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1 Introduction

Newton considered light to be a jet of particles, which for example rebound when
striking a mirror. In the course of the �rst half of the 19th century the wave-like
nature of light was proved by di�raction experiments. Optics was integrated into
electromagnetic theory, the velocity of light could be related to electric and magnetic
constants and polarization phenomena were interpreted as a manifestation of the vector
character of the electric �eld. However, in 1900 Planck discovered that the spectrum of
the black-body radiation could be explained by assuming the quantization of energy:
The energy of an electro-magnetic wave of frequency � is restricted to multiples of
the quantum h�. Although this hypothesis allowed to explain the photoelectric e�ect
it was not until 1924 that the e�ect of single photons could be demonstrated by the
Compton e�ect.

Today the properties of light are described within the framework of modern quantum
theory. It has become possible to generate "non-classical light", i.e. light whose prop-
erties cannot be described by classical electrodynamics. In this regard photon counting
experiments such as the Hanbury-Brown-Twiss experiment [1, 2], which was �rst per-
formed in 1956, played an important role. A beam splitter and two photomultipliers
are used to record the coincidences of photo electric events. For a thermal light source
the measured photon correlation shows the e�ect of bunching: The probability of de-
tecting two photons within a time delay � has its maximum around � = 0, i.e. the light
quanta arrive preferably in "bunches". The reverse e�ect that the photon correlation
has its minimum at � = 0, called anti-bunching [3, 4], was measured for the �rst time
in the resonance �uorescence from an atomic beam in 1977 [5, 6]. Anti-bunching is a
pure quantum phenomenon, re�ecting the preparation of the atom in its ground state
after emission of a photon. Other pure quantum e�ects are the observation of squeezed
light [7�9] or the preparation of entangled photon states [10].

The properties of light must necessarily be studied in connection with the light sources.
In fact another main stream in the early formulation of quantum theory was concerned
with the explanation of spectral lines of atoms. Bohr's model of the atom was the
�rst approach to a quantum mechanical description of atoms. The discrete energy
levels were characterized by only one quantum number, spectral lines resulting from
transitions of the atom from a state of higher energy to a state of lower energy by
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1 Introduction

emission of a photon. Although Bohr's model was replaced by a full quantum theory,
the analysis of spectral lines, i.e. spectroscopy, remained the main source of information
about atomic energy levels.

Development of quantum mechanics as well as the more and more improved spectro-
scopic resolution led to a deep understanding of the atomic structure and the related
spectra. A splitting of spectral lines was found, the �ne structure, which could be ex-
plained with the coupling of the electron spin to the orbital momentum together with
the relativistic behavior of the electron. The magnetic moment of the atomic nucleus
accounts for the hyper�ne splitting. The interaction of the atom with the surrounding
radiation �eld leads to additional shifts of the energy levels (Lamb-shift [11, 12]) and
to spontaneous decay of all excited states [13].

The progress in spectroscopy, as well as the development of quantum optics, are un-
thinkable without the invention of lasers in the early 1960s. Their narrow emission
bandwidth, which can be reduced far below the width of spectral lines, and their high
light intensities are the base for laser spectroscopy and non-linear optics. Today diode
lasers are used in many applications: The spectral ranges in which they are available
have been expanding, now reaching the ultra-violet region. With the help of optical
feedback and electronic stabilization their laser linewidth can be much reduced. A
reduction to less than 1 kHz has been achieved [14].

In laser spectroscopy an atomic sample is illuminated with an external laser light source.
The spectral resolution as well as the properties of the emitted �uorescent light depend
on the preparation of the investigated atoms. In a gas cell, for example, the motion
of the atoms leads to Doppler and collision broadening of the spectral lines. The
spectral resolution is also reduced when the interaction time with the laser beam is
limited by the time of �ight of the atoms. Various techniques have been developed to
overcome these limitations, such as saturation and two-photon spectroscopy, which are
Doppler free techniques, and Ramsey spectroscopy, which reduces the broadening due
to a limited interaction time [15].

The ideal case for precision spectroscopy is the preparation of a single, motionless
particle. This can be achieved by the trapping of ions with electric �elds in a Paul
trap, which was �rst proposed in 1975 [16, 17]. This technique has several advantages:
First there is no restriction on the interaction time. Ions can be stored for an almost
unlimited period. Secondly the ion motion can be damped with the help of laser
cooling. The energy of the ion can be reduced so far that the oscillation amplitude of
the ion in the trap is smaller than the light wavelength. Then the �rst order Doppler
e�ect is nearly completely suppressed. Eventually, it is possible to con�ne only one
single particle, which was �rst demonstrated in 1980 [18]. Under UHV conditions the
measurement then is not disturbed by collisions with other particles. The properties
of a single ion can be studied through its resonance �uorescence.

This thesis is part of an ongoing experimental project, which aims at measuring the
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non-classical properties and the spectrum of resonance �uorescence from a single Ba+

ion. The ion is con�ned in a Paul trap and illuminated with two coherent laser light
�elds. The properties of the detected �uorescent light reveal the internal dynamics, i.e.
the population and coherences of the atomic energy levels, and the external dynamics of
the ion, i.e. its motion in the trap. In the course of this thesis the quantum mechanical
model describing the interaction between the light �elds and the Ba+ ion, and the
in�uence of the oscillation in the trap was implemented in computer programs. The
�t of the numerically calculated curves to the measured data provides one of the basic
tools for determining the experimental parameters, which are needed to characterize
the system and predict its behavior in further measurements or applications.

Several types of measurements were performed. One type of measurement was the
registration of excitation spectra, i.e. the intensity of the �uorescent light versus the
detuning of either of the lasers. For this purpose it was necessary to improve the setup
of one of the lasers: An acousto-optical modulator was inserted that allowed to exactly
detune the laser frequency.

The thesis is organized as follows:

Chapter 2 and 3 introduce the theory of the interaction between the Ba+ ion and the
two light �elds. The formalism is adapted to the particular experimental setup and
the implementation of the model in computer programs. The aim is to show the way
from the general quantum mechanical description of the light-matter interaction to the
particular form of the equations used in the programs. The trapping of an ion in a
Paul trap and the in�uence of its motion on the resonance �uorescence are discussed in
chapter 4. The experimental setup is described in chapter 5. In chapter 6 the results
of the di�erent measurements are presented.
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2 The interaction of a three level

system with two coherent light �elds

2.1 Introduction

The aim of the experiment discussed in this thesis is to analyse the interaction of single
Barium ions stored in a radio frequency trap with two near resonant laser light �elds.
We are particularly interested in the physical properties of the light scattered by the
ion, that is the intensity, the photon counting distribution and the spectrum of the
single ion resonance �uorescence.

This chapter gives a �rst introduction to the quantum mechanical description of the ion,
the laser light �elds and their interaction. In our experiment singly ionized 138Ba-atoms
are used. Their electron con�guration corresponds to that of the noble gas Xenon with
one additional valence electron ([Xe]62S1=2).

Transition �air (nm) �nat (MHz)
62S1=2 , 62P1=2 493.4 15.1
62P1=2 , 52D3=2 649.7 5.3
62P3=2 , 62S1=2 455.4 18.8
62P3=2 , 52D5=2 614.2 5.9
62P3=2 , 52D3=2 585.4 0.7
52D3=2 , 62S1=2 2051 0.4 �10�8

62S1=2 , 52D5=2 1761.7 0.5 �10�8

Table 2.1: Wavelengths and decay rates of the 138Ba+ �ne structure transitions [19].

Figure 2.1 shows the relevant part of the �ne-structure level scheme of 138Ba+ and table
2.1 summarizies the corresponding wavelengths and decay rates. In Barium ions, as
well as in Calcium, Strontium and Mercury ions, two D levels lie between the S and
the P levels [20]. (The Mercury ion has the additional oddity that the D5=2 and D3=2

levels are inverted). The S , P and the D , P transitions are dipole-allowed and
the corresponding decay rates are in the order of 106 s�1. The D-levels have lifetimes
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2 The interaction of a three level system with two coherent light �elds

Figure 2.1: Fine structure level scheme of 138Ba+. All wavelengths are given in nm.

of 30s and 40s, respectively, and decay into the S-level happens only via an electric
quadrupole transition.

Since the nucleus of 138Ba+ has no spin (I=0), there is no hyper�ne splitting of
the atomic energy levels. However, the energy levels split up into several Zeeman-
components in an external magnetic �eld. In order to obtain a correct description
of the Barium ion it is necessary to take all the Zeeman sublevels into consideration,
which will be done in detail in chapter 3. For the moment, however, we concentrate
on the simpler case where the ion is assumed to have only three relevant energy levels
that are coupled by two coherent light �elds.

The wavelengths of the two lasers used to illuminate the ion are at 493 nm and 650 nm,
corresponding to the 62S1=2 , 62P1=2 and 6

2P1=2 , 52D3=2 transitions. All other energy
levels are far o� resonance. They can neither be excited by the lasers nor be populated
via spontaneous decay. Hence we have a closed system with three relevant energy levels.

The laser at 493 nm shines in a green and the laser at 650 nm in a red color. Therefore
all quantities related to the S , P transition are indexed with 'g' whereas the index
'r' is attached to quantities corresponding to the P , D transition.

The light emitted by an atom which is excited with resonant light �elds is called
resonance �uorescence. In our experiment the �uorescent photons are observed in a
direction perpendicular to the laser beam direction. It should be noted that these
photons are due exclusively to spontaneous emission. When the emission is stimulated
then the emitted photons are in the same light mode as the photons that induced the
transition.

6



2.2 Description of the atom, the light �elds and the dipole interaction

If �22(t) describes the probability of �nding the ion in the excited state (62P1=2) at
time t, then the average numbers of green and red �uorescence photons, hnig and hnir,
counted by a photo multiplier perpendicular to the laser beam direction in the time
interval T are

hnig(T ) = �g

Z t+T

t

�22(�)�g d� (2.1)

hnir(T ) = �r

Z t+T

t

�22(�)�r d� (2.2)

where �g and �r are the decay rates on the S , P and P , D transitions. �g and
�r denote the detection e�ciencies: They depend on the imaging optics and on the
quantum e�ciencies of the photomultiplier. If the atom is in a steady state, i.e. when
T is su�ciently large, then it is easily seen that the photon counting rates are

hnig;r(T )
T

/ �22(1): (2.3)

2.2 Description of the atom, the light �elds and the

dipole interaction

The Hamiltonian of the system is constituted of three parts: The Hamiltonian of the
atom, of the light �eld and the one describing the interaction.

Ĥ = Ĥatom + Ĥfield + Ĥint (2.4)

Let jai, a = 1; 2; 3, denote the eigenvectors of the atomic Hamiltonian. The 62S1=2 state
corresponds to j1i, 62P1=2 to j2i and 52D3=2 to j3i.

Ĥatomjai = ~!ajai (2.5)

!a are the atomic Bohr frequencies. Then Ĥatom can be written as

Ĥatom =

3X
a=1

~!ajaihaj: (2.6)

The Hamiltonian of a light mode, characterized by frequency !k, wavevector ~k and
polarization ~�k, has the same form as the quantum-mechanical Hamiltonian of a one
dimensional harmonic oscillator.

Ĥk = ~!k(â
y
kâk + 1=2) (2.7)
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2 The interaction of a three level system with two coherent light �elds

where âyk and âk are the photon destruction and creation operators.

The eigenvectors of this Hamiltonian are usually called the number states jni, n =

0; 1; 2; : : : since they represent a quantum-mechanical state of the light �eld, which
contains n photons, each with energy ~!k. The action of Ĥ, â and ây on the number
states is de�ned by

Ĥjni = ~!(n+ 1=2) jni (2.8)

âjni = p
n jn� 1i (2.9)

âyjni =
p
n + 1 jn+ 1i: (2.10)

The light �elds of real light sources do not have de�nite numbers of photons, however,
but are either statistical mixtures, as in the case of thermal excitation, or linear su-
perpositions, as in the case of the coherent photon states, of the number states. The
coherent states are de�ned as the following superpositions:

j�i = exp(�1

2
j�j2)

1X
n=0

�n

(n!)1=2
jni (2.11)

� = j�jei� 2 C (2.12)

They are the closest quantum mechanical approximation to a classical monochromatic
electromagnetic wave [21]. A single mode laser generates a coherent state, which is
therefore chosen to describe the two laser light �elds in our experiment. It is readily
shown that

h�j�i = 1 (2.13)

âj�i = � j�i (2.14)

hajây = �� h�j (2.15)

and hence

h�jâyâj�i = j�j2: (2.16)

The single mode quantum mechanical �eld operator is [21]

~̂E(~r; t) = i~�

�
~!

2�0V

�1=2

fâ exp(�i!t+ i~k � ~r)� ây exp(+i!t� i~k � ~r)g (2.17)

where V denotes the quantization volume and ~� is a unit vector indicating the polar-
ization direction.
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2.2 Description of the atom, the light �elds and the dipole interaction

By evaluating the expectation value of the electric �eld operator for the coherent photon
state j�i, we obtain

h�j ~̂Ej�i = �2~�
�

~!

2�0V

�1=2

j�j sin(~k � ~r � !t+ �) (2.18)

which corresponds to a classical wave, whose electric �eld amplitude is related to j�j
by

E0 := 2

�
~!

2�0V

�1=2

j�j: (2.19)

In our case the Hamiltonian of the �eld is

Ĥfield = ~!g(â
y
gâg + 1=2) + ~!r(â

y
râr + 1=2) (2.20)

and the electric �eld operator

~̂E = ~̂Eg + ~̂Er (2.21)

with ~̂Eg and ~̂Er de�ned analogously to equation (2.17). The spatial dependence ~k � ~r
over the extension of the ion is on the order of aBohr

�
� 10�4 and can be neglected.

A general state of the system can �nally be written as

j	i = jai 
 j�gi 
 j�ri = ja �g �ri: (2.22)

If the frequencies of the lasers are close to the atomic transition frequencies, then the
ion may be excited to the P state by absorption of a photon or may decay to one of
the ground states by emission of a photon. These processes can be described with an
interaction Hamiltonian of the following form:

Ĥint = � ~̂D � ~̂E (2.23)

where ~̂D represents the atomic dipole operator. It is assumed here, that the light
�eld interacts only with the electric dipole-moment and not with electric or magnetic
moments of higher order. Since the S-D transition is dipole-forbidden, the D level is
treated as a stable energy level in this model. In view of the long life-times of the
D-levels (table 2.1) this is of course a good approximation for processes that happen
on a sub-second time scale.

The atomic dipole operator

~D = e

0
@ x

y

z

1
A (2.24)
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2 The interaction of a three level system with two coherent light �elds

can also be expressed with the help of the atomic eigenvectors

~D =
X

a;b=1;2;3

~Dabjaihbj (2.25)

~Dab = haj ~Djbi: (2.26)

By considering the odd parity of x,y,z and by assuming that ~Dab are real numbers, we
obtain

~D = ~D12(j1ih2j+ j2ih1j) + ~D23(j2ih3j+ j3ih2j): (2.27)

The operator jaihbj, applied to an atomic state, shifts the electron from state jbi to
state jai. The interaction Hamiltonian

Ĥint = �
�
~D12(j1ih2j+ j2ih1j) + ~D23(j2ih3j+ j3ih2j)

��
~̂Eg + ~̂Er

�
(2.28)

involves products of the photon destruction and creation operators with the atomic
transition operators jaihbj. The terms can easily be interpreted as simple optical pro-
cesses:
âg j2ih1j represents the destruction of a photon of the green laser light �eld and a

transition from the S to the P level.
j1ih2j âyg is the reverse process: creation of a photon by transition from the P to

the S level.

The events represented by âyg j2ih1j or âg j1ih2j, where a photon is created and the atom
is excited at the same time or vice versa, do not conserve energy. They are allowed
only in higher order optical processes, in which energy conservation may be violated
in intermediate steps. These weak higher order contributions are neglected, which is
equivalent to what is usually called �rotating-wave approximation� in semi-classical
models. Using similar arguments it is also assumed that the green laser interacts only
with the S$ P and the red laser with the P$ D transition, i.e. terms such as ârj2ih1j
and âgj3ih1j are omitted.

We �nally obtain the interaction Hamiltonian:

Ĥint = �f ~D12 � ~�g
�
~!g

2�0V

�1=2

i [âg j2ih1j e�i!gt + j1ih2j âyg e+i!gt] +

~D23 � ~�r
�

~!r

2�0V

�1=2

i [âr j2ih3j e�i!rt + j3ih1j âyr e+i!rt] g (2.29)

Until now we have treated the whole system including light �eld and ion. The next
step would in principle be the calculation of matrix elements such as

h2j 
 hngjĤintjng + 1i 
 j1i: (2.30)
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2.2 Description of the atom, the light �elds and the dipole interaction

However, for a laser light source the best description are the coherent photon states. A
laser intensity of 1mW at 500 nm corresponds to � 1015photons=s which is very large
compared to the scattering rate of � 107photons=s. That means that, when the ion is
excited and one photon is removed from the laser beam, the energy of the laser beam
changes only by a negligible amount. This is the reason why we assume that the light
�elds remain in the same coherent state before and after the interaction, which means
that we neglect the e�ect of the interaction on the light �eld itself. In the limit of
large photon numbers the quantum mechanical coherent state has the same e�ect as
a classical monochromatic wave. Therefore we assume constant �eld states j�ri and
j�gi and substitute the operators âg and âr by their expectation values �r and �g. The
energy expectation value of the light �eld is

Efield = h�g �rjĤfieldj�g �ri = ~
�
!g(j�gj2 + 1=2) + !r(j�rj2 + 1=2)

�
: (2.31)

We are now ready to write the atomic Hamiltonian in matrix representation with
respect to the following basis:

jai ; a = 1; 2; 3 =)
0
@10
0

1
A ;

0
@01
0

1
A ;

0
@00
1

1
A (2.32)

Hatom = ~

0
@!1 0 0

0 !2 0

0 0 !3

1
A (2.33)

The zero point of energy is chosen at the j2i level:

Hatom = ~

0
@!1 � !2 0 0

0 0 0

0 0 !3 � !2

1
A (2.34)

The matrix elements of Ĥint with âg and âr replaced by their expectation values are

ha �r �gjĤintjb �g �ri = �f ~D12 � ~�g
�
~!g

2�0V

�1=2

i[Æa2Æb1�ge
�i!gt � Æa1Æb2�

�
ge

+i!gt] +

~D23 � ~�r
�

~!r

2�0V

�1=2

i[Æa2Æb3�re
�i!rt � Æa3Æb2�

�
re

+i!rt] g

Æab =

�
1 if a = b

0 otherwise
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2 The interaction of a three level system with two coherent light �elds

which, by choosing the phases (equation (2.12))

�g = �=2 ) �g = i j�gj (2.35)

�r = �=2 ) �r = i j�rj (2.36)

(2.37)

and with the help of equation (2.19), yields

Hint = ~

0
@ 0 
12

2
e+i!gt 0


12

2
e�i!gt 0 
23

2
e�i!rt

0 
23

2
e+i!rt 0

1
A (2.38)

~
12 := ~�g � ~D12 E0g (2.39)

~
23 := ~�r � ~D23 E0r (2.40)

The quantities 
12 and 
23 are called Rabi frequencies. They denote the strength of
the coupling between atom and electric �eld.

The complete Hamiltonian is �nally

H = ~

0
@ !1 � !2


12

2
e+i!gt 0


12

2
e�i!gt 0 
23

2
e�i!rt

0 
23

2
e+i!rt !3 � !2

1
A (2.41)

2.3 Density operator formalism and spontaneous

decay

Until now we have not described the spontaneous decay of excited atomic states. Spon-
taneous decay is due to the interaction of the ion with the vacuum modes of the light
�eld. With the help of 'Fermi's golden rule', which includes a summation over all
available radiation modes the photons can enter after the interaction, it is possible to
calculate the decay rates of the atomic levels. The result is [22]:

�ab =
8�2

3�0~�
3
ab

���haj ~Djbi���2 (2.42)

The coupling of the atom to the vacuum modes also produces a shift of the atomic
energy levels, called the Lamb-shift [11�13]. This shift is assumed to be already included
in the atomic energy eigenvalues.

A correct description of the damping terms due to spontaneous emission and the �nite
laser linewidth requires in principle the coupling of a subsystem (the atom ) to a sur-
rounding heat-bath (the in�nite number of light modes ). By restricting our attention
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2.3 Density operator formalism and spontaneous decay

to a subsystem and by considering the rest only by its collective e�ect, we introduce
additional classical statistics into our description. The subsystem is no longer in a pure
state and must be described with a density operator �̂. The density operator �̂ written
in the basis jai is

�̂ =
X

a;b=1;2;3

�abjaihbj: (2.43)

The elements �11 = h1j�j1i, �22 and �33 are the expectation values for �nding the ion
in the states j1i, j2iand j3i, respectively, such that

Trace(�̂) = �11 + �22 + �33 = 1: (2.44)

The elements haj�̂jbi are called coherences and represent superpositions of quantum
mechanical states.

The time evolution of the density operator is governed by the Liouville equation

d�

dt
= � i

~
[H; �] + Ldamp(�) (2.45)

where now Ldamp includes the damping terms and the �rst term corresponds to the
Schrödinger equation. It can be shown [23] that the operator Ldamp has the following
general form

Ldamp(�) = �1

2

X
m

[Ĉy
mĈm�+ �Ĉy

mĈm � 2Ĉm�Ĉ
y
m]: (2.46)

The operators Ĉm describe the di�erent dissipative processes:
In the case of the three level atom we have the decay from the P to the S level, described
by

Ĉ21 =
p
�21 j1ih2j (2.47)

and from the P to the D level

Ĉ23 =
p
�23 j3ih2j: (2.48)

The �nite laser linewidths can be introduced by the operators [24]:

Ĉlg =
p
2�lg j1ih1j (2.49)

Ĉlr =
p
2�lr j3ih3j (2.50)

�lg and �lr denote the laser linewidths of the green and the red laser.
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2 The interaction of a three level system with two coherent light �elds

The operator Ĉ21 produces in fact the expected damping terms:

�1

2
[Ĉ

y
21Ĉ21� + �Ĉ

y
21Ĉ21 � 2Ĉ21�Ĉ

y
21] = ��21 j2ih2j+ �21 j1ih1j � �21

2
(j1ih2j+ j2ih1j)

=) (
d�22
dt

)damp = �(d�11
dt

)damp = ��21�22

(
d�12
dt

)damp = ��21

2
�12

The �nal step is a transformation into a rotating frame of reference with the operator
Û :

Û = e�i(!g j1ih1j+!r j3ih3j) t =

3X
j=1

e�i(!gÆ1j+!rÆ3j) t jjihjj (2.51)

or in matrix notation with respect to the basis jai ; a = 1; 2; 3

U =

0
@e�i!gt 0 0

0 1 0

0 0 e�i!rt

1
A ; UU y = U yU = 1 (2.52)

The density operator �̂ is transformed according to

�0 = Û � Û y: (2.53)

It is shown in Appendix 8.1 that the corresponding transformation for the Hamiltonian
is

Ĥ0 = ÛĤÛ y � i~Û
dÛ y

dt
: (2.54)

The damping terms remain unchanged.

We �nally obtain the following transformed Hamiltonian:

Ĥ0 = ~

0
@!g � (!2 � !1)


12

2
0


12

2
0 
23

2

0 
23

2
!r � (!2 � !3)

1
A (2.55)

and we de�ne the detunings of the lasers relative to the atomic Bohr frequencies:

�g = !g � (!2 � !1) (2.56)

�r = !r � (!2 � !3) (2.57)
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2.4 Coherence, optical pumping and dark resonances

2.4 Coherence, optical pumping and dark resonances

Since the Liouville-equation (2.45) is linear in the components of �, it can be trans-
formed into a vector form

~� := (�11; �12; : : : ; �87; �88) (2.58)

d~�i

dt
=
X
j

Mij ~�j (2.59)

where we have introduced the N2 � N2 matrix M. These equations are called optical
Bloch-equations.

When the initial condition �(0) is given, then the solution of (2.59) is

~�(t) = exp(M t) ~�(0): (2.60)

All terms have been introduced in such a way that � remains normalized, i.e.X
i

�ii(0) = 1)
X
i

�ii(t) = 1 8 t: (2.61)

In order to obtain the steady-state solution (�(1) = const: ) _� = 0), one of the
optical Bloch-equations has to be replaced by the normalization conditionX

i

�ii = 1 (2.62)

and a linear equation system has to be solved. The solution is then unique since we
have

rank(M) = N2 � 1: (2.63)

As an example for the dynamics described by the optical Bloch equations we �rst
consider the e�ect of optical pumping, which is caracteristic for a three level system in
�-con�guration. Optical pumping occurs when the ion is illuminated only by one laser
and the other laser is blocked. When for example the red laser is blocked the ion is
optically pumped into the 2D3=2-level: After spontaneous decay to the 2D3=2-level the
ion is trapped in this state and no more �uorescence photons are emitted.

Figure 2.2 shows the time evolution of the system with 
23 = 0. At time t=0 the ion is
in its ground state j1i. Then the ion is optically pumped via the state j2i = 2P1=2 to
the state j3i = 2D3=2. An average number of 3.8 photons is emitted during the process
which can be easily calculated using �23

R1
0
�22 dt = 1.

15



2 The interaction of a three level system with two coherent light �elds
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Figure 2.2: Optical pumping into the state j3i. Parameters: �g=�r=0,

12=2�=10MHz, 
23=0, �lg = �lr=0.
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Figure 2.3: Resonance �uorescence excitation spectrum of a three level system. Pa-
rameters: �g=2�=-20MHz, 
12=2�=10MHz, 
23=2�=5MHz, �lg=�lr=0.

The red laser is sometimes called the repumping laser, since in order to observe �uores-
cence light continously, it is necessary to bring the ion from the D back to the P level.
This e�ect is used in the laboratory to distinguish the ion's �uorescence light from the

16



2.4 Coherence, optical pumping and dark resonances

background straylight by blocking either the red or the green laser.

As another example �gure 2.3 shows a calculated excitation spectrum, i.e the stationary
value of �22 as a function of the red laser detuning. The decay rates used are those
of Ba+: �21=2�=15.1MHz, �23=2�=5.3MHz. When the detunings of the red and the
green lasers are equal �g = �r, which is the condition for a Raman transition between
j1i and j3i, the P level is not populated and the �uorescence disappears. This e�ect is
called dark resonance. The stationary solutions of the optical Bloch-equations in this
case are

�11 =

2

12


2
12 + 
2

23

�22 = 0 �33 =

2

12


2
12 + 
2

23

(2.64)

�13 = � 
12
23


2
12 + 
2

23

�12 = �23 = 0 (2.65)

which corresponds to a pure state:

�̂ =j	darkih	darkj (2.66)

j	darki =
1p


2
12 + 
2

23

(
23 j1i � 
12 j3i) (2.67)

=̂
1p


2
12 + 
2

23

0
@ 
23

0

�
12

1
A (2.68)

The phenomenon is more easily understood by observing the time-evolution, which is
shown in �gure 2.4.

We see, that the ion is optically pumped into the superposition state j darki. This state
does not interact with the light �eld, since

Ĥint j	darki = ~

0
@ 0 
12

2
0


12

2
0 
23

2

0 
23

2
0

1
A
0
@ 
23

0

�
12

1
A = 0 (2.69)

and consequently the ion is transparent.

Any relative phase �uctuations between the two lasers disturb the perfect superposition
of the states j1i and j3i. Indeed, we can show that the damping terms we have added
in order to describe the �nite laser linewidths (eqns. (2.49),(2.50)), lead to a decay of
the coherences �12 and �23:

�1

2
[Ĉ

y
lgĈlg�+ �Ĉ

y
lgĈlg � 2Ĉlg�Ĉ

y
lg] =� �lg(j2ih1j+ j1ih2j) (2.70)

=) (
d�12
dt

)damp =� �lg�12 (2.71)
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Figure 2.4: Dark resonance: Optical pumping into the superposition state. Parame-
ters: �g = �r=0, 
12=2�=10MHz, 
23=2�=5MHz, �lg = �lr=0.

and similarly

(
d�23
dt

)damp = ��lr�23: (2.72)

The probability of �nding the ion in the excited state j2i is not zero and the �uorescence
does not vanish completely. Figure 2.5 illustrates the dependence of the depth of the
dark resonance on the laser linewidths.
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2.4 Coherence, optical pumping and dark resonances

−40 −30 −20 −10 0
0

1

2

3

4

5

∆r (MHz)

ρ 22
*1

00

Figure 2.5: Depth of dark resonances for increasing laserlinewidths �lg = �lr = �l=2.
Parameters: �g=2�=-20MHz, 
12=2�=10MHz, 
23=2�=5MHz, �lg =

�lr=0, 50 kHz, 500 kHz.
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3 The eight-level system

3.1 Splitting of the energy levels in an external

magnetic �eld

After having discussed the basic concepts of the atom light interaction, we concentrate
on the additional e�ect due to the Zeeman splitting of the atomic energy levels in an
external magnetic �eld.

Without a magnetic �eld each of the three states 2S1=2,
2P1=2 and

2D3=2 consists of a
set of degenerate substates which are described by the magnetic quantum number mj.
We have to consider a total of eight levels. The excitation of these substates depends
on the polarization of the laser light �elds: When the Ba+ ion is illuminated by two
lasers with linear polarisation only transitions with �mj = 0 can be excited. The ion
is optically pumped into the mj = �3=2 states of the 2D3=2 level. They are populated
via spontaneous decay and cannot be excited by the linear polarized lasers [25, 26].

Optical pumping can be prevented by applying a homogenous magnetic �eld whose
direction is not parallel to the polarization direction of the light �elds. However, the
magnetic �eld splits up the energy levels due to the Zeeman e�ect by an amount [22]

�E = mjgj�Bj ~Bj (3.1)

or in frequencies

�! = mjgju (3.2)

where we have introduced the quantity

u =
�Bj ~Bj
~

: (3.3)

The Landé factors gj are calculated by the formula

gj =
J(J + 1) + S(S + 1)� L(L + 1)

2J(J + 1)
(3.4)
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3 The eight-level system

Figure 3.1: Fine structure level scheme of 138Ba+ with Zeeman splitting

which yields in our case

gj(
2S1=2) = 2 gj(

2P1=2) =
2
3

gj(
2D3=2) =

4
5
: (3.5)

The level scheme of 138Ba+ with Zeemann splitting is presented in �gure 3.1 where the
numbering of the atomic basis vectors is also indicated.

The atomic Hamiltonian we obtain for the eight level system is

Ĥatom =

8X
a=1

~!ajaihaj =

= ~(!S � u) j1ih1j+ ~(!S + u) j2ih2j+
+ ~(!P � 1

3
u) j3ih3j+ ~(!P +

1

3
u) j4ih4j+

+ ~(!D � 6

5
u) j5ih5j+ � � �+ ~(!D +

6

5
u) j8ih8j

(3.6)

3.2 Matrix elements of the interaction Hamiltonian

In view of our experimental setup we make the following simpli�cations: The magnetic
�eld ~B is assumed to be oriented along the z-axis, which de�nes the quantization axis.
The two light beams propagate in y-direction and we assume them to have the same
polarization vector in the x-z-plane:

~� = ~�g = ~�r =

0
@sin(�)

0

cos(�)

1
A (3.7)
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3.2 Matrix elements of the interaction Hamiltonian

Hence � is the angle between magnetic �eld and polarization direction of the lasers.
The electric �eld operators are the same as de�ned in equation (2.19).

The dipole operator becomes more complex:

~D = ~D13 j1ih3j+ ~D�
13 j3ih1j+ ~D14 j1ih4j+ ~D�

14 j4ih1j+
+ ~D35 j3ih5j+ ~D�

35 j5ih3j+ � � �
~Dab = haje~rjbi

(3.8)

and we obtain the following interaction Hamiltonian:

Ĥint = �f ( ~!g
2�0V

)1=2i [ ( ~D�
13 j3ih1j+ ~D�

14 j4ih1j+ � � � ) âge�i!gt

�( ~D13 j1ih3j+ ~D14 j1ih4j+ � � � ) âyge+i!gt]

+(
~!r

2�0V
)1=2i [ ( ~D35 j3ih5j+ ~D36 j3ih6j+ � � � ) âre�i!rt

�( ~D�
35 j5ih3j+ ~D�

36 j6ih3j+ � � � ) âyre+i!rt] g � ~�

(3.9)

In the next step we calculate the matrix elements of the dipole operator ~D. Therefore
the position operators x,y,z must be expressed with the help of spherical harmonics
Y m
l .

x =
1p
2
e

r
4�

3
r(Y �1

1 � Y 1
1 ) =

1p
2
(Q�1

1 �Q1
1) (3.10)

y =
ip
2
e

r
4�

3
r(Y �1

1 � Y 1
1 ) =

ip
2
(Q�1

1 �Q1
1) (3.11)

z = e

r
4�

3
rY 0

1 = Q0
1: (3.12)

The electric multipole operators are de�ned as in [27]:

Qm
l (r) = e

r
4�

2l + 1
rlY m

l (�; �) (3.13)

Q0
0 is the total charge of the system, Qm

1 , m=-1,0,1 is the electric dipole operator ,Qm
2

the electric quadrupole operator : : : . We consider only electric dipole transitions.

The matrix element of the dipole operator

hajQm
1 jbi = hnaLaSaJamJajQm

1 jnbLbSbJbmJbi (3.14)
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3 The eight-level system

is determined by �rst decomposing the coupling between spin and orbital momenta ~S
and ~L.

hajQm
1 jbi =

X
mLa

mSa

X
mL

b
mS

b

hLaSamLamSa jJamJaihLbSbmLbmSb jJbmJbi

hnaLamLa jQm
1 jnbLbmLbi hSamSajSbmSbi| {z }

Æm
Sa

m
S
b

(3.15)

with Sa = Sb = S = 1=2 for the states 2S1=2,
2P1=2 and 2D3=2 and mSa = mSb = mS

since Qm
1 (equation(3.13)) does not operate on spin-eigenstates.

Then the theorem of Wigner-Eckhart is employed [27]:

hnaLamLajQm
1 jnbLbmLbi =

1p
2La + 1

hLb; 1; mLb; mjLamLaihnaLakQ1knbLbi: (3.16)

The matrix element hajQm
1 jbi is obtained as the product of three Clebsch-Gordon-

coe�cients and the reduced matrix element hnaLakQ1knbLbi, that characterizes a pair
of �ne-structure levels and does not depend on the magnetic quantum numbers mj. In
the case of 138Ba+ there are two of these quantities: We designate them as dg for the
6S1=2 , 6P1=2 transition and dr for the

6P1=2 , 2D3=2 transition.

The result of the calculation of the dipole operator matrix elements is condensed in
appendix 8.2. It re�ects the selection rules for transitions between Zeeman sublevels:
�mj = 0;�1. We are then able to calculate the matrix elements of the interaction

Hamiltonian (Ĥint)ab = hajĤintjbi:

(Ĥint)13 = 
g

1p
3
cos(�)e+i!gt (Ĥint)14 = �
g

1p
3
sin(�)e+i!gt (3.17)

(Ĥint)23 = �
g

1p
3
sin(�)e+i!gt (Ĥint)23 = �
g

1p
3
sin(�)e+i!gt (3.18)

(Ĥint)53 = �
r

1

2
sin(�)e+i!rt (Ĥint)54 = 0 (3.19)

(Ĥint)63 = �
r

1p
3
cos(�)e+i!rt (Ĥint)64 = �
r

1

2
p
3
sin(�)e+i!rt (3.20)

(Ĥint)73 = +
r

1

2
p
3
sin(�)e+i!rt (Ĥint)74 = �
r

1p
3
sin(�)e+i!rt (3.21)

(Ĥint)83 = 0 (Ĥint)84 = +
r

1

2
sin(�)e+i!rt (3.22)
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3.2 Matrix elements of the interaction Hamiltonian

where the Rabi frequencies 
g and 
r have been introduced:

~
g :=
E0g dg

2
(3.23)

~
r :=
E0r dr

2
(3.24)

This de�nition is di�erent from that of the Rabi frequencies introduced for the three
level system (equations (2.39), (2.40)). The phase convention is the same as in equations
(2.35), (2.36).

The Hamiltonian still contains terms oscillating with the light frequencies !g and !r.
These terms are removed with the help of the transformation into a rotating frame of
reference (equations(2.53), (2.54)). The operator U for the eight level system is

U = e�i[!r( j5ih5j+���+j8ih8j )+!g( j1ih1j+j2ih2j )] t: (3.25)

The decay rates of the Zeeman sublevels are calculated using equation (2.42).

�ab =
8�2

3�0~�
3
ab

���haj ~Djbi���2 (3.26)

They are related to the overall decay rates of the �ne structure levels by

�SP = �31 + �32 =
8�2

3�0~�3g

����h3j ~Dj1i���2 + ���h3j ~Dj2i���2� (3.27)

= �41 + �42 =
8�2

3�0~�3g

����h4j ~Dj1i���2 + ���h4j ~Dj2i���2� (3.28)

�PD = �35 + �36 + �37 =
8�2

3�0~�3r

 
8X

k=5

���h3j ~Djki���2
!

(3.29)

= �46 + �47 + �48 =
8�2

3�0~�3r

 
8X

k=5

���h4j ~Djki���2
!

(3.30)

Hence, the decay rates from the P to the S sublevels are

�31 = �42 = �SP

���h3j ~Dj1i���2
d2g

=
1

3
�SP (3.31)

�32 = �41 =
2

3
�SP (3.32)

and from the P to the D sublevels:

�35 = �48 =
1

2
�PD �36 = �47 =

1

3
�PD (3.33)

�37 = �46 =
1

6
�PD �38 = �45 = 0 (3.34)
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3 The eight-level system

The damping terms are introduced in the same way as in chapter 2 (equation (2.46))
with appropriate operators Cm. In the case of Zeeman-split multilevel systems this
must be done with particular care, in order to take into account the decay of the
Zeeman coherences [24].

C1 =

r
2

3
�PS j1ih4j (3.35)

C2 =

r
2

3
�PS j2ih3j (3.36)

C3 =

r
1

3
�PS (j1ih3j � j2ih4j) (3.37)

This operator produces terms similar to equation (2.51) and one additional term that
leads to a decay of the excited state Zeeman coherence �12 into a ground state Zeeman
coherence:

(
d�12

dt
)damp = �

p
�31�24�34 = �1

3
�SP�34: (3.38)

The other Zeeman coherences decay in a similar way [24, 25]:

(
d�56

dt
)damp = (

d�78

dt
)damp =

1p
12
�PD�34 (3.39)

(
d�67

dt
)damp =

1

3
�PD�34 (3.40)

Therefore the operators Cm have the following form:

C4 =

r
�PD

2
j5ih3j+

r
�PD

6
j6ih4j (3.41)

C5 =

r
�PD

6
j7ih3j+

r
�PD

2
j8ih4j (3.42)

C6 =

r
�PD

3
(j6ih3j+ j7ih4j): (3.43)

Finally the operators describing the e�ect of the �nite laser linewidths are added:

C7 =
p
2�lg (j1ih1j+ j2ih2j) (3.44)

C8 =
p
2�lr (j5ih5j+ j6ih6j+ j7ih7j+ j8ih8j): (3.45)

3.3 The parameters of the equations

After the Hamiltonian and the damping operators have been determined, it is possible
to write the optical Bloch equations for the Barium ion. As in the case of the three
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3.3 The parameters of the equations

level system the equations are transformed into a matrix form (equation (2.59)), with
M being a 64�64 matrix. The detailed procedure and the corresponding computer pro-
gram are described in appendix 8.3. The matrix M contains the following experimental
parameters:

� The intensities Ig and Ir of the green and the red laser

In the course of the calculation of the interaction Hamiltonianmatrix elements the
Rabi frequencies 
g and 
r with 
 = Eod

2~
were introduced as model parameters.

They are not easily measurable physical quantities but can be related to the light
intensities at the position of the ion:

Ig =
1

2
c�0E

2
0g (3.46)

Ir =
1

2
c�0E

2
0r: (3.47)

The reduced matrix elements dg and dr can be expressed with the decay rates
of the �ne structure levels �SP and �PD using equations (3.27)-(3.30) and the
dipole operator matrix elements summarized in appendix 8.2:

�SP =
8�2

3�0~�3g
d2g (3.48)

�PD =
8�2

3�0~�3r
d2r: (3.49)

Hence:

Ig(
g) =
16�2

3
c~

1

�3g�g

2
g (3.50)

Ig(
r) =
16�2

3
c~

1

�3r�r

2
r: (3.51)

Finally we de�ne the following saturation parameters:

Sg =

g

�g
(3.52)

Sr =

r

�r
: (3.53)

They are helpful to distinguish a strong (S>1) from a weak (S<1) excitation
that determines, e.g., the spectral shape of the resonance �uorescence excitation
spectrum. They should, however, not be compared to saturation parameters
introduced in two level systems because in a three level system strong excitation
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3 The eight-level system

on one transition leads to optical pumping rather than to saturation (as in a two
level system).

When the saturation parameters are known the intensity of the laser can be
calculated using

I(S)

�
mW

cm2

�
= 1:0456� 109

� (MHz)

�3 (nm3)
S2 (3.54)

which yields for the Barium transitions:

Ig(Sg) = 131 � S2
g

mW

cm2
(3.55)

Ir(Sr) = 20:2 � S2
r

mW

cm2
(3.56)

� The detunings of the lasers relative to the atomic Bohr frequencies at j ~Bj = 0

�g = !g � (!P � !S) (3.57)

�r = !r � (!P � !D) (3.58)

!S, !P and !D have been introduced in equation (3.6).

� The magnetic �eld

which enters into the model through the quantity

u =
�Bj ~Bj
~

�B

h
= 0:14

MHz

G
: (3.59)

u is in the order of a few MHz and j ~Bj in the order of some ten Gauss.

� The angle � between the magnetic �eld and the polarization of the

light �elds

� The linewidths �lg and �lr of the two lasers

The ion is, in principle, fully characterized only by its decay constants. The same
model can therefore be also applied to other ions with the same level structure (see
appendix 8.5).
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3.4 Discussion of the solution

3.4 Discussion of the solution

The oscillating electric dipoles of the excited ion are the light sources studied in our
experiment. Their e�ect is best described by the electric �eld operators E+, E� at
the detector position [21], which is in our case perpendicular to the laser beam in z-
direction (i.e. the direction of the magnetic �eld). Only the oscillating dipoles in x-
and y-direction contribute to the observed electric �eld operator [25]:

~̂E � / !2
g (

~D41 j4ih1j+ ~D32 j3ih2j ) + (3.60)

!2
r (

~D48 j4ih8j+ ~D46 j4ih6j+ (3.61)

~D37 j3ih7j+ ~D35 j3ih5j ): (3.62)

With this �eld operator it is possible to calculate the intensity I(t) and the photon
counting rate, the degree of second order coherence g(2)(�) and the degree of �rst order
coherence g(1)(�) of the resonance �uorescence, which also permits the calculation of
the spectrum of resonance �uorescence [21]:

Î(t) = 2�0cÊ
�(t)Ê+(t) (3.63)

g(1)(t1; t2) =
hÊ�(t1)Ê

+(t2)iq
hÎ(t1)ihÎ(t2)i

(3.64)

g(2)(t1; t2) =
hÊ�(t1)Ê

�(t2)Ê
+(t1)Ê

+(t2)i
hÎ(t1)ihÎ(t2)i

: (3.65)

The expectation values in the above formulas are calculated with the atomic density
operator:

hÔi(t) = Trace
�
�̂(t)Ô

�
: (3.66)

We concentrate here on the resonance �uorescence excitation spectrum described by
�33(1) + �44(1) as a function of the green or red laser detuning. It can be shown

[25] that the photon counting rate hni
T

in the steady state regime is proportional to the
probability of �nding the ion in its excited states

hni
T
/ �33(1) + �44(1) (3.67)

similar to equation (2.3).

In �gure 3.2 a spectrum with four dark resonances is plotted. Dark resonances occur
when the detunings with respect to certain Zeeman sublevels are equal:

�g ��r = �1

5
u; �3

5
u; �7

5
u; �11

5
u: (3.68)
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Figure 3.2: Excitation spectrum with � = 90Æ. Parameters: �g=2�=-10MHz, Sg=0.5,
Sr=1 ,u=2�=5MHz, �lg = �lr=0.
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Figure 3.3: Excitation spectrum with � = 30Æ. All eight possible dark resonances
appear. Parameters: �g=2�=-10MHz, Sg=0.25 , Sr=1 ,u=2�=5MHz,
�lg = �lr=0.
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3.4 Discussion of the solution

Four of the twelve possible dark resonances are degenerate and therefore a maximum
number of eight dark resonances can be observed. Which of these dark resonances
appear depends on the angle � between polarization and magnetic �eld. Figure 3.2 is
calculated with � = 90Æ. In this con�guration only Zeeman sublevels with �mj = �1
are coupled (equations (3.17)-(3.22)). The four dark resonances are found at �r =

�g � 3
5
u and �r = �g � 11

5
u. In �gure 3.4 the corresponding coherences �16, �18,

�25, �27 are plotted. At �g = �r � 11
5
u for example the coherence �18 is resonant,

which corresponds to the superpositions of the states j1i = 2S1=2, mj = �1=2 and
j8i = 2D3=2, mj = +3=2.

When � = 0Æ only Zeeman transitions with �mj = 0 are excited which leads to optical
pumping into the mj = �3=2 states of the 2D3=2 level, i.e. the steady state solution is
�33 = �44 = 0.

For an arbitrary angle � all eight dark resonances are observed, for example � = 30Æ

in �gure 3.3.

In the �rst two chapters we have both developed the formalism describing the inter-
action of the lasers with the Ba+ ion and given interpretations which phenomenons
are hidden behind the excitation spectra. Herewith we have created the basis for the
comparison of our measurements to the calculations.
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3 The eight-level system
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Figure 3.4: Excitation spectrum and coherences �16, �18, �25, �27 . Parameters: � =

90Æ, �g=2�=-10MHz, Sg=0.5, Sr=1, u=2�=5MHz, �lg = �lr=0.
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4 The in�uence of the ion's motion on

the resonance �uorescence

4.1 Setup of a Paul-trap, equations of motion and

stable solutions

In order to examine the resonance �uorescence of Ba+ it is necessary to con�ne one
isolated ion for a su�ciently long time to a certain small region in space. This is
achieved with a radio-frequency trap, often called Paul trap [28�30].

Figure 4.1: Electrode con�guration of a Paul-trap

Figure 4.1 shows a typical electrode con�guration, with ring- (radius=r0) and endcap
electrodes (distance=2z0). In an ideal con�guration they have the form of rotational
hyperboloids. When a potential U0 is applied between the endcap and the ring the
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4 The in�uence of the ion's motion on the resonance �uorescence

electro-static potential in the trap center forms a saddle:

U(r; z) =
U0

R2
0

(r2 � 2z2) (4.1)

R2
0 = r20 + 2z20 : (4.2)

A charged particle will be either con�ned in the axial direction or in the radial plane.
This can be overcome by applying an additional radio-frequency potential to the elec-
trodes

U0 = Udc + Uac cos(
t) (4.3)

where 
 is the trap drive frequency.

The equations of motion for a particle with charge e and mass m under the in�uence
of this potential are:

m
d2r

dt2
= � 2e

R2
0

(Udc � Uac cos(
t)) r (4.4)

m
d2z

dt2
= +

4e

R2
0

(Udc � Uac cos(
t)) z (4.5)

These equations are Mathieu equations and their solutions may be stable or unstable
depending on the parameters. They are usually transformed to their standard form by
introducing the following dimensionless quantities:

az = �2ar = � 16eUdc

mR2
0


2
(4.6)

qz = �2qr = � 8eUac

mR2
0


2
(4.7)

� =



2
t (4.8)

which yields:

d2xi
d�2

+ (ai � 2qi cos(2�)) xi = 0 i = r; z (4.9)

The experimentally relevant stability region can be found in the literature [29]. When
the parameters are chosen inside this region the ion is con�ned to the trapping region for
all times. A general solution is complicated but for ai � 0 and qi � 1 an approximate
solution can be given that re�ects the general behavior quite well:

xi = A (1� qi

2
cos(
t)) � cos(�i


2
t� 'i) (4.10)

�i = ai +
1

2
q2i (4.11)
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4.2 Bloch equations with a periodic motion of the ion

The ion's motion is composed of a slow oscillation, called the secular motion, with
frequencies �i
=2 and a superimposed fast oscillation at the trap drive frequency 


with smaller amplitude, called the micromotion.

The micromotion is driven by the oscillating potential and its amplitude is proportional
to the distance of the ion from the trap center. The secular motion can be described in
terms of a pseudo potential, obtained by averaging the rf-potential over the micromotion
period. For characteristic experimental parameters (R2

0 � 1mm;Uac � 100V) the
potential depth of the trap can reach several 10 eV which allows the con�nement of
particles with thermal energy.

The secular motion of the ion can be damped with optical cooling techniques, such
as Doppler cooling and side-band cooling. A complete description of laser cooling
techniques and their temperature limits can be found in the literature ([29, 31, 32]
and the references therein). Cooling to the ground state of the (quantum mechanical)
harmonic oscillator has been demonstrated [33]. In our experiment the Barium ion is
Doppler-cooled with the laser at 493 nm.

4.2 Bloch equations with a periodic motion of the

ion

When the ion moves with the velocity v relative to the light beam the e�ective laser
frequency for the ion is shifted due to the Doppler e�ect:

! = !0(1� v

c
)

1q
1� v2

c2

� !0 � kv � v2

2c2
!0 (4.12)

k = j~kj = !0

c
(4.13)

The second order Doppler shift can be neglected (v � 1m/s). As we have seen in
the previous section the ion's motion is made up of two oscillations with di�erent
frequencies, the secular- and the micromotion. The velocity of the secular motion is
normally much smaller than that of the micromotion. It is assumed that the frequency
shift is dominated by a simple harmonic oscillation at the trap frequency 
 and with
velocity amplitude v0

v = v0 cos(
t) (4.14)

and hence, when the lasers propagate in the same direction:

!g = !g0 + kgv0 cos(
t) (4.15)

!r = !r0 + krv0 cos(
t) (4.16)
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4 The in�uence of the ion's motion on the resonance �uorescence

This leads to a modulation of the detunings (equations (3.57), (3.58)).

�g = �g0 + kgv0 cos(
t) (4.17)

�r = �r0 + krv0 cos(
t): (4.18)

Again, a linear di�erential equation for the density matrix is obtained, but now the
matrix M is a periodic function of time:

d~�

dt
=M(t) ~� (4.19)

Since M is a linear function of the detunings �g(t) and �r(t) it is possible to separate
the time dependence:

M(t) =M(�g + kgv0 cos(
t);�r + krv0 cos(
t); p) =

=M(�g;�r; p)| {z }
=:M0

+(kgv0�Mg + krv0�Mr)| {z }
=:2�M

cos(
t) (4.20)

with

�Mg =M(1; 0; p)�M(0; 0; p) (4.21)

�Mr =M(0; 1; p)�M(0; 0; p); (4.22)

where p denotes the rest of parameters that determine the matrix M described in 3.3.
Hence, we can write:

d~�

dt
= (M0 + 2�M cos(
t)) ~�: (4.23)

When the initial condition is known, the equation can be numerically integrated, which
is shown in �gure 4.2 for a three level system. In the limit of long times the solution
approaches a stable oscillation with frequency components only at multiples of 
 [26].

~�(t) =

1X
n=�1

~�ne
in
t (4.24)

It can be shown that this periodic solution of equation (4.23) is unique. We are inter-

ested in the time-averaged stationary solution ~�0 =
1



R 


0
~�(t)dt.

Equation (4.24) inserted into equation (4.23) yields:

(M0 + in
) ~�n +�M (~�n+1 + ~�n�1) = 0 (4.25)
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4.2 Bloch equations with a periodic motion of the ion
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Figure 4.2: Time evolution of the excited state for a three level ion with a periodic mo-
tion in the trap. Parameters: 
12=2�=10MHz, 
23=2�=5MHz, �g=2�=-
20MHz, �r=2�=-10MHz;�lg = �lr=0, trap frequency 
=2�=20MHz, ve-
locity amplitude v=0,10m/s.

In order to obtain an approximate solution it is convenient to introduce the operators
S+
n and S�

n . We de�ne them by the following matrix continued fraction

S+
n�1 = �(M0 + in
 +�M S+

n )
�1�M n � 0 (4.26)

S�
n+1 = �(M0 + in
 +�M S�

n )
�1�M n � 0 (4.27)

The components ~�n are then calculated by

~�n = S+
n�1S

+
n�2 : : : S

+
0 ~�0 n > 0 (4.28)

~�n = S�
n+1S

�
n+2 : : : S

�
0 ~�0 n < 0 (4.29)

or equivalently

~�n+1 = S+
n ~�n n � 0 (4.30)

~�n�1 = S�
n ~�n n � 0: (4.31)

The phase modulation of the light �elds creates sidebands to the central laser frequency.
The strength of these sidebands is determined by the modulation index kv



. For laser-

cooled ions in a Paul trap only a small number of components has to be considered.
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4 The in�uence of the ion's motion on the resonance �uorescence

The continued fraction therefore starts with S+
nmax

= 0 and S�
nmax

= 0, with nmax � kv


,

and S�
0 can be calculated. When S+

0 and S�
0 are known the solution ~�0 is determined

with �
M0 +�M (S+

0 + S�
0 )
�
~�0 = 0 (4.32)

(equations (4.25), (4.30), (4.31)) and the normalization condition for ~�0.

It is easily seen that the components ~�n obtained with this procedure ful�l the equation
(4.25) for �nmax � n � nmax: The de�nition of S+

n (equation (4.26)) yields�
M0 + in
 +�M S+

n

�
S+
n�1 +�M = 0: (4.33)

By multiplying this equation with ~�n�1 we obtain�
M0 + in
 +�M S+

n

�
S+
n�1 ~�n�1| {z }

~�n

+�M ~�n�1 =

= (M0 + in
) ~�n +�M S+
n ~�n| {z }
~�n+1

+�M ~�n�1 = 0 (4.34)

which is just equation (4.25). The same is true for S�
n .
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Figure 4.3: Excitation spectrum with sidebands due to the periodical motion. Parame-
ters: 
12=2�=10MHz, 
23=2�=5MHz, �g=2�=-20MHz, �lg = �lr=0, trap
frequency 
=2�=20MHz, velocity amplitude v=0,5,10m/s.

In Figure 4.3 a resonance �uorescence excitation spectrum is plotted for several velocity
amplitudes. It is seen that sidebands of the dark resonance appear that become deeper
the higher the velocity is, whereas the depth of the central dark resonance decreases.
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5 Experimental setup

The experiment is basically made up of three parts: the two laser light sources, the
vacuum vessel with the trap and the photon detection systems which are all presented in
this chapter. They have already been characterized and described in detail in particular
papers, the laser at 650nm in [34, 35], the laser at 493nm in [36], the vacuum vessel
and the optical setup are fully described in [37].

Figure 5.1 shows a schematic overview of the experimental setup with all its compo-
nents.

5.1 The laser systems

The light at 493 nm is produced by frequency doubling light emitted by a 986 nm laser
diode (SDL 6571-J1, Pmax=150mW), whereas the light at 650nm is produced directly
by a laser diode (SDL 7511-G1, Pmax=30mW). The inherent emission bandwidths of
laser diodes are in the range of 100MHz which is too large for precision spectroscopy.
In order to obtain coherent superpositions of atomic states necessary for well resolved
dark resonances the laser linewidths should be lower than 100 kHz. This is achieved
with optical feedback from a grating in the Littman-Metcalf con�guration [38] and an
additional electronic stabilization.

Both laser diodes are mounted on a temperature stabilized copper block. The light
emitted by the diode is collimated to a parallel beam with a lens and then illuminates
a grating (1800 lines/mm(red), 1400 lines/mm(infrared)). The light di�racted into the
�rst order is back re�ected from a mirror into the laser diode. The optical feedback
can be optimized by choosing the angle of incidence on the grating. The mirror can
be shifted by applying a high voltage to the piezo ceramic to which it has been glued.
The 0th di�raction order is circularized with the help of anamorphic prisms and then
coupled out. The �exible setup permits, by tuning and shifting the mirror and by
adjusting laser diode current and temperature, selection of the lasing wavelengths.

A Pound-Drever-Hall stabilization scheme [39] is used to lock the laser to a reference
cavity. Therefore sidebands to the central laser frequency have to be generated. This
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5 Experimental setup
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Figure 5.1: Schematic overview of the experimental setup with the two lasers at 493 nm
and 650 nm, the vacuum vessel with the trap and the photon detection
system.

is done in the case of the infrared diode by directly modulating the current at 16MHz.
The laser at 650nm is focused through an electro-optical-modulator(EOM) to which
the 16MHz modulation frequency is applied.
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5.1 The laser systems

The light is then coupled into the reference cavity. The back re�ected beam is separated
at a polarizing beam splitter and analysed with a fast photodiode, whose photo current
is demodulated with the 16MHz reference. When the relative phase is well adjusted
a dispersive error signal is obtained that is ampli�ed and fed back to the laser diode
current and the piezo voltage.

The cavity used for the laser at 986 nm has a �nesse of 1200 and a free spectral range
of 730MHz. One of the mirrors is mounted on a piezo and permits tuning of the cavity
and hence the locked laser. A laser linewidth below 30kHz with respect to the reference
cavity has been achieved [36].

The light at 986 nm is frequency doubled with the help of a KNbO3 crystal that is
placed in the focus of an enhancement resonator. In this resonator the light intensity
is enhanced by a factor of 70 which makes it possible to create the �rst harmonic light
wave in the crystal due to its high nonlinear susceptibility. Phase matching of the two
waves, fundamental and doubled, is attained by heating the crystal to approximately
35ÆC. The 16MHz sidebands are again used in a Pound-Dever-scheme to lock the ring
resonator to the infrared laser frequency. When 94mW of infrared light is coupled
into the frequency doubler an output power of up to 60mW of green laser light can be
reached (conversion e�cieny � 60%) [36].

The setup of the red laser is shown in �gure 5.2. In the upper part the components of
the Pound-Drever locking scheme can be seen, i.e. the EOM, used to create sidebands
to the laser frequency at 16MHz, the reference cavity, the electronic demodulation and
the servo ampli�er.

The red laser is not detuned with the help of the reference cavity, but with an acousto-
optical-modulator(AOM) that is driven by a precision frequency generator (Marconi
frequency generator 2023). Since the di�raction angle changes with frequency, the beam
position changes when the laser is detuned. To overcome this e�ect the di�racted beam
is back re�ected into the AOM with a lens and a mirror. This double pass setup has
the additional advantage of doubling the detuning range. The back re�ected beam is
separated with a quarter wave plate and a polarizing beam splitter and subsequently
used for frequency stabilization. The setup is shown in the lower part of �gure 5.2.
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Figure 5.2: Setup of the red laser. The upper part shows the Pound-Drever locking
scheme. In the lower part the AOM used for �ne detuning and the intensity
stabilisation is depicted. The �rst di�raction order is back re�ected into
the AOM and then used for the frequency stabilisation.
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5.1 The laser systems

Measurements of the intensity �uctuations without the AOM amounted to 0.3% on
the time scale from ns to �s and up to 1.5% on the timescale of 10s which would be
su�ciently low. However, the di�raction e�ciency of the acousto-optical e�ect depends
on the frequency of the acoustic wave. At 200MHz about 10% of the light intensity
is di�racted into the �rst order. When the AOM is detuned �50MHz this intensity
dropped to almost zero and the frequency stabilization could not work. On the other
hand the light intensity of the 0th order used for the experiment changed by more
than 10% when the AOM was detuned. Additionally we observed that the polarization
direction was turned by the AOM crystal each time the frequency or intensity of the
acoustic wave was varied. Therefore an intensity stabilization was set up: A polarizer
was introduced in the 0th order di�raction beam (see �gure 5.2). The light intensity is
then detected with a photo diode and the photo current is compared to a chosen level, to
produce an error signal for the feeback circuit. The light intensity can be controlled by
changing the intensity of the acoustic wave. This can be done by using the amplitude
modulation facility of the frequency generator. The achieved laser detuning range,
limited by the AOM e�ciency, is 200MHz. In this detuning range the light intensity
�uctuations are below 1%. A power of 8mW is available for the experiment. The laser
linewidth is narrower than 100 kHz.
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Figure 5.3: Hollow cathode spectrum at 650nm and transmission signal of the ref-
erence cavity. The cavity modes are not uniformely spaced due to laser
drifts. FWHMhollowcathode �750MHz, Free spectral rangecavity=745MHz,
Finesse�800.

The cavity for the red laser has been built without a piezo in order to reduce cavity
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drifts. Cavity resonances can be slowly tuned only by changing the temperature which
is electronically stabilized. Fluctuations of temperature and atmospheric pressure still
produce cavity drifts in the range of 100MHz a day. It is possible to largely reduce drift
rates, when the cavity is placed in a vacuum vessel and a second external temperature
stabilization is built [40]. Ideally an atomic or molecular resonance is used as an
absolute frequency reference (Te2 at 493 nm [36], I2 at 650 nm).

Two frequency references are used in the laboratory to �nd the Barium wavelengths: a
wavemeter and a Barium hollow cathode lamp. The wavemeter determines the wave-
length of a signal laser by comparing it to the wavelength of a monomode He-Ne-laser
at 632 nm. Both lasers are coupled simultaneously and counterpropagating into a
Michelson-interferometer. One of the interferometer arms consists of a corner cube
re�ector mounted on an air-cushion carriage. The number of interference fringes is
counted and compared.

The optogalvanic spectroscopy with the Barium hollow cathode lamp is based on the
e�ect that the current in a gas discharge changes with the population of the atomic
energy levels of the involved atoms. When the hollow cathode is illuminated with
resonant light the overall resistance changes. The weak electronic signal is measured
with a lock-in technique. Figure 5.3 shows a hollow cathode spectrum at 650 nm and
the transmission signal of the reference cavity.

Both lasers are spatially �ltered to produce a gaussian beam shape of equal diameter.
A half-wave plate and a polarizer serve to adjust the light intensities. The beams are
combined using a dichroic mirror and focused in the trap center with an achromatic
lens. The beam position can be optimized with two mirrors and the lens.

5.2 The vacuum vessel and the trap

The vacuum vessel with all its components is shown in �gure 5.4.

The ion getter pump maintains a pressure of better than 10�8mbar. The Barium oven
produces an atomic beam. The atoms are ionized by an electron beam emitted by the
electron gun opposite the Barium oven. The helical resonator on the top creates the
high voltage of several 100V at 18MHz for the trap. The exact design of the trap
electrodes is presented in �gure 5.5.

Additional electrodes in the plane of the ring electrode allow one to compensate dis-
turbing electric �elds and to move the ion to the trap center where the micromotion
can be prevented. Three coils produce the homogenous magnetic �eld perpendicular
to the main beam direction.
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5.2 The vacuum vessel and the trap

Figure 5.4: The complete vacuum vessel.

Figure 5.5: The trap electrodes in detail.
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5 Experimental setup

5.3 Fluorescence photon detection

The �uorescence light can be observed through two opposite CF100 �anges perpendic-
ular to the main laser beam direction. The �rst detection channel consists of a light
microscope with a �ne adjustable objective. The ion can either be observed through a
pair of oculars or is imaged onto a photomultiplier. For the second detection channel
a quartz collimator has been placed inside the vacuum vessel in order to collect the
�uorescent light within a larger solid angle. The ion is then imaged onto a second photo-
multiplier. Diaphragms are used to reduce straylight from the electrodes. Green �lters
assure that only green �uorescence photons strike the photomultiplier cathode. Both
photomultipliers are cooled to �30 ÆC and have a dark counting rate of less than 6 cps.
The quantum e�ciency reaches approximately 26% at 493 nm. The photomultiplier
pulses are ampli�ed, discriminated and counted by a CAMAC system.
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6 Measurements

6.1 Preparation of a single ion

All measurements start with the preparation of a single ion. For this purpose the lasers
are set to the Barium wavelengths using the wavemeter and the Barium hollow cathode.
The laser at 493 nm is tuned about 200-500MHz below the atomic resonance for optical
Doppler cooling on the 2S1=2 , 2P1=2 transition. The Barium oven is heated to its
working temperature and one tries to ionize an atom in the trap center with electron
beam pulses. A produced ion is then immediately trapped and cooled. Since the human
eye has its maximum sensitivity close to the 493 nm transition of Ba+ it is possible to
observe the �uorescence light emitted by one single ion directly with the eye, which
facilitates the preparation of the ions. A small brilliant point can be seen in the trap
center when the ion is well cooled and localized. Trapping of a single ion is also marked
by a sudden jump in the photomultiplier counting rate. If more than one ion has been
trapped several equally spaced jumps are observed and a small restless cloud appears.
It is also possible to prepare crystals of up to four ions.

In order to assure that only one ion has been trapped, the light emitted by a Barium
hollow cathode is focused into the trap. This light contains components at all possible
Ba+ transitions and allows one to excite the metastable 62D5=2 level. When this level
is excited the �uorescence light suddenly disappears for a period corresponding to the
lifetime of the state. This is a direct visualization of quantum jumps. The observed
steps in the photon counting rate allow one to determine the number of trapped ions
[41, 42].

6.2 Excitation spectra

An excitaton spectrum is the intensity of resonance �uorescence as a function of one
of the laser detunings [43]. The intensity is measured by counting photons with pho-
tomultipliers and does not contain any information about the spectral composition of
the emitted light.
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Figure 6.1: Scan of the laser at 493nm. Parameters: Sg = 1:7 � 0:1, Sr = 2:6 � 0:2,
�r = �41:4� 0:5MHz, u = 5:8� 0:3MHz, � = 91� 5Æ, �l = 60� 40 kHz,
dark counting rate � 50.

Figure 6.1 shows a scan of the laser at 493 nm while the laser at 650 nm is kept at a �xed
frequency below the D-P resonance. The laser is detuned by changing the resonance
frequency of the reference resonator. The relative frequency axis was determined with
the help of a Barium hollow cathode spectrum that had been simultaneously recorded.
The power of the green laser was set to 25�W and that of the red laser to 9�W.
An angle of 90Æ was chosen between polarization and magnetic �eld. As predicted by
the model four dark resonances appear at �r = �g � 3

5
u ; �11

5
u. In order to assure

permanent Doppler cooling the laser should be kept below the Ba+ resonances. When
the lasers are tuned too far above resonance the ion heats up and the �uorescence
intensity drops.

The solid line in �gure 6.1 is a �t to the data calculated with the eight level Bloch
equations described in chapter 3. The �t allows one to determine the experimental pa-
rameters. In addition to the parameters discussed in 3.3 the zero point of the frequency
axis and a constant background counting rate are considered.

The laser linewidths are not calculated separately but it is assumed that both lasers
have the same linewidth �lg = �lr = �l=2. It should be noted that the laser linewidths
are �t parameters that can be determined only with a relatively high uncertainty from
the excitation spectra. In principle the green laser would broaden the whole spectrum
but this e�ect is negligible considering that the laser linewidth is more than three
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6.2 Excitation spectra

orders of magnitude narrower than the spectrum. The spectrum is essentially power
broadened. On the other hand both lasers contribute in equal shares to the reduced
depth of the dark resonances. Hence it is impossible to distinguish the e�ects of the
red and the green laser on the spectra.
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Figure 6.2: Scan of the laser at 650nm. Parameters: Sg = 0:42�0:05, Sr = 1:25�0:06,
�g = �8:9� 0:2MHz, u = 3:95� 0:1MHz, � = 90� 3Æ, �l = 60� 25 kHz,
dark counting rate � 70.

Figure 6.3 and 6.2 are scans of the red laser over the atomic resonance with the green
laser kept at a �xed frequency. The red laser was detuned in 100 kHz steps using
a frequency generator and the double pass AOM. Both spectra show narrow dark
resonances. One of them, with a width of �1MHz, is plotted in �gure 6.4.

The spectrum in �gure 6.5 shows four dark resonances at �r = �g � 7
5
u ; �11

5
u cor-

responding to an angle of � = 65Æ between polarization and magnetic �eld. This
con�guration was achieved by switching of the coils used to compensate the earth
magnetic �eld.

It may seem strange that the dark resonances at �r = �g � 3
5
u are almost completely

suppressed although all Zeeman transitions are excited at this angle. The dark res-
onaces at �r = �g +

3
5
u correspond to superpositions of the states 6S1=2 mj = +1=2

and 5D3=2 mj = +1=2. This superposition is generated via the interaction with the
Zeeman sublevels of the 6P1=2 state. Since there are two of these states there are two
ways to excite the dark resonances (see �gure 6.6). At a certain angle the two ways of
excitation cancel each other out. In �gure 6.7 the coherence �27 = j�27jei phase, which
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Figure 6.3: Scan of the laser at 650nm. Parameters: Sg = 0:33, Sr = 0:52, �g =

�8:55MHz, u = 4:1MHz, � = 90Æ, �l = 60 kHz, dark counting rate � 20
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Figure 6.4: One of the dark resonances of �gure 6.3 in detail.

describes the dark resonances at �r = �g +
3
5
u, is plotted as a function of �. j�27j has

its minimum at � = 56:6Æ.
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6.2 Excitation spectra
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Figure 6.5: Scan of the laser at 650nm. Parameters: Sg = 0:39�0:05, Sr = 1:14�0:06,
�g = �10:1� 0:2MHz, u = 4:41� 0:2MHz, � = 65� 3Æ, �l = 10� 10 kHz,
dark counting rate � 20.
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Figure 6.6: The two excitation channels for the dark resonance at �r = �g + 3=5u.

The scan of the red laser in �gure 6.8 was recorded with high micromotion amplitude.
Sidebands of the dark resonances appear which can be well reproduced by the model
described in chapter 4. The �t was �rst calculated without the modulation. The result
then served as initial condition for a second �t. A velocity amplitude of 3:7�0:7m/s and
a trap drive frequency of 21�3MHz are found as �tting parameters. This corresponds
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Figure 6.7: The coherence �27 versus the angle � between polarization and magnetic
�eld plotted at �r = �g+

3
5
u. At an angle of 57Æ the coherence is very small

and the corresponding dark resonance cannot be observed. Parameters:
Sg = 0:39, Sr = 1:14, �l = 0, u=2� = 4:41MHz, �g=2� = �10:1MHz,
�r = �g +

3
5
u.

to a kinetic energy of

Ekin =
m

2
h(v0 cos(
 t))2i =

m

4
v20 = (4:9� 1:9)� 10�6 eV (6.1)

and to an oscillation amplitude of v0=
 = 0:18� 0:04�m.
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6 Measurements

6.3 Analysis of the ion motion

When the ion is stored it is interesting to analyse its motion in the trap, particularly
the frequency components of its oscillation.

Frequencies in the acoustic region of a few hundred Hz may be produced by badly
earthed components around the trap. In fact we have observed that the ion oscillates
at 100Hz when the coils used to produce the magnetic �eld were not connected to the
trap ground. In the macroscope a straight line appeared instead of a well localized
point. First of course it has not been clear which component caused this e�ect and
at which frequency. An acousto-optical modulator was introduced in the green laser
beam for periodically switching the laser on and o�. When the AOM was operated
with pulses at approximately 100Hz a kind of beat between the oscillation of the ion in
the trap and the chopped laser could be seen. The stroboscopic illumination enabled
us to resolve the details of the motion.

The secular frequencies are found in the range of 200 kHz to 2MHz. They depend
on the power applied to the helical resonator and can be measured by applying an
additional small AC-voltage to the cap electrodes. When this AC-voltage is resonant
with one of the secular frequencies the oscillation amplitude increases which leads to a
drop in the �uorescence light intensity. Under standard working conditions the secular
frequencies along the x,y and z-axes are approximately 630 kHz, 680 kHz and 1.2MHz,
respectively.

Another e�cient and widely used tool to study the dynamics of particles stored in
traps are correlation measurements. They are suited to analyse the internal dynamics,
i.e. the population of atomic energy levels, as well as the external dynamics, i.e. the
movement of the particles in the trap.

The second order correlation function g(2)(�) is proportional to the probability of de-
tecting a photon at time t+� given that a photon had been detected at time t. For a
single ion this function tends towards zero for small values of � which re�ects the fact
that the ion cannot emit two photons simultaneously. After emission of a photon the
ion is in one of its ground states and must be reexcited before it can emit another pho-
ton. This e�ect is called anti-bunching. It can be shown that g(2)(�) is proportional to
the time evolution of the excited states with an initial condition depending on the prop-
erties, i.e. the wavelength and polarisation, of the �rst detected photon. Correlation
measurements directly reveal the atomic dynamics. As we have seen in chapter 4 the
�uorescence light emitted by a stored ion is modulated due to the �rst order Doppler
e�ect when the ion oscillates in the trap. This causes a modulation of the correlation
function. In principle all frequency components of the oscillation can be studied with
this method as far as their oscillation amplitude exceeds the laser wavelength.

Two types of correlation measurements have been performed with our experimental
setup. The �rst is the correlation between the driving AC trap voltage and the detected
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6.3 Analysis of the ion motion

photons. Since the phases of the micromotion and the driving potential are rigidly
coupled this measurement allows one to determine the micromotion amplitude. A
time-to-digital-converter(TDC) is used to measure the time delays between a detected
photon and a �xed phase of the AC-potential, whereby the detected photon serves as
start pulse and the AC-phase as stop pulse. The time delays are stored in a histogram
unit. A histogram obtained in this way is shown in �gure 6.9.

Figure 6.9: Measurement of the correlation between the AC trap potential and the
detected photons. The 43 ns period corresponds to the 23.4MHz trap fre-
quency.

The modulation at the trap frequency is clearly visible. The amplitude of this modula-
tion depends on the micromotion amplitude, the laser detunings and on the laser beam
direction. Since the micromotion amplitude is proportional to the distance of the ion to
the trap center (eqn.(4.10)) a strong modulation indicates that the ion has been shifted
out of the trap center by disturbing potentials around the trap. These potentials may
be produced for example by electrons from the electron gun that accumulate on the
quartz collimator inside the vacuum vessel. By applying a voltage to the cap electrodes
and to the auxiliary electrodes in the ring plane it is possible to compensate the dis-
turbing potentials in all directions and hence to push the ion in the trap center. Of
course, the modulation contains information only about the micromotion component
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6 Measurements

parallel to the laser beam. For perfectly compensating the micromotion it is therefore
necessary to illuminate the ion with lasers from three independent directions.

A good micromotion compensation is indispensible for precision spectroscopy. On the
other hand the micromotion is well suited to study the e�ects of any oscillations of a
stored particle on the resonance �uorescence, as sidebands in the spectrum of resonance
�uorescence or sidebands to the dark resonances in excitation spectra.

The second type of correlation function that has been measured is the photon-photon
correlation g(2)(�). For this purpose both photomultipliers are used: The TDC is
started by pulses from the �rst photomultiplier and stopped by pulses from the second.
An arti�cial delay in the stop line translates the time origin of the created histogram.
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Figure 6.10: Measurement of the second order correlation function showing antibunch-
ing and micromotion modulation. Time resolution: 156 ps. Time over�ow:
400 ns.

Figure 6.10 shows a measurement of the photon-photon correlation. It can be seen
that g(2)(�) vanishes for � = 0 which proves the antibunching property of the single
ion resonance �uorescence. The details of the internal atomic dynamics are however
hidden by a strong micromotion modulation. At longer time delays the secular motion
could be visualized as well.

When the micromotion is compensated and the secular motion damped by laser cooling
the atomic dynamic appears in the histogram [25, 44]. The dynamic can be perfectly
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6.3 Analysis of the ion motion

described by the model discussed in chapter 3. Green �lters have been introduced
in both detection channels. Hence, the measured correlation function describes the
conditional probability of detecting a green photon perpendicular to the laser beam
direction at time t+� when such a photon has been detected at time t. It can be
shown [25] that under these conditions

g(2)(�) =
�33(�) + �44(�)

�33(1) + �44(1)
(6.2)

with the initial condition:

�11(0) =
�44(1)

�33(1) + �44(1)
(6.3)

�22(0) =
�33(1)

�33(1) + �44(1)
: (6.4)

The initial state represents a mixed state, re�ecting the fact that the population of the
excited Zeeman sublevels j3i and j4i is projected on the Zeeman sublevels of the ground
state, when the �rst photon is emitted. These photons are always circularly polarized
corresponding to �mj = �1 transitions. Since start and stop photons have the same
properties (there are green �lters in front of both photomultipliers) the correlation
function is the same for negative and positive time delays: g(2)(�t) = g(2)(t). Imagine,
however, that a red �lter is introduced in front of one of the photomultipliers. Then
the measured correlation function is di�erent for positive and negative delays: On the
positive branch it describes the probability of detecting a photon at t+ � given that a
red photon has been detected at time t. The negative branch is the same as before.

Figure 6.11 shows a measurement of the photon correlation with the micromotion
compensated. The theoretical curve was calculated with the parameters determined
from the corresponding excitation spectrum plotted in �gure 6.12. Three parameters
had to be �tted: The detuning of the laser at 650nm, an additional o�set and the
mutiplicative factor.
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Figure 6.11: Measurement of the photon correlation g(2)(t). Parameters determined
from excitation spectrum in �gure 6.12. The red laser detuning and the
normalization factor had to be �tted: �r = 7 � 12MHz. The data have
been divided by the determined normalization factor.
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Figure 6.12: Scan of the laser at 650nm. Parameters used in �gure 6.11: Sg = 1:2�0:1,
Sr = 2:6� 0:2, �g = �19:4 � 0:3MHz, u = 3:8 � 0:2MHz, � = 90� 3Æ,
�l = 7� 7 kHz, dark counting rate = 14� 10.
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7 Summary and outlook

This thesis introduces some basic tools to analyse the �uorescence light emitted by a
single Ba+ ion, which is con�ned in a Paul trap and illuminated with two laser light
sources.

Three �ne structure levels of Ba+, the 62S1=2, 6
2P1=2 and 52D5=2 levels, are coupled

via the interaction with two laser light �elds at 493 nm and 650 nm. In an external
magnetic �eld, which de�nes the quantization axis, the three levels split up into eight
Zeeman sublevels.

The eight level Bloch equations, which perfectly reproduce the measured experimental
data, can be derived from the quantum mechanical model of the light-matter interac-
tion. In this model the atomic system, the light �elds and their interaction are de-
scribed with quantum mechanical operators. The spontaneous decay of excited states
is introduced using the density matrix formalism.

When the detunings of the two lasers with respect to the atomic transition frequencies
are equal, the ion is optically pumped into a coherent superposition of the two ground
states. This e�ect is called dark resonance because the ion does not scatter light in
this state.

Another pure quantum e�ect can be observed in photon correlation measurements.
The probability of detecting two photons within a short time delay is very small. After
emission of a �rst photon the atom is in its ground state and must be reexcited before
the emission of a second photon.

The ion is con�ned in a Paul trap. Two frequency components can be distinguished in
its motion: The micromotion is driven by the applied rf potential and can be minimized
by compensating disturbing electrostatic stray �elds. The secular motion at lower
frequencies corresponds to the motion of a harmonic oscillator and is damped with
laser cooling on the S-P transition.

The oscillation of the con�ned ion leads to a modulation of the �uorescent light due to
the Doppler e�ect. This modulation appears in the photon correlation and produces
motional sidebands of the dark resonances.

Two diode lasers in Littman-Metcalf con�guration generate light at 650 nm and 986 nm,
which is frequency doubled. Their linewidths are reduced by electronic stabilization
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7 Summary and outlook

using the Pound-Drever locking scheme. The laser at 650 nm is �ne detuned with an
acousto optical modulator: for this purpose a light intensity stabilization was built.

Several tools are available to study the ion motion: stroboscopic illumination at acoustic
frequencies, the correlation between the driving trap potential and the detected photons
to analyse the micromotion, and the photon-photon correlation.

Excitation spectra of a Ba+ ion, i.e. the �uorescence rate vs. the laser detuning,
were recorded with di�erent experimental parameters. The �t to the data with the
eight level Bloch equations allows one to determine the experimental parameters. The
dependence of the dark resonances on the laser intensities and on the orientation of
the magnetic �eld and the light polarization was studied. Also the e�ect of a large
micromotion amplitude on the spectra agrees well with the calculations.

In future some changes of the laser setup are envisaged: in order to improve the long-
term stability it is planned to use the molecular resonances of Te2 at 493 nm as an
absolute frequency reference. The Te2 resonances have already been investigated using
modulation transfer spectroscopy [36]. One of the Te2 lines has a distance of only
330MHz to the Barium resonance. The laser at 493 nm would then be detuned with
an acousto-optical modulator as well. The laser at 650 nm could be stabilized to a
resonance of I2. Saturation spectroscopy on these weak I2 lines, however, requires
almost all of the available laser intensity. The better solution will be to build up a
new more stable reference cavity. For this purpose the cavity should be placed in a
temperature stablized and air-tight box. Additionally, a second external temperature
stabilization should be built.

While this thesis was written, the next important problem was tackled by Christoph
Raab: the measurement of the spectrum of resonance �uorescence. This spectrum can
be calculated using the eight level Bloch equations [25] and contains an inelastic and
an elastic scattering contribution. In addition when the ion oscillates in the trap, side-
bands of the elastic scattering peak appear at the micromotion and secular frequencies
[45]. A heterodyne measurement scheme is used to study these sidebands. The micro-
motion sidebands have already been observed. The next step will be to further improve
the signal-to-noise ratio in order to resolve also the broader sidebands at the secular
frequencies. This will allow an investigation of the laser cooling process.
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8 Appendix

8.1 Transformation of the Hamiltonian

When a quantum mechanical state j	i is transformed with the Operator U

j	0i = U j	i UU y = U yU = 1

then the corresponding transformation for the Hamiltonian Ĥ can be calculated as
follows:

i~
d

dt
j	0i = i~

d

dt
(U j	i) = i~UU y d

dt
(U j	i)

= i~U

�
d

dt

�
U yU j	i�� dU y

dt
U j	i

�

= U

�
ĤU yU j	i � i~

dU y

dt
U j	i

�

=

�
UĤU y � i~U

dU y

dt

�
| {z }

Ĥ0

U j	i

We have used:

i~
d

dt
j	i = Ĥ j	i

The calculation can also be made using the density operator formalism which yields
the same result.
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8 Appendix

8.2 Matrix elements of the dipole operator

In order to calculate the matrix elements of the interaction Hamiltonian for the atomic
system with eight Zeeman sublevels in chapter 3 it is necessary to determine the ma-
trix elements of the dipole operator ~Dab = haj ~Djbi. The result of this calculation is
summarized here:

~D31 = dg

0
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8.3 Computer programs

8.3 Computer programs

This section shows the detailed procedure to calculate the optical Bloch equations
with a computer program and the MATLAB programs used in this paper to calculate
the theoretical curves. The computer programs are based on programs from Jürgen
Eschner.

Starting point is the Liouville equation for the N �N density matrix �:

d�

dt
= � i

~
(H�� �H)� 1

2

X
m

�
Ĉy
mĈm�+ �Ĉy

mĈm � 2Ĉm�Ĉ
y
m

�

which can also be written di�erently:

d�

dt
= � i

~

  
H� i~

2

X
m

Ĉy
mĈm

!
�� �

 
H +

i~

2

X
m

Ĉy
mĈm

!!
+
X
m

Ĉm�Ĉ
y
m

= � i

~

�
~H�� � ~Hy

�
+
X
m

Ĉm�Ĉ
y
m

where we have introduced the e�ective Hamiltonian ~H.

~H = H� i

2~

X
m

Ĉy
mĈm

Note that ~H is no longer hermitian. The terms
P

m Ĉm�Ĉ
y
m are often called 'feeding'

terms: They have to be added in order to ful�l the normalization condition
P

n �nn = 1.
The population of a decaying excited state must reappear in the ground states.

Since the Liouville equation is linear in the components of � it can be written in the
following form:

d�rs

dt
= � i

~
hrj
�
~H�� � ~Hy

�
jsi+ hrj

X
m

Ĉm�Ĉ
y
m jsi

= � i

~
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k

~Hrk�ks �
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8 Appendix

Hence:

d�rs

dt
=
X
kj

Lrs;kj �kj

with

Lrs;kj = � i

~

�
~HrkÆjs � ~Hy

jsÆrk

�
+
X
m

(Cm)rk(C
y
m)js:

The N2 �N2 matrix L is called Liouville matrix.
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8.3 Computer programs

function L=b311(O12,O23,D1,D2,l1,l2)

% Program to calculate the Liouville matrix L

% for a three level system in lambda-configuration.

% O12, O23 ... Rabi frequencies in MHz

% D1, D2 ... Detunings in MHz

gg=15.1; % Decay constants for Ba ions in MHz

gr=5.3;

l1=l1/1000; % Laser linewidths are given in kHz

l2=l2/1000;

z=3;

E=eye(z);

ii=(1:z)'*ones(1,z);

i1=reshape(ii',1,z^2); % first index

i2=reshape(ii, 1,z^2); % second index

% Coherent hamiltonian

H=[D1 -O12/2 0 ; -O12/2 0 -O23/2 ; 0 -O23/2 D2];

% Relaxation

C1=gg^0.5*E(:,1)*E(2,:);

C2=gr^0.5*E(:,3)*E(2,:);

C3=(2*l1)^0.5*E(:,1)*E(1,:);

C4=(2*l2)^0.5*E(:,3)*E(3,:);

CC=C1'*C1+C2'*C2+C3'*C3+C4'*C4;

% Effective Hamiltonian

H=H-i/2*CC;

Hc=H'.';

L=-i*(H(i1,i1).*E(i2,i2)-Hc(i2,i2).*E(i1,i1));

% "feeding" terms

L=L+C1(i1,i1).*C1(i2,i2);

L=L+C2(i1,i1).*C2(i2,i2);

L=L+C3(i1,i1).*C3(i2,i2);

L=L+C4(i1,i1).*C4(i2,i2);
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function rho=dndynfa(par,t,r0)

% Program to calculate the atomic dynamics of

% a trapped three level atom in interaction with two

% coherent light fields. The particle is oscillating

% in the trap at frequency ff with the velocity

% amplitude v.

% t in microseconds

% r0 ... initial condition

lam1 = 493; % Barium wavelengths

lam2 = 650;

O12 = par(1); % Rabi frequencies

O23 = par(2);

D1 = par(3); % detunings

D2 = par(4);

gl1 = par(5); % linewidths

gl2 = par(6);

v = par(7); % velocity amplitude

ff = par(8); % trap frequency

L0 = b311(O12,O23,0 ,0 ,gl1,gl2);

dL1 = b311(O12,O23,1 ,0 ,gl1,gl2)-L0;

dL2 = b311(O12,O23,0 ,1 ,gl1,gl2)-L0;

DL = 1000*v*(1/lam1*dL1+1/lam2*dL2);

L = L0+D1*dL1+D2*dL2;

z=length(L0);

zh=sqrt(z);

% numerical integration

th=[0 t(length(t))];

[th,rhoh]=ode45('dndynfavec',th,r0,[],L,DL,ff);

rho=interp1(th,rhoh,t,'spline');
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8.3 Computer programs

function rprime=dndynfavec(t,r,flag,L,DL,ff);

% function used in dndynfa.m

% calculates the derivative of the density matrix vector

rprime=(L+DL*cos(2*pi*t*ff))*r;
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function L=b811(s1,s2,l1,l2,D1,D2,u,alpha)

% Program to calculate the Liouville operator

% for the Zeeman split eight-level system.

% S1, S2 ... saturation parameters

% L1, l2 ... laser linewidths

% D1, D2 ... detunings

% u ... magnetic field

% alpha ... angle between polarization and magnetic field

g1=15.1; % Barium decay constants in MHz

g2=5.3;

O1=s1*g1; % Rabi frequencies

O2=s2*g2;

gS=2; % Lande factors

gP=2/3;

gD=4/5;

c=cos(alpha);

s=sin(alpha);

w3=3^0.5;

E=eye(8);

ii=(1:8)'*ones(1,8);

i1=reshape(ii',1,64); % first index

i2=reshape(ii,1,64); % second index

H=diag([D1,D1,0,0,D2,D2,D2,D2]+0.5*u*[-gS,gS,-gP,gP,-3*gD,-gD,gD,3*gD]);

HSP=-O1/w3*[ -c s ; s c ];

HDP=-O2/2/w3*[ w3*s 0 ; 2*c s ; -s 2*c ; 0 -w3*s ];

H(1:2,3:4)=HSP; H(3:4,1:2)=HSP';

H(5:8,3:4)=HDP; H(3:4,5:8)=HDP';

% Relaxation

C1=(2/3*g1)^0.5*E(:,1)*E(4,:);

C2=(2/3*g1)^0.5*E(:,2)*E(3,:);
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C3=(1/3*g1)^0.5*(E(:,1)*E(3,:)-E(:,2)*E(4,:));

C4=(1/2*g2)^0.5*E(:,5)*E(3,:)+(1/6*g2)^0.5*E(:,6)*E(4,:);

C5=(1/6*g2)^0.5*E(:,7)*E(3,:)+(1/2*g2)^0.5*E(:,8)*E(4,:);

C6=(1/3*g2)^0.5*(E(:,6)*E(3,:)+E(:,7)*E(4,:));

C7=(2*l1)^0.5*(E(:,1)*E(1,:)+E(:,2)*E(2,:));

C8=(2*l2)^0.5*(E(:,5)*E(5,:)+E(:,6)*E(6,:)+E(:,7)*E(7,:)+E(:,8)*E(8,:));

CC=(C1'*C1+C2'*C2+C3'*C3+C4'*C4+C5'*C5+C6'*C6+C7'*C7+C8'*C8);

% effective Hamiltonian

H=H-i/2*CC;

Hc=H'.';

L=-i*(H(i1,i1).*E(i2,i2)-Hc(i2,i2).*E(i1,i1));

% feeding terms

L=L+C1(i1,i1).*C1(i2,i2);

L=L+C2(i1,i1).*C2(i2,i2);

L=L+C3(i1,i1).*C3(i2,i2);

L=L+C4(i1,i1).*C4(i2,i2);

L=L+C5(i1,i1).*C5(i2,i2);

L=L+C6(i1,i1).*C6(i2,i2);

L=L+C7(i1,i1).*C7(i2,i2);

L=L+C8(i1,i1).*C8(i2,i2);
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function fl=rfb2(D2,par)

% Program to calculate excitation spectrum

% of a Barium ion used for fitting

% Laser at 650nm detuned (detuning D2 in MHz)

D2null = par(1); % zero point of frequency axis

sat1 = par(2); % saturations

sat2 = par(3);

l1 = par(4)/1000/2; % laser linewidths in kHz

l2 = l1;

D1 = par(5); % detuning of the green laser

u = par(6); % magnetic field

alpha = par(7)/180*pi; % angle between polarization

% and magnetic field

faktor = par(8)*1000;

offset = par(9); % dark counting rate

l=length(D2);

rs=zeros(64,l);

rhs=[1,zeros(1,63)]';

L0=b811(sat1,sat2,l1,l2,0,0,u,alpha);

dL1=b811(sat1,sat2,l1,l2,1,0,u,alpha)-L0;

dL2=b811(sat1,sat2,l1,l2,0,1,u,alpha)-L0;

L=L0+D1*dL1;

for n=1:l

Ln=L+(D2(n)-D2null)*dL2;

Ln(1,:)=zeros(1,64);

Ln(1,1:9:64)=ones(1,8);

rs(:,n)=Ln\rhs;

end

fl=faktor*real(sum(rs([19,28],:)))+offset;
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function fl=anspecfa2(D2,par)

% Program to calculate excitation spectra used for fitting

% Red laser detuned

% The effect of the oscillation of the ion in the trap

% is considered using the matrix continued fraction formalism.

D2null = par(1); % zero point of frequency axis

S1 = par(2); % saturation

S2 = par(3);

D1 = par(4); % detuning of the green laser

l1 = par(5)/1000/2; % linewidths in kHz

l2 = l1;

u = par(6); % magnetic field

alpha = par(7); % angle between polarization

% and magnetic field

v = par(8); % velocity amplitude in m/s

ff = par(9); % trap frequency

faktor = par(10);

offset = par(11); % dark counting rate

lam1 = 493;

lam2 = 650;

% modulation index

modind = ceil(5*1000*v/lam1/ff);

L0 = b811(S1,S2,l1,l2 ,0, 0,u,alpha); % Liouville matrix

dL1 = b811(S1,S2,l1,l2 ,1 ,0 ,u,alpha)-L0;

dL2 = b811(S1,S2,l1,l2 ,0 ,1 ,u,alpha)-L0;

DE = 1000*v*(1/lam1*dL1+1/lam2*dL2);

z=length(L0);

zh=sqrt(z);

E=eye(z);

l=length(D2);

for m=1:l

L=L0+D1*dL1+D2(m)*dL2;
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Sp=-0.5*(L+i*(modind+1)*ff*E)\DE;

Sm=-0.5*(L-i*(modind+1)*ff*E)\DE;

for n=modind:-1:1

Sp=-0.5*(L+i*n*ff*E+0.5*DE*Sp)\DE;

Sm=-0.5*(L-i*n*ff*E+0.5*DE*Sm)\DE;

end;

Ah=L+0.5*DE*(Sp+Sm);

v=zeros(1,z);

v(1,1:(zh+1):z)=ones(1,zh);

A=[v;Ah];

c=[1,zeros(1,z)]';

r(:,m)=A\c;

end;

fl=faktor*real(sum(r([19,28],:)))+offset;
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function g=k8n(t,par)

% Program to calculate the photon correlation

% (green-green) of a Barium ion

tnull = par(1); % zero point of the time axis

sat1 = par(2); % saturation of the green

sat2 = par(3); % and the red laser

l1 = par(4)/1000/2; % laser linewidths in kHz

l2 = l1;

D1 = par(5); % detuning of the green laser in MHz

D2 = par(6); % detuning of the red laser in MHz

u = par(7); % magnetic field in MHz

alpha = par(8)/180*pi; % angle between polarization and

% magnetic field

faktor = par(9);

offset = par(10);

tr=(t-tnull)*2*pi/1000;

g=zeros(length(tr),1);

L=b811(sat1,sat2,l1,l2,D1,D2,u,alpha);

% steady state solution

Ln=L;

rhs=[1,zeros(1,63)]';

Ln(1,:)=zeros(1,64);

Ln(1,1:9:64)=ones(1,8);

ru=Ln\rhs;

norm=ru(19)+ru(28);

% initial condition

r0=zeros(64,1);

r0(1) = ru(28)/norm;

r0(10) = ru(19)/norm;

% eigenvalues and vectors

[v,d]=eig(L);

d=diag(d);

f=v\r0;
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% solution

for n=1:length(tr)

rho=v*(exp(d*tr(n)).*f);

g(n)=rho(19)+rho(28);

end;

g=real(g*faktor/norm)+offset;
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8.4 Least-squares �t to data points

The �tting of theoretical curves to measured data points is a standard procedure that
is outlined here:

Let y denote a physical quantity that is measured as a function of another physical
quantity x. When x is set to a �xed value xi, repeated mesurements of yi allow one to
determine the mean value and the variance �2i . The dependence of y on x is described
by a function f , whose speci�c form again depends on a set of parameters p1; � � � ; pk.

f :R � R
k �! R

(x; p1; � � � ; pk) 7�! y = f(x; p1; � � � ; pk)

The aim is to �nd the parameters p01; � � � ; p0k for which the function

�2 :Rk �! R

(p1; � � � ; pk) 7�!
NX
i=1

(yi � f(xi; p1; � � � ; pk))2
�2i

is minimal.

x may for example be the laser detuning and y the number of photomultiplier counts
in a certain time delay. The photon counts obey a Poissonian distribution, i.e.

�2i = yi:

There are several methods for searching the minimum of the �2 hypersurface. All �ts
in this paper are calculated with the function leastsq.m in the MATLAB toolbox.
This function uses the Levenberg-Marquardt-algorithm, which combines the gradient
search with the method of linearizing the �tting function [46]. Since for an arbitrary
function f there is in general more than one minimum, the search result depends on
the initial condition.

The result of the �t can be tested by calculating the reduced chi-square �2
� de�ned as:

�2
� =

1

N � k
�2

The factor N-k is the number of degrees of freedom left after �tting N data points to
the k parameters. When �2

� � 1 the �t is good, i.e. the deviations correspond to what
is expected by statistical �uctuations. Large or very small values generally indicate
that the data cannot be appropriately described by the �tting function or that the
variances �2i di�er from the expected ones.

75



8 Appendix

The uncertainties on the �t parameters can be estimated by calculating the second
derivative of �2

� at the minimum or equivalently the curvature of the corresponding
parabola. The uncertainties are de�ned by the following equation

�2
�(p

0
i ��pi) = �2

� + 1

which yields

�pi =
1q
1
2

@2�2�
@p2

i

As an example for the determination of the uncertainties we chose the �t to the mea-
sured excitation spectrum plotted in �gure 6.1. �2

� is calculated as a function of the
parameter pi in a small region Pi = [p0i ��pi; p

0
i +�pi] around the minimum p0i while

the other parameters are kept �xed:�
�2
�

�
i
:Pi �! R

pi 7�! �2
�(p

0
1; : : : ; pi; : : : ; p

0
k) � �2

�(p
0
1; : : : ; p

0
k) +

1

2

@2�2
�

@p2i

�
pi � p0i

�2
Figure 8.1 shows a calculation of these functions using the �t to the excitation spectrum
plotted in �gure 6.1. The dots are the calculated values of �2

� and the solid lines are the
�tted parabolas. With the exception of the dependence on the angle � the parabolic
shape of �2

� around the minimum is clearly visible. The curvatures of these parabolas
are a good approximation of the second derivatives around the minimum.

The zero point of the frequency axis �g0 depends on the drift of the reference resonator
relative to the Barium resonances.
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Figure 8.1: Calculation of the uncertainties of the parameters using the �t in �gure
6.1. Parameters: Zero point of the frequency axis �g0=215.7MHz, Sg =

1:7 � 0:1, Sr = 2:6 � 0:2, �l = 60 � 40 kHz, �r = �41:4 � 0:5MHz,
u = 5:8 � 0:3MHz, � = 91 � 5Æ, factor=20�1, dark counting rate 50�20.
Reduced chi-square �2

�=1.6.
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8.5 Excitation spectra of Calcium ions

In two other experimental projects performed in our research group 40Ca+ ions are
used for quantum optical experiments [47�49]. The �ne structure level scheme of Ca+

is the same as for Ba+ ions, however, with di�erent transition wavelenghts and decay
constants. Figure 8.2 shows the relevant part of the �ne structure level scheme of Ca+

with the transition wavelengths indicated. The S , P and the P , D transitions are
dipole-allowed whereas the D levels are metastable with a lifetime of 1s.

Figure 8.2: Fine structure level scheme of 40Ca+. All wavelengths are given in nm [20].

When the ion is illuminated by two coherent light �elds at 397 nm and 866 nm, which
corresponds to the 42S1=2 , 42P1=2 and 4

2P1=2 , 32D3=2 transitions, and a homogenous
magnetic �eld is applied then the �uorescent light emitted by the ion can be perfectly
described by the model introduced in chapter 2 and 3. In this model the atomic system
is completely characterized by its decay constants. The decay constants of Ca+ are:
�Ca
SP = 21:58MHz and �Ca

PD = 1:35MHz.

Figure 8.3 shows an excitation spectrum of Ca+. The ion is optically cooled on the
42S1=2 , 42P1=2 transition with the laser at 397 nm while the laser at 866 nm is tuned
over the Ca+ resonance. The solid line is a �t to the data that has been calculated using
the MATLAB program rfb2.m (see appendix 8.3). In the subprogram b811.m the Ba+

decay constants have been replaced by those of Ca+. The spectral shape is di�erent
for Barium and Calcium ions owing to the di�erent branching ration �SP=�PD.

By inserting the Calcium constants into equation (3.54) we obtain the following relation
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Figure 8.3: Excitation spectrum of Ca+. Parameters: Sg=0.54�0.03, Sr=3.9�0.3,
�g=-26�1MHz, u=2.9�0.6MHz, �=100�10Æ, �l=300�300 kHz.

between the saturation parameters and the laser intensities:

I397(Sg) = 361 � S2
g

mW

cm2

I866(Sr) = 2:17 � S2
r

mW

cm2

Please note that the calculations are made with the assumption that the magnetic �eld
is perpendicular to the propagation direction of the lasers and that the ion is observed
in the direction of the magnetic �eld.
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