especially all those which shall be considered here, are comprised of elongated
molecules. In the treatment presented here they will therefore be approximated
as stiff rods. While these molecules can have arbitrary relative positions, which
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leads to the liquid characteristics, they prefer to orient themselves along each
other, depending on the environmental situation, e.g temperature. (cf. figure
4.1) This gives rise to the crystal characteristics, as I will show below. Three

Figure 4.1: Phases of a liquid crystal material. At low temperatures the
material behaves like a crystaline solid with positional and orientational or-
der. At high temperatures the material behaves like an isotropic liquid, viz.
no positional and orientational order at all. Unlike other substances however
liquid crystals exhibit a mesophase, with no positional but orientational order.
Adapted from [18]

main types of liquid crystal phases can be identified today: Nematic, smectic
and cholesteric phases.
In a nematic phase the molecules exhibit no positional ordering. This situation
is depicted in the center of figure 4.1. While the molecules orient themselves
along each other their positions are arbitrary.
In smectic phases the molecules’ positions are structured into layers along the
molecules’ long axes, that means, along the direction perpendicular to the layers
the smectic phase exhibits a periodic structure. Within these layers the posi-
tions of the molecules are not fixed and no periodic structure forms.
In cholesteric phases no positional ordering appears and in contrast to the afore-
mentioned phases the molecules do not try to align along each other but express
a helical structure with a periodicity of a few hundred nanometers.
In the following I will focus on the nematic phase (cf. figure 4.1 center), because
all relevant phenomena can be explained there and the liquid crystal used in
the spatial light modulator, characterized in this thesis, is using a nematic-type
liquid crystal.
The direction of orientation is called nematic director and is indicated in fig-

ure 4.2 through the arrow labeled n. It is possible to image n and such an image
(Figure 4.3) reveals, that the director is not constant through a macroscopic
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Figure 4.2: Director of a liquid crystal In a nematic phase liquid crystal
a preferred direction of orientation of the molecules can be identified and it is
denoted as a vector n called director. From the angle θ between the molecules
and the director an order parameter can be derived. From [18]

sample, however it changes only slowly, compared to the size of the molecules.

Unsurprisingly this mutual orientation gives rise to optical phenomena like bire-
fringence. It is therefore useful to quantify the degree of orientation. To do so
a function ω (θ, ϕ) in spherical coordinates is defined, where θ = 0 corresponds
to the direction parallel to the director n. (Figure 4.2)

ω (θ, ϕ) sin θdθdϕ (4.1)

Equation (4.1) describes the fraction of molecules whose axis lies within the
interval dθdϕ. Since the molecules are assumed to be uni-axially symmetric we
define:

ω (θ, ϕ) =
ω′ (θ)

2π
(4.2)

This distribution function can be expanded in Legendre polynomials

ω′ (θ) =

∞∑
l=0

1

2
(2l + 1)SlPl (cos θ) (4.3)

where the expansion coefficients Sl are given by

Sl =

ˆ π

θ=0

Pl (cos θ)ω′ (θ) sin θdθ (4.4)

Independently of ω′, S0 = 1 always holds.
For nematic phases it also holds that ω′ (θ) = ω′ (θ − π). From this follows, that
S1 vanishes. The first non-trivial contribution to this expansion is therefore:

S2 = 〈3 cos2 θ − 1

2
〉 (4.5)
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Figure 4.3: Visualization of the director field of a liquid crystal. There
are various processes that allow the imaging of the director field of liquid crys-
tals. The big black lines are results from polarizing optical microscopy and
show the spatial variation of the polarization of the light propagating through
the sample. In the technique applied for this image the fine lines are perpen-
dicular to the director field and therefore allow its reconstruction. The inset in
the upper right corner shows the director lines at the singularity or disclination.
From [13]

S2 will be our nematic ordering-parameter since it has the correct behavior in
the limits of isotropic distribution, where it goes to zero and perfectly homoge-
neous distribution, where it goes to one.

After further steps of calculation, for which I refer the reader to the source
of this section [22] it follows:

∆n = ∆nmax · S2 =
(
n‖ − n⊥

)
· S2 (4.6)

The different refractive indices can be obtained from the Debye equation, which
relates the microscopical polarizability α to the permittivity εr, which enters
into the refractive index through n =

√
εrµr.

εr − 1

εr + 2

Mm

ρ
=
NA
3ε0

(
α+

µ2

3kT

)
(4.7)

Here Mm and ρ are the molar mass and the density of the medium, NA, ε0,
k and T are Avogadro’s number, the vacuum permittivity, Boltzmann’s con-
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stant and the absolute temperature. µ is the permanent dipole moment of the
individual molecules. α is the polarizability of the medium’s molecules, which
depends on factors like the difficulty to separate charges in a molecule through
electric fields.
For LC materials µ and α are much greater along the molecules’ long axis,
compared to the directions perpendicular to it, which in turn means a higher
refractive index along this axis. Together with the LC molecules’ tendency to
align along each other this gives rise to macroscopic birefringence.
The liquid properties of LCs however are essential to their usefulness in to-
day’s applications, such as liquid crystal displays (LCD). The fact that the LC
molecules are not tightly bound to each other makes it possible to manipulate
them rather easily. For an application such as a spatial light modulator, where a
pattern of phase shifts or amplitude modulations is imprinted onto a wavefront,
it is necessary to manipulate the liquid crystals with high spatial resolution,
while assuring that this manipulation leads to the same results everywhere in a
device.
To ensure uniform behavior of a spatial light modulator the orientation of the
director, which is depicted in figure 4.3, needs to be the same over the size of the
desired device. This can be achieved with very simple means. When a liquid
crystal is placed onto a substrate its molecules tend to align along structures in
the substrate. That means, by polishing or brushing the substrate along a di-
rection, thereby creating microscopic ridges in the substrate, the LC molecules
can be oriented along a single direction over macroscopic distances.
Control over a wavefront is exerted by varying the experienced index of refrac-
tion for light propagating through the LC material. An increased or decreased
index of refraction yields a phase shift through the changed optical path length,
which is Lν = nm · Lm with Lm the physical path length, viz. the path of the
light through the LC material and nm is the index of refraction.
The index of refraction can be changed for the extraordinary axis, by rotating
the liquid crystal molecules such that their long axis and with it the axis of
high refractive index aligns with the direction of propagation of the light. This
is depicted in figure 4.4. When a voltage is applied across the LC material its
high polarizability will lead to a separation of charges and a following reorien-
tation of the molecules along the electric field. Even if the voltage is applied
along an axis perpendicular to the director a realignment will occur, since not
all molecules are oriented perfectly along the director.
The top row of figure 4.4 illustrates this situation, where light propagates along
the horizontal axis. The bottom row illustrates the respective indices of refrac-
tion, with the light propagating into the plane of the image. In the case of no
voltage across the liquid crystal the molecules align along the vertical axis and
pronounced birefringence occurs. The more the molecules align with the light’s
direction of propagation the smaller the birefringence gets, until it vanishes.
While the ordinary index of refraction no remains unchanged the extraordinary
index ne decreases.
If one illuminates the liquid crystal with light polarized along the extraordinary
axis only, this method allows phase retardation and with spatially resolved con-
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Figure 4.4: Schematic view of a SLM pixel In the upper half the effect of
applying a voltage across a pixel is depicted. The voltage will induce temporary
diplolar moments and the molecules will rotate to align with the electric field. In
this case the light propagates along the horizontal direction through the pixel.
In the lower half the respective refractive indices are shown. Here the ordinary
and extraordinary axis correspond to the pixel, shown above, rotated by 90◦

around the vertical axis. Accordingly the light would be propagating into or
out of the page plane. With the projected length of the molecule decreasing with
rising voltage the birefringence will vanish. Or, if only light polarized along the
extraordinary axis is considered, the refractive index and with it the effective
phase shift of the light decreases. (adapted from [16])

trol over ne the imprinting of a phase pattern. The amplitude of a light field can
be modulated with the same device. By illuminating it with circular polarized
light a relative phase between the ordinary and extraordinary components of
that light can be introduced, changing the orientation of polarization. Together
with a quarter-wave plate and a polarizing beam splitter spatially resolved am-
plitude modulation can be implemented. This was used in section 5.2 and the
mentioned setup is depicted there, in figure 5.6. Thanks to microfabrication
techniques electrodes on the order of micrometers can be created, which means
that the index of refraction for extraordinary polarized light can be controlled
with pixels on these length scales and the aforementioned techniques can be
implemented. With this the encoding problem of chapter 3.6 is addressed.

4.3 The spatial light modulator

In the preceding sections a theoretical framework was established, that allows
the description of devices that can be electronically controlled to create light
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fields of arbitrary geometry through holographic methods, called spatial light
modulators or SLMs.

4.3.1 Hardware

The device, this thesis is centered on is the XY series 512 × 512 spatial light
modulator, manufactured by Boulder Nonlinear Systems. It is depicted in figure
4.5. It features an active area of 7.68 × 7.68 mm2 comprised of 512 by 512

Figure 4.5: The 512×512 XY-series SLM by Boulder Nonlinear Systems
It features 512 by 512 pixels based on LCoS (Liquid Crystal on Semiconductor)
pixels that can be addressed with 65536 levels. The small reflective area at
the very front of the device is the active region, which houses the liquid crystal
pixels.

reflective pixels, which can be seen in the image as the reflecting square at the
very front of the device. It follows that each of these pixels is 15µm× 15µm in
size. The active area is mounted on a tilt stage, which allows the rotation of the
active area around the two axes of the reflective surface which can be controlled
via two precision screws, labeled ”V” and ”H” for the vertical and horizontal
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rotation.
Electronic addressing of the pixels is done via two stages of electronics. Directly
behind the tilt stage is a circuit board, that relays the signals from the driver
box to the active surface via a flat ribbon cable.
A second flat ribbon cable connects the relay electronics to the driver box,
which also provides power for the SLM. The driver board receives signals from
a computer via USB or DVI connections. In our device the connection to the
computer is implemented via DVI, which means, that the computer actually
detects the SLM as an external monitor. It was actually possible to move the
mouse cursor to the active surface of the SLM and the moving cursor could
barely be observed with the naked eye with room light.
Since the back panel of the active surface is comprised of pixelated electrodes,

Figure 4.6: Cross section of the SLM’s active surface In order to reduce
diffraction from the pixel structure (reflective pixels) an additional homogeneous
mirror coating is applied to the back wall of the liquid crystal cell. In the bottom
row the lower intensity of light diffracted from the pixel structure can be seen.
From [15]

to ensure spatially resolved control over the liquid crystal’s orientation, large
diffraction from this grating structure is to be expected. In order to reduce
this effect a mirror coating is applied on top of the pixel structure, which does
not interfere with the electric fields, controlling the liquid crystal but screens
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the electrodes themselves from the light, illuminating the SLM. (cf. figure 4.6)
According to the manufacturer the amount of light scattered from the electrodes
is reduced from 39% to 10%.

4.3.2 Software

The SLM is controlled via software, called BLINK, that was provided by the
manufacturer. The software provides a straightforward interface to load and
display phase patterns on the SLM. In BLINK the control over the phase shift
of the SLM is exerted via bitmap files. Bitmap files are image files, which store
24 bits of color information per pixel without any compression. Each pixel has
three 8 bit color values, for red, green and blue color, which comprise the image.
The pixel wise voltage of the SLM can be controlled with 16 bit values (65536
steps) and these 16 bits are stored in two of the color values of the bitmap file:

11010001︸ ︷︷ ︸
green

10010111︸ ︷︷ ︸
red

=

(
53655

65536

)
· 2π

The 8 higher valued bits are stored in the green channel of the image, while
the 8 lower valued bits are stored in the red channel. Any information that is
contained in the blue channel of the bitmap image is ignored by the software.
This means, that a phase pattern will appear in tones of red, yellow and green in
the preview, as can be seen in figure 4.7. This figure also shows the graphical user
interface of BLINK. Moving counter clockwise, from the top left, the provided
features are:

• Specification of a directory, which contains the desired phase patterns

• Display of all detected image files in the directory chosen above

• A preview of the currently selected phase pattern

• Controls to display the patterns from the current directory as a sequence,
with specified frame rate and number of loops

• Specification of a lookup-table to translate the desired phase shift into
control voltages for the SLM

The lookup table is a tool to calibrate the SLM purely software-wise. An ac-
tual SLM will provide phase shifts of more than 2π in the range of its 65536
possible control voltages, which means, that a range of 2π phase shift needs to
be identified and the phase pattern from the image file needs to be translated
accordingly.
The manufacturer provides a simple lookup table with each SLM, which allows
for quick setup and usage of the device. However, this lookup table sets the 2π
range equally for all pixels and does not take into account the response of the
individual pixels. In section 5.1 an advanced calibration scheme is presented,
which allows, in principle, for the selection of an appropriate range of phase
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Figure 4.7: BLINK GUI The graphical user interface of BLINK allows for
straight forward loading of phase patterns, via browsing the path of the phase
patterns. The window on the bottom left shows all image files found in the
specified directory. A preview of the selected phase pattern is given and controls
are provided to display all image files from a directory as a sequence, with
given frame rate and number of loops. BLINK also allows the specification of
a lookup-table that translates the desired phase shift into the actual applied
control voltage on the device.

shift for every individual pixel. It should be noted, that the response of the
individual pixels does not vary wildly, as can be seen in figure 5.3. The ranges,
where the phase shift rises approximately linearly, overlap in large parts, hence
the manufacturer’s lookup table is not, as it may appear after this discussion,
useless.

Alternative beam shaping approaches

Before the experimental discussion of the SLM, alternative approaches to beam
shaping shall be shortly discussed and the reason for selecting this device will
be given.
The problem of beam shaping is fairly general and accordingly the tools for
shaping beams are diverse. The first idea one might have, when thinking about
shaping a beam is that of an aperture. Simply by attenuating parts of the beam
such that a desired shape results is a straightforward approach, which is also
supported by geometrical optics. Yet this idea reaches its limits with the limits
of geometrical optics. For example, placing a rectangular slit into a beam path
one will only create a rectangular beam very close to the slit itself. At some
distance behind the aperture the effects of diffraction will start to appear and
the typical diffraction fringes will distort the shape of the beam.
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So while this seems a straightforward implementation of beam shaping, it also
seems to be of very little practical use. Nevertheless it is widely used in litho-
graphic microfabrication, where masks of desired shapes are applied directly
on top of a substrate material, to create microscopic structures, for example in
microchips.
Another approach, which is usually not discussed as beam shaping, are lenses.
Simply focusing a beam to create a small spot at a desired location is de facto
shaping a beam, although it is not a very flexible approach, since only one kind
of shape can be produced and only at one location.
An extension of this notion are cylindrical lenses. Instead of focusing a beam
in both transversal directions as spherical lenses do, cylindrical lenses focus a
beam only along one axis. If one were to place two cylindrical lenses, focusing
along orthogonal axes in a beam path, such that their focal points do not coin-
cide, elliptical beams can be created. This situation is shown in figure 4.8. In
the region between the two focal planes three characteristic points will occur:
At the first focal plane the light will be at its tightest focus along the first axis,
while still being partially expanded along the second, yielding an elliptical spot
along the second axis. At the second focal plane the exact opposite happens
and while the light is tightly focused along the second axis the beam has al-
ready expanded along the first, yielding another elliptical spot, now along the
first axis. Between these two points there will be a plane, where the beam is
partially focused along both axes, such that a radially symmetric spot appears.

This approach is currently in use in our experimental setup, to illuminate a

f1

f2

Figure 4.8: Elliptical foci from cylindrical lenses When two cylindrical
lenses are placed such that the focus the light along orthogonal axes and their
focal planes do not coincide two elliptical foci appear, where the light is focused
along one axis, while being partially defocused along the other. Between those
two points a radially symmetric focus will appear.

string of ions, with high light efficiency. But, starting from a gaussian beam,
the elliptical spot will still exhibit a Gaussian profile in its cross sections.
To further improve on this so called diffractive elements can be employed. A
simple example for a diffractive element would be a diffraction grating, but
more complex elements are possible. Here holographic techniques can be em-
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ployed, similar to the ideas described in chapter 3, to create transparencies,
which imprint phase or amplitude patterns on an incident beam. The Fourier
transforming ability of a lens will then create a desired pattern in its focal plane
and the only limit to the created shape is the resolution of the optical system.
Note that while I am talking about transparencies here, reflective elements are
possible and differ only in that the outgoing light is reflected, instead of trans-
mitted.
Fixed diffractive elements however require very precise alignment to work prop-
erly and are then only capable of producing one pattern.
The next improvement are the SLMs, one of which is the center of this thesis.
They work fundamentally similar to diffractive elements but with the great ad-
vantage of being optically or electronically addressible. So while a diffractive
transparency needs to be physically replaced if another beam shape is needed a
SLM is simply reprogrammed.
While optically addressed SLMs, that means, devices, where the phase shift or
transmission is set by controlling light, instead of an electric field, are not very
useful for creating complex patterns (the addressing beam would need to be in
the shape of the transparency’s pattern, which is just as hard to realize as the
original beam shaping problem) they serve for example as light valves, where
a pulse of light changes the overall transmission of the SLM to control another
beam [25].
Electronically addressed SLMs on the other hand contain microfabricated elec-
trode structures, which allow a very high degree of control over the features of
the created transparency. This means, that without physically touching the de-
vice a transparency can be created, integrated with the setup and altered. This
allows complex procedures such as in situ aberration correction, as is shown in
section 5.3.
Two major types of SLMs can be identified: Liquid crystal devices, such as
the one introduced in the preceding sections, and digital micromirror devices.
Digital micromirror devices are made up of arrays of micro-mechanical mirrors,
which can be switched between two states, that means positions, electronically.
Light is reflected in one of two directions and binary transmittivity structures
can be created. Intermediate states can be interpolated by switching between
the two states rapidly and setting the amount of time spent in each of the states
accordingly. There are techniques to imprint phase shifts on a light field, such
as the detour phase technique [20], where groups of pixels are combined into
superpixels. Figure 4.9 clarifies this notion. The digital micromirror device’s
surface is divided into superpixels, which are made up of several actual pix-
els. Within one of these pixels three parameters control the amplitude and the
phase of the light. The parameters p and q define a rectangle, from which light
is reflected in the superpixel. The amplitude of the reflected light is directly
proportional to the area of the rectangle a = p · q. By displacing the rectangle
from the center of the superpixel the phase of the light can be shifted. The
displacement results in an effective detour of the light, which is equivalent to a
shifted phase.
But this increased control comes at the prize of a greatly reduced pixel number
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Figure 4.9: Detour phase technique to imprint phases with DMDs
Groups of pixels are combined to superpixels, denoted as ”unit cell”. Within
this superpixel the three parameters p,q and α control the amplitude and the
phase of the light, reflected from it. While p and q determine the reflecting area
and thereby the amplitude of the reflected light, α controls the phase. From [20]

and in effect increased sample distance. So for these techniques there is always
a trade-off between control over individual pixels and the number of usable pix-
els. For example creating superpixels from 4× 4 micromirrors would reduce the
effective pixel count by a factor of 16. For a DMD-SLM of 2048 × 2048 pixels
this would result in an effective pixel number of 512 × 512, which is what the
device in this thesis offers, but with only 4 steps of phase control, instead of
65536.
In the case of liquid crystal SLMs typically only the phase of the light is con-
trolled, although amplitude control is possible. However, a strong reason for
phase instead of amplitude control is the fact that amplitude modulation dis-
cards parts of the incident light.
This is one of the reasons, together with the high flexibility and the possibil-
ity of aberration correction, why the device for this thesis was chosen over the
available alternatives and is to be assessed for its suitability.
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Chapter 5

Experimental Results

5.1 Calibration and Lookup table

5.1.1 Calibration scheme

The first step in characterizing the SLM, that was introduced in the preceding
section, is a calibration.
As mentioned before the SLM needs to be calibrated for two reasons. First,
the liquid crystal pixels are able of performing higher phase shifts than 2π over
the range of possible addressing values. Second the pixels may not correspond
uniformly to applied voltages, which means, that a range of values needs to
be identified for each pixel, which provides a phase hift of 2π and a table to
translate the desired phase shift into the correct voltage needs to be created and
implemented. A translation table, or lookup table (LUT), specially tailored for
each device is provided by the manufacturer, but this LUT does not account for
the inhomogeneities of the pixels’ response to the control voltages. This is the
second reason for the need of a calibration technique.
For this thesis a technique, developed by Gregor Thalhammer was implemented
[23] [24].
The technique relies upon interferometry, to detect the the phase shift, induced
by the SLM, relative to a reference picture. The setup is schematically shown
in figure 5.1. Light from a polarization maintaining fiber is adjusted such that
its polarization coincides with the vertical axis of the SLM, since this is the
polarization of light, which is modified by the SLM. The beam is expanded
and recollimated, using a simple telescope made from two positive lenses, to
illuminate the entire SLM area homogeneously. The illumination need not be
perfectly homogeneous for this technique, but it simplifies the detection at the
CCD camera. The beam is split on a non polarizing beam splitter cube and the
SLM’s active surface, as well as a flat mirror are illuminated. The light reflected
off both surfaces is recombined at the beam splitter and the interference pattern
is imaged onto a CCD camera.
To resolve the spatial differences in phase shifts the lens of the camera is set
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Figure 5.1: Experimental setup to calibrate the SLM’s phase shift To
spatially resolve the SLM’s phase shifts it is placed in a Twyman-Green interfer-
ometer. An expanded collimated beam of laser light is split on a non polarizing
beam splitter and illuminates the SLM, as well as a simple mirror. The reflected
light is recombined at the beam splitter and the resulting interferometric pattern
is imaged onto a CCD camera.

such that it images the SLM’s surface onto the camera. Here a 50mm lens by
Nikon was used, that was attached to the camera, via an adapter, from Nikon’s
f-mount, to the camera’s c-mount.
Next a series of images is taken, each with another control voltage applied. In-
stead of recording the entire 65536 possible control voltages, 128 images were
taken, by increasing the value of the highest valued bits of the 16 bit control
values. Thinking of the bitmaps, mentioned in chapter 4.3 that means, that
for each subsequent image the color value of the green channel was increased
by 2, while the value of the red channel was kept at 0. This also implies, that
the index of the image multiplied by two yields the corresponding value of the
green channel. Figure 5.2 shows an example image for this calibration scheme.
Sub-image a) shows the actual recorded image and many imperfections, such as
diffraction from dust particles and a pattern from the background of the SLM
are visible. To cancel the effect of these incoherent distortions to the interfer-
ence pattern two reference pictures are taken. Sub-image b) shows the pure
reflection from the mirror, while c) shows the reflection from the SLM. Some of
the features of a) can be identified immediately and d) shows the interference
pattern after subtracting b) and c) and some cropping. It is immediately vis-
ible, that the clarity of the interference pattern is increased greatly. Since the
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Figure 5.2: Sample images for the calibration scheme Sub-figure a) shows
a recorded image for the SLM calibration. Several features can be identified,
that do not stem from interference of the two beams. To cancel these incoherent
distortions images b) and c) are recorded, which show only the light from the
mirror and the SLM respectively. In d) the remaining interference pattern is
shown and the improvement is clearly visible.

relative alignment of the SLM and the mirror will never be perfect, especially
not by interferometric standards, a relative tilt between the two is deliberately
induced. This allows for a simple reconstruction of the relative alignment from
the direction of the interference fringes and through that a subtraction of this
background from the interferometric images.
Due to limited resolution of the camera available only sets of 16×16 pixels could
be recorded. Figure 5.3 shows the reconstructed curves of phase shift, plotted
against the index of recorded images. The 127 data points are interpolated by
third order splines to allow the determination of addressing values for any de-
sired phase shift. A rather large variation in the response of the pixels can be
observed here, with the maximum phase shift differing by about π. The small
bumps that appear in all curves for certain values are remnants of disturbances
during the recording process. Since they appear at the same time for all pixels
no relative phase shifts will be introduced by them and no distortion of images
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Figure 5.3: Subset of the recorded curves of phase shift This figure shows
the recorded phase shift, in units of 2π, plotted against the index of the recorded
image. A large section of near linear rise of the phase shift with addressing index
can be seen, which is beneficial for the construction of a lookup table. It can also
be seen, that the variation in behavior of the pixels is rather pronounced, with
a variation in maximum phase shift of about π. A value close to the beginning
was chosen as the onset of the 2π range for all pixels, to make sure that all
pixels start at the same phase shift.

is to be expected.

5.1.2 lookup table

From the recorded data a table needs to be constructed, which allows the trans-
lation of the phase shifts, created by the iterative algorithms introduced in
chapter 3.7 into addressing values for the SLM. Due to the limited resolution of
the calibration data as well as the limited usable range of the addressing values
the output of the algorithms is limited to 8 bit values, that means 256 steps
between 0 an 2π. This still allows an approximation of the exact value to less
than 0.03 radians.
To simplify the translation a range of values is selected, where the phase shift
rises approximately linearly by 2π, which is easily identified from figure 5.3.
Each curve is inverted and the 2π range is split into 256 values. The corre-
sponding addressing values are then stored in the LUT file. The onset of all
curves was chosen to be the same for all pixels and a value was chosen, where the
individual phase shifts had not diverged too far. Any remaining offsets between
the pixels would manifest as optical aberrations and can be corrected for with
the scheme, presented in section 5.3.
The resulting file consists of 32 × 32 arrays of numbers, which associate 256
steps of phases with the according addressing values. It is now straight forward
to interpret the number from the LUT file and create a bitmap file, which con-
tains the correct addressing values in its green and red color channels. Figure
5.4 shows a bitmap file, after translation through the LUT, created from this
scheme. The input file was set to create a uniform phase shift of π for all pixels.
The reduced size of 32 × 32 allocation units is readily identified through the

53



Figure 5.4: Example file for LUT translation The original file contained a
gray value of 127 for all pixels, corresponding to a homogeneous phase shift of π
for all pixels. After translation through the LUT the features of the calibration
become visible. The finite size of the LUT, assigning one value to 16×16 pixels
manifests in the boxes of constant color. The large structures of darker green
values as well as the different shades of orange hint at the nonuniform response
of the SLM

square structure. In the bottom of the image, as well as the top right corner
large structures of darker green values can be identified. These structures stem
from the non-uniformity of the 2π range, which was the reason for the creation
of the LUT.

5.1.3 Comparison to lookup table from BNS

To conclude this section the LUT created by this technique will be compared
to the LUT, which was provided by the manufacturer. As a figure of merit the
efficiency of a one dimensional blazed grating was chosen.
A series of images was taken, imaging the light reflected off the SLM and
diffracted from the displayed grating. As a reference picture the pure reflec-
tion was recorded, seen in figure 5.5 a). Sub-figures b) and c) show the light
diffracted from a blazed grating for the manufacturer’s calibration and the man-
ually calibrated SLM respectively. The brightness and contrast of these images
were enhanced for visual comparability. For quantitative comparison however
it was ensured, that no pixels in the images were saturated and the respective
times of exposure and gain levels were recorded and taken into account. As a
measure of diffracted power the overall intensities of the spots were calculated,
by summing up all pixels in an area around these spots. A background image,
without any light from the SLM was taken and subtracted from all images.
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Figure 5.5: Sample images for the comparison of diffraction efficiencies
Sub-figure a) shows the reflected spot, when no pattern is displayed on the
SLM. Sub-figures b) and c) show the undiffracted light at the top of the image
and the first diffraction order from a one dimensional blazed grating, from the
manufacturer’s lookup table and the calibration done here, respectively, at the
bottom.

The respective diffraction efficiencies were 67.1% for the manual calibration and
69.2% for the manufacturer LUT. Within the observed fluctuations of the in-
cident laser intensity these values are indistinguishable. This means, that at
this point the calibration scheme of Gregor Thalhammer did not provide an ob-
servable advantage. However, a more detailed calibration, that combines fewer
pixels could improve that situation.
Note also, that these numbers are not significant as absolute diffraction effi-
ciencies, since the blaze angles were not optimized. However, since both used
gratings used the same blaze angle the values are meaningful in terms of com-
parison among each other.

5.2 Phasejitter and modification

In the interaction between ions and lasers (cf. section 2.3) two kinds of rotations
on the Bloch sphere are possible, corresponding to the angles, that characterize
the superposition state. Rotations about the z-axis, changing the angle φ are
realized through light shifts. To rotate the state around the x- and y-axes the
coherent excitation of the S1/2-D5/2 transition is used. However, to fix the axis
of rotation precise control and knowledge over the laser and ion’s phase evolu-
tion are necessary and great efforts are taken to ensure their stability.
Since the SLM heavily modifies the phase of the interacting light field the re-
sulting phase stability needs to be assessed.
The absolute value of the relative phase is not an issue here, since this value
simply defines the initial value of φ relative to which rotations are taken during
an experiment. The only concern here is dynamical changing of the phase due
to effects in the SLM.
The reason for this concern is a property of liquid crystal pixels, that was not
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addressed before. When an electric field is applied across a LC pixel, the LC
molecules will align along the field, as was mentioned before. However, between
the electrodes and the LC molecules in direct proximity to them chemical re-
actions can occur, which would in rather short time destroy the electrodes, as
well as the LC material.
To overcome this problem LC pixels are driven by AC voltages, instead of DC.
One would expect an AC voltage to simply cause the LC molecules to jitter
around their initial orientation, but the process of separating the charges on
the LC molecule occurs in much shorter time, than the actual rotation of the
molecules. So in the moment, the polarity of the electric field changes the
charges on the molecule will switch places much faster than the molecule can
rotate due to the changed force, yielding a net orientation of the molecules.
There is of course some remaining jitter of the molecules, due to the varying
electrostatic force, which occurs in all liquid crystal devices, such as computer
monitors. In consumer products however this effect is negligible, since the hu-
man eye is far to slow to resolve the transmission changes, accompanying this
jitter.
For the scientific grade devices of boulder nonlinear systems and other manufac-
turers special measures are taken to minimize this phase jitter. The SLM that
was introduced above operates its drive AC voltage at a frequency of 6 kHz,
compared to about 100 Hz for LCDs in notebooks and smartphones.
To gain maximum sensitivity to instabilities in the phase of the reflected light

Fiber coupler
PBS
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PD1

PD2
PBSQWPSLM

Figure 5.6: Setup to determine the stability of the SLMs phase shift
A quarter wave plate is used to illuminate the SLM with circularly polarized
light. Only the vertically polarized part of the light will experience a phase shift
and therefore the net polarization will change, depending on the induced shift
by the SLM. On its second pass through the QWP the light is turned to linear
polarization again. A polarizing beam splitter (PBS) separates the horizontal
and vertical parts and the reflected light is detected on the photodiode PD2.
The photodiode PD1 is used to filter intensity fluctuations of the incoming laser.
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the setup of figure 5.6 was used. Instead of illuminating the SLM with linearly
polarized light a quarter wave plate (QWP) was placed directly in front of the
active surface. Incoming linearly polarized light is converted to circular polariza-
tion and hits the device. Since only the vertically polarized part of the light will
encounter phase retardation the net polarization changes. After a second pass
through the quarter wave plate the light is turned into linearly polarized light of
another orientation, depending on the experienced phase shift. The polarizing
beam splitter cube (PBS) separates horizontal and vertical polarziation and a
photodiode (PD2) detects the reflected intensity. The photodiode PD1 was used
to filter out intensity fluctuations due to fluctuating transmission through the
polarization maintaining fiber, providing the light. Figure 5.7 shows a section of
the time resolved phase shift of the SLM. A modulation with a frequency of 1015
Hz is clearly visible. The dependence of the modulation on the induced phase
shift was measured, to back up the notion that it originates from the SLM. The

Figure 5.7: Time-resolved trace of the SLM’s phase shift Unfortunately
a modulation of the phase shift at 1015 Hz is visible. Its origin was found to
be an image refreshing rate, which was set by the manufacturer. This trace
was taken with 1 Millisecond time, per horizontal section and 50 Millivolts per
vertical section.

behavior of the modulation fulfills the expectations. With rising phase shift the
modulation decreases, since a higher phase shift corresponds to a lower applied
voltage. The maxima of the modulation coincide with the regions where the
transmission changes the most with the phase shift, while the minima coincide
with the extrema of the transmission curve.
After consulting the manufacturer the source for this modulation could be iden-
tified. The voltage, applied to the SLM actually changes with three distinct
rates, which are:
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• The basic drive voltage, in this case 6kHz, which ensures the integrity of
the liquid crystals and is set to minimize jitter

• A manufacturer-set image refresh rate, at which the currently displayed
image is reloaded

• The software-set frame rate, which ranges from 0 to 30 Hz for this model

The image refresh rate renews the currently displayed image at a rate which is
an integer multiple of the basic drive rate. In order to do that the displayed
image is completely erased from the SLM and reloaded. This rate was initially
set to exactly 1015 Hz and was identified as the source of the observed phase
jitter. To reduce its effect on the phase stability the device was sent to the
manufacturer and the image refresh rate was reset, to reduce the remaining
phase jitter. Since the refresh rate needs to be an integer divisor of the drive
rate it was changed to 1.5 kHz, taking into account minimal residual jitter as a
guideline.
To quantify the jitter and its reduction by the manufacturer the transmission
curve was linearized around the point of steepest change and the modulated
transmission signal was translated into a modulated phase shift. For the SLM
before the modification the phase jitter was measured to be 0.159 rad or 9.1◦.
After the modification the jitter was found to be 0.123 rad or 7.1◦.
If this phase shift proves to be detrimental to qubit operations further modifi-
cation must be considered.

5.3 Aberration correction

Aberrations are a serious limitation to the performance of optical systems, as
mentioned in chapter 3.5. These deviations of an optical system’s behavior from
the ideal model of spherical lenses leads to major distortions of focal points and
plane waves.
Usually aberrations are quantified by determining the Zernike coefficients of a
wavefront. This allows for an easy comparison between different systems or
states before and after correction. However, for this approach it is usually nec-
essary to place a sensor, capable of detecting a wavefront, at the location of
interest. This poses a problem in setups where access to a point of interest is
restricted, as is the case in our experiment. Placing a wavefront sensor at the
location of the ions is impossible due to the trap itself, which only leaves a few
cubic millimeters of space around the ions, as well as the vacuum vessel, which
can not be opened ad libitum. Still, correcting aberrations is very much desired
in our experiment, since badly shaped elliptical beams reduce light efficiency
and can lead to stray light from reflections, which reduces our experimental
control.
Fortunately there is a way to measure and correct optical aberrations with the
SLM, which can be applied in our setup. This technique relies on a single point-
like detector to measure the distortion of a wavefront. This means, that by
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employing a single trapped ion as the detector it becomes possible to measure
the aberrations in the complete beam path, from a fiber to the ions, including
the vacuum viewport, without opening the vacuum vessel.

5.3.1 Measuring with a single ion

The description of this technique follows the master’s thesis of Philip Zupancic
[27]. While in his thesis the technique was applied to a DMD SLM and neutral
atoms in a magneto-optical trap its principles are readily transferred to a liquid
crystal SLM and trapped Calcium ions.
The fundamental principle behind this technique is to divide the active surface of
the SLM into a number of patches and determine their relative phase shifts. In
the limit of infinitesimal patches the wavefront would be reconstructed perfectly,
however in practice this is neither possible nor necessary. The setup used to
implement this scheme in a test setup is shown in figure 5.8. The SLM is

SLMLensPinhole

PD aeikz

bei(kz+Δφ)
dγ

f

incoming light

Figure 5.8: Setup to test the scheme for aberration correction, adapted
from [27] To separate the light of the patch to be measured and the reference
patch from the remaining reflected light a diffraction grating is displayed on
the patches and the first diffraction order is imaged onto a Photodiode with a
pinhole, which simulates the point-like detection, realizable with a single ion.
Additionally a beam profiler is used to view the generated spots. Examples
of the created spots, as well as the phase pattern used for this technique are
depicted in figure 5.9. The undiffracted light is not depicted for clarity.

illuminated with light, polarized along the liquid crystals’ extradordinary axis
(vertical) and a diffraction grating is displayed on the reference patch, as well as
the currently measured patch. The diffracted light is imaged onto a photodiode
(PD) with a 5µm pinhole, which simulates the pointlike detector, a single ion
would be. Figure 5.9 shows sample images to clarify this approach. In sub-
figure a) the phase pattern is depicted. Only light that illuminates the two
grating patches gets diffracted and gets imaged onto the pinhole. The patch
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in the center of the pattern is used as a reference, to which all other patches
are compared. If only one of those patches is present on the pattern, a spot
like in sub-figure b) forms in the focal plane. This spot is rather large, since
its size is limited by the small dimensions of the diffracting patch. In this
case the patch has a size of 32 × 32 pixels on the SLM, which corresponds to
480µm edge length on the SLM. If both patches are present their focus spots will
overlap and produce interference fringes, as seen in sub-figure c). The pinhole
in front of the photodiode corresponds roughly to one pixel in this image. If
the detector is small enough, meaning shorter than half the wavelength of the
shortest interference fringes produced, the sinusoidal shape of the fringes can
be reconstructed, by shifting the phase of the light from the two patches. The

Figure 5.9: Example images for the aberration correction scheme Sub-
figure a) shows the phase pattern, used to measure the relative phase shifts
of the designated patches on the SLM surface. The center patch is used as a
reference for all measurements, while the patch on the top left is the currently
measured patch. Each of these patches produces a spot in the focal plane of
the lens, which is seen in sub-figure b). When two of these spots overlap they
produce interference fringes, which can be sampled with a small detector. The
detector in the test setup corresponds roughly to one pixel in sub-figure c).

fringes follow from the equation

I (x, z) = a2 + b2 + 2ab cos

(
2π

λ
(z (1− cos γ) + x sin γ) + ∆ϕ

)
(5.1)

where z is the direction of propagation of the light after the SLM and x is the
distance of the measurement patch from the reference patch on the SLM sur-
face. aeikz and bei(kz+∆ϕ) are the fields of the reference and measured beam
respectively, as seen in figure 5.8. The angle γ is defined as the relative angle
under which the light from the two patches is incident onto the photodiode.
Obviously a single measurement is not sufficient to reconstruct the phase of
the fringes. However, sampling the interference fringes at three points, yielding
three intensities
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m1 = a2 + b2 + 2ab cos (∆ϕ)

m2 = a2 + b2 + 2ab cos (∆ϕ+ 2π/3)

m3 = a2 + b2 + 2ab cos (∆ϕ+ 4π/3)

allows the construction of a phasor p, which contains the amplitude and phase
of the fringes:

p = −1

3
(m2 +m3 − 2m1) +

i√
3

(m2 −m3) (5.2)

The phase can be extracted from this, via ∆ϕ = arg p. The amplitude of the
fringes would follow from a · b = |p| but it is of no interest in this context.
Sampling the interference fringes at three points is very easy, since the SLM
introduces phase shifts into the wavefront anyway, meaning that an additional
phase shift on the measured patch is straight forward to implement, and the
whole scheme can be automated to display all phase patterns in a sequence and
take measurements from the photodiode.
Figure 5.10 shows the great success of the presented scheme. Sub-figure a) shows
the focal spot of the uncorrected optical system, which in addition to the parts
shown in figure 5.8, contains two lenses for beam spreading and a mirror. The
spot is highly distorted and it is obvious that a spot like this would lead to
crosstalk, if several spots of this shape were placed close to each other. Sub-
figure b) shows the focal spot after the obtained map of phase shifts is applied
to the pattern, that yielded a). For this measurement 16 × 16 patches were
measured. The shape of the focal spot is much more regular and the large rays
have disappeared. Note that the scale of sub-figures a) and b) is exactly the
same. The remaining spot size exactly matches the expected size, if the system
was diffraction limited by the active surface of the SLM and the diffraction
fringes fanning out to both sides and the top and bottom correspond exactly to
diffraction from the SLMs rectangular surface. A calibration with 8× 8 patches
yielded a correction map after which aberrations, visible to the eye remained
and a calibration with 32 × 32 patches did not improve the spot any further,
compared to figure 5.10.

To implement this technique in an ion trap an appropriate quantity to infer
the local intensity needs to be found. This can be the Rabi frequency Ω for the
transition between the two states, coupled by the 729nm light.
For light polarized along the x axis, coupling, two states, denoted by |1〉 and |2〉
the Rabi frequency is

Ω =
e|E0| 〈1|x |2〉

h̄
(5.3)

with |E0| the amplitude of the incident light. So with the Rabi frequency pro-
portional to the square root of the intensity the latter can be extracted by
measuring the former.
The complete set of measurements taken for this procedure took about 15 min-
utes, with (16× 16− 1)× 3 = 765 measurements taken, although optimization
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Figure 5.10: Successful correction of aberrations in a test setup Sub-
figure a) shows the uncorrected focus spot, which shows heavy aberrations,
which can cause crosstalk. Sub-figure b) shows the corrected spot, which is
plotted on the same scale as the uncorrected. The much more regular shape is
plainly visible.

would be possible in the scope of the test setup. If the technique were applied
to the actual ion trap setup much longer measurement times are to be expected
though since a single intensity measurement on an ion would take on the order
of ten seconds instead of the roughly 1.2 seconds here.

5.3.2 Longterm stability

Suppose each measurement took 10 seconds, then the whole procedure would
take about 128 minutes. This is hardly a procedure that can be run every
day and not even every week. It is therefore desirable to know the longterm
stability of the corrected beam. Since other measurements had been done in the
meantime, the correction setup was built up anew and the correction procedure
was run. For a period of 19 days the setup was unused and left untouched. The
result is shown in figure 5.11. The uncorrected spot (a) shows heavy aberration,
as before, while the corrected spot (b) is not quite as well corrected as in the
measurement in the previous section. The spot shape after almost three weeks
(c) shows slight degradation of the correction quality but it is still much more
homogeneous than the uncorrected spot.
This shows that a correction measurement might not be necessary more than
once a month and maybe even longer intervals are possible. However, more
investigation might be needed, since during these 19 days no activity at all took
place in our lab, which means, that climatic conditions were much more stable,
compared to typical workdays.
An attempt to quantify the aberrations and their reduction in terms of the
Zernike polynomials was made, but due to unexplained reflections inside the
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wavefront reconstruction device spots of light appeared in the measurement
region which made measuring the degree of aberration impossible. Although
the problem was identified it could not be corrected and the reflections could
not be reduced to an acceptable level, therefore the measurement had to be
discarded.

Figure 5.11: Measurement of the longterm stability of the corrected
beam After a correction measurement (b) the system was allowed to rest for
19 days. While slight degradation of the corrected spot is visible (c) the overall
quality is still highly improved, compared to the uncorrected spot (a). The third
image was rescaled to fit the size of images (a) and (b).

5.4 Beam shaping capabilities

5.4.1 Further improvements to the MRAF algorithm

In section 3.7 it was shown, how to improve upon the basic iterative algorithm,
by relaxing the constraints on the amplitude in the image plane. However, fig-
ure 3.13 d) shows, that the result of this improved algorithm is far from perfect.
To further improve the algorithm’s performance several tricks can be applied.
The two tricks revolve around the occurrence of speckle in the image plane,
since the iterative algorithms cannot remove speckle selectively, but they can
appear under the right circumstances. Speckle appear at optical vortices, that
means in places, where the phase of the light changes by 2π over a very small
distance. These can occur, if the initial guess for the phases, which is put into
the algorithm, is created from random values. By choosing an appropriate ini-
tial guess for the phase pattern formation of speckle can be reduced.
While it is not possible to make a guess for the complex features of an output
pattern, this being the necessity for the IFTA in the first place, it is relatively
simple to create patterns, that create a spot of light in the output plane, which
roughly matches the shape of the desired output. For example, patterns of the
form φ (x, y) = ax2 + by2 create a spot, with size depending on a and b. This
is equivalent to a thin lens, effectively defocusing the light. Linear gradients of
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the form φ (x, y) = ax+ by shift the envelope and conical patterns of the form

φ (x, y) = a
√
x2 + y2 create a ring shaped output.

To observe the effects of these initial patterns they are simply Fourier trans-
formed and the resulting image is overlapped with the target pattern. To also
explore the possibilities in creating more complex patterns, an initial phase re-
construction for the batman symbol, with the resulting intensity distribution is
shown in figure 5.12. One could say, the target of an initial phase pattern is
to “nudge” the algorithm in the right direction. Also, the use of an analytical
initial pattern avoids phase vortices, which are likely to occur if the initial phase
pattern is random.

The next improvement, to reduce the formation of speckle, is the avoiding

Figure 5.12: Result of the initial guess for the phase pattern By setting
the parameters for a quadratic pattern, as well as a gradient, a spot is created,
which roughly overlaps with the target image, which is shown as an overlay. For
comparison the whole available image plane is depicted.

of points of zero intensity in the image plane. This is easily implemented, by
setting the dark areas in the target image to a small nonzero value, instead of
actual zero.
Figure 5.13 shows the reconstructed images of the pure MRAF algorithm and
the refined algorithm, with an initial guess and nonzero dark areas. While the
image on the left is dominated by speckle and has a high variation of average
brightness over the whole pattern, the right image shows much improvement
in both matters. Instead of optimizing the initial phase pattern by looking at
figure 5.12 it is possible to watch the change in the reconstructed image with
changed parameters. Figure 5.14 shows the result of this process. The left image
shows the same reconstruction as figure 5.13 while on the right the “optimized”
image can be seen. While the overall illumination of the pattern is more homo-
geneous, for example the edges of the wings are as bright as the inner part of
the symbol, there is also an increase in irregularities in the pattern. Figure 5.15
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Figure 5.13: Improved MRAF algorithm To further improve the MRAF
algorithm an initial guess was created for the phase pattern. Both images show
the reconstructed images taken with a CCD camera. On the left the unrefined
MRAF algorithm’s performance is shown. Heavy speckle distorts the image
and the brightness homogeneity is low. On the right, the reconstructed image,
with the initial guess of the phase pattern is shown. The image suffers no more
speckle and the brightness homogeneity is highly increased.

Figure 5.14: Output for a complex pattern with modified initial guess
For the left image the initial phase pattern was adjusted in the way of figure 5.12.
For the right image the reconstructed image was observed for each parameter
change. While the overall illumination has improved, as can be seen in the
brighter outer edges of the wings, the new pattern has more bumps.

shows a comparison of the spots from the two initial patterns of figure 5.14. The
fact that the spot changes by a large amount through the optimization shows
that great care needs to be taken, when finding the parameters for the initial
phases. Simply creating a spot that overlaps with the target pattern may not
be enough.

Blazed gratings and blaze condition

In the previous section’s images the undiffracted light would always be visible
as a bright spot in the center of the pattern. This limits the useful area of
the hologram to its border regions. To remove this spot and thereby increase
the usable area of the hologram, a grating can be added to the phase pattern,
to diffract the hologram away from the center of the image plane and the un-
diffracted light.
Creating a discretized blazed grating in units of SLM pixels is straight forward.
To get the shortest possible grating period every second row or column (or both,
depending on the desired direction) needs to be shifted by π, compared to its
neighbors. So for pixels, with coordinates i and j the equation for a diagonal
grating would be

φ (i, j) = (i+ j) mod2 · π (5.4)

yielding diagonal rows of 0 and π phase shift. This can be added to the cal-
culated pattern. To maximize the light efficiency in this case it is advisable to
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Figure 5.15: Initial spots before and after optimization The left and right
images here correspond to the left and right images in figure 5.14. While increas-
ing the size of the initial spot increases the homogeneity of the reconstructed
image’s brightness it also introduces more bumps. This trade-off needs to be
considered when optimizing the initial pattern.

use a blazed grating and adjust the reflection angle of the SLM to fulfill the
blaze condition. For ideal blazed gratings diffraction efficiency of 100% is in
principle possible. However, for the SLM the efficiency is reduced, since not all
light interacts with the liquid crystals.
For a reflective grating of line spacing d, as is shown in figure 5.16 the grating
equation is:

d (sinα+ sinβ) = mλ (5.5)

with m the diffraction order and α and β the angles of incidence and diffraction.
For a blazed grating with blaze angle ϑB the blaze condition is

sin (α− ϑB) = sin (β + ϑB) (5.6)

meaning, that light is reflected off the blaze steps into the same angle as it is
diffracted into from the grating. Inserting the latter equation into the former
and solving for α yields

α = sin−1

(
mλ

2d cos (ϑB)

)
+ ϑB (5.7)

While an ideal blazed grating is capable of reaching extremely high diffraction
efficiencies there are several limiting factors to the light efficiency in an appli-
cation.
First there is of course no ideal blazed grating. In the SLM the grating steps
will always be discretized, although a longer grating period will result in more
discretizing steps and therefore in a better approximation to the ideal grating.
Second and more important is the fact that, especially for the MRAF algorithm,
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Figure 5.16: Schematic depiction of a blazed reflection grating Light
incident under the angle α is diffracted into the angle β depending on the line
spacing d of the grating. Depending on the blaze angle ϑB high diffraction
efficiency for a wavelength can be achieved.

not all light, that gets diffracted off the SLM will be part of the desired pattern.
In the noise region of the MRAF output, where the amplitudes are allowed to
evolve freely peaks of high intensity will occur, which reduce the amount of light
in the actually desired shape.
Third the intensity of a pattern reduces, with shrinking pattern size. One would
expect the intensity to remain unchanged, if a top-hat of half the area is cre-
ated, since intensity is power per area, however for small patterns the intensity
seems to get smaller and smaller, which makes it hard to give a number for the
absolute diffraction efficiency of the device.

5.5 Setup for integration with trap

Actual integration of the SLM with our ion trap setup requires a couple of
extra features that need to be added to the basic testing setup. To access the
ion trap in its vacuum vessel light is sent through a viewport, which provides a
window with anti reflective coating. Figure 5.17 shows the vacuum vessel with
its viewports. The viewport, chosen for the beam from the SLM is seen at the
top of the drawing. While having the advantage of light from this viewport
hitting the trap perpendicular to the trap axis it is also very far from the trap.
The distance from the window’s outer edge to the trap axis is 394mm. Together
with the fact that the SLM can, for spatial reasons, not be setup to reflect light
directly into the viewport this means, that a lens with high focal length will
be necessary in this setup. However, from equation 3.45 follows a size of the
image of 2.43cm, with an assumed focal length of 500mm. Since the smallest
feature, that can be defined in the target image for the MRAF algorithm is
1/512 times the image size, no structures, smaller, than 47.5µm can be defined.
So irrespective of the actual resolution of the lens, which mostly depends on its
diameter, only three pixels in the target image would define a structure, which
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Figure 5.17: Schematic drawing of the vacuum vessel, with its view-
ports and corresponding in and outputs. The viewport, which can be used
for the SLM is entering the vessel from the top in this picture. The distance
from the window to the center of the trap is 394mm.

would illuminate the entire string of ions, depicted in figure 2.3.
While this may seem purely a problem of convenience one should also note,
that the smallest spot size, possible with a 2 inch lens of 500mm focal length
is 18.3µm in diameter. It is obvious, that using a single lens of 500mm focal
length would be wasting its resolving power.
A solution to this problem would be using a relay lens setup. In such a setup a
primary lens creates a real image at a certain distance and one or two relay lenses
are used to create another image, without magnification, at a larger distance,
thereby relaying the original image. The two possible relay lens setups are
depicted in figure 5.18. The advantage of the setup with two lenses in the relay
is, that the position of the relayed image can be adjusted, by moving the second
relay lens. To do so in the setup with only on relaying lens both the imaging
lens as well as the relaying lens would need to be moved, since their distance
is fixed by their focal lengths. Using two lenses for relaying is therefore more
flexible, which is an important point in a setup, where the image plane, viz. the
trap axis, can not be moved at all.

Using an imaging lens of 200mm focal length would create an image of
9.72mm length, yielding a smallest definable feature of 19µm. Now an ion string
as mentioned above would correspond to a chain of six pixels in the target image.
Taking into account, that the actual diameter of the light incident on the lenses
is limited by the aperture of the SLM, the spot sizes change.
With an imaging lens of 200mm focal length the smallest spot is at 24.2µm,
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Figure 5.18: Two possible setups for relay lenses While the first setup uses
only one lens and relays the image by a distance of 4fr it has reduced flexibility
in the positioning of the focal point. Using two lenses for the relay system
creates a relay distance of 2fr + d. Since the distance d between the lenses is
arbitrary the focal plane can be adjusted.

assuming an incident Gaussian beam of 7.68mm diameter, which would exactly
fit into the SLM’s active region. Relaying this with a lens of f=500mm yields
the same spot size in the image plane, since the beam does not extend beyond
the size of the relay lens in that setup.
Figure 5.19 shows a possible setup for illuminating the SLM, creating an image
and relaying it into the trap. The lenses for the appropriate illumination of the
SLM need to be chosen according to the beam from the fiber coupler. The angle
α between the incident and reflected light at the SLM need to be chosen such,
that the blaze condition is fulfilled for the first diffracting order, to maximize
light efficiency. To adjust the focal plane of the second relay lens it can be
mounted on a translation stage to move it along the beam axis. The mirror,
reflecting the light through the window should have a small transmittivity, to
allow monitoring the created pattern with a CCD camera, behind the mirror.
To adjust the mirror with high enough precision it can be put into a mount with
motorized actuators. A mirror mount like that is currently in use in precisely
this position and can be reused in this setup.
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Figure 5.19: Suggested setup for integration of the SLM with the exist-
ing ion trap setup To bridge the distance of 394mm from the vaccum window
to the trap relay lenses of fr = 500mm should be used, to leave enough space
for the mirror and to provide freedom for adjustment. A mirror with small
transmission, on the order of a few percent would allow the placement of a
CCD camera, to observe the created patterns and employ feedback techniques
in situ.
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Chapter 6

Conclusion and Outlook

In this thesis a spatial light modulator of the liquid crystal type was introduced
and characterized. The theoretical background of its operation was introduced
and derived. Different algorithms to calculate holograms for the device were
implemented and compared. An interferometric calibration was performed, to
assure correct performance of the device. Furthermore it was shown how to per-
form in situ correction of optical aberrations in an ion trap setup, potentially up
to diffraction limited performance. Finally a setup for integration of the device
with the existing ion trap setup in our laboratory was suggested.
As soon as the current experiments in the lab are finished the SLM should be
integrated with the setup, to put to the test the capabilities in improving the
homogeneous illumination of an ion string. Together with a feedback scheme,
to reduce residual inhomogeneities, large improvement over the current setup
with cylindrical lenses should be possible.
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Appendix A

Semi-classical treatment of
light-atom interaction

In this section a more detailed introduction to the theory of the interaction of
atoms with light will be given. This treatment follows chapter seven of [7].
This is a so called semi-classical treatment of the problem, meaning that it is
in part classical and in part quantum mechanical. Here a quantum mechanical
two level system shall be considered, while the light, interacting with it will be
treated classically. Also the aforementioned concepts of the Rabi frequency and
the Bloch sphere will be derived.
Assuming a Hamiltonian of the form

H = H0 +HI (t) (A.1)

with H0 the Hamiltonian of the unperturbed atom and HI the Hamiltonian of
the light field, the discussion starts by stating the wave functions for the time
dependent Schrödinger equation

ih̄
∂Ψ

∂t
= HΨ (A.2)

for the unperturbed atom:

Ψn (r, t) = ψ (r) e−iEnt/h̄ (A.3)

While these wave functions are not eigenfunctions of the full Hamiltonian, its
wave function can be expressed through these for any point in time by:

Ψ (r, t) = c1 (t)ψ1 (r) e−iE1t/h̄ + c2 (t)ψ2 (r) e−iE2t/h̄ (A.4)

or, in Dirac notation

Ψ (r, t) = c1 |1〉 e−iω1t + c2 |2〉 e−iω2t (A.5)
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with ωn = En/h̄ and |c1|2 + |c2|2 = 1.
Assuming an electric field of E = E0 cos (ωt), the interaction term HI takes the
form of a dipole in an electric field:

HI (t) = er ·E0 cos (ωt) (A.6)

with r the position of the electron, with respect to the atomic nucleus. This term
will lead to an interaction and with that mixing of the unperturbed eigenstates
of the atom. Substituting equation A.5 into the time dependent Schrödinger
equation yields

iċ1 = Ω cos (ωt) e−iω0tc2 (A.7)

iċ2 = Ω cos (ωt) e−iω0tc1 (A.8)

with ω0 = (E2 − E1) /h̄ and Ω the Rabi frequency, given by:

Ω =
〈1| er ·E0 |2〉

h̄
=
e

h̄

ˆ
ψ∗1 (r) r ·E0ψ2 (r) d3r (A.9)

Limiting this discussion to light, polarized along the x-axis, yielding E = |E0|êx cos (ωt),
the Rabi frequency becomes

Ω =
eX12|E0|

h̄
(A.10)

with X12 = 〈1|x |2〉 the overlap of the two wave functions along the x axis.
In the case of all population starting in |1〉, viz c1 (0) = 1 and c2 (0) = 0 an
approximation for small times, that means, only little population transfer can
be obtained from equations A.7 and A.8:

c1 (t) = 1 (A.11)

c2 (t) =
Ω∗

2

{
1− exp [i (ω0 + ω) t]

ω0 + ω
+

1− exp [i (ω0 + ω) t]

ω0 − ω

}
(A.12)

An important approximation can be made here: Seeing that for the case close to
resonance, |ω0 − ω| � ω0 the first denominator is approximately 2ω0 while the
second approaches zero. This means that the first term will be much smaller,
than the second and can therefore be neglected. This is known as the rotating-
wave approximation and it yields an equation for finding the electron in the
upper state of the two-level system:

|c2 (t) |2 =

∣∣∣∣Ωsin {(ω0 − ω) t/2}
ω0 − ω

∣∣∣∣2 (A.13)

While this was an assumption for weak fields, the more general case is obtained,
by rewriting equation A.7 as

iċ1 = c2

{
ei(ω−ω0)t + e−i(ω+ω0)t

} Ω

2
(A.14)
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and equation A.8 accordingly. Applying the rotating-wave approximation again
and combining the two differential equations yields:

d2c2
dt2

+ i (ω − ω0)
dc2
dt

+

∣∣∣∣Ω2
∣∣∣∣2 c2 = 0 (A.15)

And from this, by setting W 2 = Ω2 + (ω − ω0)
2

the following is obtained

|c2 (t) |2 =
Ω2

W 2
sin2

(
Wt

2

)
(A.16)

or at resonance, viz. W = Ω

|c2 (t) |2 = sin2

(
Ωt

2

)
(A.17)

It follows, that the population will oscillate between the two states, depending
on the length of the interaction with the light. Two special cases of this formula
are notable: If Ωt = π the populations of |1〉 and |2〉 will be exchanged:

c1 |1〉+ c2 |2〉 → −i (c2 |1〉+ c1 |2〉) (A.18)

The other case is Ωt = π/2, which will bring a population from the ground
state to an equal superposition of both states. These two cases are called π-
and π/2-pulses.

The Bloch sphere

To derive the Bloch sphere representation of the atomic state again an electric
field along the x-axis is assumed and the component of a dipole along this axis
shall be calculated. It is given by the expectation value:

− eDx (x) = −
ˆ

Ψ† (t) e · xΨ (t) d3r (A.19)

Using equation A.4 for Ψ yields the dipole moment:

Dx (t) =

ˆ (
c1e
−iω1tψ1 + c2e

−iω2tψ2

)∗
x
(
c1e
−iω1tψ1 + c2e

−iω2tψ2

)
d3r

(A.20)

= c∗2c1X21e
iω0t + c∗1c2X12e

−iω0t (A.21)

with ω0 = ω2 − ω1. The quantities c∗1c2 and c∗2c1 can be obtained from the
density matrix formalism:

|Ψ〉 〈Ψ| =
(
c1
c2

)(
c∗1 c∗2

)
=

(
|c1|2 c1c

∗
2

c2c
∗
1 |c2|2

)
=

(
ρ11 ρ12

ρ21 ρ22

)
(A.22)
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Here, the diagonal elements are called populations and the off diagonal elements
are the so called coherences. Defining

c̃1 = c1e
−iδt/2 (A.23)

c̃2 = c2e
iδt/2 (A.24)

with δ = ω−ω0 the detuning of the light from the atomic resonance. While the
populations stay unaffected by this transformation, the coherences become,

ρ̃12 = ρ12e
−iδt (A.25)

ρ̃21 = ρ21e
iδt (A.26)

yielding a dipole moment of

−eDx (x) = −eX12

{
ρ12e

iω0t + ρ21e
−iω0t

}
= −eX12

{
ρ̃12e

iωt + ρ̃21e
−iωt}

(A.27)

= −eX12 {u cosωt− v sinωt} (A.28)

Where u = ρ̃12 + ρ̃21 and v = −i (ρ̃12 − ρ̃21) are the real and imaginary parts of
ρ̃12.
Next the differential equations from the beginning are written in terms of δ:

iċ1 = c2e
iδtΩ

2
(A.29)

iċ2 = c1e
−iδtΩ

2
(A.30)

Differentiating equation A.23 and using equations A.23, A.24, A.29 and A.30
the following equations can be obtained:

i ˙̃c1 =
1

2
(δc̃1 + Ωc̃2) (A.31)

i ˙̃c2 =
1

2
(Ωc̃1 − δc̃2) (A.32)

From these the time derivatives of the density matrix components are obtained:

dρ̃12

dt
=

(
dρ̃21

dt

)∗
= −iδρ̃12 +

iΩ

2
(ρ11 − ρ22) (A.33)

dρ22

dt
=
dρ11

dt
(A.34)

By using w = ρ11−ρ22 and expressing the above equations in terms of u, v and
w, the following equations are obtained:

u̇ = δv (A.35)

v̇ = −δu+ Ωw (A.36)

ẇ = −Ωv (A.37)
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These equations can be written in vectorial form, as

Ṙ = R× (Ωê1 + δê3) = R×W (A.38)

with the Bloch vector :
R = uê1 + vê2 + wê3 (A.39)

and
W = Ωê1 + δê3 (A.40)

The vector R has length one, so |R|2 = |u|2 + |v|2 + |w|2 = 1. Accordingly
the vector points to the surface of the unit sphere, the Bloch sphere, which
is depicted in figure A.1. It follows from equation A.38 that the product
R ·W = RW cos θ is constant. So for a fixed detuning and Rabi frequency
R and W are constant and the Bloch vector will move on a cone with angle θ
around W.
Especially in the case of no detuning (δ = 0) and the initial population in the
state |1〉 the Bloch vector will rotate on the great circle on the plane perpen-
dicular to ê1, which is equivalent to the coherent population transfer, as seen in
the previous section.

ê1

ê3

ê2

Figure A.1: The Bloch sphere The states of a two level system can be encoded
in the surface of a sphere, which makes it easy to visualize the concepts of π-
and π/2-pulses, as well as more complicated sequences. An interesting, although
unintuitive feature of the Bloch sphere representation is the fact that orthogonal
vectors point to opposite points on the surface of the sphere.
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