Aufbau eines Frequenz-vervierfachten Diodenlasers für die Photoionisation von Magnesium

Diplomarbeit

am Institut für Experimentalphysik o. Prof. Dr. Rainer Blatt Fakultät für Mathematik, Informatik und Physik Universität Innsbruck

von

Daniel Nigg

November 2009

Für meine Eltern Elfriede und Egon

"Was wir wissen, ist ein Tropfen; was wir nicht wissen, ein Ozean."

Isaac Newton

1 Abstract

Within this work, the construction and implementation of a laser-system for photoionization of magnesium is described. Initially, the theory of nonlinear optics and the power enhancement in a Bow-Tie resonator is outlined.

In the second chapter, the construction of the whole laser-system and the design of the two frequency doubling resonators is discussed in detail.

Furthermore, a method to selectively ionize and distinguish between different magnesium isotopes is introduced and the calibration of the ion trap parameters is described. Finally, spectroscopic measurements of different magnesium isotopes are discussed with particular emphasis on the isotopic shift of the D_1 transition of $^{24}Mg^+$ and $^{26}Mg^+$.

2 Zusammenfassung

Im Rahmen dieser Arbeit werden der Aufbau und die Implementierung eines Lasersystems für die Photoionisation von Magnesium beschrieben. Einleitend wird die Theorie der nichtlinearen Optik und die Leistungsüberhöhung in einem externen Bow-Tie Resonator kurz zusammengefasst.

Im zweiten Kapitel werden der Aufbau des gesamten Lasersystems und das Design der einzelnen Verdopplungsresonatoren im Detail beschrieben.

Des Weiteren wird eine Methode zur selektiven Ionisierung und Unterscheidung der Magnesiumisotope vorgestellt und die Kalibration der Fallenparameter beschrieben.

Schließlich werden Spektroskopie
experimente an verschiedenen Magnesiumisotopen vorgestellt, wobei insbesondere die Isotopie
verschiebung der D_1 Linie zwischen $^{24}\mathrm{Mg^+}$ und
 $^{26}\mathrm{Mg^+}$ betrachtet wird.

Inhaltsverzeichnis

1	Abstract	2	
2	Zusammenfassung		
3	Einleitung		
4	Nichtlineare Optik 4.1 Frequenzmischung ebener Wellen in nichtlinearen Medien 4.2 Frequenzverdopplung ebener Wellen - Konversionseffizienz 4.3 Methoden der Phasenanpassung 4.3.1 Kritische Phasenanpassung 4.3.2 Nichtkritische Phasenanpassung - 90° Phasenanpassung 4.3.3 Quasi-Phasematching (QPM) 4.4 Frequenzverdopplung von Gaußstrahlen - Berechnung des Konversionskoeffizienten 4.5 Leistungserhöhung im externen Resonator 4.5.1 Stabilität des Resonators 4.5.2 Berechnung der Strahlparameter 4.5.3 Ausgangsleistung der Oberwelle 4.5.4 Finesse eines Bow-Tie Resonators 4.5.5 Berechnung der Impedanzanpassung 4.5.6 Experimentelle Bestimmung des optimalen Einkoppelspiegels	10 10 12 14 14 16 17 23 23 25 25 27 29 30	
5	Aufbau des Photoionisationslasersystems für Magne-sium35.1Frequenzverdopplungsresonator von 1140 nm auf 570 nm - QPM35.2Frequenzverdopplungsresonator von 570 nm auf 285 nm - PM3		
6	Magnesium6.1Termschema von 24 Mg+, 25 Mg+ und 26 Mg+	39 40 42	
7	 Experimenteller Aufbau 7.1 Grundprinzip der linearen Paulfalle	44 47 51 51 52 54 56	
8	Messung des Anregungsspektrums von ${}^{24}Mg^+$ und ${}^{26}Mg^+$ 59		

9	Ran	Ramanspektroskopie an ${}^{25}Mg^+$				
	9.1	Zustandsdetektion an ${}^{25}Mg^+$	62			
	9.2 Theoretische Beschreibung der Ramanresonanz					
		9.2.1 Wechselwirkung eines 2-Niveau Systems mit einem elektrischen				
		Feld	65			
		9.2.2 Erweiterung auf ein 3-Niveau System	66			
	9.3	Ramanspektrum von $^{25}Mg^+$	68			
10 Ausblick und Zusammenfassung						
\mathbf{A}	Anł	lang	74			
	A.1 Berechnung des Konversionskoeffizienten eines Gaußstrahls in nichtli-					
		nearen Medien	74			
	A.2	Elektronik	77			
		A.2.1 Temperaturstabilisierung des Kristallofens	77			
		A.2.2 Längenstabilisierung der Verdopplungsresonatoren	80			
\mathbf{Li}^{\prime}	terat	urverzeichnis	84			

3 Einleitung

Spektroskopie, als Teilgebiet der Physik, ist für die Untersuchung der Atom-Licht-Wechselwirkung essentiell und trägt zur Klärung fundamentaler physikalischer Fragen bei. Eine davon ist die Frage nach einer möglichen Änderung fundamentaler Konstanten, wie z. B. der Feinstrukturkonstanten α , oder dem Verhältnis zwischen Elektronund Protonmasse. Änderungen von Naturkonstanten sind nicht im Standardmodell der Teilchenphysik vorgesehen, wohl aber in darüber hinausgehenden Theorien. Solche Theorien versuchen alle fundamentalen Kräfte in der sogenannten "Quantengravitation" zu vereinigen. Die Vereinigung der Gravitationswechselwirkung mit anderen Wechselwirkungskräften ist ein populäres Forschungsgebiet [1]. Experimentell gefundene obere Schranken für eine zeitliche Änderung von Naturkonstanten ermöglichen Verbesserungen und Ausschluss von Theorien und ebnen somit den Weg zu einem vollständigen physikalischen Verständnis.

Bei der Suche nach einer Variation von Konstanten hat es sich bewährt nur dimensionslose Größen zu betrachten, da sonst nicht eindeutig ist, ob sich die Einheit oder der Wert der Konstanten ändert. Die Feinstrukturkonstante α ist eine solche dimensionslose Größe und beschreibt die Stärke der elektromagnetischen Licht-Materie-Wechselwirkung und damit auch die Energiestruktur in Atomen und Molekülen. Würde sich die Feinstrukturkonstante zeitlich ändern, so würden in diesem Zeitraum auch die atomaren Übergangsenergien bzw. Frequenzen variieren. In Abb.1 ist dieser Effekt schematisch dargestellt.

Abbildung 1: Änderung der Feinstrukturkonstante α : Schematische Darstellung der Auswirkung einer Variation der Feinstrukturkonstante α auf einen atomaren Übergang. Die Energie $(\frac{h\omega(\alpha)}{2\pi})$, mit dem Plankschen Wirkungsquantum $h = 6.626 \cdot 10^{-34}$ Js) der Niveaus wird unterschiedlich stark verschoben.

Durch Änderung von α verschieben sich die Feinstrukturaufspaltungen des Grundzustandes $|g\rangle$ und des angeregten Zustandes $|e\rangle$ unterschiedlich stark. Dabei hängt die Stärke der Verschiebung vom Atom und dem betrachteten Übergang ab. Es gibt unterschiedliche Arten eine solche Energieverschiebung zu messen. Entweder man misst über einen kurzen Zeitraum von mehreren Jahren mit extrem hoher Präzision (Laborspektren [2]), oder über einen sehr langen Zeitraum mit geringer Präzision (astrophysikalische Untersuchungen).

Astrophysiker bestimmen die Variation der Feinstrukturkonstante über Absorptionsspektren von Quasaren. Als Quasar wird der Kern einer aktiven Galaxie bezeichnet. Diese emittieren sehr starke elektromagnetische Strahlung in einem breiten Spektrum und dienen somit als Lichtquelle für die Absorption in interstellaren Wolken, die unter anderem Eisen (Fe⁺) und Titan (Ti⁺) enthalten [3].

Durch Vergleich der Quasar-Absorptionsspektren mit den Laborspektren kann $\frac{\delta \alpha}{\alpha \Delta t}$ berechnet werden [4]. Eines der neuesten Ergebnisse wurde vom Keck-Teleskop in Hawaii aus über 143 Absorptionssystemen berechnet, das eine relative zeitliche Änderung von α auf astronomischen Zeitskalen (10 Billionen Jahren) angibt [5]:

$$\frac{\delta\alpha}{\alpha\Delta t} = (6.40 \pm 1.35) \cdot 10^{-16} / \text{Jahr}$$

Dabei wird angenommen, dass die Änderungsrate über den Zeitraum konstant ist [6]. Zudem werden von Teleskopen an verschiedenen Orten unterschiedliche Ergebnisse erzielt [5]. Für genauere Auswertungen der Quasar-Absorptionsspektren fehlen jedoch präzisere Laborspektren, vor allem im UV-Bereich [7], sowie detaillierte Untersuchungen von systematischen Fehlern¹[8].

Ein grundlegendes Ziel des hier beschriebenen Projektes ist der Aufbau eines universellen Spektroskopiesystems, mit dem Präzisionsspektroskopie an z. B. Fe⁺, Ti⁺ und anderen Elementen für astrophysikalische Anwendungen, durchgeführt werden kann.

Bei der Spektroskopie von solchen Elementen mit komplexem Termschema ist eine Reihe von Schwierigkeiten zu bewältigen. Zum Einen existiert kein Übergang, um durch Laserkühlung bis zu den für die Präzisionsspektroskopie erforderlichen niedrigen Temperaturen zu gelangen. Deshalb werden die Elemente (z. B. Fe⁺, Ti⁺) mitfühlend über ein ²⁵Mg Ion in den Bewegungsgrundzustand gekühlt. Zusätzlich gibt es eine große Anzahl an optischen Übergängen, die angeregt werden müssen. Aus diesem Grund soll ein optischer Frequenzkamm als Spektroskopielaser eingesetzt werden, der eine breitbandige, jedoch frequenzselektive Anregung aller Übergänge ermöglicht [9].

Ein weiteres Problem bei der Untersuchung der Übergänge von komplexen Atomen ist die geringe Photonenstreurate und der damit zusammenhängenden Fluoreszenzstärke. Eine Methode für die Lösung dieses Problems wurde zum ersten Mal von Schmidt et al., 2005 [10] experimentell realisiert. Die Spektroskopie des zu untersuchenden Ions (Spektroskopieion) wird mit Hilfe eines zusätzlichen Ions (²⁵Mg⁺), dem sogenannten Logikion, durchgeführt. Die Anregung des Spektroskopieions bewirkt eine Änderung des internen Zustandes. Über die Kopplung der Vibrationszustände in der harmonischen Falle durch die Coulombwechselwirkung kann dieser Zustand des Spektroskopi-

 $^{^1{\}rm z.B.}$ Änderung der Isotopenhäufigkeit, Wellenlängenfehler von Laborspektren, starke Magnetfelder in interstellaren Medien.

eions auf den internen Zustand des Logikions übertragen werden. Die Detektion erfolgt über das Logikion mit einer höheren Photonenstreurate und damit höheren Detektionseffizienz gegenüber der direkten Spektroskopie. Solch eine Messvorschrift wird als Quantenlogikspektroskopie bezeichnet [10].

Ein wichtiger Gesichtspunkt für die Durchführung der oben genannten Experimente ist das zuverlässige Laden von ionisierten Atomen. Es gibt unterschiedliche Methoden, um die für unsere Experimente benötigten Magnesiumionen zu erzeugen:

• Elektronenstoßionisation: Bezeichnet die Ionisation von Atomen und Molekülen durch inelastische Stöße mit Elektronen (e⁻). Die Stoßreaktion kann folgendermaßen geschrieben werden:

$$e^- + A \to 2e^- + A^+$$

mit dem neutralen Atom A. Voraussetzung für den Prozess ist, dass die kinetische Energie des Elektrons mindestens der Bindungsenergie des Valenzelektrons entsprechen muss. Die Ionisation kann durch inelastische Stoßprozesse beschrieben werden [11].

- cw-Photoionisation (PI): Darunter wird die Ionisation von neutralen Atomen durch Absorption eines Photons bezeichnet. Voraussetzung ist, dass die Energie $h\nu$ des Photons größer ist als die Bindungsenergie E_B des Elektrons. In [12] wird über die selektive Zweiphoton-Ionisation von Magnesium über den $3s^2 {}^{1}S_0 \rightarrow 3s3p {}^{1}P_1$ Übergang bei 285.2 nm berichtet und in diesem Zusammenhang werden zwei Methoden zur Messung der Ionisationsrate beschrieben. Ein grundlegender Vorteil der Photoionisation ist die Isotopen Selektivität durch resonante Anregung eines atomaren Zustandes, der eine Isotopieverschiebung aufweist und anschließender Ionisation in das Kontinuum. In [13] wird über die selektive Photoionisation von ${}^{24}Mg$ und ${}^{40}Ca$ berichtet.
- PI durch gepulste Laser: Aufgrund der hohen Leistung von gepulsten Lasern kann im Vergleich zur cw-PI die Ionisationseffizienz gesteigert werden. Dadurch ist es möglich, Ionenfallen mit geringerem Hintergrundruck zu betreiben und gleichzeitig Anlagerungen an den Elektroden zu verringern [14]. Nachteilig bei dieser Methode ist, dass die Atome nicht isotopenselektiv ionisiert werden können.

Mit Hilfe der Elektronenstoßionisation konnte in unserer linearen Falle Magnesium nicht selektiv geladen werden. Die Motivation für den Aufbau des in dieser Arbeit beschriebenen PI-Lasersystems ist die selektive Ionisation von Magnesium und damit verbundenes effizientes Laden von einzelnen Magnesiumionen in eine lineare Paulfalle. Die Zielsetzung ist die Realisierung eines Lasersystems bei einer Wellenlänge von 285 nm, ausgehend von einem Diodenlaser bei 1140 nm. Die vorliegende Arbeit ist folgendermaßen gegliedert: In Kapitel 4 wird das theoretische Rüstzeug für die Berechnung der Konversionseffizienz ebener Wellen und Gaußstrahlen in nichtlinearen Medien, sowie die Berechnung der Leistungsüberhöhung in einem externen Resonator behandelt. Der experimentelle Teil ist in fünf Kapitel gegliedert:

- Kapitel 5: Beschreibung des gesamten Lasersystems mit den einzelnen Verdopplungsresonatoren. Die theoretisch erwarteten Ausgangsleistungen der Resonatoren werden mit den gemessenen Leistungen verglichen.
- Kapitel 6: Stellt einen Überblick der Termschemata sämtlicher Magnesiumisotope dar. Basierend auf den Übergangsbreiten wird die für das Lasersystem notwendige Leistung bei 285 nm abgeschätzt.
- Kapitel 7: In diesem Abschnitt wird theoretisch und experimentell das Grundprinzip der verwendeten Paulfalle erläutert, sowie Charakterisierungen einiger Komponenten, z. B. Resonator, durchgeführt. Außerdem wird eine Methode zur quantitativen Unterscheidung der Magnesiumisotope vorgestellt.
- Kapitel 8: Bestimmung der Isotopieverschiebung von ²⁴Mg⁺ zu ²⁶Mg⁺ durch Messung der Anregungsspektren.
- Kapitel 9: Messung der axialen Fallenfrequenz aus dem Ramanspektrum von ²⁵Mg⁺, sowie eine theoretische Beschreibung der Wechselwirkung eines 2- und 3-Niveau Systems mit einem elektrischen Feld.

4 Nichtlineare Optik

In diesem Kapitel werden die für die Frequenzverdopplung relevanten Aspekte der nichtlinearen Optik behandelt. Dabei wird zwischen der Ausbreitung ebener Wellen und Gaußstrahlen in nichtlinearen Medien unterschieden und für beide Fälle die Effizienz der Frequenzverdopplung hergeleitet. Bei der Berechnung der Verdopplungseffizienz von Gaußstrahlen wird der Kristall in kleine Teilbereiche (Scheiben) zerlegt und im Fernfeld über sämtliche Beiträge zum frequenzverdoppelten Licht aufsummiert. Diese Methode wird in der Theorie von Boyd- und Kleinmann verwendet. Damit die Konversionseffizienz gesteigert werden kann, wird die Leistungsüberhöhung in einem externen Resonator ausgenützt, was am Ende dieses Kapitels beschrieben wird.

4.1 Frequenzmischung ebener Wellen in nichtlinearen Medien

Die Ausbreitung von Licht in Materie ist in der linearen Optik unabhängig von dessen elektrischer Feldstärke bzw. Intensität. Daraus folgen zwei wichtige Grundpfeiler der linearen Optik: Das Superpositionsprinzip und die Erhaltung der Frequenz. Bei der nichtlinearen Optik breiten sich Lichtwellen nicht unabhängig voneinander aus, sondern beeinflussen sich gegenseitig. Bei der Frequenzverdopplung zum Beispiel entstehen zusätzlich zur Frequenz des einfallenden Lichts neue Frequenzen (Harmonische), deren Intensität wiederum von der Intensität der erzeugenden Lichtwelle abhängt.

Durch die so genannte Suszeptibilität χ wird der Zusammenhang zwischen der Polarisationsdichte \vec{P} im Medium und dem elekrischen Feld \vec{E} hergestellt: $\vec{P} \propto \chi \vec{E}$. Bei der Beschreibung des nichtlinearen Effektes wird angenommen, dass die Suszeptibilität χ im Gegensatz zur linearen Optik von der Intensität des Lichts abhängt. Deren Abhängigkeit von der elektrischen Feldstärke \vec{E} wird durch eine Reihenentwicklung beschrieben [15]:

$$\chi(\vec{E}) = \chi^{(1)} + \chi^{(2)}\vec{E} + \chi^{(3)}\vec{E}\vec{E} .$$
(1)

Daraus erhält man für die Polarisation \vec{P} folgenden Ausdruck:

$$\vec{P} = \epsilon_0 \chi(\vec{E}) \vec{E} = \chi^{(1)} \vec{E} \epsilon_0 + \chi^{(2)} \vec{E} \vec{E} \epsilon_0 + \chi^{(3)} \vec{E} \vec{E} \vec{E} \epsilon_0 = \sum_i \vec{P}^{(i)}$$
(2)

mit der dielektrischen Konstante ϵ_0 . Mathematisch ist die Nichtlinearität an den Termen für i ≥ 2 ersichtlich, da die Polarisation des Mediums nicht mehr *linear* mit \vec{E} zusammenhängt, sondern proportional zu \vec{E}^2 , \vec{E}^3 ,... ist.

Die Suszeptibilität wurde bis jetzt als skalare Größe behandelt, was nur in einem isotropen Medium der Fall ist. In anisotropen Medien hat $\chi^{(i)}$ Tensorcharakter. Dieser

Aspekt wird in einem der folgenden Kapitel genauer behandelt.

Bei der Überlagerung von zwei monochromatischen Felder \vec{E}_1 und \vec{E}_2 unterschiedlicher Frequenz in einem nichtlinearen Medium treten bei der durch die Gesamtfeldstärke² $\vec{E}(\vec{r},t)$ verursachten nichtlinearen Polarisation $\vec{P}^{(2)}$ Mischfrequenzen auf. Dieser Effekt wird als optische Frequenzmischung bezeichnet. Die Überlagerung der beiden Wellen \vec{E}_1 und \vec{E}_2 wird folgendermaßen geschrieben:

$$\vec{E}(\vec{r},t) = \vec{E}_1(\vec{r},t) + \vec{E}_2(\vec{r},t) = \frac{1}{2} [\tilde{\vec{E}}(\vec{r},\omega_1)e^{i\omega_1 t} + \tilde{\vec{E}}(\vec{r},\omega_2)e^{i\omega_2 t} + c.c]$$
(3)

wobei $\tilde{\vec{E}}(\vec{r}, \omega_{1,2})$ die orts- und frequenzabhängigen Amplituden sind. Setzt man \vec{E} in $\vec{P}^{(2)}$ aus Gl. (2) ein, so erhält man nach Umformungen [15] folgenden Ausdruck für die nichtlineare Polarisation zweiter Ordnung:

$$\begin{split} \vec{P}^{(2)}(\vec{r},t) &= \frac{1}{2} [\tilde{\vec{P}}(\vec{r},2\omega_1)e^{i2\omega_1 t}] \\ &+ \frac{1}{2} [\tilde{\vec{P}}(\vec{r},2\omega_2)e^{i2\omega_2 t}] \\ &+ \frac{1}{2} [\tilde{\vec{P}}(\vec{r},\omega_1+\omega_2)e^{i(\omega_1+\omega_2)t}] \\ &+ \frac{1}{2} [\tilde{\vec{P}}(\vec{r},\omega_1-\omega_2)e^{i(\omega_1-\omega_2)t}] \\ &+ \frac{1}{2} [\tilde{\vec{P}}(\vec{r},0)+c.c] \\ t \text{ der Amplitude} & \tilde{\vec{P}}(\vec{r},\omega_i+\omega_j) = \epsilon_0 \chi^{(2)} \tilde{\vec{E}}(\vec{r},\omega_i) \cdot \tilde{\vec{E}}(\vec{r},\omega_j) . \end{split}$$

Es ist ersichtlich, dass die nichtlineare Polarisation Komponenten der Frequenzen $2\omega_1$, $2\omega_2$, $\omega_1 + \omega_2$ und $\omega_1 - \omega_2$ und einen Gleichanteil besitzt. Im Falle der Frequenzverdopplung (Second Harmonic Generation, SHG) als Spezialfall der Frequenzmischung $(\omega_1 = \omega_2 = \omega)$, wird das einfallende Licht (Fundamentalwelle) mit sich selbst gemischt. Daraus ergibt sich für den Polarisationsanteil $\vec{P}^{(2)}(\vec{r}, t)$ folgender Ausdruck:

$$\vec{P}^{(2)}(\vec{r},t)_{\omega_1 + \omega_2 = 2\omega} = \frac{1}{2} \epsilon_0 \chi^{(2)} \tilde{\vec{E}}(\vec{r},\omega)^2 \cdot e^{2i\omega t} .$$
(4)

Setzt man nun für $\tilde{E}(\vec{r}, \omega_i) = \tilde{E}(\omega_i) \cdot e^{-i\vec{k}_i\vec{r}}$ in Gl. (4) ein, so erhält man für die nichtlineare Polarisation der Summenfrequenz folgenden Ausdruck:

$$\vec{P}^{(2)}(\vec{r},t)_{2\omega} = \frac{1}{2} [\epsilon_0 \chi^{(2)} \tilde{\vec{E}}(\omega)^2 \ e^{-i[2\vec{k}\vec{r}-2\omega t]}]$$
(5)

 ${}^2ec{E}(ec{r},t) = ec{E_1}(ec{r},t) + ec{E_2}(ec{r},t)$

mi

mit den Wellenvektoren k_i = $\frac{2\pi}{\lambda_i} \vec{e}_{k_i}$. Aus Gl. (5) ist ersichtlich, dass sich die nichtlineare Polarisation zweiter Ordnung als Welle mit der Frequenz 2 ω und dem Wellenvektor $2\vec{k}_1 = 2\vec{k}_2 = 2\vec{k}$ im Medium ausbreitet. Im folgenden Kapitel soll nun die Konversionseffizienz ebener Wellen in nichtlinearen Medien hergeleitet werden.

Frequenzverdopplung ebener Wellen - Konversionseffizienz 4.2

Ausgangspunkt der Betrachtung ist die aus den Maxwellgleichungen im Medium herleitbare Wellengleichung für das elektrische Feld [15].

$$\Delta \vec{E} - \mu_0 \frac{\partial^2 \vec{D}}{\partial t^2} = 0 \tag{6}$$

wobei $\mu_0 = 4\pi \cdot 10^{-7}$ H/m der Vakuumpermeabilität entspricht. Mit der sogenannten Verschiebungsdichte $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ wird die Reaktion des Mediums auf das ursprüngliche elektrische Feld berücksichtigt. Für die Polarisation \vec{P} wird die aus Gl. (2) angesetzte Reihenentwicklung bis zur zweiten Ordnung eingesetzt. Daraus folgt nach Einsetzen in Gl. (6) und durch Umformen

$$\Delta \vec{E} - \frac{\epsilon_0}{c_0^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \vec{P}^{(2)}}{\partial t^2} \tag{7}$$

mit der Vakuumlichtgeschwindigkeit $c_0 = 299792458$ m/s. Gl. (7) ist eine inhomogene Differentialgleichung zweiter Ordnung in t und \vec{r} und beschreibt für $\vec{P}^{(2)} = 0$ die Wellengleichung für lineare Medien. Die Inhomogenität $\vec{P}^{(2)}$ wirkt als Quelle einer getriebenen Welle. Als Lösungsansatz wird für das elektrische Feld der Fundamentalwelle mit der Frequenz ω und der Oberwelle (SH) eine sich in z-Richtung ausbreitende ebene Welle angenommen:

$$E_{\omega,x,y}(\vec{r},t) = \frac{1}{2} [\tilde{E}_{x,y}(\omega)e^{-i(k_{\omega}z - \omega t)} + c.c]$$

$$E_{2\omega,x,y}(\vec{r},t) = \frac{1}{2} [\tilde{E}_{x,y}(2\omega)e^{-i(k_{2\omega}z - 2\omega t)} + c.c]$$
(8)

Das elektrische Feld für die Oberwelle wird in Gl. (7) eingesetzt und unter Verwendung der slowly varying envelope approximation³ (siehe [15]) erhält man folgende Differentialgleichung für das SH-Feld⁴:

 $[\]frac{3}{\partial z^2} \frac{\partial^2 E_i}{\partial z^2} \ll \frac{\partial E_i}{\partial z}$ $\frac{4}{n_{\omega}} \cdots$ Brechungsindex der Grundwelle; $n_{2\omega} \cdots$ Brechungsindex der Oberwelle

$$\frac{\partial}{\partial z}\tilde{E}_i(2\omega) = -\frac{i\omega}{2c_0n_{2\omega}}\sum_{j,k}\chi^{(2)}_{ijk}\tilde{E}_j(\omega)\tilde{E}_k(\omega)e^{i\Delta kz} + c.c.$$
(9)

mit $k_{2\omega} = \frac{2\omega n_{2\omega}}{c_0}$, i = x, y und $\Delta k = k_{2\omega} - 2k_{\omega}$ (Phasenanpassungsbedingung). Unter der Annahme, dass die Amplitude der fundamentalen Welle im Kristall konstant ist und die Randbedingung $\tilde{E}_i(2\omega)|_{z=0} = 0$ gilt, kann durch Integration von Gl. (9) über z die Intensität $I_{2\omega}$ des SH-Feldes am Ende des Kristalls (z = l) berechnet werden.

$$I_{2\omega} = I_{\omega} \frac{\omega^2 Z_0 l^2}{2c_0^2 n_{2\omega} n_{\omega}^2} \sum_{i,j,k} \left| \chi_{ijk}^{(2)} e_j e_k \right|^2 \left[\frac{\sin(\Delta k l/2)}{\Delta k l/2} \right]^2$$
(10)

wobe
i $e_{i,j}$ die Einheitsvektoren in x,yRichtung sind und
 $Z_0 = 377$ Ω der Vakuumimpedanz entspricht. Die Intensität ist quadratisch von der Kristalllänge und der nichtline
aren Suszeptibilität abhängig. Bei einer Phasenfehlanpassung
 $\Delta k \neq 0$, z. B. aufgrund der Dispersion im Kristall, oszilliert die Intensität mit der sogenannten Kohärenzlänge $l_c = \frac{2\pi}{|\Delta k|} = \frac{\lambda_0}{2|n_{2\omega} - n_{\omega}|}$.
 λ_0 entspricht der Vakuumwellenlänge der einfallenden Grundwelle. Die Verdopplungseffizienz wird durch Minimieren von Δk verbessert, wodurch sich die Kohärenzlänge vergrößert. In Abb. 2 (rechts) ist die Intensität $I_{2\omega}$ gegen die Kristalllänge für verschiedene Werte von Δk aufgetragen.

Abbildung 2: Phasenfehlanpassung: (links) Konversionseffizienz gegen die Phasenfehlanpassung Δk bei konstanter Kristalllänge l = 2 cm. Das globale Maximum liegt bei $\Delta k = 0$. (rechts) Konversionseffizienz gegen die Kristalllänge l für unterschiedliche Werte von Δk . Es kommt zu Oszillationen mit der Kohärenzlänge l_c als Periode. Je größer die Phasenfehlanpassung, desto geringer das Maximum.

Abb. 2 (links) zeigt die Konversionseffizienz als Funktion der Phasenfehlanpassung bei konstanter Kristalllänge . Einerseits liegt das globale Maximum bei $\Delta k=0$, anderer-

seits geht aus Abb. 2 (rechts) hervor, dass die Maxima der Konversionseffizienz mit zunehmender Phasenfehlanpassung abnehmen. Die Fehlanpassung kann z. B. durch die Abhängigkeit der Brechungsindizes von der Kristalltemperatur, oder durch unterschiedliche Ausbreitungsrichtungen der Grund- und Oberwelle hervorgerufen werden. Für $\Delta k = 0$ ist $\frac{I_{2\omega}}{I_{\omega}} \propto l^2$. Das bedeutet, dass in einem verlustfreien Kristall (ohne Einbeziehung von Absorptionskoeffizienten) die Konversion quadratisch mit der Länge des Kristalls zunimmt.

4.3 Methoden der Phasenanpassung

Wie im vorherigen Kapitel bereits besprochen, kommt es durch Dispersion zu einer Phasenfehlanpassung. Die unterschiedlichen Brechungsindizes $n_{2\omega}$ und n_{ω} können unter Ausnützung der Anisotropie und Temperaturabhängigkeit der Brechungsindizes von doppelbrechenden Kristallen angepasst werden. Dabei unterscheidet man zwischen der kritischen und der nichtkritischen Phasenanpassung. Eine weitere Methode der Phasenanpassung ist die Modulation der Suszeptibilität in periodisch gepolten Kristallen, wie z. B. Lithiumniobat.

4.3.1 Kritische Phasenanpassung

Bei einem einachsigen doppelbrechenden Kristall ist der Brechungsindex allgemein von der *Polarisation* und von der *Einfallsrichtung* abhängig, im Gegensatz zu isotropen Materialien.

Löst man die Wellengleichung für das elektromagnetische Feld im Medium unter Berücksichtigung der Tatsache, dass die Polarisation des Mediums und das einfallende E-Feld im Allgemeinen nicht parallel sind, so erhält man zwei verschiedene Brechungsindizes, den ordentlichen n_0 und außerordentlichen n_e . Ist die Polarisation des elektrischen Feldes senkrecht zu der von Wellenvektor \vec{k} und der optischen Achse aufgespannten Ebene, so ist der Brechungsindex n_0 und unabhängig von der Polarisation. Das Licht breitet sich in diesem Fall wie in einem isotropen Medium aus. Man spricht auch vom sogenannten ordentlichen Strahl.

Der außerordentliche Strahl ist senkrecht zum ordentlichen Strahl polarisiert und sein Brechungsindex ist von der Einfallsrichtung abhängig. Berechnet man die Brechungsindizes eines uniaxialen Kristalls mit $\chi(x) = \chi(y) \neq \chi(z)$ für jede Einfallsrichtung θ zur optischen Achse, so erhält man eine Kugel für den ordentlichen- und ein Ellipsoid für den außerordentlichen Strahl in dem Koordinatensystem, in welchem der Suszeptibilitätstensor diagonal ist. Da zwei der Brechungsindizes denselben Wert haben, ist das Ellipsoid rotationssymmetrisch um die optische Achse, die mit der z-Achse übereinstimmt. Aus diesem Grund kann o. B. d. A $k_x = 0$ gewählt werden, was einem Schnitt entlang der y-z Ebene des Ellipsoides (Brechungsindexellipsoid) entspricht (Abb. 3 (a)).

In Abb. 3 (b) sind die Brechungsindexellipsoide für die Grundwelle und der SH-Welle dargestellt. Unter der Voraussetzung normaler Dispersion und dass die Doppelbre-

Abbildung 3: Brechungsindexellipsoid: (a) Schnitt entlang der y-z Ebene des Brechungsindexellipsoids. Die rote durchgezogene Kurve stellt die Abhängigkeit des Brechungsindex für den außerordentlichen Strahl dar und die gestrichelte Kurve für den ordentlichen Strahl. (b) Brechungsindexellipsoid der Grund- (grüne Kurve) und Oberwelle (rote Kurve). Bei einem bestimmten Einfallswinkel erhält man einen Schnittpunkt der beiden Kurven.

chung größer ist als die Dispersion, existieren zwei Schnittpunkte zwischen dem Brechungsindexellipsoid der SH-Welle und der Grundwelle. Das Ellipsiod wird folgendermaßen parametrisiert:

$$\frac{1}{n_{\theta}^2} = \frac{\cos^2(\theta)}{n_0^2} + \frac{\sin^2(\theta)}{n_e^2} .$$
(11)

Wird die Polarisation der Fundamentalwelle so gewählt, dass sich diese als ordentliche Welle im Kristall ausbreitet und die Oberwelle als Außerordentliche (Typ I Phasenanpassung) oder umgekehrt (Typ II Phasenanpassung), dann gibt es einen Winkel θ_m (Phasenanpassungswinkel), bei dem die Bedingung $n_{2\omega,e}(\theta) = n_{\omega,o}$ erfüllt ist. Durch Einsetzen dieser Bedingung in Gl. (11) erhält man für θ_m :

$$\theta_m = \arccos\left(\sqrt{\frac{n_{\omega,o}^{-2} - n_{2\omega,e}^{-2}}{n_{2\omega,o}^{-2} - n_{2\omega,e}^{-2}}}\right)$$

Das Prinzip der kritischen Phasenanpassung kann folgendermaßen zusammengefasst werden:

Die durch **Dispersion** bedingte Phasenfehlanpassung und die damit verbundene Konversionsverminderung wird durch die **Polarisations**- und **Richtungsabhängigkeit** der **Phasengeschwindigkeit** in **doppelbrechenden** Kristallen kompensiert.

4.3.2 Nichtkritische Phasenanpassung - 90° Phasenanpassung

Eine Eigenschaft von doppelbrechenden Materialien ist die Tatsache, dass in Abhängigkeit des Einfallswinkels θ der außerordentliche Strahl einen unterschiedlichen Poynting-Vektor im Vergleich zum ordentlichen Strahl aufweist. Dadurch verkürzt sich die Wechselwirkungslänge zwischen Grundwelle und SH-Welle, was zu einer Konversionsverminderung führt (walk-off). Beträgt der Einfallswinkel der Grundwelle 90°, so stimmen die Poynting-Vektoren von Grund- und Oberwelle überein. Durch Ausnützen der im Allgemeinen unterschiedlichen Temperaturabhängigkeit des ordentlichen und außerordentlichen Brechungsindex, kann bei manchen Kristallen die Differenz der Brechungsindizes bei $\theta = 90^{\circ}$ ausgeglichen werden. Die Brechungsindexellipsoide aus Abb. 3 (b) würden in diesem Fall überlappen.

Die Temperaturabhängigkeit des Brechungsindex n(T) wird über die empirische Sellmeiergleichung [16] beschrieben. Als Beispiel wird der ordentliche Brechungsindex $n_o(T)$ von Lithiumniobat angegeben⁵:

$$n_o = \sqrt{\left[4.9130 + \frac{0.1173 + 1.65 \cdot 10^{-8} T^2}{\lambda^2 - (0.212 + 2.7 \cdot 10^{-8} T^2)} - 2.78 \cdot 10^{-2} \lambda^2\right]}$$

In Abb. 4 ist n_o gegen die Kristalltemperatur T aufgetragen, bei einer Wellenlänge $\lambda = 1140$ nm.

Abbildung 4: Temperaturabhängigkeit von n_o : Gezeigt ist die Temperaturabhängigkeit des ordentlichen Brechungsindex n_o von Lithiumniobat bei einer Wellenlänge von 1140 nm.

 ${}^{5}\lambda \cdots$ Wellenlänge (μ m); T \cdots Temperatur T (K)

4.3.3 Quasi-Phasematching (QPM)

Eine weitere Methode der Phasenanpassung ist das sogenannte Quasi-Phasematching (QPM) [17]. Wie in Kapitel 4.2 bereits erwähnt, tritt in Abständen der Kohärenzlänge l_c destruktive Interferenz auf. Dieser Effekt wird durch periodische Modulation der nichtlinearen Suszeptibilität vermieden. Bei ferroelektrischen Medien (z. B. Lithiumniobat) kann durch Anlegen eines starken elektrischen Gleichfeldes (einige kV/mm) die Polarisation permanent umgepolt werden. Der Grund dafür ist die Umordnung der Ionen im Kristallgitter und dadurch eine Änderung des Vorzeichens der nichtlinearen Suszeptibilität. Beim QPM wird das Vorzeichen von $\chi^{(2)}$ nach einer Länge von $L = \frac{l_c}{2}$ umgepolt (siehe Abb. 5), wobei der Betrag von $\chi^{(2)}$ konstant bleibt. Aus diesem Grund entspricht die nichtlineare Suszeptibilität $\chi^{(2)}$ einer Rechteckfunktion, die durch eine Fourierreihe entwickelt werden kann:

$$\chi^{(2)}(z) = \sum_{m=-\infty}^{+\infty} F_m e^{-im\Delta kz} .$$
 (12)

Die Fourierkoeffizienten F_m einer Rechteckfunktion mit Amplitude $\chi_0^{(2)}$ und Periode l_c ergeben sich zu:

$$F_m = \frac{\chi_0^{(2)}}{im\pi} \, \left((-1)^m - 1 \right) \, \cdots \, m \in \mathbb{Z}$$
(13)

Wird nun die Fourierreihe bis zur zweiten Ordnung $(m = \pm 1, \pm 3)$ in Gl. (9) eingesetzt, erhält man folgende Modifikation dieser Gleichung:

$$\frac{\partial}{\partial z}\tilde{E}_i(2\omega) = -\frac{i\omega}{2c_0n_{2\omega}} \left[F_1e^{-i\Delta kz} + F_3e^{-3i\Delta kz}\right]\tilde{E}_j(\omega)\tilde{E}_k(\omega)e^{i\Delta kz} + c.c.$$
(14)

Für $m = \pm 1$ kürzt sich in Gl. (14) die Ortsabhängigkeit heraus und das elektrische Feld würde wie bei der 90° Phasenanpassung quadratisch mit der Kristalllänge zunehmen mit dem Unterschied, dass sich die konvertierte Leistung, bedingt durch die Fourierreihe, um den Faktor $\left(\frac{2}{\pi}\right)^2$ von der perfekten Phasenanpassung unterscheidet. Nach denselben Rechenschritten wie in Kapitel 4.2 beschrieben, kann die konvertierte Leistung für $m = \pm 1, \pm 3$ berechnet werden.

$$I_{2\omega}^{m=\pm 1,\pm 3} = I_{\omega}^2 \frac{Z_0 \omega^2 (\chi_0^{(2)})^2}{c_0^2 n_{2\omega} \pi^2 \Delta k^2 n_{\omega}^2} \left| \left[6\Delta k \left\{ z + \frac{ie^{-2i\Delta kz}}{2\Delta k} \right\} - 1 \right] \right|^2$$
(15)

$$I_{2\omega}^{m=\pm 1} = I_{\omega}^{2} \frac{36Z_{0}\omega^{2}(\chi_{0}^{(2)})^{2}}{c_{0}^{2}n_{2\omega}\pi^{2}\Delta k^{2}n_{\omega}^{2}}z^{2}$$
(16)

Abbildung 5: Quasi-Phasenanpassung (QPM): Dargestellt ist die Intensität der Oberwelle in Abhängigkeit der Kristalllänge für den perfekt phasenangepassten Fall (rot) im Vergleich zum QPM, sowie eine schematische Darstellung eines periodisch gepolten Kristalls (Periode L). Die grüne durchgezogene Kurve und blaue strichlierte zeigen die konvertierte Leistung für die Fourierkoeffizienten $m = \pm 1$ und $m = \pm 1, \pm 3$. Eine Reduktion der Konversionseffizienz um $\left(\frac{2}{\pi}\right)^2$ bei QPM ist deutlich zu erkennen. Dem steht jedoch die unabhängige Wahl der Ausbreitungsrichtung und Polarisation der fundamentalen Welle gegenüber.

In Abb. 5 werden die Ergebnisse der Quasi-Phasenanpassung im Vergleich zur perfekten Phasenfehlanpassung dargestellt.

Werden höhere Terme (m ≥ 1) der Fourierreihe mit einbezogen, kommt es zu periodischen Schwankungen der Konversionseffizienz analog zum nicht angepassten Fall, jedoch mit einem quadratisch anwachsenden Anteil. Ein Vorteil bei der Verwendung von periodisch gepolten Kristallen ist, dass die Polarisation und die Ausbreitungsrichtung unabhängig voneinander eingestellt werden können. Dadurch wird eine möglichst hohe nichtlineare Suszeptibilität erreicht und der Poynting-Vektor der beiden Strahlen zeigt in dieselbe Richtung ($\theta = 90^{\circ}$).

In der bisherigen Betrachtung wurden die Grund- und Oberwelle als ebene Wellen angesetzt. Näher an der experimentellen Realität ist jedoch die Annahme eines divergierenden Strahls mit gaußförmigem Intensitätsprofil. Im folgenden Abschnitt wird die Konversionseffizienz für Gaußstrahlen berechnet [18].

4.4 Frequenzverdopplung von Gaußstrahlen - Berechnung des Konversionskoeffizienten

Eine Lösung der paraxialen Helmholtzgleichung sind Gaußstrahlen [19], deren elektrische Feldverteilung folgende Form aufweist:

$$\vec{E}(x,y,z) = \frac{\vec{E_0}}{1+ir} e^{ikz - i\omega t} e^{-\frac{(x^2+y^2)}{w_0^2(1+ir)}}$$
(17)

mit $r = \frac{2z}{b}$, der Strahltaille w_0 und dem konfokalen Parameter $b = w_0^2 k$. Die einfallende Grundwelle wird nun ebenfalls als Gaußstrahl im Laborsystem (x, y, z) beschrieben. Der Strahl hat an der Stelle z = f im Kristall den minimalen Radius (Strahltaille) w_0 , den halben Beugungswinkel δ_0 (siehe Abb. 6) und den Doppelbrechungswinkel ρ , der das Auseinanderlaufen von Grund- und der Oberwelle beschreibt.

Abbildung 6: Parameter des Gaußstrahls: Schematische Zeichnung eines Gaußstrahls im Kristall der Länge l. I_{ω} und $I_{2\omega}$ sind die Intensitäten der Grund- und Oberwelle. Der halbe Beugungswinkel wird als δ_0 bezeichnet und der Doppelbrechungswinkel zwischen Grund- und Oberwelle entspricht ρ . f entspricht der Position der Strahltaille w_0 .

Die Koordinaten im Kristall werden als (x', y', z') bezeichnet, um sie als Quelle von der Oberwelle außerhalb des Kristalls zu unterscheiden. Für das elektrische Feld $\vec{E}_1(x', y', z')$ der einfallenden Grundwelle gilt nun:

$$\vec{E}_{1}(x',y',z') = \vec{E}_{0} \left[\frac{1}{(1+ir')} \right] e^{ik_{1}z'} \cdot e^{-\frac{(x'^{2}+y'^{2})}{w_{0}^{2}(1+ir')}} e^{-\frac{1}{2}\alpha_{1}z'}$$
(18)

mit folgenden Parametern:

$$w_0 \dots$$
 Strahltaille
 $b = w_0^2 k_1 \dots$ konfokaler Parameter
 $\delta_0 = \frac{2w_0}{b} \dots$ halber Beugungswinkel
 $\alpha_1 \dots$ Absorptionskoeffizient der fundamentalen Welle
 $r' = \frac{2(z' - f)}{b}$

Die Zeitabhängigkeit $e^{-i\omega t}$ des elektrischen Feldes in Gl. (17) wird nicht berücksichtigt, da dieser Term durch die Betragsquadrat-Bildung bei der Berechnung der Intensität bzw. Leistung dem Wert 1 entspricht. Wie in den vorherigen Kapiteln bereits erwähnt, ist die nichtlineare Polarisation proportional zum Betragsquadrat der Amplitude des elektrischen Feldes. Die Ansätze unterscheiden sich nicht im Vergleich zur ebenen Welle. Es werden im Fernfeld sämtliche Beiträge von infinitesimalen Kristallscheiben zur Oberwelle aufsummiert. Siehe Anhang A.1 für die genaue Herleitung des Konversionskoeffizienten. Danach erhält man für die Ausgangsleistung P₂ folgenden Ausdruck:

$$P_{2} = \frac{16\pi^{2} (\chi^{(2)})^{2} Z_{0} l P_{0}^{2}}{\lambda_{1}^{3} n_{2} n_{1}} e^{-\alpha' l + \mu \alpha l} \cdot h(\sigma, B, \xi, \mu, \kappa)$$
(19)

mit dem definierten **Boyd-Kleinman Faktor** $h(\sigma, B, \xi, \mu, \kappa)$:

$$h(\xi,\sigma,B,\mu,\kappa) = e^{\mu\alpha l} \cdot \frac{1}{4\xi} \int_{-\xi(1-\mu)}^{\xi(1+\mu)} \int_{-\xi(1-\mu)}^{\xi(1+\mu)} dr dr' \frac{e^{-\kappa(r'+r)+i\sigma(r'-r)-\beta^2(r'-r)^2}}{(1+ir)(1-ir')}$$
(20)

und den Parametern $\sigma = \frac{1}{2}b\Delta k$, $\xi = \frac{l}{b}$, $B = \frac{\rho\sqrt{lk_1}}{2}$, $\alpha' = \alpha_1 + \frac{\alpha_2}{2}$, $\kappa = \frac{1}{2}\left(\alpha_1 - \frac{\alpha_2}{2}\right)b$ und $\mu = \frac{(l-2f)}{l}$.

Der Parameter *B* ist proportional zum Doppelbrechungswinkel ρ , da $\sqrt{lk_1} = konstant$ und berücksichtigt somit im Integrand von Gl. (20) die Stärke des Auseinanderlaufens ("walk-off") von Grund- und Oberwelle.

 σ ist ein Maß für die Phasenfehlanpassung Δk . ξ berücksichtigt in Gl. (20) die Größe der Strahltaille bzw. die Stärke der Fokusierung und der Parameter μ deren Position. Die Leistungsverluste durch Absorption der Grund- und Oberwelle werden durch den Parameter κ berücksichtigt, wobei α_2 dem Absorptionskoeffizienten der Oberwelle im Kristall entspricht.

Durch Optimierung des Boyd-Kleinman Faktors $h(\xi, \sigma, B, \mu, \kappa)$ nach den definierten Parametern ξ, σ und μ wird die Ausgangsleistung P_2 maximiert. Je nach Größe des Doppelbrechungsparameters B erhält man für die optimalen Parameter σ_m , μ_m und ξ_m unterschiedliche Werte, aus denen die beste Konfiguration für die Größe und die Position der Strahltaille w_0 berechnet werden kann:

$$w_0 = \sqrt{\frac{l}{\xi_m k_1}}$$
... optimale Strahltaille
 $f_m = \frac{l}{2} \cdot (1 - \mu_m)$... optimale Position der Strahltaille

Bei Vernachlässigung der Absorptionsparameter α_1 und α_2 ($\kappa = 0$) erhält man für die optimale Fokusposition die Mitte des Kristalls ($f_m = \frac{l}{2} \Leftrightarrow \mu_m = 0$) [18]. Dadurch vereinfacht sich der Boyd-Kleinman Faktor $h(\xi, \sigma, B, \mu = 0, \kappa = 0)$ und man erhält für die Ausgangsleistung P_2 :

$$P_2 = \frac{16\pi^2(\chi^{(2)})^2 Z_0 l P_0^2}{\lambda_1^3 n_2 n_1} \ e^{-\alpha' l} \cdot h(\sigma, B, \xi)$$

 mit

$$h(\xi, \sigma, B) = \frac{1}{4\xi} \int_{-\xi}^{\xi} \int_{-\xi}^{\xi} dr dr' \frac{e^{i\sigma(r'-r) - \beta^2(r'-r)^2}}{(1+ir)(1-ir')}$$

Das **Maximum** $h(\sigma_{\rm m}, \xi_{\rm m}, B_{\rm m}, \mu = 0, \kappa = 0) = 1.068$ dieses Doppelintegrals ist bei $B_m = 0, \sigma_m = 0.57$ und $\xi_m = 2.84$, was für 90° Phasenanpassung sowie QPM der Fall ist. Es besteht also ein direkter Zusammenhang zwischen der Länge l und dem konfokalen Parameter b ($\frac{l}{b} = 2.84$). Das bedeutet, dass die optimale Strahltaille mit zunehmender Länge l des Kristalls größer wird. Würde man die Strahltaille geringer wählen, wäre zwar die Intensität im Fokus höher, jedoch würde die verstärkte Divergenz ($\propto \frac{1}{w_0}$) eine rasche Abnahme der Intensität außerhalb des Fokus verursachen, was eine Verringerung der Wechselwirkungslänge zur Folge hätte.

Das Verhältnis von P_2 zu P_0^2 wird als Konversionsfaktor K bezeichnet.

In Abb. 7 (links) ist der Boyd-Kleinman Faktor $h(\xi, \sigma, B)$ als Funktion von ξ mit $\sigma = \sigma_m = 0.57$ für unterschiedliche Werte des Doppelbrechungsparameters B aufgetragen. Je größer B, desto geringer ist das Maximum von h und somit die konvertierte Leistung. Der Grund liegt in der Verringerung der Wechselwirkungsstrecke zwischen der Grund- und Oberwelle.

Abb. 7 (rechts) zeigt den Boyd-Kleinman Faktor $h(\xi, \sigma, B)$ in Abhängigkeit von σ mit $\xi = \xi_m = 2.84$ für unterschiedliche Werte von B.

Abbildung 7: Boyd-Kleinman Faktor: Gezeigt ist der Boyd-Kleinman Faktor h als Funktion des Parameters ξ (links) mit $\sigma = \sigma_m = 0.57$ und σ (rechts) mit $\xi = \xi_m = 2.84$ für unterschiedliche Werte des Doppelbrechungsparameters B. Je größer der Doppelbrechungswinkel zwischen Grund- und Oberwelle, desto geringer ist das Maximum von h. Durch das Auseinanderlaufen der Strahlen im Kristall wird die Wechselwirkungslänge zwischen Grund- und Oberwelle verringert.

Es ist zu erkennen, dass im Gegensatz zu der Konversion ebener Wellen das Optimum nicht bei $\Delta k = 0$ ist. Eine ausführliche Begründung ist in [18] zu finden.

Beispiel: Bestimmung der optimalen Strahltaille eines Lithiumniobat-Kristalls mit QPM.

Bei einem Lithiumniobat-Kristall bei ca. 463 K (QPM) ist $n_{1140\ nm} = 2.15$ und $n_{570\ nm} = 2.22$. Der nichtlineare Koeffizient beträgt $\chi^{(2)} = 16 \text{ pm/V}$ und die Kristalllänge l = 1 cm. Wird als Eingangsleistung $P_0 = 100 \text{ mW}$ gewählt und die Absorption vernachlässigt ($\kappa = 0$ und $\mu_m = 0$), so erhält man mit dem optimalen Boyd-Kleinman Faktor $h(\sigma_m, \xi_m) = 1.068$ eine maximale Ausgangsleistung P_2 von ca. 230 μ W. Dazu müsste in der Mitte des Kristalls ein Strahlradius von 17.24 μ m eingestellt werden.

Zur Steigerung der Konversionseffizienz wird die Leistungsüberhöhung in einem externen Resonator verwendet, was im folgenden Kapitel genauer erläutert wird.

Abbildung 8: Bow-Tie Resonator ("gefalteter Resonator"): Abbildung eines gefalteten Resonators, welcher aus zwei planaren und zwei gekrümmten Spiegeln besteht, die den Fokus im Kristall einstellen. Die Spiegel mit den Reflexionskoeffizienten R_2 , R_3 und R_4 sind hochreflektierend für die Grundwelle. Der Spiegel mit der Reflektivität R_1 wird als Einkoppelspiegel bezeichnet.

4.5 Leistungserhöhung im externen Resonator

Durch einen externen Resonator um den Kristall wird die Konversionseffizienz gesteigert [20]. Dabei handelt es sich um eine sogenannte *Bow-Tie Cavity*, die aus vier Spiegeln besteht (siehe Abb. 8).

4.5.1 Stabilität des Resonators

Der Resonator besitzt zwei Foki, einen zwischen den planaren Spiegeln mit dem Strahlradius W_0 und einen Kristallfokus mit Radius w_0 zwischen den gekrümmten Spiegeln (Krümmungsradius R). Der Strahlradius w_0 und die Stabilität des Resonators sind vom Abstand der Spiegel abhängig. Ein Resonator wird als stabil bezeichnet, wenn der Strahl nach einem Umlauf wieder in sich selbst übergeht.

Mit Hilfe des ABCD-Formalismus (siehe [20, 15, 19]) werden die Parameter berechnet, um den Resonator in einem stabilen Regime zu betreiben. Ausgangspunkt für die Berechnung der Matrix **M** für den Resonator ist die Mitte der Kristalls. Die Matrix **M** wird aus dem Produkt der ABCD-Matrizen der einzelnen Komponenten (Spiegel, Kristall, freie Strecke) berechnet:

$$\mathbf{M} = \begin{pmatrix} 1 & \frac{L_K}{2n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{l-L_K}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & P \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\frac{2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{l-L_K}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L_K}{2n} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$
(21)

mit den Spiegelabständen l und L, dem Brechungsindex n_k des Kristalls, der Kristalllänge L_k und dem Krümmungsradius R (siehe Abb. 9). Die Notation der Längen l und L_k soll nicht mit der Definition der Kristalllänge l in Kapitel 4.4 verwechselt werden. Ein Gaußstrahl wird eindeutig durch seinen Krümmungsradius \hat{R} und der Strahltaille w_0 beschrieben. Die beiden Größen \hat{R} und w_0 sind in dem komplexen q-Faktor⁶ enthalten [19]. Entspricht q_1 dem q-Faktor in der Mitte des Kristalls, so ist

$$q_2 = \frac{M_{11}q_1 + M_{12}}{M_{21}q_1 + M_{22}} = \frac{1}{\frac{1}{\hat{R}} - i\frac{\lambda}{w^2\pi}}$$
(22)

der q-Faktor nach einem Durchlauf. Nach der oben genannten Bedingung muss $q_1 = q_2 = q$ nach einem Umlauf gelten. Daraus folgt für q:

$$q = \frac{1}{M_{12}} \left\{ \frac{(M_{22} - M_{11})}{2} \pm i \sqrt{1 - \left[\frac{(M_{11} + M_{22})}{2}\right]^2} \right\} .$$
(23)

Durch die Tatsache, dass der Strahl nach einem Umlauf wieder in dasselbe Medium (Kristall) fällt, muss die Determinante von **M** gleich 1 sein: $M_{11}M_{22} - M_{21}M_{12} = 1$. Die Stabilität des Resonators ist erfüllt, wenn der Krümmungsradius \hat{R} und die Strahltaille w reelle Größen sind. Aus diesem Grund muss q komplex sein d.h., dass für die Diskriminante folgende Stabilitätsbedingung gelten muss:

$$-1 < \underbrace{\left[\frac{M_{11} + M_{22}}{2}\right]}_{\gamma} < 1 \; .$$

Durch den Parameter γ kann die Stabilität eines Resonators bestimmt werden. Dabei wird $\left[\frac{(M_{11}+M_{22})}{2}\right] = \gamma$ als Stabilitätsfaktor bezeichnet. In der Berechnung der Matrix **M** wird die Länge P verwendet (Abb. 9), die sich bei dem Design des Resonators als unpraktisch erweist. Deshalb wird der Abstand d zwischen den gekrümmten und planaren Spiegeln eingeführt. Der Zusammenhang zwischen den Längen P und d kann aus (Abb. 9) berechnet werden:

$$P = \sqrt{d^2 + (L+l)^2} + L$$
.

Der Stabilitätsfaktor γ ist von den Parametern L, l, d und L_k abhängig. In Abb. 10 (rechts) ist γ als Funktion der Längen l (rot) und L (grün) aufgetragen.

Man kann aus Abb. 10 (rechts) jene Werte von l und L ablesen, für die die Stabilitätsbedingung erfüllt ist. Außerdem zeigen die Kurven, dass die Änderung des Stabilitätsfaktors bei Änderung des Abstandes l größer ist als für Änderungen von L. Das heißt, dass beim Justieren des Resonators der Abstand l der gekrümmten Spiegel einen größeren Einfluss auf die Stabilitätsbedingung hat als L.

$${}^{6}q = \frac{1}{\frac{1}{\hat{R}} - i\frac{\lambda}{w^{2}\pi}}$$

Abbildung 9: Geometrie eines gefalteten Resonators: Schematische Darstellung des Bow-Tie Resonators mit den definierten Abständen L, l, L_k und d.

4.5.2 Berechnung der Strahlparameter

 w_0 wird aus Gl. (22) und Gl. (23) berechnet. Daraus ergibt sich für die Strahltaille folgender Ausdruck:

$$w_0 = \sqrt{-\frac{\lambda M_{12}}{\pi \sqrt{1 - \gamma^2}}} \tag{24}$$

mit der Wellenlänge λ der Grundwelle.

In Abb. 10 (links) ist die Strahltaille w_0 gegen den Abstand l aufgetragen. Die rote Kurve zeigt den Imaginärteil und die blaue den Realteil von w_0 . Eine physikalische Lösung für w_0 existiert nur, falls der Imaginärteil 0 ist, was l auf das Intervall [5.6 cm, 6.7 cm] einschränkt.

Für die Berechnung der Strahltaille W_0 zwischen den planaren Spiegeln werden dieselben Abbildungsmatrizen verwendet, beginnend vom halben Abstand der planaren Spiegel. Man erhält denselben Ausdruck wie in Gl. (24) mit unterschiedlichem Matrixelement M_{12} .

4.5.3 Ausgangsleistung der Oberwelle

Im folgenden Kapitel wird die Ausgangsleistung P_2 der Oberwelle bei gegebener Eingangsleistung P_0 der Grundwelle berechnet, sowie im Rahmen der Impedanzanpassung der optimale Wert für die Reflektivität R_1 des Einkoppelspiegels bestimmt.

Abbildung 10: Stabilitätsdiagramm: links: Gezeigt ist der Realteil (blau) und Imaginärteil (rot) der Strahltaille w_0 als Funktion des Abstands l der gekrümmten Spiegel. Im Bereich zwischen 5.6 cm und 6.7 cm entspricht der Imaginärteil von w_0 dem Wert Null und die Stabilitätsbedingung ist somit erfüllt. rechts: Aufgetragen ist der Stabilitätsfaktor γ gegen den Abstand l der gekrümmten Spiegel (rot) und den Abstand Lder planaren Spiegel (grün). Für alle Wertepaare (l, L), bei denen γ zwischen -1 und 1 liegt, erfüllt der Resonator die Stabilitätsbedingung.

 E_0 ist das in den Resonator einfallende elektrische Feld, vermindert um die Einkoppelverluste durch Moden- und Impedanzanpassung und E_1 das im Resonator umlaufende Feld. E_1 lässt sich zu folgendem Ausdruck berechnen [21]:

$$E_1 = E_0 \ \frac{\sqrt{T_1}}{(1 - \sqrt{R_1 R_2 R_3 R_4})} \tag{25}$$

mit dem Transmissionskoeffizienten T_1 des Einkoppelspiegels und den Reflexionskoeffizienten ($R_i = r_i^2, i = 1, 2, 3, 4$) der Spiegel (siehe Abb. 8). Dabei ist zu beachten, dass R_i bzw. T_i für die Leistungen gelten und r_i bzw. t_i für die elektrischen Felder. Die Spiegel werden als verlustfrei angenommen, woraus $R_i + T_i = 1$ folgt. Es werden zwei Arten von Verlusten berücksichtigt: Zum einen lineare Verluste V, aufgrund der Absorption und Verschmutzung der Spiegel und des Kristalls sowie Reflexionen an der Kristallfläche. Zum anderen Verluste durch die Konversion im Kristall, da bei jedem Durchgang ein Teil der Grundwellenleistung konvertiert wird.

Dieser Verlustfaktor beträgt $\sqrt{1 - KP_0}$ für das elektrische Feld. Der Zusammenhang zwischen der Eingangsleistung P_0 und der Ausgangsleistung P_2 der Oberwelle wird mit Hilfe von Gl. (25) berechnet:

$$\sqrt{\frac{P_2}{P_0}} = \frac{\sqrt{K}P_1}{\sqrt{P_0}} = \frac{\sqrt{KP_0}T_1}{(1-\sqrt{R_g})^2}$$

Unter Einbeziehung von Verlusten erhält man:

$$\sqrt{\frac{P_2}{P_0}} = \frac{\sqrt{KP_0}T_1}{\left[1 - \sqrt{R_g} \cdot \sqrt{\underbrace{(1-V)}_{\text{Lineare Verluste Konversions verluste}}\right]^2}$$

 $R_g = R_1 R_2 R_3 R_4$ berücksichtigt sämtliche Reflexionskoeffizienten. K entspricht dem Konversionsfaktor ohne externen Resonator und V dem linearen Verlustfaktor. Das Verhältnis zwischen Ausgangsleistung P_2 und Eingangsleistung P_0 wird als Konversionsfaktor ϵ definiert ($\epsilon = \frac{P_2}{P_0}$). Daraus folgt für den gesamten Konversionsfaktor ϵ bei der Frequenzverdopplung im externen Resonator ([22, 23]):

$$\epsilon = \frac{P_2}{P_0} = \frac{KP_1T_1^2}{\left[1 - \sqrt{R_g} \cdot \sqrt{(1 - V) \cdot (1 - \sqrt{K\epsilon P_0})}\right]^4}$$
(26)

Gleichung (26) ist in ϵ implizit. Da der Konversionsverlustfaktor von der einfallenden Leistung P_0 abhängt, kommt diese in Gl. (26) im Nenner vor und der optimale Einkoppelspiegel für die maximale Ausgangsleistung muss für eine bestimmte Eingangsleistung berechnet werden. Für das Experiment heißt das, dass eine Änderung der Eingangsleistung auch ein Tausch des Einkoppelspiegels zur Folge hat.

In Abb. 11 wird Gl. (26) veranschaulicht. Dazu wird die Ausgangsleistung P_2 gegen die Reflektivität des Einkoppelspiegels (siehe Abb. 8) für unterschiedliche Eingangsleistungen P_0 bei konstantem V und K aufgetragen. Daraus ist zu erkennen, dass die Position des Maximums von der Eingangsleistung P_0 der Grundwelle abhängig ist.

4.5.4 Finesse eines Bow-Tie Resonators

Eine wichtige Kenngröße eines Resonators ist die **Finesse**, die aus dem Quotienten des freien Spektralbereichs (FSR) und der Resonanzbreite $\Delta \nu$ berechnet wird. Durch Messung der Finesse können die Verluste eines Resonators bestimmt werden.

Das transmittierte Signal des Resonators lässt sich durch Aufsummieren sämtlicher Teilwellen berechnen. Dadurch erhält man für das transmittierte elektrische Feld E_t [21]:

$$E_t = E_i \frac{t_1 t_4 r^2}{1 - r_1 r^3 e^{i\Delta\phi}} \ .$$

Abbildung 11: Ausgangsleistung: Aufgetragen ist die Ausgangsleistung P_2 der Oberwelle als Funktion der Reflektivität R_1 des Einkoppelspiegels für unterschiedliche Eingangsleistungen P_0 . Die Maxima der Kurven (gelbe Punkte) wandern für höhere Eingangsleistungen zu geringeren Einkoppelreflektivitäten. (Parameter: Verlustfaktor V = 2% und $K = 9.8 \cdot 10^{-4}$)

Die Reflexionskoeffizienten für das elektrische Feld des zweiten, dritten und vierten Spiegels sind identisch und werden mit r bezeichnet. R entspricht dem Reflexionskoeffizienten für die Intensität. Die Phasendifferenz zwischen einem einfallenden und einem bereits umgelaufenen Strahl beträgt $\Delta \phi = \frac{2\pi}{\lambda L}$. Daraus ergibt sich für die transmittierte Leistung P_t folgender Ausdruck:

$$P_t = P_{in} \frac{T_1 T_4 R^2}{(1 - \sqrt{R_g})^2 + 4\sqrt{R_g} \sin\left(\frac{\Delta\phi}{2}\right)^2}$$
(27)

mit $r_i^2 = R_i$ und $R_g = \prod_i R_i$.

Die Breite $\Delta \nu$ der Resonanz wird über den Abfall auf die Hälfte der maximal transmittierten Leistung $P_t(\Delta \phi = 0)$ berechnet ⁷. Daraus folgt mit $\Delta \phi = \frac{2\pi}{c} \Delta \nu L$, wobei L der gesamten Länge des Resonators entspricht, für die Breite $\Delta \nu$:

$$\Delta \nu = 2 \cdot \arcsin\left[\frac{1 - \sqrt{R_g}}{2(R_g)^{1/4}}\right] \frac{c}{L\pi} .$$
(28)

 ${}^7P_t(\pm\Delta\nu/2) = \frac{P_t(\Delta\phi=0)}{2}$

Mit dem freien Spektralbereich $\frac{c}{2L}$ erhält man für die Finesse $F_{Bow-Tie}$ eines Bow-Tie Resonators folgendes Ergebnis:

$$F_{Bow-Tie} = \frac{\pi}{4 \cdot \arcsin\left[\frac{(1-\sqrt{R_g})}{2(R_g)^{1/4}}\right]}$$
(29)

Dieses Ergebnis beinhaltet noch keine Verluste der Spiegel oder Konversionsverluste. Analog zur Berechnung der Leistungsüberhöhung in einem externen Resonator können die linearen Verluste mit einem Faktor V berücksichtigt werden. Entspricht F_m dem gemessenen Wert von F, dann kann V durch Lösen des folgenden Gleichungssystems berechnet werden:

$$F_m = \frac{\pi}{4 \cdot \arcsin\left[\frac{1 - \sqrt{R_g \cdot (1 - V)}}{2(R_g \cdot (1 - V))^{1/4}}\right]} \approx \frac{\pi}{2} \cdot \frac{1}{1 - \sqrt{R_g \cdot (1 - V)}}$$

Diese Näherung ist für $R_g\approx 1$ gültig. Es wurde verwendet, dass $\arcsin(x)\approx x$ gilt, für $x\ll 1.$

4.5.5 Berechnung der Impedanzanpassung

Aus der Forderung, dass das reflektierte Signal des Resonators den Wert 0 annimmt bzw. das transmittierte Signal maximal ist, erhält man folgende Bedingung:

$$R_g = (1 - V) \cdot (1 - \sqrt{KP_1\epsilon})$$
 ...Impedanzanpassungsbedingung

Daraus folgt für die optimale Einkoppelreflektivität $R_1^{opt.}$ unter der Näherung, dass $R_2 \cdot R_3 \cdot R_4 \approx 1$ ist:

$$R_1^{opt} = 1 - \frac{V}{2} + \sqrt{\frac{V^2}{4} + KP_0(1-V)} \quad \dots \text{optimale Einkoppelreflektivität} \quad (30)$$

Das heißt, dass optimale Einkoppeleffizienz erzielt wird, wenn der Einkoppler die Verluste im Resonator kompensiert.

4.5.6 Experimentelle Bestimmung des optimalen Einkoppelspiegels

Im Folgenden wird diskutiert, wie die Ausgangsleistung anhand der Einkoppelreflektivität optimiert werden kann.

Ein Einkoppelspiegel mit der Reflektivität $R_1 \neq R_1^{opt}$ hat zur Folge, dass man sich bei konstanter Eingangsleistung P_0 entweder links oder rechts neben dem Maximum der Ausgangsleistung befindet, wie in Abb. 12 dargestellt. Wird die Einkoppeleffizienz bei Verringerung der Eingangsleistung besser, befindet man sich auf der rechten Seite des Maximums (B) und die Einkoppelreflektivität muss gesenkt werden. Bei Verschlechterung der Einkoppeleffizienz (A) muss die Einkoppelreflektivität erhöht werden (siehe Abb. 12).

In beiden Fällen (A, B) werden die Konversionsverluste durch die Verringerung der Eingangsleistung reduziert. In (B) führt das zu einer Erhöhung der Einkoppeleffizienz. Daraus folgt, dass der verwendete Einkoppelspiegel für geringere Verluste optimal wäre, was mit einer höheren Einkoppelreflektivität gleichzusetzen ist. Damit die Effizienz bei der ursprünglich höheren Leistung optimiert wird, muss also die Einkoppelreflektivität verringert werden. Im Fall (A) verringert sich die Einkoppeleffizienz, was durch dieselbe Argumentation zu einer Erhöhung der Einkoppelreflektivität führt.

Abbildung 12: Optimierung des Einkoppelspiegels: Ausgangsleistung P_2 der Oberwelle als Funktion der Reflektivität des Einkoppelspiegels für unterschiedliche Eingangsleistungen P_0 der Grundwelle. Durch Verringerung der Eingangsleistung P_0 kann experimentell festgestellt werden, in welche Richtung R_1 geändert werden muss. (Parameter: Verlustfaktor V = 2% und $K = 9.8 \cdot 10^{-4}$)

In den vorigen Kapiteln wurden die nötigen theoretischen Grundlagen vermittelt, um das Prinzip der Frequenzmischung, welches auf die Abhängigkeit der Suszeptibilität χ von der elektrischen Feldstärke \vec{E} basiert, zu verstehen. Weiters wurden im Rahmen der Boyd-Kleinman Theorie die Schritte zur Berechnung der optimalen Strahlparameter wie z. B. Position und Größe der Strahltaille erklärt. Bei Vernachlässigung der Absorption von Grund- und Oberwelle befindet sich die optimale Position der Strahltaille w_0 in der Mitte des Kristalls. Die optimalen Werte σ_m und ξ_m sind von dem Doppelbrechungsparameter B abhängig.

Es werden drei Arten der Phasenanpassung unterschieden:

- 1. kritische Phasenanpassung: Die Eigenschaft der Richtungs- und Polarisationsabhängigkeit von doppelbrechenden Kristallen wird ausgenutzt, um die Phasenfehlanpassung, bedingt durch unterschiedliche Ausbreitungsgeschwindigeiten der Grund- und Oberwelle, auszugleichen.
- 2. nichtkritische Phasenanpassung: Um das Auseinanderlaufen der Grund- und Oberwelle in doppelbrechenden Kristallen zu vermeiden, wird der Einfallswinkel θ der Grundwelle 90° gewählt. Die Phasenfehlanpassung wird durch die unterschiedliche Temperaturabhängigkeit der Brechungsindizes n_{ω} und $n_{2\omega}$ ausgeglichen.
- 3. Quasi-Phasematching (QPM): Durch periodische Änderung der nichtlinearen Suszeptibilität in Form eines Rechtecksignals wird in erster Näherung die Phasenfehlanpassung korrigiert. Ein Vorteil ist die unabhängige Wahl der Polarisation der einfallenden Welle.

Die Konversion kann mit Hilfe eines externen Resonators gesteigert werden. Die Wahl der Längen l, L und d des Resonators wird über dessen ABCD-Matrix **M** berechnet. Durch den Stabilitätsfaktor γ kann abgeschätzt werden, ob der Resonator im stabilen Bereich $(-1 \leq \gamma \leq 1)$ betrieben wird.

Die für die Photoionisation von Magnesium erforderliche Wellenlänge beträgt 285 nm. Dazu wird ein Diodenlaser über zwei Frequenzverdopplungsstufen von 1140 nm auf 285 nm Frequenz-vervierfacht. Die Ausgangsleistung des Lasersystems bei 285 nm muss mindestens 50 μ W betragen (siehe Kapitel 6.2).

Für die selektive Ionisation muss die Linienbreite des Diodenlasers kleiner als die Isotopieverschiebung von Magnesium ($\approx 1 \text{ GHz}$) sein. Die typischen Linienbreiten von Diodenlaser sind im Bereich von 100 kHz. Die Frequenzverstimmbarkeit ohne Modensprünge reicht typischerweise von ca. 30 GHz bis 50 GHz, was wesentlich größer ist als die Isotopieverschiebung.

5 Aufbau des Photoionisationslasersystems für Magnesium

Im folgenden Kapitel wird auf den Aufbau und die Komponenten der jeweiligen Frequenzverdopplungen näher eingegangen.

In Abb. 13 ist der gesamte Aufbau des Photoionisationslasersystems für neutrales Magnesium schematisch dargestellt. Ausgangspunkt ist ein Diodenlaser DL pro (T) der Firma **Toptica** in Littrow Konfiguration, der durch Winkeländerung des Gitters mittels eines piezokeramischen Elementes auf eine Wellenlänge von 1140 nm eingestellt wird. In Tabelle 1 sind die Spezifikationen des Lasers aufgelistet.

Temperaturstabilisierung, Piezoansteuerungsspannung (Dreieck- und Gleichspannungssignal) und eine eingebaute Frequenzmodulation über den Diodenstrom sind im Steuermodul von Toptica enthalten.

Der austretende Strahl hat einen elliptischen Querschnitt, bei dem der horizontale und vertikale Strahl unterschiedliche Ausbreitungscharakteristika aufweisen. Für die Korrektur dieses Effektes wurden 2 Zylinderlinsen (Z_1, Z_2) mit den Brennweiten $f(Z_1) = 300 \text{ mm}$ und $f(Z_2) = -100 \text{ mm}$ in den Strahlengang eingebaut. Rückreflexe in den Diodenlaser werden durch zwei optische Isolatoren (OI) mit ca. 56 db Isolation und einer $\lambda/2$ Platte (La1) für die Polarisationseinstellung unterdrückt. Nach Durchgang eines Teleskops für die Modenanpassung $(L_1(f_1 = 150 \text{ mm}), L_2(f_2 = 75 \text{ mm}), L_3(f_3 = 200 \text{ mm}))$, wird der Strahl in den ersten Frequenzverdopplungsresonator eingekoppelt.

Das frequenzverdoppelte Licht bei 570 nm wird nach einem Modenanpassungsteleskop (L_4, L_5) in einen zweiten Frequenzverdopplungsresonator eingekoppelt. Das dort erzeugte UV-Licht bei 285 nm wird über ein Periskop auf das Zentrum der Ionenfalle fokusiert, wo es zusammen mit dem Kühllaser bei 280 nm die neutralen Magnesiumatome ionisiert. Im Folgenden werden die beiden Verdopplungseinheiten im Detail besprochen und mit der zuvor entwickelten Theorie verglichen.

Tabelle 1: Daten des DL pro Diodenlasers von Toptica

Wellenlänge	1140 nm
maximale Ausgangsleistung	100 mW
gemessene Ausgangsleistung	$(100 \pm 1) \text{ mW} @ 298 \text{ mA}$
maximaler Strom	$298 \mathrm{~mA}$
$\operatorname{Schwellenstrom}$	$54 \mathrm{mA}$
maximale Frequenzverstimmbarkeit	$53~\mathrm{GHz}~@~220~\mathrm{mA}$

Abbildung 13: Photoionisationslasersystem: Schematische Darstellung des Photoionisationslasersystems für Mg. T: Diodenlaser DL pro; Z1, Z2: Zylinderlinsen; S_i: Spiegel; La: $\lambda/2$ Platten; OI: optischer Isolator; L: Linsen; K: Kristalle; PD: Photodioden; W: Wellenlängenmessgerät; G: Glasfaser; PID: PID-Regler; PZ: piezokeramisches Element;

5.1 Frequenzverdopplungsresonator von 1140 nm auf 570 nm - QPM

In der ersten Frequenzverdopplungsstufe (siehe Abb. 16 und Abb. 13) wird ein 10 mm langer, periodisch gepolter, mit MgO dotierter Lithiumniobatkristall ($LiNbO_3$) der Firma HG-Photonics verwendet, womit Quasi-Phasenanpassung (QPM) betrieben wird. Die Brechungsindizes der Grund- und Oberwelle sind auf unterschiedliche Weise von der Kristalltemperatur abhängig (siehe Kapitel 4.3.2). Die Dotierungsperiode des Kristalls ist ebenso temperaturabhängig. Mit Hilfe des Programms SNLO der Sandia National Laboratories können die Brechungsindizes und die Dotierungsperiode in Abhängigkeit der Temperatur bestimmt werden. Bei einer Temperatur von T = 190 °C ($\equiv 493$ K) und einer Periode von 8.22 μ m ist die Bedingung für QPM erfüllt (4.3.2). In Abb. 14 ist die Position der optischen Achse und die Polarisation der elektrischen Felder schematisch dargestellt.

Die Grund- und Oberwelle sind jeweils entlang der optischen Achse polarisiert und der Einfallswinkel θ zu dieser beträgt 90°. Daraus folgt, dass beide Strahlen den außer- ordentlichen Brechungsindex n_e sehen. Der Grund für diese Wahl der Ausbreitungs-

Abbildung 14: Polarisation: Schematische Darstellung des Lithiumniobatkristalls mit der optischen Achse entlang der z-Richtung. Die ein- und ausfallenden Strahlen sind entlang der optischen Achse polarisiert und sind deswegen außerordentliche Strahlen.

richtung und Polarisation ist zum einen, dass es zu keinem walk-off kommt und zum anderen, dass der nichtlineare Koeffizient $\chi^{(2)}$ entlang der z-Achse mit 16 pm/V [SN-LO] maximal ist.

Der nächste Schritt ist nun die Bestimmung der optimalen Strahltaille w_0 aus der Boyd-Kleinman Theorie, was im vorherigen Kapitel bereits erarbeitet wurde. Da bei 90° Phasenanpassung $B = \rho = 0$ gilt, erhält man für w_0 in der Mitte des Kristalls nach Gl. (24):

$$w_0 = \sqrt{\frac{L_k \lambda}{2n_e (1140 \ nm)\pi\xi}} \approx 17.23 \ \mu m \tag{31}$$

Der Parameter ξ hat in diesem Fall einen Wert von 2.84 (siehe Kapitel 2.4). Die Grenzflächen des Lithiumniobatkristalls haben eine Antireflexbeschichtung, die vom Hersteller mit $\leq 1\%$ spezifiziert ist. Gemessen wurde ein Reflexionskoeffizient der Beschichtung von ca. 0.2%.

Die Dimensionierung des Resonators wird durch die Matrix **M** in Gl. (21) durchgeführt. Es ist zu beachten, dass zum einen die Abstände so gewählt sind, dass die gewünschte Strahltaille in der Mitte des Kristalls eingestellt und zum anderen die in Kapitel 4.5.1 eingeführte Stabilitätsbedingung erfüllt ist. Aufgrund des schiefen Einfalls des Strahls auf die gekrümmten Spiegel tritt Astigmatismus auf. Zudem können zu hohe Intensitäten im Kristall zu thermischer Linsenbildung sowie photorefraktivem Effekt führen. Aus diesen Gründen wird der Strahlradius w_0 größer gewählt, was Konversionsverluste zur Folge hat. In Abb. 15 ist das Verhältnis des Boyd-Kleinman Faktors h/h_{max} ($h_{max} = 1.068$) als Funktion der Strahltaille w_0 aufgetragen. Daraus kann der Verlustfaktor durch die Einstellung einer Strahltaille $\neq w_0$ abgeschätzt werden.

Abbildung 15: Verlustfaktor durch Einstellung einer nicht optimalen Strahltaille: Oben: Boyd-Kleinman Faktor h gegen die Strahltaille w_0 ; Unten: Verhältnis des Boyd-Kleinman Faktors h/h_{max} in Abhängigkeit der Strahltaille w_0 . Wird w_0 von 17 μ m auf 30 μ m erhöht, so folgt daraus ein Verlust von ca. 30% ohne externen Resonator. Parameter: $\lambda = 1140 \ nm, \ n(1140 \ nm) = 2.15, \ L_k = 1 \ cm.$

Bereits bei einer Erhöhung des Strahlradius von 17 μ m auf 30 μ m erfolgt ein Verlust von ca. 30%. Dieser Verlustfaktor bezieht sich auf den Fall ohne externen Resonator.

Die Abstände wurden so gewählt, dass d möglichst klein gehalten wird, um den Astigmatismus minimal zu halten und für den Stabilitätsparameter $\gamma \approx 0$ gilt. Für d=4.48 cm, L=10 cm, l=6.08 cm (vgl. Abb. 9) ergibt sich zwischen den gekrümmten Spiegeln ein Strahlradius von $w_0 = 31.8 \ \mu\text{m}$ und zwischen den planaren Spiegeln eine Strahltaille W von 204.81 μ m. Mit diesen Abmessungen erhält man für den Stabilitätsparameter γ den Wert 0.02. In Tabelle 2 sind alle wichtigen Parameter aufgelistet.

Wie in den vorherigen theoretischen Überlegungen erwähnt, können durch Messung der Finesse des Überhöhungsresonators aus dem reflektierten Signal die linearen Verluste bestimmt und damit die berechnete Ausgangsleistung mit der gemessenen verglichen werden. Die Messung der Finesse wurde bei ca. 700 μ W Eingangsleistung durchgeführt, damit keine Verfälschung des Ergebnisses durch Nichtlinearitäten bei der Konversion
Einkoppelspiegel R1 (Firma: Laseroptik)	R1=95% für 1140 nm
Spiegel $R2$ (Firma: Laseroptik) L03993	R2=99.98% für 1140 nm
Spiegel R3 (Firma: Laseroptik) R-50 L03992	R3=99.98% für 1140 nm
Spiegel R3 (Firma: Laseroptik) R-50 L03991	R4=99.98% für 1140 nm
spezifizierte AR-Beschichtung	$\leq 1\%$ (gemessen ca. 0.2%)
Länge L	10 cm
Länge d	4.48 cm
Länge <i>l</i>	$6.08~\mathrm{cm}$
Strahlradius w_0	$31.8~\mu{ m m}$
$\operatorname{Strahlradius} W$	$204.81~\mu\mathrm{m}$
Stabilitätsfaktor γ	0.02
Konversionskoeffizient K	0.01675
Kristall	$LiNbO_3 - MgO, HGP$
	Seriennummer: AC-Y80101-127-02
Temperatur	$190.6 \ ^{\circ}C \equiv 463.75 \ K$
Periode	$8.22 \ \mu m$

Tabelle 2: Zusammenfassung der Resonatorparameter zur Frequenzverdopplung von 1140 nm zu 570 nm.

auftritt. Es wurden folgende Größen gemessen:

$$\begin{split} \mathbf{F} &= 65 \pm 5 \dots \mathrm{Finesse} \\ (43.7 \pm 1.3)\% \dots \mathrm{Einkoppeleffizienz} \\ \mathbf{P}_0 &= (65.3 \pm 0.5) \ \mathrm{mW} \ \dots \mathrm{Eingangsleistung} \ \mathrm{bei} \ 1140 \ \mathrm{nm} \\ P_2 &= (21.5 \pm 0.6) \ \mathrm{mW} \end{split}$$

Mit der gemessenen Finesse ergibt sich ein Verlustfaktor von ca. 0.13%, woraus eine theoretisch erwartete Ausgangsleistung $P_2 = 21.9$ mW folgt, was innerhalb des Fehlers mit dem gemessenen Wert von P_2 übereinstimmt.

5.2 Frequenzverdopplungsresonator von 570 nm auf 285 nm -PM

In der zweiten Verdopplungsstufe (siehe Abb. 17) wird ein antireflex beschichteter BBO (BetaBariumBorat) Kristall der Firma Castech verwendet, um Licht von 570 nm auf 285 nm zu konvertieren. Im Gegensatz zum Lithiumniobatkristall der ersten Verdopplungsstufe wird die Konversion durch kritische Phasenanpassung erzielt. Das heißt, dass das die Grundwelle (570 nm) unter einem bestimmten Winkel θ zur optischen Achse einfällt, bei dem die Brechungsindizes des ordentlichen und außerordentlichen Strahls (285 nm) identisch sind (siehe Kapitel 4.3.1).

Abbildung 16: Lithiumniobat-Verdopplungsresonator: Gezeigt ist ein Foto der ersten Verdopplungsstufe mit dem Lithiumniobatkristall K₁ im temperaturstabilisierten Ofen, dem optischen Isolator OI, der Linse L₃, der $\lambda/2$ Platte La₂ und der Photodiode PD (vgl. Abb. 13)

Die Fundamentalwelle (570 nm) fällt als ordentlicher Strahl unter einem Winkel von $\theta = 43.3^{\circ}$ ein. Die Oberwelle mit 285 nm propagiert als außerordentlicher Strahl durch den Kristall mit einem walk-off-Winkel ρ von 4.8° . Die Brechungsindizes betragen jeweils $n_{\omega} = n_{2\omega} = 1.671$. Der effektive, nichtlineare Koeffizient $\chi^{(2)}$ hat einen Wert von 1.84 pm/V.

Sämtliche Daten wurden aus dem SNLO Programm der Sandia National Laboratories bezogen.

Der walk-off-Winkel führt zu einem Doppelbrechungsparameter $B = \frac{\rho \sqrt{lk_1}}{2} \approx 18.03^{\circ}$ mit der Kristalllänge l = 1 cm und der Wellenzahl k_1 der einfallenden Welle (570 nm). Daraus erhält man die optimalen Boyd-Kleinman Koeffizienten h_m , σ_m und ξ_m .

$h_m = 0.036 \ \sigma_m = 5.07 \ \xi_m = 1.8$

Man erkennt deutlich, dass h_m signifikant kleiner ist als für B = 0, womit sich der Konversionskoeffizient K stark verringert. Die optimale Strahltaille w_0 lässt sich analog zu Gl. (31) berechnen, woraus man 17.37 μ m erhält.

Für d = 4.5 cm, L = 8.3 cm, l = 5.5 cm (vgl. Abb. 9) ergibt sich zwischen den

gekrümmten Spiegeln eine Strahltaille von $w_0 = 17.5 \ \mu \text{m}$ und zwischen den planaren Spiegeln eine Strahltaille $W = 248.5 \ \mu \text{m}$. Mit diesen Abmessungen erhält man für den Stabilitätsparameter $\gamma \approx 0.08$.

Der Konversionskoeffizient K ist gegenüber dem Lithiumniobatkristall um einen Faktor 100 geringer.

In Tabelle 3 sind sämtliche Parameter sowie die Daten der verwendeten Komponenten aufgelistet.

Tabelle 3: Zusammenfassung der Resonatorparameter zur Frequenzverdopplung von 570 nm zu 285 nm.

Einkoppelspiegel R1 (Firma: Layertec)	$R1 = 97.85\%~{ m für}~570~{ m nm}$
Spiegel $R2$ (Firma: Layertec) Z0806021	$R2 \geq 998\%$ für 570 nm
Spiegel $R3$ (Firma: Layertec) R-50 Z0806021	$R3 \geq 99.8\%$ für 570 nm
Spiegel $R4$ (Firma: Layertec) R-50 Z0806021	$R4 \geq 99.8\%$ für 570 nm
Länge L	8.3 cm
Länge d	$4.4~\mathrm{cm}$
Länge <i>l</i>	$5.5~{ m cm}$
Strahlradius w_0	$17.5~\mu{ m m}$
$\operatorname{Strahlradius} W$	$248.5~\mu\mathrm{m}$
Stabilitätsfaktor γ	0.08
Konversionskoeffizient K	0.000143
Kristall	BBO, AR-Coated, Castech
	$3\mathrm{x}3\mathrm{x}10~\mathrm{mm}^3,~ heta=43.3^\circ$
Temperatur	$\operatorname{Raumtemperatur}$

Analog zur ersten Verdopplungsstufe wurde die Finesse des UV-Resonators gemessen. Bei den in Tab. 3 angegebenen Reflektivitäten wird eine maximale Finesse von 141 errechnet. Die gemessene Finesse beträgt 244. Die Diskrepanz zwischen dem errechneten und dem gemessenen Wert kann nicht erklärt werden, weshalb aus dieser Messung der Verlustfaktor nicht abgeschätzt werden kann. Der theoretisch erwartete Verlustfaktor und die Finesse werden durch Messung der Ausgangsleistung bei gegebener Eingangsleistung berechnet.

Bei einer Eingangsleistung von 19 mW (570 nm) wurde eine Ausgangsleistung von 400 μ W (285 nm) gemessen. Theoretisch entspricht das einem linearen Verlustfaktor von ca. 0.93% und einer Finesse von 99 im Gegensatz zu 244.

Gründe für die Verfälschung der Finessemessung könnten sein:

1. Die Photodiode kann das Signal nicht auflösen: Die Scanfrequenz des Piezos beträt 80 Hz und die Photodiode kann Signale bis zu 125 MHz auflösen. Daraus kann geschlossen werden, dass das Auflösungsvermögen der Photodiode keine Limitierung der Finessemessung darstellt.

Abbildung 17: BBO-Verdopplungsresonator: Gezeigt ist ein Foto der zweiten Verdopplungsstufe mit dem BBO Kristall und dem erzeugten UV Licht von ca. 285 nm. Der Piezo zum Verstimmen der Resonatorlänge ist zwischen Spiegel und einer in dem Spiegelhalter geschraubten Stahlstange geklebt.

- 2. Nichtlinearität der Scansignals: Ist das Dreiecksignal des Hochspannungsverstärkers nicht linear, wird die Breite der Resonanzkurve verändert, was zu einer Verfälschung des Finesse führt. Da das Dreiecksignal über den gesamten Durchstimmbereich linear ist, kann diese Fehlerquelle jedoch ausgeschlossen werden.
- 3. Licht der Oberwelle: Ein Teil des frequenzverdoppelten Lichtes wird durch den Einkoppelspiegel transmittiert. Dieser Anteil fällt zusammen mit dem reflektierten Teil der Grundwelle auf die Photodiode, wodurch die Breite der Resonanz verringert wird. Um diese Fehlerquelle auszuschließen, wurden optische Abschwächer für 285 nm vor die Photodiode eingebaut sowie die Eingangsleistung so gering eingestellt, dass die Finesse noch gemessen werden konnte.
- 4. Der Piezo reagiert nichtlinear auf das Scansignal. Diese Fehlerquelle kann nicht ausgeschlossen werden.

6 Magnesium

Magnesium mit der Ordnungszahl 12 befindet sich im Periodensystem in der 2. Hauptgruppe und gehört zur Serie der Erdalkalimetalle. Die Elektronenkonfiguration von Mg ist $1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^63\mathrm{s}^2$, woraus folgt, dass es 2 Valenzelektronen besitzt. Die natürliche Isotopenhäufigkeiten von Mg sind $^{24}\mathrm{Mg}$ zu $78.99\%,\,^{25}\mathrm{Mg}$ zu10%und $^{26}\mathrm{Mg}$ zu11.01%.

6.1 Termschema von ${}^{24}Mg^+$, ${}^{25}Mg^+$ und ${}^{26}Mg^+$

In Abb. 18 ist das Termschema von $^{24}\rm Mg^+,~^{25}\rm Mg^+$ und $^{26}\rm Mg^+$ bis zum relevanten P_{3/2} Niveau des 3S-3PÜbergangs dargestellt.

Abbildung 18: Termschema: Abbildung des Termschemas von $^{24}{\rm Mg^+},~^{25}{\rm Mg^+}$ und $^{26}{\rm Mg^+}.$ [24, 25, 26]

Die Termschemata von ²⁴Mg⁺ und ²⁶Mg⁺ sind spektroskopisch identisch und bestehen aus dem $3S_{1/2}$ Grundzustand und den ersten beiden angeregten Zuständen $3P_{1/2}$ und $3P_{3/2}$. Der Unterschied besteht in der Isotopieverschiebung der beiden Übergänge. ²⁵Mg⁺ hat im Vergleich dazu durch den vorhandenen Kernspin von I = 5/2 eine Hyperfeinstrukturaufspaltung. In Tabelle 4 werden sämtliche Quantenzahlen benannt.

Tabelle 4: Spin s, Hauptquantenzahl n, Bahndrehimpulsquantenzahl l, Spin + Bahndrehimpuls J und Gesamtdrehimpuls F sämtlicher Zustände von $^{25}Mg^+$.

Zustand ${}^{2S+1}S_J$	n	$ $ S/ \hbar	$ $ $1/\hbar$	$ $ J/ \hbar	$ $ I $/\hbar$	$ $ F/ \hbar	m_F
$^{2}S_{1/2}$	3	1/2	0	1/2	5/2	2,3	-3, -2, -1, 0, 1, 2, 3
$^{2}P_{1/2}$	3	1/2	1	1/2	5/2	2,3	-3, -2, -1, 0, 1, 2, 3
$^{2}P_{3/2}$	3	1/2	1	3/2	5/2	1,2,3,4	-4, -3, -2, -1, 0, 1, 2, 3, 4

n entspricht der Hauptquantenzahl, $S\hbar$ dem Spin des Valenzelektrons, $l\hbar$ dem Bahndrehimpuls, $J\hbar$ der Spin- Bahndrehimpulsaddition und $F\hbar$ dem gesamten Drehimpuls, also allgemein $\vec{J} + \vec{S}$. Die Hyperfeinstrukturaufspaltungsenergie kann bei bekannter Hyperfeinstrukturkonstante A folgendermaßen berechnet werden [27].

$$\Delta E_{Hyp} = \frac{g_I \mu_k \vec{B}_J}{\underbrace{\sqrt{J(J+1)}}_{A/2}} (F(F+1) - I(I+1) - J(J+1))$$

mit dem gyromagnetischen Faktor g_I des Kernspins, dem Kernmagneton $\mu_k = \frac{e}{2m_p}\hbar$ und B_J , das Magnetfeld am Ort des Kerns.

Die Daten, soweit bekannt zu den Übergangsfrequenzen (siehe Abb. 18) von $^{24}Mg^+$, $^{25}Mg^+$ und $^{26}Mg^+$, sind in Tabelle 5 und Tabelle 6 aufgelistet.

Tabelle 5: Auflistung der Übergangsfrequenzen ν und Vakuumwellenlängen λ der Übergänge von ²⁴Mg⁺ und ²⁶Mg⁺ [26]. Die Vakuumwellenlängen wurden aus den gemessenen Frequenzen über die Beziehung $c = \lambda \cdot \nu$ berechnet.

Isotop	Übergang	Übergangsfrequenz (MHz)	Vakuumwellenlänge (nm)
$^{24}Mg^+$	$^{2}\mathrm{S}_{1/2} \rightarrow ^{2}\mathrm{P}_{1/2}$	$1 \ 069 \ 338 \ 342.56(16)$	280.35323
$^{26}Mg^+$	$^{2}\mathrm{S}_{1/2} \rightarrow ^{2}\mathrm{P}_{1/2}$	$1 \ 069 \ 341 \ 427.47(16)$	280.35242
$^{24}Mg^+$	$^2\mathrm{S}_{1/2} \rightarrow ^2\mathrm{P}_{3/2}$	1 072 082 934.33(16)	279.63551
$^{26}\mathrm{Mg^{+}}$	$^2\mathrm{S}_{1/2} \rightarrow {}^2\mathrm{P}_{3/2}$	$1 \ 072 \ 086 \ 021.89(16)$	279.63470

Tabelle 6: Auflistung der Übergangsfrequenzen und Vakuumwellenlängen der Übergänge von $^{25}Mg^+$ [28].

Übergang	Übergangsfrequenz (Hz)
$^{2}S_{1/2}, F=3, m_{F}=-3 \rightarrow ^{2}P_{3/2}, F=4, m_{F}=-4$	$1.0720841(12) \cdot 10^{15}$
$^{2}\mathrm{S}_{1/2} \rightarrow ^{2}\mathrm{P}_{3/2}$	$1.0720849 \cdot 10^{15}$

Die Isotopieverschiebungen $\delta_{\nu}^{24,26}$ von ²⁴Mg⁺ zu ²⁶Mg⁺ und $\delta_{\nu}^{24,25}$ sind in Tabelle 7 angegeben. In Tabelle 8 sind die Werte der Hyperfeinstrukturkonstante A von ²⁵Mg⁺ sowie die Energieaufspaltung ΔE_{Hyp} aufgelistet. Die $3S_{1/2}$ und $3P_{1/2}$ Zustände spalten jeweils in die Hyperfeinstrukturniveaus F = 2 und F = 3 auf und der $3P_{3/2}$ Zustand in vier Niveaus (F=1, 2, 3, 4).

Tabelle 7: Auflistung der Isotopieverschiebungen der Übergänge von Mg. [26]

Übergang	$\delta_{\nu}^{24,25}$ (MHz)	$\delta_{\nu}^{24,26}$ (MHz)
$^{2}\mathrm{S}_{1/2} \rightarrow ^{2}\mathrm{P}_{1/2}$	1620 (19)	$3084.905\ (93)$
$^2\mathrm{S}_{1/2} \rightarrow ^2\mathrm{P}_{3/2}$	$1621 \ (19)$	3087.560(87)

Tabelle 8: Auflistung der Hyperfeinstrukturkonstante A der Übergänge von ²⁵Mg⁺ und der Energieaufspaltung ΔE_{Hyp} . ([29], [25])

Zustand	Hyperfeinstrukturkonstante A (MHz)	ΔE_{Hyp} (MHz)
$^{2}S_{1/2}$	-596.254376(54)	(-745.317970(68) 1043.445158(95))
$^{2}P_{1/2}$	-103.4	(-129.25 180.95)
${}^{2}\mathrm{P}_{3/2}$	-19.29	(-72.34 4.82 62.69 101.27)

6.2 Ionisieren und Laden von Mg⁺

Durch Photoionisation können die Mg-Isotope selektiv geladen werden. In Abb. 19 ist das Termschema von 24 Mg dargestellt.

Abbildung 19: Ionisationsübergang: Termschema von ²⁴Mg. Der ¹S₀ \rightarrow ¹P₁ Übergang wird als Isotopen-selektiver Übergang verwendet. Vom ¹P₁ Niveau wird das Elektron über den Kühllaser (\approx 280 nm) oder über den Ionisationslaser (\approx 285 nm) in das Kontinuum angeregt [30].

Über den ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ Singulett Übergang können die Isotope aufgrund der Verschiebung von mehr als 1 GHz bei einer Linienbreite von 40 MHz selektiv angesprochen und ionisiert werden. Da die Wellenlänge vom ${}^{1}P_{1} \rightarrow {}^{2}S_{1/2}$ Übergang ca. 375 nm [30] beträgt, erfolgt die Anregung in das Kontinuum entweder mit dem Kühllaser bei ≈ 280 nm oder wiederum mit dem Ionisationslaser bei ≈ 285 nm (Autoionisation [31]).

Die für den ersten Schritt mindestens notwendige Intensität lässt sich über die Sättigungsintensität des ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ Übergangs von ${}^{24}Mg$ durch folgenden Ausdruck berechnen⁸:

$$I_{Sat} = \frac{\pi hc}{3\lambda^3 \tau} \approx 4391 \ \frac{W}{m^2} \ . \tag{32}$$

Mit einem Strahldurchmesser von 100 μ m wäre im UV eine Leistung von 34.49 μ W erforderlich, um die Sättigungsintensität zu erreichen. Die Ausgangsleistung des UV-Resonators beträgt ca. 400 μ W, was ein Vielfaches über der Sättigungsintensität liegt.

Damit die Magnesiumionen effektiv geladen werden können, wird deren Bewegungsenergie (kinetische Energie) durch den Prozess des Dopplerkühlens [32] verringert. Die minimal erreichte Geschwindigkeit v_{min} der Ionen wird über die thermische Energie $\frac{3}{2}k_bT$ in eine minimale Temperatur T_{min} umgerechnet. T_{min} beim Dopplerkühlen kann über folgenden Ausdruck berechnet werden [32, 33]:

$$\mathbf{T}_{min} = \frac{\hbar\Gamma}{2k_b}$$

Der Übergang $3S_{1/2} \rightarrow 3P_{1/2}$ von ²⁴Mg⁺ hat eine natürliche Linienbreite von 40.09 MHz [30], woraus für $T_{min} \approx 960 \ \mu K$ folgt.

Die gekühlten Ionen werden in einem harmonischen Potential (siehe Kapitel 7.1) gefangen. Die periodische Bewegung der Ionen in diesem Potential mit der Energie $\frac{3}{2}k_bT_{min}$ kann durch das quantenmechanische Modell⁹ eines harmonischen Oszillators in die mittlere Phononenbesetzungszahl <n> umgerechnet werden:

$$\frac{3}{2}k_bT = \hbar\omega_z \left(< n > +\frac{1}{2} \right) \implies < n > \approx 20$$

mit einer Fallenfrequenz $\omega_z=1.5~\mathrm{MHz}.$

 $^{^8{\}rm h}=6.626^{*}10^{-34}$ Js, $\tau=2.04$ ns...Lebensdauer des $^1{\rm P}_1$ Niveaus $^9{\rm Die}$ Energie E ist quantisiert: $E_n=\hbar\omega(n+\frac{1}{2}),$ mit der Fallenfrequenz ω

Abbildung 20: Experimenteller Aufbau: Gezeigt ist eine schematische Darstellung der Vakuumkammer mit der linearen Paulfalle. Die σ -polarisierten Strahlen propagieren entlang der Hauptmagnetfeldachse (NW-SO), welche die Quantisierungsachse bildet, durch die Kammer. Die π -polarisierten Strahlen werden senkrecht zur Quantisierungsachse (NO-SW) durch die Apparatur geführt. Das Fluoreszenzlicht der Ionen wird über ein Objektiv und einer Abbildungsoptik, bestehend aus zwei Linsen (f = 100 mm) und einer Lochblende, entweder auf die CCD-Kamera (Andor iXon), oder den Photonendetektor (Produkt: Hamamatsu, PMT H8259MOD mit R7518P) fokussiert. IL: Ionisationslaser bei 285 nm; B: Magnetfeld.

7 Experimenteller Aufbau

In Abb. 20 ist eine Aufsicht der Vakuumapparatur mit der linearen Paulfalle dargestellt. Im Folgenden wird das Experiment im Gesamten diskutiert und anschließend näher auf die einzelnen Komponenten eingegangen.

Für die Dopplerkühlung und die Detektion wird das $S_{1/2} \rightarrow P_{3/2}$ Lasersystem bei einer Wellenlänge von 279.5 nm verwendet. Das $S_{1/2} \rightarrow P_{1/2}$ Lasersystem bei 280.3 nm wird für die kohärente Manipulation und als Rückpumplaser benötigt. Beide Lasersysteme sind analog zum Ionisationslasersystem aufgebaut und bestehen aus jeweils zwei Frequenzverdopplungsstufen. In Abb. 21 ist das $P_{1/2}$ Lasersystem schematisch dargestellt [34].

Ein Faserlaser bei 1121 nm wird über einen 90° Phasenangepassten LBO Kristall

mit einem externen Resonator Frequenz-verdoppelt. In der zweiten Verdopplungsstufe wird ein im Brewsterwinkel geschliffener BBO Kristall eingesetzt, der das Licht bei 560.5 nm auf 280.3 nm konvertiert. Das $P_{3/2}$ Lasersystem ist analog dazu aufgebaut, jedoch ohne elektrooptischem Modulator (EOM) vor dem UV-Resonator. Der EOM moduliert Seitenbänder mit einer Frequenz von 9.2 GHz auf, die unter der Bedingung, dass der freie Spektralbereich (FSR) des UV-Resonators ein Vielfaches der Modulationsfrequenz entspricht, durch den Resonator gelangen. Für weitere Details zu dem Lasersystem siehe [34].

Abbildung 21: $P_{1/2}$ Lasersystem: Gezeigt ist eine Skizze das $P_{1/2}$ Lasersystems. Ein Faserlaser bei 1121 nm wird über zwei Verdopplungsresonatoren Frequenz-vervierfacht. Die Resonatorstabilisierung wird im Gegensatz zum Ionisationslasersystem mit der Hänsch-Couillaud Technik realisiert und der LBO Kristall in der ersten Verdopplungsstufe wird 90° Phasen-angepasst. Vor dem UV-Resonator befindet sich ein EOM, welcher Seitenbänder mit der Frequenz von ca. 9.2 GHz aufmoduliert. Quelle: [34].

Der Druck in der Vakuumkammer liegt bei ca. $2.6 \cdot 10^{-11}$ mbar. Die Fenster für die Durchführung der UV-Laser sind mit MgF₂ antireflex-beschichtet. Durch einen Ofen, der sich unterhalb der Ionenfalle befindet, wird der neutrale Atomstrahl erzeugt.

Des Weiteren sind in Abb. 20 die Magnetfeldspulen des Hauptmagnetfeldes und der Kompensationsfelder zu erkennen. Die Hauptmagnetfeldspulen (NW-SO) erzeugen das Magnetfeld **B**, welches die Quantisierungsachse festlegt.

Der Betrag $|\mathbf{B}|$ der Spulenpaare lässt sich durch Aufsummieren der Magnetfelder der einzelnen Spulen berechnen¹⁰ [35]:

 $^{10}\mu_0 \!=\! 4\pi \!\cdot\! 10^{-7} \mathrm{Vs/Am}$

$$|\mathbf{B}| = \frac{\mu_0 I D^2}{\left(D^2 + L^2\right)^{3/2}} \tag{33}$$

mit dem Durchmesser D und dem Abstand L der Spulen. Bei einer Stromstärke von 5 Ampère erhält man in der Mitte zwischen den beiden Spulen eine Magnetfeldstärke von $6.3 \cdot 10^{-4}$ T (6.3 Gauß). In Abb. 22 ist die Magnetfeldstärke der linken Spule (blau) und der rechten Spule (grün) sowie das gesamte Magnetfeld (rot) für die oben erwähnten Parameter dargestellt.

Abbildung 22: Horizontale Kompensationsspulen: Gezeigt ist die Magnetfeldstärke der einzelnen Spulen (blau, grün), sowie die gesamte Magnetfeldstärke (rote Kurve) in Abhängigkeit des Abstandes von der Fallenmitte entlang der Hauptmagnetfeldachse (NW-SO). Das untere Bild zeigt einen Zoom um den Bereich der Fallenmitte. Im Bereich von ± 1 cm von der Fallenmitte steigt die Magnetfeldstärke um 1.3% an. Parameter: I = 1 Ampère; N = 286 Windungen; D = 14 cm; L = 34 cm

Das untere Bild in Abb. 22 zeigt eine vergrößerte Darstellung von \pm 20 μ m im Bereich um die Mitte der Fallenachse. Das Magnetfeld steigt bei einem Abstand von \pm 1 cm vom Zentrum um 1.3% an.

Der σ^+ -polarisierte ${}^{2}P_{1/2}$ und der σ^- -polarisierte ${}^{2}P_{3/2}$ Strahl propagieren in bzw. gegen die Richtung der Magnetfeldachse durch die Kammer (siehe Abb. 20). Die π polarisierten ${}^{2}P_{1/2}$ und ${}^{2}P_{3/2}$ Strahlen müssen senkrecht zur Quantisierungsachse eingestrahlt werden.

Mit Hilfe eines Magnetfeldspulenpaars senkrecht zur Magnetfeldachse (SW-NO) und

einer Spule auf der Vakuumkammer wird die Richtung der Quantisierungsachse mit den jeweiligen Strahlen optimiert. Die horizontalen Magnetfeldspulen erzeugen das Kompensationsmagnetfeld $\mathbf{B}_{Komp,H.}$. Diese wurden mit 26-poligem Flachbandkabel (AWG-28) gewickelt.

Der Draht hat einen Widerstand von 0.216 Ω/m . Bei einer Gesamtlänge von ca. 125 m und einem Strom von 0.5 Ampère entspricht das einer Verlustleistung von 6.8 W. Laut Datenblatt kann das Kabel bis zu einem maximalen Strom von 2 Ampère betrieben werden. Bei einer Stromstärke von 1 Ampère erhält man in der Mitte der Falle eine gesamte Magnetfeldstärke von 2.8 $\cdot 10^{-4}$ T (2.8 Gauß).

Für die Kompensation in vertikaler Richtung wurde an die Oberseite der Kammer eine Spule mit N = 120 Windungen und einem Durchmesser D = 13 cm montiert.

Die Daten der Hauptmagnetfeldspulen und der Kompensationsspulen sind in Tabelle 9 angeben.

Tabelle 9: Auflistung der Daten der horizontalen bzw. vertikalen Kompensations- und Hauptmagnetfeldspulen

Spulenpaar	N	D (cm)	L (cm)	$\left ec{B} ight $ (Gauß)
Hauptmagnetfeld	95	15	34	6.3 bei 5 Ampère
horizontale Kompensation	286	14	34	2.8 bei 1 Ampère
vertikale Kompensation (1 Spule)	120	13	7	1.8 bei 1 Ampère

Das Fluoreszenzsignal des Ions wird über ein Objektiv auf ein Zwischenbild abgebildet, welches durch eine Abbildungsoptik, bestehend aus zwei Linsen mit einer Brennweite f = 100 mm und einer Lochblende auf die CCD-Kamera (ANDOR iXon) oder den Photodetektor fokussiert wird. Durch einen Klappspiegel kann die Abbildung zwischen der Kamera und dem Photodetektor hin- und hergeschaltet werden. Für mehr Details zur Apparatur und Abbildungsoptik, siehe [34].

7.1 Grundprinzip der linearen Paulfalle

Das Grundprinzip der in Abb. 23 dargestellten Paulfalle beruht auf den Einschluss von Ionen in allen drei Raumrichtungen durch elektrische Gleich- und Wechselfelder, die an Elektroden anliegen. Die Form der Elektroden bestimmt den Potentialverlauf in der Falle. Durch hyperbolisch geformte Elektroden kann ein Quadrupolfeld $\phi(x, y, z) = \alpha \cdot x^2 + \beta \cdot y^2 + \gamma \cdot z^2$ realisiert werden. Je nach Vorzeichen der Konstanten α, β und γ wirkt die von dem Quadrupolfeld erzeugte Kraft auf das Ion in Richtung Fallenzentrum (rücktreibend) oder entgegen (abstoßend).

Im ladungsfreien Raum muss zu allen Zeiten die Poissongleichung $\Delta \phi = 0$ für das

Potential $\phi(x, y, z)$ erfüllt sein. Daraus erhält man für die Vorfaktoren folgende Bedingung:

$$\alpha + \beta + \gamma = 0. \tag{34}$$

Gl. (34) besitzt für α , β und γ unendlich viele Lösungstripel, wobei mindestens eine Konstante negativ ist, was zur Folge hat, dass die Kraft entlang dieser Raumrichtung abstoßend ist. Es ist somit durch das konstante Potential gleichzeitig kein Einschluss in allen drei Raumrichtungen möglich.

Die grundlegende Idee ist das Vorzeichens der Koeffizienten α und β durch Anlegen einer Wechselspannung an den Elektroden periodisch zu ändern. Ausführlichere Darstellungen finden sich in [36].

Abbildung 23: Lineare Paulfalle: Schematische Darstellung der linearen Paulfalle. Der axiale Einschluss wird durch zwei Elektroden (Endkappen), zwischen denen eine Gleichspannung von 0 V bis 1 kV anliegt, realisiert. Radial werden die Ionen von den 4 äußeren Elektroden (Klingen) eingeschlossen, an denen eine Wechselspannung bei 23.784 MHz anliegt. Ein Frequenzgenerator FG erzeugt die Wechselspannung, die über einen Verstärker V und ein Leistungsmessgerät M in einen Schwingkreis S eingespeist wird. In dem Ersatzschaltbild von S ist die Induktivität L der Spule, die Kapazität C_t der Falle, C_w des Drahtes und C_f der Vakuumdurchführung eingezeichnet.

Die Falle besteht aus den beiden Endkappen, zwischen denen eine Gleichspannung von einigen 100 V anliegt und den axialen Einschluss realisieren. Der Einschluss in radialer Richtung erfolgt durch vier weitere Elektroden (Klingen), an die eine Wechselspannung

bei 23.784 MHz anliegt.

Der Frequenzgenerator FG erzeugt das Hochfrequenzsignal, das über einen Verstärker V in den Topfkreis-Resonator S eingespeist wird. L entspricht der Induktivität der Spule, C_t der Kapazität der Falle, C_w der Kapazität des Drahtes und C_f der Kapazität der Vakuumdurchführung. Für Details siehe [37].

Das Potential V(x, y, z, t) in der Mitte der Falle lautet ([36, 38]):

$$V(x, y, z, t) = \frac{V_0}{2} \left(1 + \frac{x^2 - y^2}{R^2} \right) \cos(\Omega t) + \frac{\kappa U_0}{Z_0^2} \left(z^2 - \frac{1}{2} (x^2 + y^2) \right).$$
(35)

 U_0 entspricht der Amplitude der Gleichspannung an den Endkappen und $V_0 \cdot \cos(\Omega t)$ der Amplitude der angelegten Wechselspannung mit Kreisfrequenz Ω an den Fallenelektroden. Z_0 entspricht dem halben Abstand zwischen den Endkappen und R ist der Abstand von der Fallenmitte zu den Elektroden (Klingen) (Abb. 24). κ wird als geometrischer Faktor eingeführt und berücksichtigt die Abweichung des Feldes der Endkappen in der Mitte der Falle. Durch Bildung des Gradienten kann das elektrische Feld berechnet werden und mit $\vec{F} = m \cdot \vec{x} = e \vec{E}$ erhält man die Bewegungsgleichungen des Ions für alle Raumrichtungen (x, y, z):

$$\frac{d^2z}{dt^2} + \frac{2\kappa U_0 e}{mZ_0^2} z = 0 \tag{36}$$

$$\frac{d^2x}{dt^2} - \left[\frac{\kappa U_0 e}{mZ_0^2} - \frac{eV_0}{mR^2}\cos(\Omega t)\right]x = 0$$
(37)

$$\frac{d^2x}{dt^2} - \left[\frac{\kappa U_0 e}{mZ_0^2} + \frac{eV_0}{mR^2}\cos(\Omega t)\right]x = 0$$
(38)

Durch Einsetzen folgender Parameter:

$$a_x = a_y = -\frac{1}{2}a_z = -\frac{4Q\kappa U_0}{mZ_0^2\Omega^2}$$
(39)

$$q_x = -q_y = \frac{2QV_0}{mR^2\Omega^2}, \ q_z = 0$$
 (40)

in die Bewegungsgleichungen $(36),\,(37)$ und (38)erhält man die Mathieu'schen Differentialgleichungen

Abbildung 24: Geometrische Parameter der Paulfalle: Vorderansicht (links) und Seitenansicht (rechts) der linearen Falle mit den geometrischen Parametern $Z_0 = 2.5$ mm und R = 0.8 mm. Für technische Details siehe [34].

$$\frac{d^2 u_i}{dt^2} + [a_i + 2q_i \cos(\Omega t)] \frac{\Omega^2}{4} u_i = 0$$
(41)

mit i = x, y, z und $(u_x, u_y, u_z) \equiv (x, y, z)$. In [36] und [38] wird näher auf den allgemeinen Lösungsansatz eingegangen. Für $q_i \ll 1$ kann die Bewegung des Ions als Überlagerung einer schnellen und langsamen Oszillation betrachtet werden. Die Lösung hat folgende Form [39]:

$$u_i(\tau) = A \cdot \cos(\omega_i t) \left[1 + \frac{q_i}{2} \cos(\Omega t) \right] .$$
(42)

Die schnelle Oszillation mit der Frequenz Ω wird als Mikrobewegung bezeichnet und jene mit den Frequenzen ω_i als Säkularbewegung. Für ω_i erhält man folgenden Ausdruck:

$$\omega_i = \frac{\Omega}{2} \sqrt{a_i + \frac{q_i^2}{2}} . \tag{43}$$

Durch Einsetzen von Gl. (39) und Gl. (40) in Gl. (42) erhält man für die axiale und radiale Fallenfrequenz folgende Ausdrücke:

$$\omega_z = \sqrt{\frac{2Q\kappa U_0}{mZ_0^2}} \tag{44}$$

$$\omega_{x,y} = \omega_z \cdot \sqrt{\frac{m}{2U_0}} Z_0 \cdot \sqrt{\frac{QV_0^2}{\kappa m^2 R^4 \Omega^2} - 1}$$

$$\tag{45}$$

Typische experimentell benutzte Parameter¹¹ für das Laden von Ionen sind:

$$\begin{split} \Omega &= 2\pi \cdot 20 \ {\rm MHz} \\ \kappa &= 0.5 \\ U_0 &= 600 \ {\rm V} \\ V_0 &= 200 \ {\rm V} \\ R &= 0.8 \ {\rm mm} \\ m &= 24 \ {\rm amu} \\ Z_0 &= 2.5 \ {\rm mm} \end{split}$$

 $\Rightarrow \omega_z = 2.42 \text{ MHz und } \omega_{x,y} = 1.84 \text{ MHz}$

7.2 Charakterisierung der Fallenparameter

Im folgenden Kapitel wird der geometrische Faktor κ dieser linearen Paulfalle und der Gütefaktor Q des Resonators gemessen. Über die Abstandsmessung zweier Magnesiumionen wird die Vergrößerung γ des Objektives bestimmt, sowie eine Messung zur Isotopenunterscheidung durchgeführt.

7.2.1 Bestimmung des geometrischen Faktors κ und Charakterisierung der Monitorspannung

Über einen kapazitiven Spannungsteiler, bestehend aus einer Kapazität $C_1 = 100 \text{ pF}$ und einer sehr geringen Kapazität $C_2 \approx 1 \text{ pF}$, wird die Monitorspannung V_{pu} an dem Fallenresonator abgegriffen (siehe Abb. 25). Da der Wert der Kapazität C_2 nicht genau bekannt ist, muss die Monitorspannung kalibriert werden. Je geringer die Kapazität C_2 , desto weniger wird die Kapazität C_t der Falle verändert.

 V_0 entspricht der Ausgangsspannung des Resonators. Die radiale Fallenfrequenz $\omega_{x,y}$ ist von V_0 abhängig. Das Signal des Frequenzgenerators (Marconi) mit der Frequenz Ω wird mit einem zweiten Frequenzgenerator der Frequenz $\Delta\Omega$ gemischt. Durch Verstimmen von $\Delta\Omega$ kann die radiale Bewegung der Ionen in der Falle angeregt werden analog zu einem getriebenen harmonischen Oszillator. Entspricht $\Delta\Omega$ der radialen Fallenfrequenz, tritt der Resonanzfall ein, was eine Amplitudenanregung zur Folge hat. Diese Anregung (≈ 1 MHz) wird auf der CCD-Kamera durch eine Verbreiterung des Fluoreszenzsignals der Ionen beobachtet, da die Oszillation nicht aufgelöst werden kann.

Wir nehmen einen linearen Zusammenhang zwischen V_0 und V_{pu} an, also $V_0 = \beta \cdot V_{pu}$. Setzt man diesen Ansatz in Gl. (45) ein, so erhält man¹² für den theoretischen Zusam-

 $^{^{11}\}mathrm{Der}$ Faktor κ wird in diesem Beispiel frei gewählt

 $^{^{12}}R=0.8$ mm; $Z_0=2.5$ mm; e = 1.602 · 10 $^{-19}$ C; $m=24 \cdot 1.6605 \cdot 10^{-27}$ kg; Amplitude $U_0=600$ V; $\Omega=2\pi \cdot 23.66$ MHz

Abbildung 25: Monitorspannung: Schematische Darstellung des Resonators mit der Spule L. Die Monitorspannung V_{pu} wird über den Kondensator $C_1 = 100$ pF abgegriffen. P_{in} entspricht der in den Resonator einfallenden Leistung (siehe Abb. 23). Für die Monitorspannung gilt: $V_{pu} \approx \frac{V_0 \cdot C_2}{C_1 + C_2}$. Durch die Bedingung $C_2 \ll C_1$ wird die Kapazität C_t der Falle wenig beeinflusst.

menhang zwischen $\omega_{x,y}$ und V_{pu} :

$$\omega_{x,y} = \frac{e\beta}{\sqrt{2mR^2\Omega}} \sqrt{V_{pu}^2 - \frac{2\kappa U_0 mR^4\Omega^2}{Z_0^2 e\beta^2}}$$
(46)

 β und κ werden als Fitparameter gewählt. In Abb. 26 ist die radiale Fallenfrequenz $\omega_{x,y}$ gegen die Monitorspannung V_{pu} aufgetragen sowie die theoretische Fitfunktion (Gl. (46)).

Daraus ergibt sich folgendes Ergebnis für die zu bestimmenden Parameter β und κ :

$$\beta = 1325 \pm 62 \tag{47}$$

$$\kappa = 0.075 \pm 0.015 \tag{48}$$

Für den Fehler der Fallenfrequenz wurde die halbe Resonanzbreite von 27 kHz gewählt.

7.2.2 Bestimmung des Gütefaktors Q des Resonators

Die an der Falle anliegenden Leistung P_0 hängt über den Q-Faktor mit der in den Resonator einfallenden Leistung P_{in} zusammen. Da von dem Leistungsmessgerät M (siehe Abb. 23) der Effektivwert gemessen wird, hängt die momentane Leistung P_0 an der Falle über den doppelten Q-Faktor mit der eingekoppelten Leistung P_{in} zusammen. Daraus ergibt sich folgender Ausdruck:

Abbildung 26: Monitorspannung: Messung der radialen Fallenfrequenz $\omega_{x,y}$ gegen die Monitorspannung V_{pu} sowie die theoretische Fitfunktion (grüne Kurve). Die Proportionalitätskonstante β zwischen V_{pu} und V_t sowie der geometrische Faktor κ wurden als Fitparameter gesetzt. Die Resonanzbreiten betragen 27 kHz.

$$P_0 = \frac{V_0^2}{R_0} = \frac{(\sqrt{2}V_{0,eff})^2}{R_0} = 2 \cdot QP_{in} \Rightarrow V_0 = \sqrt{2R_0QP_{in}} .$$
(49)

 V_0 hängt über den in Abschnitt 7.2.1 gemessenen Faktor β mit der Monitorspannung V_{pu} zusammen. Daraus erhält man für den Zusammenhang zwischen V_0 und der Eingangsleistung P_{in} des Resonators folgenden Ausdruck:

$$V_{pu} = \frac{\sqrt{2R_0}\sqrt{Q}\sqrt{P_{in}}}{\beta} \ . \tag{50}$$

In Abb. 27 ist die Monitorspannung V_{pu} als Funktion der eingekoppelten Leistung P_{in} dargestellt sowie die entsprechende Fitfunktion (siehe Gl. 50). Der Faktor Q entspricht dem Fitparameter.

Für den Gütefaktor Q des Resonators erhält man folgendes Ergebnis:

$$Q = 525 \pm 9$$

Abbildung 27: Bestimmung von Q: Messung der Monitorspannung V_{pu} in Abhängigkeit der in den Resonator eingekoppelten Leistung P_{in} .

7.2.3 Vergrößerungskalibration des Objektivs

In Abb. 28 (links) ist das Kamerabild eines Ions in der Falle dargestellt und auf der rechten Seite sind zwei Ionen abgebildet.

Zwei Ionen in einer Falle ordnen sich in einem Abstand d an, bei dem die abstoßende Coulombkraft vom Nachbarion die in Richtung Fallenzentrum wirkende Rückstellkraft kompensiert. Daraus erhält man folgende Bedingung im Gleichgewicht:

$$\frac{e^2}{4\pi\epsilon_0 d^2} = \frac{e\kappa U_0 d}{Z_0^2} \tag{51}$$

$$\Rightarrow d = \left[\frac{eZ_0^2}{4\pi\epsilon_0\kappa U_0}\right]^{1/3} .$$
(52)

Durch Messung des Ionenabstandes auf der CCD-Kamera in Abhängigkeit der Endkappenspannung U_0 wird der Vergrößerungsfaktor γ des Objektivs vor der Kamera bestimmt (siehe Abb. 28). Mit einem Pixelabstand p von 8 μ m erhält man für den gemessenen Abstand d_{exp} in Pixel:

$$d_{exp} = \frac{\gamma}{p}d . ag{53}$$

*	4.4

Abbildung 28: Magnesiumionen: Abbildung des CCD-Kamerabildes von einem einzelnen $^{24}{\rm Mg}$ Ion (links) und von zwei $^{24}{\rm Mg}$ Ionen (rechts) in der Falle. Der Abstand der beiden Ionen im rechten Bild beträgt ca. 7 $\mu{\rm m}$ bei einer Endkappenspannung von 300 V.

Daraus folgt für die Fitfunktion:

$$d_{exp} = \frac{\gamma}{p} \left[\frac{eZ_0^2}{4\pi\epsilon_0 \kappa U_0} \right]^{1/3} \tag{54}$$

Abbildung 29: Abstandskalibration: Gezeigt ist der durch die CCD-Kamera gemessene Abstand in Einheiten Pixel (linke Skala) und μ m (rechte Skala) zweier ²⁴Mg⁺ Ionen für unterschiedliche Endkappenspannungen U_0 . Die gemessene Eingangsleistung des Resonators während der Messung entspricht 4.5 W bei 23.66 MHz.

 γ ist der gesuchte Fitparameter und für κ wird der in Abschnitt 7.2.1 bestimmte Wert von 0.075 eingesetzt. In Abb. 29 ist der gemessene Abstand in Abhängigkeit der Endkappenspannung U_0 aufgetragen sowie die entsprechende Fitfunktion (grüne Kurve).

Für den Vergrößerungsfaktor des Objektivs erhält man folgendes Ergebnis:

$$\gamma = 17.1 \pm 0.2$$
 (55)

7.3 Messung zur Isotopenunterscheidung von Mg⁺

Im folgenden Abschnitt wird eine Methode zur Unterscheidung der Magnesiumisotope beschrieben. Das Grundprinzip basiert auf die Abhängigkeit der axialen und radialen Fallenfrequenz von der Masse des jeweiligen Ions und der Elektrodenspannung. In [40] wird dasselbe Prinzip angewendet, um Isotope von molekularen ⁴⁰CaO⁺ Ionen voneinander zu unterscheiden. Dazu wurden die molekularen Ionen mittels ⁴⁰Ca⁺ mitfühlend gekühlt und anschließend die Eigenfrequenzen der axialen Moden gemessen. Daraus kann die Differenz der Massen berechnet werden.

Im Fall der Magnesiumionen werden die Isotope selektiv einzeln geladen und deren axiale Fallenfrequenz in Abhängigkeit der Endkappenspannung gemessen. Die Anregung der Ionen in axialer Richtung erfolgt über eine Wechselspannung, die an den Elektronenemitter angelegt wird (siehe Abb. 30). Entspricht die an den Elektronenemitter angelegte Frequenz der axialen Fallenfrequenz (Resonanzbedingung), wird analog zu der in Kapitel 7.2.1 beschriebenen Methode die Amplitudenanregung auf der CCD-Kamera beobachtet.

Ein Frequenzgenerator erzeugt eine Wechselspannung mit der Amplitude von 11 V, die auf die Primärspule eines Transformators mit Wicklungsverhältnis 1:4 gegeben wird. Dadurch wird in der Sekundärspule eine Spannungsamplitude von 42.5 V erzeugt, die auf den elektrischen Anschluss des Elektronenemitters gelegt wird, der hier als Elektrode dient.

Die Magnesiumisotope werden durch Verstimmung des Ionisationslasers selektiv ionisiert und anschließend Doppler-gekühlt. Die Ionisations und Kühllaserfrequenzen, mit denen reproduzierbar alle Isotope geladen wurden bzw. das Fluoreszenzsignal der CCD-Kamera maximal war, sind in Tabelle 11 angegeben. Die Frequenzen wurden über das Wellenlängenmessgerät (Wavelengthmeter WS-7 MC) gemessen. Die Fehler wurden über die Ungenauigkeit der absoluten Frequenz des Wellenlängenmessgerätes abgeschätzt. In einem Zeitraum von sechs Monaten wurde ein Drift von ca. 33 MHz gemessen.

Abbildung 30: Isotopenunterscheidung: Schematische Darstellung des Versuchsaufbaus um die axiale Bewegung der Ionen resonant anzuregen. Durch den Transformator (Verhältnis 1:4) wird die Amplitude der Primärspannung von 11 V auf 42.5 V hochtransformiert. Diese Spannung wird direkt an die Elektrode des Elektronenemitters gegeben. Die Amplitudenverstärkung der Oszillationsbewegung des Ions in axialer Richtung wird auf der CCD-Kamera beobachtet.

Der theoretische Zusammenhang zwischen der axialen Fallenfrequenz ω_z und der Endkappenspannung U_0 ist durch Gl. (44) gegeben. Die Fitfunktion wird folgendermaßen angesetzt:

$$\begin{split} \omega_z &= \sqrt{\frac{2p(1)U_0e}{mZ_0^2}} + p(2) \\ p(1) &= \kappa \text{ und } p(2): \text{Offset} \end{split}$$

Als Fitparameter wird der geometrische Faktor κ und ein allgemeiner Offset p(2) gewählt. In Abb. 31 ist das Ergebnis der Messung dargestellt.

Ein Faktor, womit die Theorie mit dem Experiment verglichen werden kann, ist das Verhältnis v der Fallenfrequenzen, welches nur von dem Verhältnis der Isotopenmassen abhängig ist. Die erwarteten Werte sind:

$$v_{24,25} = \frac{\omega_{z,24}}{\omega_{z,25}} = \sqrt{\frac{25}{24}} \approx 1.0216 \quad v_{24,26} = \frac{\omega_{z,24}}{\omega_{z,26}} = \sqrt{\frac{26}{24}} \approx 1.0408 \tag{56}$$

Abbildung 31: Messung der Isotopenunterscheidung: Messung der axialen Fallenfrequenz ω_z in Abhängigkeit der Endkappenspannung für ²⁴Mg⁺, ²⁵Mg⁺ und ²⁶Mg⁺. Die Resonanzbreite beträgt 3 kHz.

In Tabelle 10 sind die Ergebnisse für die Parameter $p(1) = \kappa$, p(2) sowie für das Verhältnis v zusammengefasst. Der Fehler für die Resonanzfrequenz wird wiederum als die halbe Resonanzbreite gewählt, die 3 kHz beträgt. Die gemessenen Verhältnisse stimmen unter Berücksichtigung der Standardabweichungen mit den theoretisch erwarteten Werte von v überein. Die Standardabweichung σ der Fitparameter wird über das 95% Konfidenzintervall $[x_1, x_2]$ berechnet. Die Breite $x_2 - x_1$ des Intervalls entspricht 4σ . Das 95% Konfidenzintervall eines Fitparameters wie v hat folgende Bedeutung: In 95 von 100 Messungen wird der Wert des Fitparameters innerhalb des Konfidenzintervalls liegen. Der Fehler von v ist aufgrund der geringen Abweichung der Messpunkte von der theoretischen Regressionskurve im Bereich von 1%.

Tabelle 10: Ergebnisse der axialen Fallenfrequenzmessung. Die Verhältnisse $v_{24,25} = \frac{\omega_{z,24}}{\omega_{z,25}}$ bzw. $v_{24,26}$ stimmen sehr gut mit den theoretisch erwarteten Werte überein.

Isotop	$v (\exp.)$	v (th.)	$\kappa = p(1)$	Offset $p(2)$ (kHz)
$^{24}Mg^+$	1	1	0.0770 ± 0.0003	6.17 ± 1.05
$^{25}Mg^+$	1.0224 ± 0.0018	1.0216	0.0770 ± 0.0001	4.49 ± 0.37
$^{26}Mg^+$	1.0421 ± 0.0013	1.0408	0.0770 ± 0.0003	5.36 ± 1.13

Tabelle 11: Gemessene Frequenzen und Vakuumwellenlängen des Kühllasers (K) und Ionisationslasers (PI) für den $^2S_{1/2} \rightarrow \ ^2P_{1/2}$ und $^2S_{1/2} \rightarrow \ ^2P_{3/2}$ Übergang von $^{24}\mathrm{Mg^+}$, $^{26}\mathrm{Mg^+}$ und dem $^2S_{1/2} \rightarrow \ ^2P_{3/2}$ Übergang von $^{25}\mathrm{Mg^+}$

	PI (THz)	PI (nm)	K (THz)	K (nm)
$^{-24}Mg^+ (^2S_{1/2} \rightarrow {}^2P_{1/2})$	1050.81170(3)	285.29607(1)	1069.33830(3)	280.35324 (1)
$^{-24}Mg^+ (^2S_{1/2} \rightarrow ^2P_{3/2})$	1050.81170(3)	285.29607(1)	1072.08294 (3)	279.63550(1)
$^{25}Mg^+ (^2S_{1/2} \rightarrow ^2P_{3/2})$	1050.80138 (3)	285.29887(1)	1072.08516 (3)	279.63492 (1)
$^{26}Mg^+ (^2S_{1/2} \rightarrow {}^2P_{1/2})$	1050.80110 (3)	285.29895 (1)	1069.34080(3)	280.35258(1)
$^{26}Mg^+ (^2S_{1/2} \rightarrow \ ^2P_{1/2})$	1050.80110 (3)	285.29895 (1)	1072.08604 (3)	279.63470(1)

Der Offset p(2), der durch Streufelder der Radiofrequenz der Elektroden erzeugt werden kann, ist vernachlässigbar klein (Faktor 10^{-3}). Das Auflösungsvermögen dieser Messung ist bestimmt durch die Resonanzbreite, welche 3kHz beträgt. Zudem ist das Auflösungsvermögen bzw. die Resonanzbreite von der Art der Messmethode abhängig. Die Detektion durch den Photonendetektor wird empfindlicher sein, was eine genauere Bestimmung des Auflösungsvermögens zulässt. Ist die Differenz der Fallenfrequenzen zweier Isotope geringer als 3 kHz, können diese auf der CCD-Kamera nicht mehr voneinander unterschieden werden.

8 Messung des Anregungsspektrums von ${}^{24}Mg^+$ und ${}^{26}Mg^+$

Im folgenden Kapitel wird die Messung des Anregungsspektrums des ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ Übergangs von ${}^{24}Mg^{+}$ und ${}^{26}Mg^{+}$ beschrieben. Das Ion wird über einen rot-verstimmten Laser bei ca. 280.35324 nm Doppler-gekühlt¹³. Anschließend wird die Frequenz des Kühllasers über die Resonanz verstimmt und das Fluoreszenzsignal durch die PMT aufgenommen. Abb. 32 zeigt das gemessene Anregungsspektrum des ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ Übergangs von ${}^{24}Mg^{+}$.

In Abb. 33 ist das Ergebnis von ${}^{26}Mg^+$ dargestellt. Durch blau-verstimmtes Licht entsteht ein Heizeffekt, der den Einbruch des Fluoreszenzsignals verursacht.

Die Anpassungsfunktion mit den Fitparametern a, b, c und d wurde folgendermaßen angesetzt:

$$y = a + \frac{2bc}{\pi \left[4(\nu - d)^2 + c^2\right]}$$
(57)

 $^{^{13}\}mathrm{Der}~^2\mathrm{S}_{1/2} \rightarrow {}^2\mathrm{P}_{1/2}$ Übergang wird zum Dopplerkühlen verwendet

Abbildung 32: Anregungsspektrum von $^{24}\mathrm{Mg}^+$: Gezeigt ist das Anregungsspektrum des $^2\mathrm{S}_{1/2} \rightarrow ^2\mathrm{P}_{1/2}$ Übergangs von $^{24}\mathrm{Mg}^+$. Durch die Verstimmung der Laserfrequenz oberhalb der Resonanz kommt es zum Heizeffekt, was den Einbruch am Maximum erklärt. Dennoch wurde an die Hälfte der Daten eine Lorentzkurve angepasst, um die Breite und absolute Frequenz der Resonanz zu bestimmen. Die gemessene Isotopieverschiebung von $^{24}\mathrm{Mg}^+$ zu $^{26}\mathrm{Mg}^+$ beträgt (3.098 \pm 9) GHz.

wobei a dem Offset, d der Position des Maximums und c der Breite des Lorentzprofils entspricht. In Tabelle 12 sind die Ergebnisse der Anpassungsparameter aufgelistet.

Tabelle 12: Ergebnis der Anpassungsparameter der Lorentzfunktion aus Gl. (57). *a* entspricht dem Offset, $b \cdot c$ entspricht der Amplitude, *c* der Breite $\Delta\Gamma$ der Kurve und *d* der Position des Maximums.

Isotop	$a (s^{-1})$	b (Hz)	c (MHz)	d (Hz)
$^{24}Mg^+$	33.3 ± 0.6	$57.2 \cdot 10^3 \pm 1.4 \cdot 10^3$	120.4 ± 2.8	644.8 ± 0.9
$^{26}Mg^+$	17.6 ± 1.2	$60.3 \cdot 10^3 \pm 2.2 \cdot 10^3$	130.4 ± 3.7	302.8 ± 1.3

Das Ergebnis der Linienbreiten $\Delta\Gamma$ und der absoluten Position ν_0 des Maximums sind in Tabelle 13 aufgelistet.

Die Linienbreiten von 120 MHz weichen stark von den erwarteten 40 MHz ab. Der Grund für die Abweichung liegt daran, dass wir bei der eingestrahlten Leistung von ca. 1 mW einen starken Effekt der Sättigungsverbreiterung sehen. Die Sättigungsintensität I_0 bei einer natürlichen Linienbreite von 40 MHz und einer Wellenlänge von 280 nm beträgt 2381.59 W/m².

Abbildung 33: Anregungsspektrum von ²⁶Mg⁺: Gezeigt ist das Anregungsspektrum des ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ Übergangs von ${}^{26}Mg^+$. Durch die Verstimmung der Laserfrequenz oberhalb der Resonanz kommt es zum Heizeffekt, was den Einbruch am Maximum erklärt. Dennoch wurde an die Hälfte der Daten eine Lorentzkurve angepasst, um die Breite und absolute Frequenz der Resonanz zu bestimmen. Die gemessene Isotopieverschiebung von ${}^{24}Mg^+$ zu ${}^{26}Mg^+$ beträgt (3.098 ± 9) GHz.

Das Verhältnis der Linienbreiten ist vom Verhältnis der Intensität I zur Sättigungsintensität I_0 abhängig:

$$\Delta \nu_{SV} = \Delta \nu \cdot \sqrt{1 + \frac{I}{I_0}} \tag{58}$$

mit der verbreiterten Linienbreite $\Delta \nu_{SV}$. Daraus erhält man unter der Annahme eines Strahldurchmessers von 300 μ m und einer Leistung von 1.052 mW bzw. Intensität $I = 14883 \ W/m^2$ eine Linienbreite von 107 MHz.

Jeder Messpunkt aus Abb. 32 und Abb. 33 entspricht dem Mittelwert von 5 Messungen, von denen jeweils die Standardabweichung berechnet wurde, die als Fehlerbalken dargestellt sind.

Der Fehler für den Anfangswert der eingestellten Frequenz beträgt 39 MHz. Dieser würde über die Frequenzschwankungen ($\approx 6 \text{ MHz}$) des $S_{1/2} \rightarrow P_{1/2}$ Lasersystems und der Ungenauigkeit des Wellenlängenmessgerätes¹⁴ ($\approx 39 \text{ MHz}$) abgeschätzt. Die Abweichung der gemessenen Resonanzfrequenz ν_0 von der angegebenen Quelle [26] beträgt ca. 13 MHz und liegt somit im Bereich des Fehlers. Die Ungenauigkeit der Zählrate

 $^{^{14}\}mathrm{Die}$ Ungenauigkeit der absoluten Frequenz des Wellenlängenmessgeräts in einem Zeitraum von sechs Monaten

Tabelle 13: Die Linienbreiten und absolute Position ν_0 der Spektren des ${}^2S_{1/2} \rightarrow {}^2P_{1/2}$ Übergangs von ${}^{24}Mg^+$ und ${}^{26}Mg^+$

Isotop	Linienbreite $\Delta\Gamma$ (MHz)	$\nu_0 \; (\mathrm{exp.}) \; (\mathrm{MHz})$	ν_0 (exp.) (MHz) (Quelle: [26])
$^{-24}Mg^+$	120.4 ± 2.8	$1069.338335 \ (39) \cdot 10^6$	$1069.338343 \cdot 10^6$
$^{26}\mathrm{Mg^{+}}$	130.4 ± 3.7	$1069.341433 \ (39) \cdot 10^6$	$1069.341427 \cdot 10^{6}$

wird dominiert durch Frequenzschwankungen des Lasers und Intensitätsschwankungen der Resonatorausgangsleistung. Der Fehler für die Anpassungsparameter wird wiederum über das 95% Konfidenzintervall berechnet. Sämtliche Berechnungen wurden mit dem Programm *Matlab* durchgeführt.

Tabelle 14: Ergebnis der Isotopenunterscheidung $\Delta \nu$ von $^{24}Mg^+$ zu $^{26}Mg^+$

	Ergebnis (MHz)	Quelle
$\Delta\nu(^{24}\mathrm{Mg^+} - ^{26}\mathrm{Mg^+})$	3098 ± 9	Kapitel 8
$\Delta \nu (^{24} Mg^+ - ^{26} Mg^+)$	3085 ± 1	[26]

9 Ramanspektroskopie an ²⁵Mg⁺

Für das Raman-Seitenbandkühlen der Magnesiumionen und die Quantenlogikspektroskopie [10] komplexer Ionen wie z. B. Fe⁺ und Ti⁺, ist die kohärente Manipulation der Magnesiumionen erforderlich. Betrachtet man ein Zwei-Niveau System, so versteht man unter kohärenter Manipulation die Anregung durch einen Laserstrahl mit zeitlich konstanter Phase ϕ^{15} . Die Wahrscheinlichkeit, das Ion in einem der beiden Zustände zu finden, ist bei einem kohärenten Prozess periodisch, was als Rabioszillationen bezeichnet wird [41].

Grundvoraussetzung für die kohärente Manipulation ist der zustandsabhängige Nachweis. Hierfür werden z. B. ein langlebiger Zustand und ein geschlossener Übergang, der an den Grundzustand koppelt, benötigt. Dies ist in der Hyperfeinstruktur von ²⁵Mg⁺ gegeben, was im folgenden Kapitel genauer beschrieben wird.

9.1 Zustandsdetektion an ²⁵Mg⁺

Das Grundprinzip der Zustandsdetektion wird anhand eines 3-Niveau Systems (siehe Abb. 34) erläutert.

¹⁵Das elektrische Feld ist $E \propto e^{i(k\vec{x}-\omega t+\phi(t))}$ mit konstanter Phase ϕ .

Abbildung 34: Zustandsdetektion: Schematische Darstellung zur Zustandsdetektion. Durch kohärente Anregung des $|1\rangle \rightarrow |2\rangle$ Übergangs durch einen π -Puls (vollständige Transformation der Population von $|1\rangle$ in den Zustand $|2\rangle$) kann das Fluoreszenzsignal des Detektionsübergangs unterbunden werden.

Wird angenommen, dass sich das Ion im Grundzustand $|1\rangle$ befindet, so wird es durch resonante Einstrahlung des Kühllasers in den Zustand $|e\rangle$ angeregt, von dort zerfällt es wieder in den Grundzustand, sofern es sich um einen geschlossenen Übergang handelt. Durch Anregung des Zustandes $|2\rangle$, der schwach an den Grundzustand gekoppelt ist, wird eine Verringerung des Fluoreszenzlichts auf der CCD-Kamera oder der PMT beobachtet. Voraussetzung ist, dass die Lebensdauer des Zustandes $|2\rangle$ wesentlich größer ist als die Lebensdauer von $|e\rangle$.

Das Energieniveau $|2\rangle$ wird auch als dunkler Zustand bezeichnet. Die Verweilzeit in dem Dunkelzustand entspricht dem Zeitraum des verringerten Fluoreszenzsignals.

Dieser Effekt ist unter anderem als "Quantensprung" bekannt. Das Konzept wird detailliert in [42] beschrieben.

Betrachtet man das in Abb. 35 dargestellte Termschema von ²⁵Mg⁺, so entspricht der $|^{2}S_{1/2}, F = 3, m_{F} = -3 \rangle \rightarrow |^{2}P_{3/2}, F = 3, m_{F} = -4 \rangle$ Übergang dem Kühl- und Nachweisübergang von Abb. 34 und der Ramanübergang $|^{2}S_{1/2}, F = 3, m_{F} = -3 \rangle \rightarrow |^{2}S_{1/2}, F = 2, m_{F} = -2 \rangle$ dem Übergang $|1\rangle \rightarrow |2\rangle$.

Der Nachweis erfolgt durch den σ^- -polarisierten Strahl des ${}^2P_{3/2}$ Lasersystems (siehe Kapitel 7). Die in Abb. 35 eingezeichneten π - und σ^+ Strahlen werden von dem Energieniveau $|{}^2P_{1/2}, F = 3, m_F = -3\rangle$ um 9.0528 GHz verstimmt und regen den Ramanübergang von Zustand $|{}^2S_{1/2}, F = 3, m_F = -3\rangle$ nach $|{}^2S_{1/2}, F = 2, m_F = -2\rangle$ an.

Wird beim Ramanübergang analog zum 2-Niveau System durch ein π -Puls die gesamte Population in den Zustand $|2\rangle$ transferiert, so sinkt das Fluoreszenzsignal des Monitorübergangs idealerweise auf das Hintergrundsignal, unter der Voraussetzung, dass der Detektionslaser nicht mit dem $|^2S_{1/2}, F = 3, m_F = -2\rangle$ Zustand resonant ist. Die Zustandsmessung ist aufgrund der Hyperfeinstrukturaufspaltung mit ²⁵Mg⁺ möglich, da der Zerfall des Energieniveaus $|2\rangle$ nach $|1\rangle$ im Gegensatz zum Monitorübergang nicht den Dipol-Übergangsregeln genügt. Aus diesem Grund kann die Lebensdauer von $|2\rangle$ gegenüber der Lebensdauer von Zustand $|^2P_{3/2}, F = 3, m_F = -4\rangle$ (3.7 ns) vernachlässigt werden.

Abbildung 35: Termschema von ²⁵Mg⁺ (siehe Abb. 18): Gezeigt ist das Termschema von ²⁵Mg⁺ mit den Zeemanniveaus, die durch die Quantenzahl m_F gekennzeichnet sind. Der σ^- -polarisierte Strahl wird über den $|^2S_{1/2}, F = 3, m_F = -3 \rangle \rightarrow |^2P_{3/2}, F = 3, m_F = -4 \rangle$ Übergang zum Laserkühlen und für die Detektion verwendet. Die um jeweils 9.0528 GHz verstimmten π - und σ^+ -polarisierten Strahlen treiben den Ramanübergang.

9.2 Theoretische Beschreibung der Ramanresonanz

Im Rahmen dieses Abschnitts werden die wichtigsten Konzepte der kohärenten Manipulation mittels Ramanübergang diskutiert. Dazu wird zuerst auf die Wechselwirkung eines 2-Niveau Systems mit Licht näher eingegangen und anschließend das 3-Niveau System betrachtet. Unter der Annahme einer schwachen Atom-Licht-Wechselwirkung und unter Anwendung der Drehwellennäherung wird gezeigt, dass sich das 3-Niveau System auf ein 2-Niveau System mit einer effektiven Rabifrequenz Ω_{eff} reduzieren lässt.

9.2.1 Wechselwirkung eines 2-Niveau Systems mit einem elektrischen Feld

Das untere Niveau wird mit $|1\rangle$ bezeichnet und der obere Zustand mit $|2\rangle$. Die Energiedifferenz zwischen den beiden Zuständen beträgt $\hbar\omega_0 = \hbar\omega_2 - \hbar\omega_1$, mit den Anregungsfrequenzen ω_1 und ω_2 der beiden Zustände $|1\rangle$ und $|2\rangle$. Die Nullpunktenergie bzw. der Bezugspunkt für die Frequenzen liegt $\hbar\omega_1$ bzw. ω_1 unterhalb des Zustands $|1\rangle$ (siehe Abb. 36).

Abbildung 36: 2-Niveau System: Schematische Darstellung des 2-Niveau Systems mit den beiden Energieniveaus $\hbar\omega_1$ und $\hbar\omega_2$ und dem Bezugspunkt 0.

Das ungestörte System wird durch den Hamiltonoperator \hat{H}_0 beschrieben, der wie folgt angesetzt wird:

$$\hat{H}_{0} = \hbar\omega_{1} \left| 1 \right\rangle \left\langle 1 \right| + \hbar\omega_{2} \left| 2 \right\rangle \left\langle 2 \right| \quad . \tag{59}$$

Der Wechselwirkungsoperator \hat{H}_{WW} wird in der semiklassischen¹⁶ Beschreibung der Atom-Licht-Wechselwirkung durch folgenden Operator beschrieben:

$$\hat{H}_{WW} = \hat{H}_0 + \cos(\omega_L t)\hbar \left\{ \Omega \left| 1 \right\rangle \left\langle 2 \right| + \Omega^* \left| 2 \right\rangle \left\langle 1 \right| \right\}$$
(60)

mit der Laserfrequenz ω_L und der definierten Rabifrequenz:

$$\Omega = \Omega_{12} = \Omega_{21}^* = \frac{\langle 1 | e\hat{x}E_0 | 2 \rangle}{\hbar}$$
mit $\langle 1 | e\hat{x}\vec{E_0} | 2 \rangle = \int_V \Psi_1^*(\hat{x})e\hat{x}\vec{E_0}\Psi_2(\hat{x})dV$. (61)

 \vec{E}_0 entspricht der Amplitude des elektrischen Feldes und $\Psi_{1,2}$ der Wellenfunktion $|1\rangle$ und $|2\rangle$ im Ortsraum. Für ausführlichere Herleitungen siehe [43, 41, 44]. In die Rabifrequenz geht die Polarisation des elektrischen Feldes ein, woraus die Auswahlregeln für Dipolübergänge folgen. Der nächste Schritt ist die Lösung der Schrödingergleichung:

¹⁶Das Lichtfeld wird klassisch und das Atom quantenmechanisch beschrieben

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = \left(\hat{H}_{WW} + \hat{H}_0\right) |\psi\rangle \quad . \tag{62}$$

Für die Wellenfunktion $|\psi\rangle$ wird folgender Ansatz verwendet:

$$\psi = c_1(t)e^{-i\omega_1 t} |1\rangle + c_2(t)e^{-i\omega_2 t} |2\rangle \quad . \tag{63}$$

Durch Einsetzen in die zeitabhängige Schrödingergleichung (Gl. 62) erhält man für die Koeffizienten $c_1(t)$ und $c_2(t)$ zwei gekoppelte, lineare und homogene Differentialgleichungen erster Ordnung [43, 41]. Bei Annahme einer schwachen Anregung des oberen Niveaus lässt sich $c_2(t)$ zu folgendem Ergebnis berechnen [41]:

$$c_2(t) = \frac{\Omega^*}{2} \frac{1 - e^{i(\omega_0 - \omega_L)t}}{\omega_0 - \omega_L} .$$
 (64)

Dabei wurde bereits der schnelloszillierende Anteil mit der Frequenz $\omega_0 + \omega_L$ vernachlässigt, was als Drehwellennäherung bezeichnet wird.

9.2.2 Erweiterung auf ein 3-Niveau System

In Abb. 37 ist eine schematische Darstellung des 3-Niveau Systems mit den relevanten Parametern dargestellt.

Abbildung 37: Ramanübergang: Gezeigt ist das 3-Niveau System mit den zwei Ramanlasern, der Frequenzen ω_{L1} und ω_{L2} . Die Verstimmung der Laserstrahlen von der Ramanresonanz wird mit δ bezeichnet und die Frequenzverstimmung der beiden Strahlen gegenüber dem oberen Niveau $|3\rangle$ mit Δ . Für den Ramanübergang gilt: $\Delta \gg \delta$.

Zuerst wird die Wechselwirkung des ersten Grundzustandniveaus $|1\rangle$ mit dem angeregten Energieniveau $|3\rangle$ ohne Berücksichtigung des zweiten Zustandes analog zum vorigen Kapitel berechnet. Daraus erhält man für $c_3(t)$ folgenden Ausdruck:

$$c_3(t) = \frac{\Omega_{31}^*}{2} \frac{1 - e^{i(\omega_3 - \omega_1 - \omega_{L1})t}}{\omega_3 - \omega_1 - \omega_{L1}}$$
(65)

mit den Übergangsfrequenzen ω_3 und ω_1 der Niveaus $|3\rangle$ und $|1\rangle$ bezüglich des Nullpunktes. Die Wechselwirkung zwischen $|3\rangle$ und $|2\rangle$ kann nun analog zur Wechselwirkung zwischen den Niveaus $|1\rangle$ und $|3\rangle$ berechnet werden, wobei für den Koeffizienten $c_3(t)$ der Ausdruck (Gl. 65) verwendet wird.

Die Differentialgleichung für $c_2(t)$ lässt sich analog zu dem im vorigen Abschnitt beschriebenen Verfahren [41] aufstellen.

$$i\dot{c}_2 = \Omega_{23}^* \cos(\omega_{L2}t) \cdot e^{i(\omega_2 - \omega_1)t} \cdot c_3 \tag{66}$$

Wird $c_3(t)$ von Gl. (65) in Gl. (66) eingesetzt und anschließend integriert, erhält man unter Verwendung der Drehwellennäherung folgendes Ergebnis für $c_2(t)$ [43]:

$$c_2(t) = \frac{\Omega_{eff}}{2} \frac{1 - e^{-i(\Delta + \delta)t}}{\Delta + \delta} - \frac{\Omega_{eff}}{2} \frac{1 - e^{-i\delta t}}{\delta}$$
(67)

mit der effektiven Rabi
frequenz $\Omega_{eff}=\frac{\Omega_{31}^*\cdot\Omega_{13}^*}{2\Delta}.$

Da die Verstimmung $\Delta \gg \delta$ ist, kann der erste Term in Gl. (67) gegenüber dem zweiten Term vernachlässigt werden, woraus man für die Übergangswahrscheinlichkeit von $|1\rangle \rightarrow |2\rangle$ folgenden Ausdruck erhält:

$$|c_2(t)|^2 = \frac{\Omega_{eff}^2}{2\delta^2} \sin(\delta t/2)^2 .$$
 (68)

Dieser Ausdruck ist identisch zu dem eines schwach angeregten 2-Niveau Systems (Gl. 64). Wird die Annahme eines schwachen Feldes für ω_1 und ω_2 nicht gemacht, so erhält man für die Besetzungswahrscheinlichkeit von Zustand $|1\rangle$ und $|2\rangle$:

$$|c_1(t)|^2 = 1 - \frac{\Omega_{eff}^2}{\Omega_0^2} \sin(\Omega_0 t/2)^2$$
(69)

$$|c_2(t)|^2 = \frac{\Omega_{eff}^2}{\Omega_0^2} \sin(\Omega_0 t/2)^2$$
(70)

mit $\Omega_0 = \sqrt{\Omega_{eff}^2 + \delta^2}$. Aus den vorherigen Berechnungen folgt, dass sich das 3-Niveau System für $\Delta \gg \delta$ wie ein 2-Niveau System mit einer effektiven Rabifrequenz Ω_{eff} verhält. Daraus kann auch für ein stark wechselwirkendes 3-Niveau System auf die Übergangswahrscheinlichkeiten geschlossen werden (Gl. (69), Gl. (70)).

9.3 Ramanspektrum von ²⁵Mg⁺

Der Ramanübergang wird durch zwei Laserstrahlen (π und σ^+) realisiert. Der π -Strahl treibt den Übergang $|^2S_{1/2}$, F = 3, $m_F = -3 \rangle \rightarrow |^2P_{1/2}$, F = 3, $m_F = -3 \rangle$ nicht resonant mit einer Frequenzverstimmung von 9.0528 GHz und ebenso der σ^+ -Laserstrahl den Übergang vom $|^2P_{1/2}$, F = 3, $m_F = -3 \rangle$ Niveau in den $|^2S_{1/2}$, F = 2, $m_F = -2 \rangle$ Zustand (Abb. 35).

Das Lasersystem des ${}^{2}S_{1/2} \rightarrow {}^{2}P_{1/2}$ Übergangs wird durch Frequenzvervierfachung eines Faserlasers bei 1121 nm erzeugt [34]. Die Frequenzverstimmung von 9.0528 GHz erfolgt durch einen EOM (Elektro-Optischen Modulator), der vor dem UV-Resonator eingebaut ist. Dadurch kann ein Laserstrahl für beide Ramanübergänge und den Rückpumplaser verwendet werden. Das blaue Seitenband ist resonant mit dem ${}^{2}P_{1/2}$ Übergang und der Träger wird für die Ramanübergänge verwendet, da dieser mehr Leistung hat. Die π - und σ^{+} -Ramanstrahlen werden durch akustooptische Modulatoren (AOM) um 1.789 GHz, was der Hyperfeinstrukturaufspaltung des ${}^{2}S_{1/2}$ Zustandes entspricht, relativ zueinander verschoben.

Die Übergangswahrscheinlichkeit des Ramanübergangs hängt von der Frequenzverstimmung δ der zwei Ramanstrahlen ab und nicht von der Differenz Δ . Das Ramanspektrum wird durch Messen des Fluoreszenzlichts des σ^- -Strahls (Detektionsstrahl) in Abhängigkeit der Verstimmung δ aufgenommen. Erreicht δ einen Wert, bei dem man resonant mit dem Ramanübergang ist, so sinkt die Population des $|^2S_{1/2}$, F = 3, $m_F = -3 \rangle$ Grundzustandes und somit die Fluoreszenz des $|^2P_{3/2}$, F = 3, $m_F = -4 \rangle \rightarrow |^2S_{1/2}$, F = 3, $m_F = -3 \rangle$ Dopplerkühlübergangs.

In Abb. 38 ist die Sequenz der Ramanstrahlen und des Nachweisstrahls (σ^{-}) schematisch dargestellt.

In den ersten 50 μ s der Sequenz wird der σ^- -polarisierte ${}^{2}P_{3/2}$ Strahl, der auch als Kühllaser und Detektionslaser verwendet wird, zusammen mit dem Rückpumplaser (siehe Abb. 38) zur Zustands-Präparation auf das Ion eingestrahlt. Bei perfekter Präparation befindet sich das Ion im Grundzustand $|{}^{2}S_{1/2}, F = 3, m_{F} = -3\rangle$. Durch Fehler der Polarisationseinstellung des Monitorlasers wird ein Teil der Population in den $|{}^{2}P_{1/2}, F = 3, m_{F} = -2\rangle$ Zustand transferiert, was zu einer Verschlechterung der Zustandspräparation führt.

Nach der Zustandspräparation werden die Ramanstrahlen als Spektroskopiestrahlen für eine Dauer von 100 μ s auf das Ion eingestrahlt. Je geringer die Abweichung zwischen δ von der Ramanresonanz¹⁷, desto höher ist die Besetzungswahrscheinlichkeit des $|^{2}S_{1/2}, F = 2, m_{F} = -2\rangle$ Niveaus.

Zur Fluoreszenzmessung wird wiederum der σ^- -polarisierte ${}^2P_{3/2}$ Strahl für eine Dauer von 50 μ s eingestrahlt, wodurch bei Ramanresonanz eine Verringerung der Photonenanzahl durch den Photomultiplier gemessen wird.

Diese Sequenz wird für eine feste Frequenzverstimmung δ mehrmals durchgeführt und ein Histogramm der detektierten Photonen ermittelt. Die relative Anzahl der Dunkelzustände wird in Abhängigkeit der Frequenzverstimmung δ der beiden Ramanstrahlen gemessen. In Abb. 39 ist das Ergebnis des ermittelten Ramanspektrums dargestellt.

In Kapitel 9.1 wurde nicht berücksichtigt, dass sich das Magnesiumion in einer linearen Paulfalle befindet. Das harmonische Potential der Falle verursacht eine Aufspaltung der internen Energieniveaus des Ions um $\Delta E_n = n \cdot \hbar \cdot \omega_{x,y,z}$ mit einem ganzzahligen Faktor *n* und den Fallenfrequenzen ω_x , ω_y und ω_z . Das um ΔE_n verschobene Energieniveau wird als *n*-tes Seitenband bezeichnet. Für mehr Details siehe [36, 45].

Die ersten drei roten Seitenbänder¹⁸ und das erste blaue Seitenband der axialen Vibrationsmoden treten bei dem gewählten Frequenzintervall von [1789 – 4, 1789 + 2] MHz auf. Das *n*-te Seitenband ist um das *n*-fache der Fallenfrequenz vom Träger entfernt. Dadurch kann die Fallenfrequenz aus dem Ramanspektrum bestimmt werden. Die Wellenvektoren zwischen den beiden Ramanstrahlen (π und σ^+) zeigen entlang der Fallenachse, woraus nur eine Anregung der axialen Bewegung möglich ist. Der Abstand der Seitenbänder von der Trägerresonanz ist von der Endkappenspannung abhängig. Durch Änderung der Endkappenspannung und somit der axialen Fallenfrequenz kann der Träger von den Seitenbändern unterschieden werden, da sich dessen absolute Position nicht ändert. Der Laser ist während der Messung über das Wellenlängenmessgerät (Wavelengthmeter WS-7 MC) auf ca. 1 MHz stabilisiert. Das breite Maximum der Anregung bei \approx -2.8 MHz in Abb. 39 ist durch Fluktuationen der Frequenzstabilisierung des Monitorlasers verursacht worden.

¹⁷Ramanresonanz bedeutet ein Maximum der Übergangswahrscheinlichkeit $c_2(t)$ in Gl. (72).

¹⁸Seitenband durch die periodische Bewegung des Ions in der harmonischen Falle.

Abbildung 38: a) Sequenz und Termschema zur Ramanmessung: Gezeigt ist eine schematische Darstellung der Sequenz zur Messung des Ramanspektrums von ²⁵Mg⁺. Zur Zustandspräparation werden gleichzeitig der σ^- -Strahl und der σ^- Ramanstrahl auf das Ion fokussiert. Anschließend werden zur Spektroskopie die beiden Ramanstrahlen mit einer bestimmten Verstimmung δ eingestrahlt. Zur Fluoreszenzmessung wird wiederum für einen Zeitraum von 50 μ s der σ^- Kühllaser verwendet. b) Termschema der für die Messung des Ramanspektrums relevanten Übergänge.

Die Breite und Position des Trägers wurden durch eine Lorentzverteilung als Fitfunktion (grüne Kurve in Abb. 39) bestimmt. Analog wurde die Position der Seitenbänder berechnet. Die Breite der Trägerresonanz beträgt (14.4 \pm 1.4) kHz. Für die axiale Fallenfrequenz ω_z erhält man folgendes Ergebnis:

$$\omega_z = 2\pi \cdot (1.309 \pm 0.017) \text{ MHz}$$

Die Messung wurde bei einer Endkappenspannung von 700 V aufgenommen.

Die Radiofrequenzleistung an den Elektroden betrug 4 W bei 23.784 MHz. Der Strom an den Hauptspulen betrug 5 Ampère, an den horizontalen Kompensationsspulen 0.4 Ampère und an der vertikalen Magnetfeldspule 0 Ampère. Bei der in Kapitel 7.3 gemessenen axialen Fallenfrequenz erhält man für ω_z einen Wert von (1.301 ± 0.003) MHz, was sehr gut mit der Fallenfrequenzmessung aus Kapitel 7.3 übereinstimmt.

Man kann aus dem Spektrum deutlich erkennen, dass die Seitenbänder teilweise höher sind als die des Trägers. Ein Grund für die unterschiedlichen Höhen und das Auftreten von Seitenbändern mit $n = \pm 2.3$ kann sub-optimales Dopplerkühlen sein, was zur

Abbildung 39: Ramanspektrum von ²⁵Mg⁺: Gezeigt ist das Ergebnis zur Messung des Ramanspektrums von ²⁵Mg⁺. Bei einer Verstimmung von [1789 - 4, 1789 + 2] MHz treten die ersten drei roten Seitenbänder und das erste blaue Seitenband des Ramanspektrums auf. Der Grund für die Seitenbandresonanzen ist die Verschiebung der Niveaus um die axiale Fallenfrequenz. Das n-te Seitenband ist um das *n*-fache der Fallenfrequenz vom Träger entfernt. Durch die Frequenzdifferenz kann die Fallenfrequenz bestimmt werden.

Folge hat, dass man sich nicht im Lamb-Dicke Bereich befindet. Dieser ist gegeben durch folgende Bedingung:

$$\eta \ll 1$$
, mit dem Lamb-Dicke Faktor $\eta = k \cdot z_0 = k \cdot \sqrt{\frac{\hbar}{2m\omega_z}}$

mit der Ausdehnung z_0 der Grundzustandswellenfunktion des harmonischen Oszillators, dem Wellenvektor k des Lichts und der Fallenfrequenz ω_z . Im Lamb-Dicke Regime ist die Ausdehnung der Wellenfunktion des Ions kleiner als die Wellenlänge. Das hat zur Folge, dass die Anregungswahrscheinlichkeit für Vibrationsmoden $n = \pm 1, 0$ im Gegensatz zu höheren Vibrationszuständen am größten ist. Die Rabifrequenz $\Omega_{n,n \pm 1}$ der Anregung von n nach $n \pm 1$ ist gegeben durch:

$$\Omega_{n,n+1} = \Omega_{\text{eff}} \eta \sqrt{n+1} \quad \text{und} \quad \Omega_{n,n-1} = \Omega_{\text{eff}} \eta \sqrt{n} . \tag{71}$$

Eine exakte Behandlung der Atom-Licht-Wechselwirkung in einem harmonischen Potential ist ersichtlich aus [36]. Aus Abb. 39 sieht man, dass der Kontrast der Messung nur 25% ist. Magnetfeldfluktuationen, Intensitätsschwankungen des Raman- und Detektionslasers sowie restliche Mikrobewegung können Gründe für eine Verringerung
des Kontrasts sein. Da es sich um vorläufige Messergebnisse handelt, wird vermutet, dass die schlechte Zustandspräparation, aufgrund von Polarisationsfehleinstellungen, die Hauptursache für den geringen Kontrast ist.

10 Ausblick und Zusammenfassung

Damit Magnesiumionen in einer linearen Paulfalle gespeichert werden können, müssen diese ionisiert werden. Eine einfache Methode, um Magnesiumionen für das Laden in einer lineare Paulfalle zu erzeugen, ist die Elektronenstoßionisation. Ein erheblicher Nachteil dabei ist die Ionisation anderer Isotope und Hintergrundgase, die ebenfalls in die Falle geladen werden. Aus diesem Grund wurde ein Frequenz-vervierfachtes Diodenlasersystem für die selektive Ionisation von Magnesium bei einer Wellenlänge von 285 nm aufgebaut. Das Photoionisationslasersystem liefert somit einen wichtigen Beitrag zu dem Experiment.

Mit Hilfe der Theorie der nichtlinearen Optik wird die Konversionseffizienz ebener Wellen und Gaußstrahlen in nichtlinearen Medien (z. B. Lithiumniobat, BBO) sowie die Leistungsüberhöhung in einem externen Resonator berechnet.

Zusätzlich wurden folgende Charakterisierungen durchgeführt:

- Vergleich der gemessenen und erwarteten Ausgangsleistung der beiden Resonatoren durch die experimentelle Bestimmung der Finesse. Bei dem ersten Resonator (1140 nm 570 nm) stimmt der gemessene Wert (21.5 mW \pm 0.6 mW) mit dem theoretisch erwarteten Wert (21.9 mW) überein. Aus der gemessenen Finesse (65 \pm 5) ergibt sich ein Verlustfaktor von ca. 0.13%. Die experimentell bestimmte Finesse (244) des UV-Resonators (570 nm 285 nm) liegt über dem theoretisch erwarteten Maximalwert von 141. Dadurch können die theoretische- und die gemessene Ausgangsleistung nicht miteinander verglichen werden. Diese Diskrepanz kann nicht erklärt werden.
- Bestimmung des Gütefaktors Q: Die Leistung der Radiofrequenz bei ca. $\approx 20 \text{ MHz}$ in der Falle wird durch einen Topfkreis-Resonator (Schwingkreis) überhöht. Der Gütefaktor Q = 525 ± 9 des Resonators wird aus der Messung der Monitorspannung¹⁹ in Abhängigkeit der eingespeisten Leistung bestimmt.
- Charakterisierung der verwendeten linearen Paulfalle [34]: Die Abweichung des Potentials im Fallenzentrum wird durch den geometrischen Faktor $\kappa = 0.075 \pm 0.015$ beschrieben. κ wurde aus der Messung der radialen Fallenfrequenz als Funktion der Monitorspannung bestimmt.

¹⁹Die Monitorspannung wird über einen kapazitiven Spannungsteiler am Resonator abgegriffen.

- Charakterisierung der Abbildungsoptik: Aus der Abstandsmessung von zwei Ionen in Abhängigkeit der Endkappenspannung wurde die Vergrößerung $\gamma = 17.1 \pm 0.2$ ermittelt. Diese Vergrößerung reicht aus, um auf der CCD-Kamera einzelne Ionen aufzulösen.
- Isotopieverschiebung: Durch die Anregungsspektroskopie des $^2\mathrm{S}_{1/2} \rightarrow ^2\mathrm{P}_{1/2}$ Übergangs von $^{24}\mathrm{Mg^+}$ und $^{26}\mathrm{Mg^+}$ wurde eine Isotopieverschiebung von (3098 ± 9) MHz ermittelt.
- Aus der Messung des Ramanspektrums von ${}^{25}\text{Mg}^+$ wurde die axiale Fallenfrequenz bei 700 V Endkappenspannung zu (1.309 ± 0.017) MHz bestimmt. Dieser Wert stimmt sehr gut mit der direkten Messung der axialen Fallenfrequenz von (1.301 ± 0.003) MHz durch Amplitudenanregung überein.

Mit der Zielsetzung von Quantenlogik-assistierter Spektroskopie sollen in den kommenden Monaten ein Frequenzkamm aufgebaut sowie Raman-Seitenbandkühlung [45] an $^{25}Mg^+$ implementiert werden: Raman-Seitenbandkühlen erlaubt die Initialisierung der Ionenkette im Bewegungsgrundzustand – eine wichtige Voraussetzung zur Anwendung der Quantenlogik für die Spektroskopie. Der Frequenzkamm wird als Spektroskopielaser eingesetzt werden.

Nach erfolgreicher Demonstration der Quantenlogikspektroskopie an ${}^{40}Ca^+$ sollen die Übergänge in Atomen untersucht werden, die derzeit nur mittels Absorptionsspektroskopie vermessen werden können.

A Anhang

A.1 Berechnung des Konversionskoeffizienten eines Gaußstrahls in nichtlinearen Medien

Die Grundideen dieser Herleitung sind in [18] detailliert beschrieben. Die Polarisation im Medium ist durch:

$$\vec{P}(x',y',z') = \vec{P}_0 \left[\frac{1}{(1+ir')^2}\right] \underbrace{e^{2ik_1z'-\alpha_1z'}}_{\text{Term1}} \cdot \underbrace{e^{-2\frac{(x'^2+y'^2)}{\omega_0^2(1+ir')}}}_{\text{Term2}} B(z') \tag{72}$$

mit $B(z') = 1 \dots 0 \le z' \le l$ $B(z') = 0 \dots$ sonst $l \dots$ der Kristalllänge

gegeben. Der Term 1 ist für die Ausbreitung des Gaußstrahls in z Richtung verantwortlich. α_1 entspricht dem linearen Absorptionskoeffizienten der Grundwelle im Medium. Durch den Term 2 ist die senkrecht zur Ausbreitungsrichtung gaußförmige Intensitätsverteilung ersichtlich.

Die Funktion B dient lediglich der Einschränkung von $\vec{E_1}$ (siehe Gl. (18)) als Quelle im Kristall. Die grundlegende Idee ist, dass die Grundwelle in einem Stück dz' des Kristalls ein Inkrement $dE_2(x', y', z')$ der Amplitude der Oberwelle erzeugt. Dieses Inkrement lässt sich analog wie bei der ebenen Welle mit Gleichung (8) und (9) berechnen. Man erhält folgenden Ausdruck für $dE_2(x', y', z')$:

$$dE_2(x',y',z') = -\frac{i\omega_1}{2c_0n_2}\chi^2 E_1^2(x',y',z')e^{-ik_2z'}dz'$$
(73)

Setzt man das elektrische Feld $E_1(x', y', z')$ (Kapitel 4.4) der fundamentalen Welle ein, so ergibt sich:

$$dE_{2}(x',y',z') = \frac{-i\omega_{1}\chi^{2}E_{0}^{2}}{2c_{0}n_{2}}\frac{1}{(1+ir')} \cdot e^{i\Delta kz'-\alpha_{1}z'} \cdot \underbrace{\left\{e^{-2\frac{(x'^{2}+y'^{2})}{\omega_{0}^{2}(1+ir')}}\frac{1}{(1+ir')}\right\}}_{\text{Propagierender Gaußstrahl}}e^{2ik_{1}z}dz'$$
(74)

Der in geschwungener Klammer gesetzte Ausdruck entspricht der Amplitude eines Gaußstrahls mit konfokalem Parameter b und minimalem Radius $\omega_0/\sqrt{2}$. Entsprechend dem Doppelbrechungswinkel ρ propagiert das Inkrement und erzeugt an der Stelle (x,y,z) außerhalb des Kristalls die Amplitude $dE_2(x, y, z)$. Für kleine Winkel ρ kann zwischen dem Beobachterpunkt (x, y, z) und der Quelle im Kristall (x', y', z') folgende Beziehung berechnet werden:

$$x' = x - \rho(z - z') \dots z \le l$$

 $x' = x - \rho(l - z') \dots z \ge l$
 $y' = y$

Es ist zu beachten, dass (x, y, z) die Koordinaten außerhalb des Kristalls darstellen. Im dem für die Propagation verantwortlichen Term in Gl. (19) wird nun die oben beschriebene Koordinatentransformation eingesetzt und r' durch $r = \frac{2(z-f)}{b}$ ersetzt. Daraus folgt für das Inkrement der Amplitude an der Stelle (x, y, z) des Beobachters:

$$dE_2(x,y,z) = \frac{-i\omega_1\chi^2 E_0^2}{2c_0 n_2} \frac{1}{(1+ir')} e^{i\Delta kz' - \alpha_1 z' - \frac{1}{2}\alpha_2(l-z')} \frac{1}{(1+ir)} e^{-2\frac{([x-\rho(l-z')]^2+y^2)}{\omega_0^2(1+ir)}} e^{2ik_1 z} dz'$$
(75)

Der Term $e^{(-\alpha_2 l-z')/2}$ berücksichtigt die Absorption der harmonischen Welle im Kristall. Das gesamte elektrische Feld an der Stelle (x, y, z) ist durch Integration über sämtliche Quellen entlang des Kristalls berechenbar. Daraus folgt für $E_2(x, y, z)$:

$$E_2(x,y,z) = \frac{-i\omega_1\chi^2 E_0^2}{2c_0 n_2} \frac{1}{(1+ir')} e^{-\frac{1}{2}\alpha_2 l + 2ik_1 z} \cdot \int_0^l dz' \frac{e^{-\alpha z' + i\Delta kz'}}{(1+ir')} \cdot e^{-2\frac{([x-\rho(l-z')]^2 + y^2)}{\omega_0^2(1+ir)}}.$$
(76)

Im Folgenden wird angenommen, dass sich der Beobachter im Fernfeld befindet, was gleichbedeutend ist mit $r \rightarrow \infty$. Daraus ergibt sich folgende Näherung:

$$\frac{1}{\omega_0^2(1+ir)} = \frac{(1-ir)}{\omega_0^2 r^2(\frac{1}{r^2}+1)} \underset{r \to \infty}{\approx} \frac{(1-ir)}{\omega_0^2 r^2}$$
(77)

Mit dieser Näherung und den definierten Parametern

$$s = \frac{[x - \rho(l - f)]}{\omega_0 r}$$

$$s' = \frac{y}{\omega_0 r}$$

$$\beta = \frac{\rho}{\delta_0}$$

$$\sigma = \frac{1}{2}b\Delta k$$

$$\sigma' = \sigma + 4\beta s$$

$$\xi = \frac{l}{b}$$

$$\mu = \frac{(l - 2f)}{l}$$

$$\kappa = \frac{1}{2}\alpha b$$

$$\alpha' = \alpha_1 + \frac{\alpha_2}{2}$$

erhält man für das Betragsquadrat von $E_2(x, y, z)$ folgenden Ausdruck:

$$|E_{2}(x,y,z)|^{2} = \frac{\omega_{1}^{2}(\chi^{(2)})^{2}E_{0}^{4}b^{2}}{16c_{0}^{2}n_{2}^{2}r^{2}}e^{-\alpha'l+\mu\alpha l-4(s^{2}+(s')^{2})} \left| \int_{-\xi(1-\mu)}^{\xi(1+\mu)} \frac{dr'}{(1+ir')}e^{-\kappa r'+i\sigma'r'+4i\beta sr'} \right|^{2}$$
(78)

.

Zu beachten ist, dass durch die Substitution ein Faktor $\frac{b}{2}$ vor dem Integral auftaucht. Mit $|E_0|^2 = \frac{8Z_0P_1}{n_1\pi\omega_0^2}$, wobei P_1 die Leistung der Fundamentalen ist, und $I_2 = \frac{n_2|E_2|^2}{2Z_0}$, erhält man für die Intensität folgendes Ergebnis:

$$I_{2}(x,y,z) = \frac{\omega_{1}^{2}(\chi^{(2)})^{2}b^{2}2Z_{0}P_{1}^{2}}{c_{0}^{2}n_{2}r^{2}n_{1}^{2}\pi^{2}\omega_{0}^{4}}e^{-\alpha'l+\mu\alpha l-4(s^{2}+(s')^{2})}\underbrace{\left|\int_{-\xi(1-\mu)}^{\xi(1+\mu)} \frac{dr'}{(1+ir')}e^{-\kappa r'+i\sigma'r'+4i\beta sr'}\right|^{2}}_{|H(\sigma',\kappa,\xi,\mu)|^{2}}.$$
(79)

Die Leistung P_2 wird durch Integration über den Querschnitt (x, y) des Intensitätsprofils berechnet. Daraus erhält man folgenden Ausdruck:

$$P_{2} = \frac{\omega_{1}^{2}(\chi^{(2)})^{2}b^{2}2Z_{0}P_{1}^{2}}{c_{0}^{2}n_{2}r^{2}n_{1}^{2}\pi^{2}\omega_{0}^{4}}e^{-\alpha'l+\mu\alpha l}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}dxdy \ e^{-4(s^{2}+(s')^{2})} \ |H(\sigma+4\beta s,\kappa,\xi,\mu)|^{2}$$

$$= \frac{\omega_{1}^{2}(\chi^{(2)})^{2}b^{2}2Z_{0}P_{1}^{2}}{c_{0}^{2}n_{2}n_{1}^{2}\pi^{2}\omega_{0}^{2}}e^{-\alpha'l+\mu\alpha l}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}dsds' \ e^{-4(s^{2}+(s')^{2})} \ |H(\sigma+4\beta s,\kappa,\xi,\mu)|^{2}$$

$$= \frac{\omega_{1}^{2}\sqrt{\pi}(\chi^{(2)})^{2}b^{2}2Z_{0}P_{1}^{2}}{c_{0}^{2}2n_{2}n_{1}^{2}\pi^{2}\omega_{0}^{2}}e^{-\alpha'l+\mu\alpha l}\int_{-\infty}^{\infty}ds \ e^{-4s^{2}+4i\beta s(r'-r)}\int_{-\xi(1-\mu)}^{\xi(1+\mu)}\int_{-\xi(1-\mu)}^{\xi(1+\mu)}drdr' \frac{e^{-\kappa(r'+r)+i\sigma(r'-r)}}{(1+ir)(1-ir')}$$

$$= \frac{\omega_{1}^{2}\pi(\chi^{(2)})^{2}b^{2}Z_{0}P_{1}^{2}}{c_{0}^{2}2n_{2}n_{1}^{2}\pi^{2}\omega_{0}^{2}}e^{-\alpha'l+\mu\alpha l}\int_{-\xi(1-\mu)}^{\xi(1+\mu)}\int_{-\xi(1-\mu)}^{\xi(1+\mu)}drdr' \frac{e^{-\kappa(r'+r)+i\sigma(r'-r)-\beta^{2}(r'-r)^{2}}}{(1+ir)(1-ir')}$$

Durch Umformung kann die konvertierte Leistung P_2 berechnet werden.

$$P_{2} = \frac{16\pi^{2}(\chi^{(2)})^{2}Z_{0}lP_{1}^{2}}{\lambda_{1}^{3}n_{2}n_{1}} e^{-\alpha'l+\mu\alpha l} \cdot \underbrace{\frac{1}{4\xi} \int_{-\xi(1-\mu)}^{\xi(1+\mu)} \int_{-\xi(1-\mu)}^{\xi(1+\mu)} drdr' \underbrace{\frac{e^{-\kappa(r'+r)+i\sigma(r'-r)-\beta^{2}(r'-r)^{2}}}{(1+ir)(1-ir')}}_{h(\sigma,\beta,\xi,\mu)}}_{(80)}$$

A.2 Elektronik

In diesem Kapitel wird die für die Temperaturstabilisierung des Kristalls und die für die Pound-Drever-Hall (PDH) Stabilisierung verwendete Elektronik behandelt.

A.2.1 Temperaturstabilisierung des Kristallofens

Für die Temperaturstabilisierung des Lithiumniobatkristalls wurden in den Kristallhalter zwei PT-100 Temperatursensoren eingeklebt. Das Design des Krisatallhalters ist in [34] detailliert beschrieben. Der PT-100 hat ein Temperaturbereich von -200 °C bis +600 °C. Abhängig von der Temperatur ändert sich dessen Widerstand, der über ein Multimeter gemessen werden kann. Die Umrechnung zwischen Temperatur und Widerstand kann mit folgender Formel durchgeführt werden [46].

$$R(T) = 100 \left[1 + 3.9083 \cdot 10^{-3} \cdot T - 5.775 \cdot 10^{-7} \cdot T^2 \right] \dots T \text{ in } ^{\circ}C$$
(81)

Die Temperatur im Kristall wird über einen Regelkreis konstant gehalten. In Abb. 40 ist das Grundprinzip dieses Regelkreises dargestellt.

Abbildung 40: Temperaturregelkreis: Schematische Darstellung des Temperaturregelkreises für den Lithiumniobatkristall. Der Soll- und Istwert wird durch eine Messbrücke verglichen und eingestellt.

Der Sollwertwiderstand wird durch ein Potentiometer an der Messbrücke eingestellt. Entspricht dieser nicht dem Istwert, so wird von der Messbrücke eine Spannung ausgegeben, die durch den Vorverstärker verstärkt wird und anschließend je nach Bedarf invertiert oder nicht invertiert werden kann. Die Ausgangsspannung des Invertierers liegt anschließend an dem Eingang des PID-Reglers an. Dabei sind alle 3 Glieder (Integrator, Proportionalteil und Differentiator) parallel geschaltet und werden am Ausgang aufsummiert. Der Differentialteil des Reglers ist überbrückt, da dieser hier nicht zum Einsatz kommt. Nach dem Summierer folgt ein Gleichrichter, der bei negativer Eingangsspannung eine Spannung am Ausgang liefert und bei positiver Eingangsspannung sperrt. Danach folgt ein Transistor als Stromtreiber, an dem der Heizdraht angeschlossen ist.

Fällt der Istwert unterhalb des Sollwerts, beginnt der Heizvorgang. Wird die eingestellte Soll-Temperatur erreicht, gibt die Messbrücke keine Spannung mehr aus, wodurch der Heizvorgang unterbrochen wird und sich somit der Kristall abkühlt. Der Schaltplan der Messbrücke ist in Abb. 41 dargestellt. Ein Spannungsregler erzeugt eine Gleichspannung von 10 V, die als Spannungsquelle einer Wheatstoneschen Messbrücke dient. Die Widerstände $R4 = R3 = R2 = 200 \ \Omega$ wurden so gewählt, dass ein Widerstandsbereich von 100 Ω bis 300 Ω einstellbar ist. Das würde an dem Potentiometer R_{pot} einem Widerstandsbereich von ca. 200 Ω bis 800 Ω entsprechen. Die Differenz der beiden Spanungen am Ausgang der Wheatstoneschen Messbrücke wird noch durch einen Differenzverstärker auf maximal 15 V verstärkt.

Der Verstärkungsfaktor des Differenzverstärkers (INA114AP) am Ausgang wird durch den Widerstand R_{gain} eingestellt. Mit $R_{gain} = 1 \text{ k}\Omega$ folgt ein Verstärkungsfaktor von 51.

Abbildung 41: Messbrücke: Durch den Differenzverstärker (INA114AP) wird die Differenz der beiden Eingänge 2 (In-) und 3 (In+) verstärkt. Stimmt der Istwert (PT100) mit dem eingestellten Sollwert (R_{pot}) überein, liegt an Eingang 2 (In-) und 3 (In+) dieselbe Spannung an. R_{gain} wurde mit 1 k Ω bestückt, woraus ein Verstärkungsfaktor von ca. 51 folgt.

Das Ausgangssignal der Messbrücke wird an den Eingang des PID-Reglers gegeben, dessen Schaltplan in Abb. 43 dargestellt ist.

Die Verstärkung und Phase des Reglers werden über die Widerstände und Kondensatoren des Proportionalteils und Intergrators eingestellt [47, 48].

Proportionalteil:

- $R_{P1} = 10 \ \mathrm{k}\Omega$
- $R_{P2} = 36 \text{ k}\Omega$

Daraus folgt ein Verstärkungsfaktor von $v_P = -3.6$. Der Integrator wird über den Widerstand R_I und den Kondensator C_I dimensioniert. Es wurden folgende Werte eingestellt.

Integrator:

- $R_I = 1 \ \mathrm{M}\Omega$
- $C_I = 330 \ \mu F$

Die Grenzfrequenz f_g des Reglers wird über die Grenzfrequenz des Integrators bestimmt und lässt sich folgendermaßen berechnen:

$$f_g = \frac{1}{2\pi R_i C_I} \approx 0.48 \text{ mHz} \equiv \tau \approx 200s$$

mit der Zeitkonstante τ . Ist die Verstärkung des Regelkreises größer als 1 und die Phasenverschiebung 180°, dann wird die Gegenkopplung zur Mitkopplung, was einem Schwingkreis entspricht. Die Frequenz, bei dem der Regelkreis zu schwingen beginnt, wird als kritische Frequenz bezeichnet. Wird die Verstärkung signifikant erhöht, beginnt der Regelkreis mit ca. 0.5 Hz zu schwingen. Die Grenzfrequenz ist in diesem Fall um den Faktor 10³ geringer als die kritische Frequenz.

Eine Verbesserung des Rauschens des Fehlersignals ergab sich durch Erdung des Messbrückengehäuses über den Erdungsanschluss des optischen Tisches. Zudem sollte die Verkabelung zwischen PT100 und Messbrücke so gebaut sein, dass Strecken ohne Schirmung möglichst kurz geführt sind.

Ein wichtiger Faktor, der zu erheblichen Problemen der Resonatorstabilisierung geführt hat, waren Temperaturschwankungen der Klimaanlage und des Reinluftmoduls. Aus diesem Grund wurde das Lasersystem mit Plexiglasplatten abgedeckt.

A.2.2 Längenstabilisierung der Verdopplungsresonatoren

Die Resonatoren werden durch das Pound-Drever-Hall Verfahren auf das Maximum des Ausgangssignals stabilisiert. Die dafür notwendige Phasenmodulation wird durch Amplitudenmodulation des Diodenstroms erzeugt. Die Frequenz des Diodenlasers hängt von dem Brechungsindex ab. Durch die Modulation des Diodenstroms kommt es zu Temperatur- und Ladungsträgerschwankungen, die wiederum den Brechungsindex der Diode ändern. Die Stärke der Modulation, gegeben durch den Modulationsindex, wird bei niedrigen Modulationsfrequenzen (≤ 30 kHz) durch Temperaturschwankungen dominiert [49]. Die Phase des Fehlersignals und der Modulationsindex können eingestellt werden. Die Modulationsfrequenz beträgt 20 MHz und ist nicht variabel.

Bei der ersten Verdopplungsstufe wird das reflektierte Licht des Resonators mittels einer 125 MHz Photodiode in ein zur Intensität proportionales Spannungssignal umgewandelt. Dieses Signal wird anschließend an den Eingang (PD-In) des Toptica Steuermoduls gegeben, wo es mit dem Lokaloszillator (20 MHz) gemischt wird. Das Fehlersignal wird anschließend an den Eingang des PID-Reglers gegeben. Das Schaltbild ist in Abb. 44 dargestellt.

Da ein kleiner Anteil der Seitenbänder transmittiert wird, wobei sich der Modulationsindex durch die Frequenzverdopplung ebenfalls verdoppelt, benötigen wir keinen zusätzlichen elektrooptischen Modulator (EOM), um den UV-Resonator zu stabilisieren. Das Photodiodensignal des von dem UV-Resonator reflektierten Lichtes wird über einen Mischer (Mini Circuits Mixer, ZP-3, 0.15-400 MHz) mit dem Lokaloszillatorsignal (Toptica Steuermodul) multipliziert. Das Ausgangssignal des Mischers entspricht dem Fehlersignal.

Aus Abb. 44 ist zu erkennen, dass der PID Regler durch einen weiteren Ausgang "Fast Out" zwei Regelzweige enthält. Ein schneller Regelkreis mit einer geringen Ausgangsspannung (\pm 15V), dessen Bandbreite durch mechanisches Schwingen bei ca. 80kHz begrenzt ist und einen langsamen Regelkreis (ca. 5 kHz Bandbreite) mit hoher Ausgangsspannung (0..120 V) bzw. große Längenänderungen des piezokeramischen Elementes.

In Abb. 42 ist Ansteuerung mit zwei Regelzweigen schematisch dargestellt.

Abbildung 42: Regelung mit zwei PID-Ausgängen: Schematische Darstellung der Regelung mit zwei Ausgängen. Der Piezoausgang regelt langsame Änderung heraus und der zweite Ausgang ("Fast Out") schnelle Änderungen ≤ 80 kHz.

Der Unterschied im Vergleich zur Regelung mit einem Regelzweig (Piezoausgang) ist der Anschluss der Masseverbindung des Piezos mit dem "Fast Out". Die Massen der beiden Ausgänge des Reglers sind intern miteinander verbunden. Vorteile sind rauscharme Hochfrequenzverstärker und eine größere Regelbandbreite.

Literatur

- [1] J. P. Uzan. The fundamental constants and their variation: obeservational and theoretical status. *Rev. Mod. Phys.*, 75:403–450, (2003).
- [2] E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, and Chr. Tamm. Limit on the Present Temporal Variation of the Fine-Structure Constant. *Phys. Rev. Lett.*, 93:1-4, (2004).
- [3] M. T. Murphy, J. K. Webb, and V. V. Flambaum. Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. *Mon. Not. R. Astron. Soc.*, 345:609–638, (2003).
- [4] V. V. Flambaum. Variation of fundamental constants: theory and observations. arXiv:physics.atom-ph/0705.3704, 1:1-8, (2007).
- [5] V. V. Flambaum and V. A. Dzuba. Search for variation of the fundamental constants in atomic, molecular and nuclear spectra. arXiv:physics.atomph/0805.0462, 1:1-9, (2008).
- [6] J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska, and A. M. Wolfe. Further Evidence for Cosmological Evolution of the Fine Structure Constant. *Phys. Rev. Lett.*, 87:1–4, (2001).
- [7] R. Srianand, H. Chand, P. Petitjean, and B. Aracil. Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars. *Phys. Rev. Lett.*, 92:1–4, (2004).
- [8] M. T. Murphy, J. K. Webb, V. V. Flambaum, C. W. Churchill, and J. X. Prochaska. Possible evidence for a variable fine-structure constant from qso absorption lines: systematic errors. *Mon. Not. R. Astron. Soc.*, 327:1–14, (2001).
- [9] Adela Marian, Matthew C. Stowe, Daniel Felinto, and Jun Ye. Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics. *Phys. Rev. Lett.*, 95:1–4, (2005).
- [10] P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland. Spectroscopy using quantum logic. *Science*, 309:749–752, (2005).
- [11] K. Bartschat, D. Weflen, and X. Guan. Electron-impact ionization of magnesium. J. Phys. B.: At. Mol. Opt. Phys., 40:3231-3239, (2007).
- [12] D. N. Madsen, S. Balslev, M. Drewsen, N. Kjaergaard, Z. Videsen, and J. W. Thomsen. Measurement on photo-ionization of 3s3p ¹P₁ magnesium atoms. J. Phys. B.: At. Mol. Opt. Phys., 33:4981–4988, (2000).

- [13] N. Kjaergaard, L. Hornekaer, A. M. Thommesen, Z. Videsen, and M. Drewsen. Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. *Appl. Phys.*, 71:207–210, (2000).
- [14] L. Deslauriers, M. Acton, B. B. Blinov, K.-A. Brickman, P. C. Haljan, W. K. Hensinger, D. Hucul, S. Katnik, R. N. Kohn Jr., P. J. Lee, M. J. Madsen, P. Maunz, S. Olmschenk, D. L. Moehring, D. Stick, J. Sterk, M. Yeo, K. C. Younge, and C. Monroe. Efficient photoionization loading of trapped ions with ultrafast pulses. *Phys. Rev. Lett.*, 74:1–10, (2006).
- [15] Georg A. Reider. Photonik, eine Einführung in die Grundlagen. Springer Wien New York, (2005).
- [16] V.G. Dimitriv, G.G. Gurzadyon, and D.N. Nikogosyan. Handbook of Nonlinear Optical Crystals, volume 64. Springer Verlag, (1991).
- [17] David S. Hum and Martin M. Fejer. Quasi- phasematching. C. R. Physique, 8:180–198, (2007).
- [18] G. D. Boyd and D. A. Kleinman. Parametric interaction of Focused Gaussian Light Beam. Appl. Phys., 39:3597–3618, (1968).
- [19] B. E. A. Saleh und M. C. Teich. *Grundlagen der Photonik*. Wiley-VCH Verlag, 2^{nd} edition, (2008).
- [20] Oliver Sascha Brozek. Effiziente Frequenzverdopplung mit Diodenlasern. Diplomarbeit, Institut für Atom- und Molekülphysik der Universität Hannover, (1995).
- [21] W. Demtröder. Laserspectroscopy. Springer, 3rd edition, Heidelberg (2002).
- [22] E. S. Polzik and H. J. Kimble. Frequency doubling with KNbO₃ in an external cavity. *Optics Letters*, 16:1–3, (1991).
- [23] Claus Zimmermann. Nichtlineare Optik mit Wellen und Teilchen. Vorlesungsskript, Universität Tübingen, (2009).
- [24] R. E. Drullinger, D. J. Wineland, and J. C. Bergquist. High-Resolution Optical Spectra of Laser Cooled Ions. Appl. Phys., 22:365–369, (1980).
- [25] M. S. Safronova, A. Derevianko, and W. R. Johnson. Relativistic many-body calculations of energy levels, hyperfine constants, and transition rates for sodiumlike ions, Z = 11-16. *Physical Review* A, 58:1–13, (1998).
- [26] T. W. Hänsch and Th. Udem. Precision spectroscopy of the 3s-3p fine structure doublet in Mg⁺. arXiv:physics.atom-ph/0907.0368, 1:1-9, (2009).
- [27] Haken und Wolf. Atom und Quantenphysik. Springer, 7th edition, Heidelberg (2000).

- [28] Lutz Petersen. Quantum Simulations in Ion Traps. arXiv:quant-ph/0704.3535, 2:1-131, (2007).
- [29] Wayne M. Itano and D. J. Wineland. Precision measurement of the ground-state hyperfine constant of ²⁵Mg⁺. Physical Review A, 24:1–10, (1981).
- [30] Nist Atomic Spectra Database (http://physics.nist.gov/PhysRefData/ASD/index.html).
- [31] B. J. Lyons, J. A. Shanchuck, J. Hostetler, and T. F. Gallagher. Autoionization of the J=2 and J=4 3pnf states of magnesium. *Physical Review A*, 52:1–9, (1995).
- [32] P. Van der Straten and H. Metcalf. Laser Cooling and Trapping. Springer, Heidelberg (1999).
- [33] Dieter Suter. *Lichtkräfte und Laserkühlung*. Vorlesungsskript, Laserspektroskopie und Quantenoptik, Universität Dortmund, (2008).
- [34] Lukas An der Laan. Aufbau eines frequenzvervierfachten Lasersystems zum Coulomb-Kühlen von Mg Ionen. Diplomarbeit, Universität Innsbruck, (2008).
- [35] D. Meschede. Gerthsen Physik. Springer, 22nd edition, (2004).
- [36] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions. *Rev. Mod. Phys.*, 75:281, 2003.
- [37] W. W. Macalpine and R. O. Schildknecht. Coaxial Resonators with Helical Inner Conductor. Proc. IRE, pages 2099–2105, (1959).
- [38] Pradip K. Ghosh. Ion Traps. Oxford Science Publications, (1995).
- [39] Carlos Manuel da Silva Baptista Russo. Photon statistics of a single ion coupled to a high-finesse cavity. PhD thesis, Institut f
 ür Experimentalphysik der Universit
 ät Innsbruck, 2008.
- [40] M. Drewsen, A. Mortensen, R. Martinussen, P. Staanum, and J. L. Sorensen. Nondestructive Identification of Cold and Extremely Single Molecular Ions. *Phys. Rev. Lett.*, 93:1–4, (2004).
- [41] Rodney Loudon. The Quantum Theory of Light. Oxford Science Publications, 2^{nd} edition, (2000).
- [42] T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. Observation of quantum jumps. *Phys. Rev. Lett.*, 57:3, 1986.
- [43] Christopher J. Foot. Atomic Physics. Oxford University Press, (2005).
- [44] Immanuel Bloch. Licht Atom Wechselwirkung im zwei Niveau-System. Vorlesungsskript, Atomphysik WS2003/2004, Johannes-Gutenberg-Universität, (2004).
- [45] Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt. Laser cooling of trapped ions. J. Opt. Soc., 20:1–13, (2003).

- [46] Widerstandswertetabelle PT100 (http://www.abmh.de/pt100/tabelle.html).
- [47] U. Tietze und Ch. Schenk. Halbleiterschaltungstechnik. Springer, 11th edition, (2002).
- [48] Ekbert Hering und Klaus Bressler und Jürgen Gutekunst. Elektronik für Ingenieure. Springer, 4th edition, (2001).
- [49] Dieter Meschede. Optics, Light and Lasers. Wiley-VCH Verlag, 2nd edition, 2007.

Danksagung

Am Ende meiner Arbeit möchte ich meinen Betreuern, Freunden und Familie danken. In erster Linie möchte ich Herrn Prof. Dr. Rainer Blatt, dem Gruppenleiter unseres Forschungsteams danken. Durch ihn konnte ich meine Diplomarbeit in einem höchst interessanten Umfeld durchführen. Zudem ermöglichte er mir einen Teil meiner Arbeit an der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig durchzuführen.

Ein grosses Dankeschön geht an meinen Betreuer Prof. Dr. Piet O. Schmidt, der immer Zeit für meine offenen Fragen gefunden und diese mit unendlich viel Geduld beantwortet hat. Zudem gab er mir die Chance durch den Umzug seines Experimentes (DIFCOS) ein halbes Jahr im Rahmen des Quest-Teams zu arbeiten. Diese Zeit war eine wichtige Erfahrung für mich, neben der Tatsache, dass man als Nordtiroler in Norddeutschland so manche Verständigungsprobleme hat.

Im Zuge dessen möchte ich vor allem meinen direkten Laborbetreuern Börge und Birgitt danken. Die Zusammenarbeit mit Börge im Labor war sehr angenehm und er hat mich mit viel Geduld und Wissen betreut. Vor allem möchte ich Börge für die Möglichkeit danken, dass ich bei ihm als Untermieter in Braunschwieg einziehen konnte. Dem Quest-Team möchte ich für die Unterstützung und nette Zeit in Braunschweig danken.

Natürlich gebührt dem gesamten Team in Innsbruck, den Elektronikern Arthur und Manuel sowie den Werkstattmeister Toni und Helmut mit Mathias ein herzliches Dankeschön. Thomas und Markus danke ich für die Hilfe bei der Korrektur.

Meinen Freunden in Landeck möchte ich für die moralische Unterstützung danken. Meinen alten Studienkollegen (Banditos) möchte ich vor allem für die Zeit danken, in denen wir zusammen mit den oft schwierigen Übungsaufgaben gekämpft haben und natürlich für das ein oder andere Bockbier im Elferhaus.

Meine Freundin Catherina musste während meiner Studienzeit mit Sicherheit so manche Launen aushalten. Sie hat mich bei meinen Vorhaben und Plänen immer unterstützt und mir das Gefühl gegeben, dass sie hinter mir steht. Ich möchte dir von ganzem Herzen für die vergangenen Jahre danken.

Ein Dankeschön gebührt natürlich auch Moni und Albert, bei denen ich die letzten Wochen mehr oder weniger eingezogen bin.

Meinen Schwestern Juliane, Bernadette und Isabella möchte ich herzlich danken. Ihr seid immer für mich da gewesen.

Am Ende möchte ich meinen Eltern danken, die mich immer in jeglicher Hinsicht unterstützt haben, damit ich meine Pläne verwirklichen konnte. Das werde ich nie vergessen. DANKE!